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We consider theO(a') string effective action, with Gauss-Bonnet curvature-squared and fourth-order
dilaton-derivative terms, which is derived by a matching procedure with string amplitudes in five space-time
dimensions. We show that a non-factorizable metric of the Randall-SundR®h type, with a four-
dimensional conformal facta 2<%, can be a solution of the pertinent equations of motion. The paraketer
is found to be proportional to the string coupliggand thus the solution appears to be non-perturbative. It is
crucial that the Gauss-Bonnet combination have the righsitive in our conventionssign, relative to the
Einstein term, which is the case necessitated by compatibility with stiieg amplitude computations. We
study the general solution for the dilaton and metric functions, and thus construct the appropriate phase-space
diagram in the solution space. In the case of an anti—de Sitter bulk, we demonstrate that there exists a
continuous interpolation betwedpart off the RS solution ak= + and an(integrable naked singularity at
z=0. This implies the dynamical formation of domain walgparated by an infinite distancéus restricting
the physical bulk space-time to the positwaxis. Some brief comments on the possibility of fine-tuning the
four-dimensional cosmological constant to zero are also presented.

PACS numbes): 04.50+h, 11.10.Kk, 98.80.Cq

I. INTRODUCTION In Ref.[6] five-dimensional bulk geometries were consid-
ered, with our four-dimensional universe viewed as a three-
Recently considerable effort has been devoted to the studyrane embedded in them. It was argued, in agreement with
of higher-dimensional space-times with metrics of non-the lowest-ordefin the scalar curvatureesults[4], that the

factorizable form between four- and highébulk) dimen- ~ presence of higher-curvature Gauss-Bonnet terms cannot
sional coordinatefl,2]: lead to a solution of the cosmological constant on the brane

without fine-tuning, as a result of the appearance of naked
singularities in the bulk. However, in the models considered
in Ref. [6], the Gauss-Bonnet term in the action was decou-
pled from the dilaton field. This isiot the case in string-
In the modern context of non-perturbative strifigrang  effective models of higher-derivative gravity, compatible
theory, this type of metrics arises from the so-calledwith string (tree amplitude computations in the bulk geom-
D(irichlet)-brane picture of our world, according to which etry[8]. In the latter case, it is known that the dilaton fidd
the observable Universe is viewed as a three-brane embedeuples to the higher-curvature part of the effective action
ded in a higher-dimensiondbulk) geometry[3,2]. Among  through the appropriate conformal weighf!®. The weight
other issues, in such an approach one looks for mechanisnmns is determined, together with the coefficient of the GB
that solve the mass hierarchy probl¢#] or offer explana- terms, by the requirement that the effective action be the one
tions for the vanishing of th€our-dimensional cosmologi-  reproduced by the appropriate string amplitufigls
cal constant. However, the latter case is inflicted by the pres- The purpose of this work is to reconsider the solution
ence of naked singularities in the byl and/or instabilities under the inclusion of proper string-effective higher-
[5]. curvature terms. In this article we show that, in a setup where
In the original approach1,2] the metric (1) has been there is an initial three-dimension@patia) brane located at
considered only in connection with Einstein-type theories ofthe originz=0 of the bulk dimension of the five-dimensional
gravitation, i.e. theories in which only the curvature scalargeometry, a metric of the forrfdl) is still a solution of the
appears in the gravitational part of the action. Recently, howequations of motion of an effective action derived frézon-
ever, attempts have been made towards the inclusion afentiona) string amplitudeg8], up to O(a’) in the Regge
higher-curvature(quadrati¢ terms in the actior{6] of the  slopea’. As is well known, such actions can always be cast,
Gauss-BonnetGB) type [7]. Such terms, which arise natu- by means of appropriate field redefinitions that leave the
rally in (supejstring effective action§8], are known to lead (perturbative string amplitudes invariant, in a GB forfi7],
to non-trivial cosmological and general-relativistic solutions,provided one includes appropriate fourth-derivative dilaton

ds?=e 27@ . dX'dX +d2%, i,j=01,...,3. (1)

such as singularity-free expandif@] and/or closed10] uni-  terms. In fact, as we shall show below, both of these facts
verses, and black-hole solutions with non-triviakcondary  result in different conclusions, for the non-constant dilaton
dilaton) hair[11,12. case, from those in Ref6].
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It is important to note that the sign, as well as the relative The structure of the article is as follows: in Sec. Il we
strength\ of the GB terms in the action, is uniquely deter- formulate the problem, and discuss the GB higher-curvature
mined by the amplitude-matching procedure. In our conveneombination and its connection with string amplitudes in a
tions for the metric and curvature the coefficiantomes out general context of @-dimensional space-time. In Sec. I
positive We shall demonstrate that the Randall-Sundrumwe discuss non-factorizable metrics of the forthin a five-
(RS type metric[2], with dimensional setup, with the fifth dimension generating a bulk

geometry, in which a three-brane world is embedded. In par-
ticular, we first demonstrate the consistency of the Randall-
o(2)=2, klz—z], (20  Sundrum-type space-time with a constant dilaton, in the
i presence of the Gauss-Bonnet higher-curvature combination
derived from string amplitudes. We then proceed to discuss-
wherei denotes théth brane, located a along the bulk ing the linear-dilaton ansatavith respect to the bulk coor-
direction, satisfies the equations of motion derived from suci§linatez). We show that the string amplitude induced Gauss-
anO(a') string-effective action. It is important to stress that Bonnet combinationis not consistent with this solution.
the solutionexists onlyfor A>0. Moreover, the parameter However, there is a solution corresponding to a d&gen
ke J1/N. Since[8] )\ocllgg, wheregs is the string coupling, vv_hlch there isno conformal coupllng_of the _d|Iaton with th_e
the resulting solution appeatformally) non-perturbative. h|gher-curv§turg terms in the effective action. Our solution,

As we shall show, in our scenario there are also solution§owever, still differs from that of Ref,6] because of the
that are characterized byvanishingvacuum energy contri- Presence of fourth-_dgrlvatlve_ dllator_1 terms. Some_z brlef_com-
bution on the brane a requirement that may come, for in- ments on_the possibility of fine-tuning the four-dmensmnal
stance, by demanding a consistent embedding of the solutidgfPSmological constant to zero are made. In particular, our
(1) in a supersymmetric theory on the brane. However, a_ganalysw demons.trates that such fine-tuning is possible only
argued in[13], recoil (quantum fluctuations of the D3- N the constant dilaton case. In Sec. _IV, we dISCU§S the gen-
brane, as a result of scattering withulk) closed strings or eral _solutl_on of_ the equations of motion for the_dllaton and
other solitonic defects, may induce supersymmetry obstrucdraviton f|el_ds in the strlr_wg-eﬁectlve case. This includes the _
tion by means of “conical” singularities on the brane. This above solutions as special cases. _In this general case, one is
yields small contributions to the vacuum energy of the braneS@Pable of presenting some analytic arguments on the singu-
which, as a result of recoil, finds itself in axcitedstate, larity structure of the solutions, which allow important con-
rather than its ground state. In addition, recoil fluctuationsclusions to be drawn on the underlying physics, which go
lead to a dynamical formation of horizons in the bulk dimen_beyond the_numerlcal _solutlons obtained. In partlcular,_m the
sion[14] of a given size, which is determined by the dynam_Strlng amplltL_Jde effeC_tIV_e case, We_demonstrat(_e the existence
ics. Such effects, which here are viewed as subleading to tHY Néw solutionsconsisting of continuous functions for the
classical ones we are discussing, will be the topic of a forthdilaton and space-time metric fields thaterpolatebetween
coming publication. a RSl-type solution §z=_ +oo and an(lntegrable) nakepl sin-

In the present article we shall consider dilaton configuradularity atz=0. This implies thedynamical formationof
tions that depend solely on the bulk dimensior particu- ~domain walls in the bulk geometry obtained from the string-
larly interesting case is the one in which the dilaton field is€ffective action. The walls are separated by an infinite dis-
linear in z This case may be motivated by the fact that thetance, and this r_esults ina dynz_ir_mcal_ restriction of the physi-
equations of motion of fields in the geomet) acquire a ¢l bulk space-time on the positizeaxis only. The fact that
“friction type” form, suggestive of the role of the bulk di- this solution emerges frorgperturbative string-effective ac-
mension as a renormalization grodRG) parameter[15] tions is remarkab]e in our opinion, |mply|ng that perturbatlve
and, actually, of the Liouville-field typEL6—18. The space- World-sheet physics can still lead to important conclusions of
like character of the Liouville field is dictated by the sub- '€levance tanon-perturbativestring theory. Some conclu-
critical dimensionality of space-time in the specific five- Sions and outlook are presented in Sec. V.
dimensional geometry under consideration. Crucial to this

interpretation is the fact that the bulk space-time is of anti— Il. STRING AMPLITUDE-INDUCED
de-Sitter type, which is known to exhibit holographic prop- HIGHER-CURVATURE GRAVITY
erties[19]. The fact that there exist non-trivial solutions to ) . .
the equations of motion, including théstringy) Gauss- In this section we shall formulate the problem mathemati-

Bonnet term, is suggestive of a deeper connection of thi§&lly, and set up our notation and conventions. Throughout
string-inspired approach with théolographig bulk geom-  this work we shall follow the conventions of Rg®3], ac-
etries (1). However, in this paper we shall not pursue thecording to which the flve—dlmer_lsmnal space—tlme ha}s sigha-
holographic RG interpretation in detail. We only mention atturé (=, +,...,+), and the Riemann tensor is defined as
this stage that this interpretation does not seem to hold in thB#wEF;a,_ﬂ_ e

generic case, and requires specific properties of the bulk ge- We consider the action

ometry (e.g. the validity of a propec theorem[20-22),

which could be quite restrictive in the presence of higher- S=5+35, 3
curvature terms. A detailed study of such important issues
will be the topic of a forthcoming publication. whereS;s is the five-dimensional part:
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4 (bulk) fifth dimension in the space-tim@) as a(space-like
Sszf dSX\/—_Q[ —R- §(V,ﬂ>)2+ f(®)(aR?*+BR2, Liouville mode[15,16. A more conventionaland probably
safe) approach, which we shall adopt here, is to assume
5 © A initially a ten-dimensional space-time, in which three branes
+YRL,,0) T E2)EHCy F(P)(V, @)+ -], (4 are embedded. In the bulk one may, then, consider the propa-

gation ofclosedstrings only[3], but take the case in which
with ® the dilaton field, and the ellipsis denoting other typesall but one of the bulk coordinates are compactified. In that
of contraction of the four-derivative dilaton terms; these will case, the induced string theory amplitudes will formally cor-
not be of interest to us here, for reasons that will be exfespond to those residing in an effective 5-dimensional

plained below. space-time, in the sense that one may consider string back-
The four-dimensional pai$, of the action(3) is defined  grounds that depend only on the uncompactified coordinates,

as and restrict oneself to effective string amplitudes equiva-

lently, o-model conformal-invariance conditions8]) for

_ 4y [ o those degrees of freedom.
Si=2, f dXV=g@e v(z) ®) With the above in mind, we hae]
where a=+1, f(®)=re’®, r=a'/83%>0, 7
g*’,  w,v<5, wheregs is the string coupling. In this case we also hdve
94=10 otherwi (6) =—0=4/y3(D—2) [=4/3 in D=5 dimensions of(for-
@ olherwise, mal) interest to us helle Moreover, in(perturbative string

theory one has the freedof8] to redefine the graviton and
and the sum over extends over D-brane walls locatedzat dilaton fields so as to ensure that the quadratic-curvature

=z, along the fifth dimensioh. terms in Eq.(4) are of the ghost-free GB forfv]:
The quantitiesa,8,v,c, are constants to be determined ) wvpo P
below by matching with string amplitudes in the bulk geom- R 8= RuwpoR — 4R, ,RHRY ®

etry. We notice that in our approach we consider the Vaculliis field-redefinition ambiguity also allows us to consider

energy mt.tTg bulkdand on tthhe ZTI""TG afs Eha;!n? tadsgecﬁ%e four-derivative dilaton terms in Eq4) as having the
(exponen |a)_ ependence on the dilaton Tie®, dictated by single structure exhibited above. Matching with tree-level
string amplitude computations. More general models, in

which one considers arbitrary scalar potential function® pf string amplitudes (@ (a”) then requires8]

have also been considered in the literati@4], but will not 16D—4

be analyzed here. We simply mention that the precise dy- szg D-2" 9)

namics behind models with dilaton potentials is still un-

known; in tree-level critical string theory there are no suchit is interesting to note that for four dimensional targets, this

potentials, but string-loop corrections may be responsible focoefficient vanishes. This fourth-derivative dilaton term will

their generation. turn out to yield, in the five-dimensional case, the essential
We now consider, for definiteness, the case in which thelifference in the solutions obtained here from those in Ref.

action S; is derived from aO(«’) («’ the Regge slope [6].

heterotic-type string theory in the low-energy limit The graviton equations of motion derived from E4) in

(=5) space-time dimensions. Some remarks are in order ahe effective string case aréwith a=y=168=—-4,C,

this point. From a formal point of view, one may think of the =16/27)

V—0)
* o

4
0l v (z) = 5 (VA®) (V') ~ ()

N| =

1 4
0=R“+ g ~R= 5 (V)24 G (9) (VD) *+ E(2)e” | +

1
X(2aRRH+ 28R R+ 29Rl, R*) + 5 g F(®)(aRP+ AR, R+ YR, R7™) + 2a{(g" H(®)R) .

aoTp

= (F( @R+ B{(g“ T (P)R), ot (F(P)RH), 7= (F(P)RH7) /= (F(P)R")E } + 2/{(F(D)R*Y7). .,
+(F(DIRHTT), o} = 2C5F () (VHD) (VD) (V)? (10

U1t is also possible to consid¢t4] a “stuck” of such D-branes, in which cas®, is replaced byfdz over flat integration measure, and
v(z)—uv(z). This term is not varied with respect to the fifth dimensiofimllk) gravitational field.
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where a semicolon denotes covariant differentiation. 0=e*?@Duy(2)+ef®@Dg(z)+ 122D on g’ (2)*
The dilaton equation of motion, on the other hand, yields

8d"(z) 320 (z)d'(2) . 256"\ o' (2) P’ (2)®

8 +
0= 5 V2D +/(D)(aR?+ BR,, RU+ YR,y R ") 3 3 27
e 16" AP (D) oy (%)
— - - o(z)og(z
+> %wew%(zi)—4czvﬂ(f(q>)(w¢)(v¢)z) 9
! -9 64e0q)(z))\q)l(z)2q)u(z)
+LE2) P+ Cof (D) (VD) (11) - 9 : (14

where the prime denotes differentiation with respecPto  Owing to the Bianchi identities, only two of the equations
In the next two sections we shall study the classical soluare linearly independent in the bulk. It is straightforward to
tions of these equations in the context of non-factorizableserify the following relation among the equations:
space-times of the forrd).
d
ll. STRING-INDUCED HIGHER-CURVATURE GRAVITY 80'(2)x[(12)~(13]- @ (Z)X(14)+2d_z(13)

AND NON-FACTORIZABLE METRICS
=et?@¢(2)+e**Py(2)[40' (2) — 0@ (2)].
A. General remarks (15
We consider the non-factorizable ansétz for the five-

dimensional metrid1,2], which recently attracted a great Note that, in order to avoid breaking of Poincameariance
deal of attention because of its connection with the view ofin the bulk space-time, which we assume Hdrg], we must
our world as a [irichlet)-brane embedded in the five- impose

dimensional geometry3,2]. Our point in this article is to

examine first whether such metrics are compatible with the §'(2)=0. (16)
low-energy effective action obtained from t a') string
effective action(4). As we shall show below, it is only for a
particular (positive) sign of the GB term(8) relative to the

Einstein term, which is the case obtained from string ampli ting-inspired text of int " h h potential
tudes[8], that the equations of motion in the space-titig string-inspired context of Interest to us here, such potentials
may be generated by string-loop corrections. We shall not

have a real solution. Moreover, we shall also verify that the . . o N
specific Randall-Sundrum scenar(@) is a solution of the d'SCL.‘SS. this case_exphcnly here, as it will not affect our
equations of motion under certain conditions. qualitative conclusions.

Assuming that the metric functiom(z) in Eq. (1) and the

It should also be noted, however, that it is possible to pre-
serve Poincarénvariance in the bulk by including a more
general dilaton potentiak(®) [6,24]. In the (heteroti¢

dilaton fields®(z) are functions only ofz, we write the B. Constant dilaton case and the Randall-Sundrum
equations of motior{10),(11) in the form space-time
0d(2) () We commence our analysis with the case of constant di-
0=2 v(2) L E £(2) 60" (2)2+126°°@\ o' (2) laton. In this case, we can sét= 5=const, andd’=®"
2 2 =0 in the bulk, butnot on the brangsince®’ can be dis-
20 (2)2 continuous there, as we shall discuss later on. In this case the
—36e*@ong’ (2)3D" (2)— % equations of motion are reduced to
d
6D (2) ’ 4 nw - r_ ’ n0 ' 3
£ 12690 23 o (220 (2)2+ 8e 2)\7<D (2) e"7v 8(z) dz[ 60'(2)+8e"\o’(2)°] (17)
+30’”(Z)_1260‘1)(2))\0',(2)20'”(2) egng(Z)_120',(2)2+24e770)\(7/(2)4:0, (18)
+24e"*@ g’ (2)D' (2)0"(2) implying
+12e"*@gr o' (2)2D"(2) (12 —60'(z)+8e"\a’(z)%=c=const (19
ef®@¢(z) ) o . in the bulk. As a third-degree equation this has always a real
0=————-60'(2)°+12% @Xo'(2) solution of the formo”’(z) =k, ,z>0, ¢’ (z)=k_ ,z<O.
We now integrate Eq(17) over z to an interval that in-
29’ (2)? cludes the brane @=0:
—48"Do\o' (2)°0"(2)+ —3—
e™p=—60"(2)+8e"\o’ (2)%3, (20)

8e9<b(z))\q) ’ (2)4

9 (13

which reduces to
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ey =—6(k, —k_)+8e"\ (k3 —k3), (21)

thus relatingk, ,k_ with v.
Solving Eq.(18) with respect tcg, by requiring continuity
of £(z) atz=0, we obtain

e7ié=— 12 (— 1+2e7\k%) = — 12k2 (— 1+ 2e7\k?),

(22)
which has two solutions. The first one is
k,=—-k_=k, (23
which is the RS solutiof?2].2
The second solution is
k2 +k?2 e (24)
2\

and exists only fon >0, which is the case compatible with
string amplitude computatiori8].

From the dilaton equatiofil4) in the bulk, after taking
into account Eq(18), one has

[+2e"(—(+50)\k2 =¢+2e"(— (+50)\k? =0,

(25
which, in conjunction with Eq(22), leads toeither
k,=—k_=k and {+2e"%(—{+50)\k*=0 (26)
or
e 7
{=6=0 and k? +k%= TN (27)

Finally, integrating the dilaton equati@t4) in the neighbor-
hood of the brane, we obtain

e wv=32""0N0" (2)%[5" =32e"7ON (K3 —K2).

(28
From Egs.(22),(26),(28) we thus have

ef1¢=12k?— 24k*\ (29
ey =4k(—3+4k?\) (30)
(- 10k2 O\ @1

— 142K\
16k2 O\ 32

W= —"/".
—3+4k2\

Note that the string solutiofi=— 6 (=3 for 5-dimensional
string theory is satisfied for

°Note that the solution witk, =k_ has a continuous metric func-
tion atz=0, and hence isot of the RS type.

PHYSICAL REVIEW B2 124004

2 32 (102 K 1 Lot
w: —, U e —, = , = —’ = —— .
3 3 23\ 89?2
(33

Sincek is positive, we observe that the string-effective action
yields, in the case of a constant dilaton, the RS scerjalio
in which the bulk spacetime is of anti—de Sittar the sense
of a cosmological constargt>0 in our conventions while
the sign ofv is opposite to that ot (and hence the brane
world atz=0 has positive tensignWe also notice that the
solution(33) implies that the sign of the conformal weight
is opposite to that of, which is expected from generic con-
siderations in string theor}8].

For the second solutio(R7), one obtains, on account of
Egs.(22) and (28),

{=0=w=0 (34)
and
3 1 2 2 1 2
v=—6k, +8NkI =2/ 5= —ki —8NKE /5 — K]
(39
E=—12% (—1+2\k%) (36)
1 2
ko=—/5 =K (37)

Above, we have chosen the negative solutionkorto en-
sure finiteness of the metric gt/ —~. We observe that the
bulk spacetime is again of the anti—de Sitter type, for small
N\, where the perturbative string-effective-action approach is
valid, whilev and¢ come with opposite signs on the brane at
z=0.

At this point it is natural to enquire whether a vanishing
cosmological constant on the brane occurs by an appropriate
choice of the(free) parameterk, in the solution(37). In-
deed, in the case of a single brafat z=0) the four-
dimensional cosmological constarf2) is given by

o k_—ky
Q=Jﬂc\/—g§-l—v——2k7k+ &+, (39
which yields the Randall-Sundrum solution, with
k,=—k_=k= ! (39
+ - 2\/X

as the unique solution that guarantees the zero cosmological
constant in our framework, where higher-curvature correc-
tions have been taken into account.

So far we have concentrated on the case of a single brane,
located atz=0. The above conclusions are not affected by
including more than one branes, as in the approaci2pf
which is needed for a solution of the hierarchy problem.
Within our framework, despite the small value
=/2/3ys, Eq.(33), in units of a’, this can be achieved by
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placing another brane at=r,, which we assume describes From this, it is trivial to conclude that the linear dilaton
the location of the observable wor]@]. As in Ref.[2], ry  solution is compatiblenly with 6=0, which on account of
may be taker(within the classical framewojkio be a free the equations of motion leads = »=0. In this case, we
parameter, which may be assumed, much larger than thfind two solutions forA >0:
string scalel¢=+/a’. In such a case, the mass hierarchy in
our world arises from the fact that the value of the determi-
nant in front of the matter Lagrangian on the branezat zzi k2=i &= v=—18\/:
=r,, will be suppressed by exponential factors of the genericc 8\’ 2\ ' A
form e Ko, These can be small fory/\a' sufficiently
large. or

However, as we shall discuss in the next section, the gen-
eral solution to the equations of motion for the string-
effective case imply the possibility of dynamicalappear-
ance of a second brarfdomain wal) located at a distance, ~2_ i k2=2+ \/E i= v=3 52+ 22\/6
which is determined by the underlying dynamics, and in fact 8\’ 8\ A '
turns out to banfinite. We should mention that similar re- (43
strictions on a dynamically induced magnitudergfmay be
encountered in the case when quant@ecoil) fluctuations
in the D-branes are considergt4]. We reserve discussion

of this problem for a forthcoming publication.

We now remark that, from the point of view of a possible
holographic renormalization-group interpretation of the bulk
geometry[15,19, the consistent solution would be the first
one(42), characterized by an anti—de Sitter type bulk geom-

C. Linear dilaton in Randall-Sundrum space-times etry. Because of the independence oQ in this case, the

. . . . ., fixed points connected with the renormalization-group flow
In this subsection we shall examine the simplest pos&blz P group

f tant dilat v that of a dilaton I i.e. the theories residing on the two branes in the RS geom-
case ot a non-constant diiaton, namely that ot a dilaton linea try) would be degenerate, being characterized by the same

in the bulk dimensior17,18: value of the central charg®@, and hence would be connected
®(2)=Qz+ 7, (40) by me}rginal opera}tors ina R_G sense on the world sheet. This
case is common in superstring theories.
Note the relative sign difference in between the two
with Q constant. solutions. Also notice that in neither of the above cases is it
Considering this case may seem well motivated by thepossible to fine-tune the parameters so as to obtain a vanish-
proposal on the identification of the bulk coordinatas a ing cosmological constant on the four-dimensional world.
holographic renormalization group paramef&b], in case The cosmological constant is relatively small, for weakly
the bulk space-time is anti—de Sitter, which is known to ex-coupled strings, as being proportionalgip. However, this is
hibit special holographic properti¢$9]. From this point of not phenomenologically acceptable, unless one considers
view, the linear dilaton ansatz, for a metric of the fofhy, is ~ (non-realisti¢ very weakly coupled string theories.
suggestive of a more specific situation, namely that of the As a final remark, we would like to stress the difference
identification ofz with a (space-like Liouville mode[16] in  of our scenario from those discussed in Ré}. In our case,
the five-dimensional context. However, this identification re-in contrast to that discussed[i6], there exists the non-trivial
quires some thinking, and is not always possible.fourth-derivative dilaton termY ¢)*. Its presence is crucial
Renormalization-group flow in stringy models is irrevers-  in ensuring(for the #=0 cas¢ the consistency of the linear-
ible, due to the loss of information in modes beyond thedilaton ansatz with the non-factorizable metric case and,
ultraviolet (world-sheek cutoff. This implies the presence of moreover, in yielding solutions fas(z) that go beyond the
a c theorem[20], whose existence for generic bulk space-RS scenario.
times is not clear at presef21,22,§. We shall not discuss
this interpretation further in this article. This will be the topic
of a forthcoming publication. IV. BEYOND THE RANDALL-SUNDRUM SCENARIO
Nevertheless, in this section we shall study the linear di-
laton case(40) per seand discuss whether this ansatz is
compatible with the metri¢1) in the context of theD(a")
string-effective actior{4). To this end, we first consider the
linear combination (123X (13) and substitute the ansatz
(40) for the dilaton and the RS metri{®). In such a case, we
obtain in the bulk,

In this section we shall examine the general solution,
within the string effective action framework, for the space-
time (1), where we shall treat boti(z) and the dilatorb (z)

as unknown functions, without restriction to the specific
form of the RS metricq2). We shall discuss the general
solution of the equations of motiof12)—(14), and discuss
the connection with the metrid®) as a special case. As we
shall demonstrate below, sufficient analytic information on

—72Q%+ 64e**AQ*\ + 648 DK3Q A the structure of the solutions can be_ obtained, which alloyvs
us to draw some general conclusions on the underlying
+648*DK2Q2¢%)\ . (41)  physics.
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A. General solution of the graviton and dilaton equations solved only in the physical parametrizatiém(z),®(z)). In
It is convenient to use the notation 'Ehlzs; c?se) we resort to numerical integration of the full system
12)—(14).
() 1 dy(2) We first note that the above equations admit in the bulk
y(@)=re""7, u(y)= K dz some exact solutions, which are known analytically. The first
example is the trivial case of
do(z) _ B E=u=g=0 50
g=\y —g—, E=en (44 2=u=0=0, (50

corresponding to a flat bulk space-time with a constant dila-
From now on, we shall concentrate on the case of stringon, which is obviously an exact solution of the equations of
theory {(=—6 (=4/3 in the case of five-dimensional motion.

strings. In the above parametrization, E@.3) becomes al- A second exact solution occurs for anti—de Sitter bulk
gebraic: with a specific value of the cosmological constant:
= 2 4 _ 3 2_ 4_ 1 5
162 — 19207+ 384q* — 15363°u+ 12u2— 9u*=0. (45) qP=g5 u=0, E=. 51)
Solving Eqgs.(12),(14) with respect tag’, u’ and using Eq.
(45) we obtain This is the Randall-Sundruficonstant dilatonsolution(33),
derived in Sec. Il B.
de(y): A(q,u) A third exact solution can be found by inspecting Egs.
dy 8uC(q,u) (46),(47). We notice that botlig/dy anddu/dy vanish for
duty) B(q,u) 0=0o, U=Uu#0 with
- , (46)
dy  uC(q,u) 3 2 3
—40y+4875—2up— 16q5Up+Uug=0 (52
where . . .
and thus the above points correspond to exact solutions with
A(g,u)=—(—4q+48y3—2u—16g%u+ud) = determined from Eg(45). These solutions correspond to a
3 3 curve in the phase spacsee the discussion in Sec. IV C and
X (1280°—2u+3u”) Fig. 2). In terms of the metric and the dilaton these solutions
B(q,u) = 4q(1— 40>+ 12qu) are singular:
3 3
X (—4q+489°—2u—169°u+u’) o(2)=0p+oqIn(z—2y), D(z)=— Zln bo— zln(z—zo),
C(q,u)=—2+80¢%—5129*— 16qu+ 3u’®— 12q°u? (53
+24quS. (47)  with ¢o=1+0,/(2—805+1203) and E determined from
- . . ) Eqg. (45) in the range 0.68 £ <44.44.
Dividing the two equations in Eq$46) we obtain Finally, another exact solution is
d 128y%-2u+3u® 3
dq & (48) q=0, u=+\2, == (54)

du  32q(-1+4qg2-12qu) 4
Notice that the same equation is obtained by simply differ-Cf in terms of the original parameters,
entiating the algebraic equatiqd5) with respect tou, thus
demonstrating that this equation provides the general solu- . £(2)= i

tion g=q(u). This is a one-parameter family of solutions, NAYE 4N

with the parameter being provided by the bulk cosmological (55)
constantE. This result was to be expected, considering the

fact that the three equations are not indepencﬂeﬁt Eq Wh|Ch ImplIeS a flat bulk Space-time, with a non-constant
(15)]. Using the result fog(u) we can formally solve Eq. dilaton.

3
o(z)=const, ®(z)=-— Eln

(46) for u(y), The general solution of Eq$46) and (45) is represented
by a(Escher-illusion-likg 25]) phase-space diagram given in
Clq(u),u] Fig. 1. The shaded region corresponds to de Sitter type bulk,
yzyoexp{ f duum), (49 =<0, while the rest of the graph corresponds to the case of

interest here, namely anti—de Sitter type bui:>0. The
from which, on account of Eq946) and (44), we obtain  various contours in the diagram of Fig. 1 correspond to so-
y(2)(®(2)) ando(2) as functions of the bulk coordinaie  lutions with various values of the cosmological constant
However, in practice the analysis is obscured by the presence\ &¢. For instance, the depicted contours in the anti—de Sit-
of divergences in the derivatives ofy,(u), which are re- ter region in the upper-right side of the graph correspond to
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-2 -1 0 1 2
q

FIG. 1. Phase-space diagrarfy) for the general solution of the
five-dimensional equations of motion for dilaton and graviton fields
in the presence o®(a') terms in the string-inspired effective ac-
tion. The various contours are parametrized by the values of th
bulk cosmological constanH)). The shaded region corresponds to
de Sitter bulk space-timesE(<0), while the rest of the diagram
corresponds to anti—de Sitter bullE¢0). The boundaries be-
tween these two regions correspond to Hwe 0 contours. The dots
represent the Randall-Sundrum space-time. The origiad=0)

FIG. 2. A solution interpolating between the Randall-Sundrum
solution atz=+« and a naked singularitisee Eqs(59) for the
asep,] at z=0. There are twdphysically equivalentbranches
H and AF. There are other solutions that encourizror B)
non-resolvable singularities in the derivativedg/dy,du/dy
(dashed curves The dotted curvefor u#0) corresponds to the
exact solutions of Eq53).

corresponds to a flat bulk space-time. Regarding the second derivatives we have
2 2
the following values off: 0, 0.1, 5/6, 5, 10, 100, in increas- d_":u(d_q_ i) d_y:u(d_“+ L
ing sequence, pointing outwards from the center of the dz? dy 2y)" d7 dy 2y)’
graph.

The above-discussed exact solutio(®0)—(55) corre- and thus singularities indg/dy,du/dy, for u,q,y=finite,
spond to specific points in that diagram. For instance, theorrespond to singularities in the derivatives of the physical
trivial flat space-time appears at the origin (0,0) of the soluparameters in all cases except-0 with u(dg/dy) =finite
tion space, while the RS solutiofp1) corresponds to the andu(du/dy)=finite.
marked points in Fig. 1. We are now ready to proceed to a study of the singulari-

From the graph it becomes clear that there @mgy four  ties. The right-hand side of Eq#46) does not contain any
singular points, corresponding to the cases *,u—=*,  explicit dependence oy and, thus, can be easily examined
in which g/u~const. We shall study these points analyti- for singularities at the casep— = and/oru— =+ and/or

cally in the next subsection. q—0 and/oru—0. After a systematic seardsee Fig. 1 of
all cases we find only one class of four singular solutions at
B. Singularity structure in (u,q) parameter space g~u— *oo:

In this section we perform an analytic study of the singu-
lar points of the solution space of Eqgl6) in the (u,q)
parametrization. It would be instructive to consider first theWhere |i=1,2 is one of the real solutions of the equation
connection between singularities in the physical parameter§3_5’2 . 3 i2 420 p~—0.178. p.~4.000 and
o,® and their derivatives and the transformed space param- % & ' P1 1O P2
etersq,u,y and their derivatives. One easily concludes from 5 3
Egs. (44) that wheng,u diverge there are divergences in at _ 1-16p7+48p;

least one of the quantitiek,do/dz,d®/dz.3 = 32(—3+p;)p? '

g~piu, U~ugy“, (57)

(58)

¢,~—0.070, c,~5.500.

3The inverse is also true; that is, finieandu correspond to finite We thus concludgcf. Egs.(44)] that the singularities in
o,0’ and®,®’ with the exception of the points of the exact solu- the solution space are encountered/at0 (P — +) for
tion (53). pp andy— +o (d— —x) for p,. From Eqs.(44) one ob-
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serves that, near the singular points, the dilagjofi®(z)] larities in thea(z) and ®(z) space, given that the first and
and metrica(z) functions acquire the form second derivatives of both fields diverge, assuming finite val-
ues ofy.
We have also plotted in Fig. 2 the curve that represents

' the (one parametgrexact solution of Eq(53) (dotted curve
The various points on the curve correspond to exact solutions
with different values of=. The curve does not contain the
pointsA,B, since theu=0 points are excluded.

In this article we shall not discuss these branches of the
general solution further. A detailed study is postponed to a
future publication.

(12— c;)

1/2 —¢; 1
y '=|57Ci|Uoz>0, Y(2)=|Uo| 5Ci|Z

P (2)=Do—

In|z

’

2_4Ci

Pi
1
2

o(2)=0y+ In|z| (59

—Ci C. Interpolating between the Randall-Sundrum solution
and naked singularities

whereog, U, Po=const. Several remarks are in order atthis | ot ys now proceed to an analytic determination of the
point: (i) Both singularities occur az=0, but we have the pehavior of the solution in the neighborhood of the RS points
condition ugz>0 (for p;), anduez<<0 (for p,), so if one (A c in Fig. 2, which will also determine the point in the
assumes a fixed sign af, for both singularities, then we see ayis to which the RS solution corresponds.

that one approaches=0 from different side for each type of Expanding(45) aroundq=qo=* 1/y12, u=0 we obtain

singular solution.(ii) As one approaches the singularities, g~ Qo— Lu, which on account of Eqg€46),(47) leads to
both the dilaton and metric functions diverge logarithmically 2w ’

with z (iii) The scalar curvature in the five-dimensional bulk

near the singularity is given b _L 1.y
9 yisg y q 2\/§+\/§ y
R=4{5[“,(Z)]2_2‘7"(2)}=4(57—2)7£, y=- 2y
22 1 a2 Y -
27 ¢ 3 Yo
(60)

with y—yo=finite. The sign ofy—y, determines the branch
We observe from Eqg60) that the curvature diverges as ©f the solutions depicted in Fig. 2. For th&F or CH
—0, and thus one has raakedsingularity there. However, Pranches, which we shall study hesesyo, on account of
for a four-dimensional observer, residing on the brane at EdS-(62) (the opposite is true for thaB, CD branches
—0, the singularity for both cases istegrablg given that From Eqs.(44) we have
the (covarianj integral of the scalar curvature ovein the B (+21/3y0)z
vicinity of the singularity yields Y=Yo—¢© o5 (63

which implies that the poing— Yy, occurs atz— + «, for y,

f dz\/aR(z)ocJ' dzz 4t _ ~4v-1_,0, finite andqy= = \1/12 respectively.
z=e=0 Solving for the dilatond®(z) and metrica(z) functions,

(61) we then obtain

since the exponent-4y,—1 takes on the positive values 3 —

0.25 and 2.2 for the, andp, cases respectively. O(z)=Po+ 4—e(i2/\’3y°)z+ REH
By closely inspecting the general solution we obsépee Yo

Fig. 1 and for a detailed view Fig.) 2hat the RS solution

(51) is not isolated, but is connected by means of a continu- - 4 1 i (x21Byo)zy . ..

X . . . ; . o(z)=o09% z+ el=N +..
ous interpolating function with the naked singularity, EQ. Vi2y,  8Yo

(59). The important issue is to determine the point in the (64)
axis to which the RS solution corresponds. This will be the ,

topic of the next subsection. where®,=—3In(yy/\).

Before doing so we should remark that there are other Thus, we see that the leading parts of the solutié$),
branches of the solution space that connect the RS solutidior infinite z (e.g.,z— + for qo= —1/y/12), is a smooth
with genuine singularities of the derivatives gfandu at  Randall-Sundrum typéwith k= —1/\/12y,), which should
points in which theC(q,u) factor in the denominator of Egs. be understood only as the part of the RS met@icinside a
(46) vanishes, folg,u finite and nonzero. This becomes evi- given region of the bulk space-time, bounded by a membrane
dent from Fig. 2 where we plot the contours crossing the RSocated at a positiom— o in the bulk. In fact the solution is
points (A,C) as well as the curve@ashed linesrepresent- valid only near the membrane wall, and deviations from it
ing the aboveénon-resolvablgdivergences in the derivatives are exponentially suppressed withThe reader should not
dg/dy,du/dy. Such points may correspond to naked singu-be alarmed by the apparent divergent form of the metric
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Fig. 3 implies an important fact about the nature of the so-
lution in the context of the string-effective action in which it
was derived. The induced bulk space-timedigamically
restricted on the positive axis (for definiteness, if one con-
siders theg= —/1/12 branch, which corresponds to the con-
tour segment AF in Fig. )2 In this scenario, oufflat) four

0 dimensional world is viewed as the boundary of the anti—de
Sitter bulk (Z =5/6) located az=~. A RS-type solution is

-2 valid near our world, which however deviates from it &as
runs towards the origia=0, to become an integrable naked
singularity there.

In this scenario, we observe that the dynamics of the
O(a') perturbative string theory yielded important informa-
tion on the structure of the bulk space-time, which may be
0 related with solitonic(non-perturbative structures such as
D-branes. The non-perturbative nature of the solution we

-0.2 have thus obtained becomes clear from the fact that in terms
o of the original parameters of the model, tkeconformal

-0.4 parameter of the RS solutiof®1) is found proportional to
1/\/X~gs, whereg;s is the string coupling.

0.6 From the point of view of a holographic RG interpretation
of the bulk coordinate 2), we remark that the solution of
Fig. 3 satisfies a £ theorem” in the sense of Ref21].
Namely, we observe that”(z) >0 for 0<z< o, which im-

FIG. 3. The metrico(z) and dilaton®(z) as functions of plies that the weakest energy condition is satisfied for this
z interpolating between a RS type solutiomyE —+1/12) at  portion of the bulk space-time.
z=+~ and a naked singularitysee Eqs(59) for p,] at z=0. The
existence of this solution implies the dynamical restriction of the
bulk space-time to the positiveaxis.

o
N
1.9
N
(o)}
[o0]
=
o

o
N
1.9
(o)}
(e 0]

10

V. CONCLUSIONS AND OUTLOOK

In the present article we have performed a systematic
element ag— . The correct way of viewing Eq$64) isto  study of non-factorizable metrics of the for¢h) in the spe-
consider first the solution as valid fa=A, where A is  cific case of five-dimensional geometries. We have consid-
larger than any other length scale in the problem. Then, onered the situation in which such geometries are derived as
may shiftz—z=A —z, and arrange the constam of Egs. con_sistent_soluf[ions of the _equat?ons of motion of_string ef-
(64) to be such as to cancel factors afy(yo)A. Eventu-  fective actions in the five-dimensional caseQa') inthe
ally, one may take the limif — . The resulting metric is of Regge slope. Such terms include quadratic-curvature contri-

~ . . : butions of the Gauss-Bonnet type, as well as fourth-order
the RS txpe around=0, while the naked singularity now dilaton derivative terms.
occurs atz=o,

¢ ) ) ] Our analysis has shown that it is indeed possible to find
At this point we should also remark that inspection of thecompatibility of such a string-inspired model with the

phase-space diagram of Fig. 1 reveals that the interpolatiofandall-Sundrum scenario, upon the appropriate embedding
of the RS solution passes through the pairt0 twice. In of three branes in the five-dimensional space-time. In addi-
the journey fromz= +< towards finite values, the solution tjon, we were able to find more general situations, which
passes first through another pamgt-0 thathasi=0, before  interpolate between the RS metric at the boundary of an
reaching the naked singularipy,, Eq. (59), atz=0. In the  anti—de Sitter bulk and afintegrabl¢ naked singularity at
point z=z, the behavior oboth ®(z) ando(z) functions is  the origin. Such scenarios imply the dynamical formation of
perfectly regular. Indeed, this second point of vanishing  domain walls in the space-time, which may be useful when
occurs forg—q; =+ y5/12. Expanding around this point, one discusses the consistent embedding (@idblet)-branes
one obtaingz—zy=0((y—y;)"?, for y—y;, wherezo>0 in such a picturdas is the case of the original RS scengrio
is finite. From Eqgs(44), then, it is evident that, for~z, In our solutions the conformal parametenf the RS type
®(2)=P,—0(z%) and o(z)=constrO(z), where ®;  metric, as well as the bulk cosmological constant, turns out
=(1/6)In(y,/\) is a constant. This is a perfectly regular to be proportional to the string coupling.
behavior in thez space. There are many issues that remain to be checked: first the
The numerical analysis summarized in Fig. 2 indicatesstability of the solution against the inclusion of higher order
that there exist smooth functions fér(z) ando(z) interpo-  «’2 corrections as well as string-loop corrections. Moreover,

lating between the RS solution a¢ + and the nakedin-  in the present work we have assumed that the dilaton and
tegrable p, singularity(59) atz=0. These are plotted in Fig. metric functions depend only on the bulk coordinate, and we
3 for the casey= —1/12. took the four-dimensional world to be flat. The extension to

The existence of the interpolating solution depicted inmore complicated metrics, especially time dependent, is
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needed in order to discuss cosmological implicationgpositive energy theorem for consistent matter to be placed in

[9,6,26. Moreover, the proper inclusion of quantum fluctu- the bulk. For the interpolating solution of Fig. 3 this has been

ating (recoiling D-branes, in the way discussed [ib4], a  shown to be valid. However, this is not always tf6e22] for

situation that undoubtedly is expected to be encountered in generic bulk(anti—-de Sitter geometries, especially in the

complete quantum theory, is a very interesting issue that deidigher-curvature context discussed here, where the presence

serves special attention and is currently under investigationof the Gauss-Bonnet terms complicates the positive energy
In addition, the precise connection of the bulk coordinateconditions[11]. A detailed study of such issues will appear

with a holographic renormalization-group parameter in thein a forthcoming publication.

case of anti—de Sitter bulk geometries also merits a separate
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