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Gravitational collapse of cylindrical shells made of counterrotating dust particles
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The general formulas of a nonrotating dynamic thin shell that connect two arbitrary cylindrical regions are
given using Israel’'s method. As an application of them, the dynamics of a thin shell made of counterrotating
dust particles, which emit both gravitational waves and massless particles when it is expanding or collapsing,
is studied. It is found that when the models represent a collapsing shell, in some cases the angular momentum
of the dust particles is strong enough to halt the collapse, so that a spacetime singularity is prevented from
forming, while in other cases it is not, and a linelike spacetime singularity is finally formed on the symmetry
axis.
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I. INTRODUCTION enough angular momentum, their simulations showed that
spindle singularities appeared to arise without apparent hori-
Gravitational collapse of a realistic body has been one ofons, too. Hence, it is possible that even spheroids with some
the most thorny and important problems in Einstein’s theoryangular momentum may still form naked singularitigs
of general relativity. Because of the complexity of the Ein- It should be noted that in the AT work it was considered
stein field equations, the problem, even in simple cases sudh€ only case where the shell has zero total angular momen-
as spacetimes with spherical symmetry, is still not well un-tum and is momentarily static and radiation-free. In a realis-
derstood[1], and new phenomena keep emergjag Par- tic case, the spacetime has neithgr cylindrical symmetry nor
ticularly, in 1991 Shapiro and Teukolsk{BT) [3] studied ~ Zero angular momentum, and gravitational and particle radia-
numerically the problem of a dust spheroid, and found thations are always expected to occur. As a generalization of the
only if the spheroid is compact enough can a black hole bé\T work, in this paper we shall consider the case where
formed. Otherwise, the collapse most likely ends with a nafylindrical shell radiates gravitational waves and massless
ked singularity. Later, Barralse Israel, and Letelier con- Particles, as it is collapsing, while keeping the requirement
structed an analytical model of a collapsing convex thin shelthat the total angular momentum of the shell be zero. Spe-
and found that in certain cases no apparent horizons ar@fically, the paper is organized as follows: In Sec. I, the
formed[4]. Their results were soon generalized to more genformulas for a general dynamic timelike thin shell that con-
eral case$5]. However, since in all the cases considered bynects two arbitrary cylindrical regions are given, using Isra-
them, the external gravitational field of the collapsing shell isel's formula [8], while in Sec. IlI, a collapsing thin shell
not known, one cannot exclude, similar to the ST case, thé&ade of counterrotating dust particles is studied. To model
formation of an outer event horizdi,5]. Since then, the the particle radiation of the shell, we consider the case where
gravitational collapse with nonspherical symmetry has bee#he spacetime outside the shell is described by an out-going
attracting more and more attention. In particular, by studyingadiation fluid[9]. The paper ends with Sec. IV, where our
the collapse of a cylindrical shell that is made of counterromain conclusions are presented.
tating particles, Apostolatos and ThortwT) showed ana-
lytically that the centrifugal forces associated with an arbi-
trarily small amount of rotation, by themselves, without the
aid of any pressure, can halt the collapse at some nonzero,
minimum radius, and the shell will then oscillate until it  Both static[10] and dynamid11] cylindrical thin shells
settles down at some final, finite radius, whereby a spacetim@&ith zero total angular momentum have been studied previ-
singularity is prevented from forming on the symmetry axisously. However, in most of these studies a specific form of
[6]. Soon after AT's work, Shapiro and Teukolsky studied metric was usually assumed, which is valid only in some
numerically the gravitational collapse of rotating spheroidsparticular cases, such as, the spacetime which is vacuum out-
and found that the rotation indeed significantly modifies theside and inside the shdl6]. In this section, we shall give a
evolution when it is sufficiently large. However, for small general treatment that is valid for any dynamic timelike cy-
lindrical thin shell, connecting two arbitrary cylindrical re-

IIl. DYNAMICS OF CYLINDRICAL THIN SHELLS
WITHOUT ROTATION

gions.
*Email address: terra@dft.if.uerj.br To begin with, let us consider the cylindrical spacetimes
TEmail address: wang@dft.if.uerj.br described by the metric,
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ds? =f(t,r)dt?—g~(t,r)dr’2—h~(t,r)dZ2—1"(t,r)d¢?, dr=[f"(t,ro(t))— g (t,ro(t))r'3(t) ]t
1)

where{x™#*}={t,r,z,¢}, (=0,1,2,3) are the usual cylin-

drical coordinates. For the spacetimes to be cylindrical, sev- h(7)=h"(t,ro(t))=h"(T,Ro(T)),

eral criteria have to be satisfigd2]. When the symmetry

axis is regular, those conditions are easily imposed. How- [(7)=I"(t,ro(t))=17(T,Ro(T)), (6)
ever, when it is singular, it is still not clear which kind of
conditions should be imposéd3].

In general the spacetimes described by @¢.have two
Killing vectors. One is associated with the invariant transla
tions along the symmetry axig, = dz, wherezis the Kill-
ing coordinate length with-~o<z<+o, and the other is
associated with the invariant rotations about the a&is, A% |i—r (9 =05 [repym) - (7)
= d¢p with 0= p<27, where the hypersurfage=0 is iden- -0 0
tical with the one¢=2m. Clearly, for the metric given It can be shown that the unit spacelike normal vector to

above, the two Killing vectors are orthogonal. Co_nsequentlythe hypersurfacg in the coordinates™* is given, respec-
the metric represents spacetimes without rotation, and thf?vely by

polarization of gravitational waves has only one degree of

=[f*(T,Ro(T))—g ™" (T,Re(T)R'3(T) VT,

where the function dependence ofont andT is given by

the first equation. Note that in writing the above expressions,
‘we had chosedr, dT, anddt, without loss of generality, to
have the same sign, and already applied the first junction
conditions,

freedom[14,15. frg* 172
Assume that a given spacetime is divided by a hypersur- n;= ———>—| {~Ro(T) 5;+ 555},
face S into two regions, sayy", where the regionV~ is f"—g"R5(T)
described by the metri), while the regiorV* is described 1o
by the metric _ f g S
n =———— —rq4(t)s,+6,}. 8
SRR R (3] {rolDo, o ®

ds? =f*(T,R)dT>—g"(T,R)dR*—h™(T,R)dZ

_1*(T.R)de?, @) Then, the nonvanishing components of the extrinsic curva-

ture tensoiK ;,, defined by

where {x**}={T,R,z,¢}, (#=0,1,2,3), is another set of
o : . 9?x* axP ax?
the cylindrical coordinates. The hypersurfatdn the coor- N +re 2 (9)
dinatesx™* is given, respectively, by BT ggrged P gz geb)”
r=ro(t), R=Ry(T). 3 are given by
On the surface, the metri¢d) and(2) reduce, respectively, . (frg™)Y? fi T zg*} RI(T)
- — - 4| -2 4
to T 2[f+_g+R/g(T)]3/2 g+ f+ + 0
A8’ |y =rg =L (t,ro(1) =g~ ro(t)r ' §(t)1de? vt +
0 R 9r P 91_,3 "
- 2_ |- 2 +| 2= ——|Ra(T)+ +R'5(T)—2Ry(T) ¢,
—h™(t,ro(t))dz° =17 (t,ro(t))d e, f* g" fr
ds’ [r=rym=[f" (T,Ro(T)) D A R 1V
: ol gwim) Lo e
—g"(T,Ry(T)R'G(T)1dT? ] g "RG(T)]
—h™(T,Ro(T)dZ*~ 1" (T,Ro(T))d?, N IR S R e O O R
(4) ¢~ 2|t _g'R2T) prab N E
' ' (10

where a prime denotes the ordinary differentiation with re-

spect to the indicated argument. In this paper, we shall conyhere f*TEaf+(T,R)/(9T, etc., andK, can be obtained
sider only the case whei® is timelike. Then, if we choose from the above expressions by the replacement

the intrinsic coordinates of the hypersurface &£}

={r.z,¢}, (@=1,2,3), wherer denotes the proper time of fr g% h', 17, Ry(T), T, R
Lheeviﬁ{ggﬁeéswe find that the metric on the hypersurface can Lt g, o )t T 11

A8’y = 7apdé*dEP=d*—h(ndZ~I(de?  (5)
INote that in this paper the definition for the extrinsic curvature
where tensor is different from that of Israel by a—="" sign [8].
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In terms ofK_, and y,y, the surface energy-momentum IX M

tensor,7,y,, is defined a$8],

1
Tab:;{[Kab]_ - 'Yab[K]_}i

where k[ =87G/c*] is the Einstein constant, and

[K]™=7*"Kap] "

[Kap] =Kap—Kgp,

Inserting Eq.(10) and the corresponding expressionsHKgg,
into Eq. (12), we find thatr,, can be written in the form Tign”

Tab= PWaWp+ PZaZp+ Pe@a®h s (a,b=71, 2, ¢),

where

_1[[Kal | Ky
P=%l™hin (0 |
L B
pz_;[[KTT]_[|EP:):| ]!

1 _ Kzl
pqo_ [[ TT] (7_) ]1

andw,, z,, andg, are unit vectors, defined as

=8, z=h"A1)é&

pa=1Y47)5%.

“h=

€= S = (=g T RM) a0 8,

(12) X X
=gy =% e4= =% (19

When no matter shell appears on the hypersurkacee
have 7,,=0, and the hypersurface represents a boundary
surface[ 8], with the junction conditions being given by Eq.
(6) and EQ.(18). The latter can be written in the form

“efls, (rap=0).  (20)

Once we have the general formulas, let us turn to consider
14 their applications to some specific cases.

13

+ e
ae(T)B|E - Ta,Bn

Ill. GRAVITATIONAL COLLAPSE OF CYLINDRICAL
SHELLS MADE OF COUNTERROTATING DUST
PARTICLES

In this section, we shall consider the gravitational collapse
of a cylindrical shell made of counterrotating dust particles.
The shell emits gravitational and particle radiations, when it
is collapsing. The metric inside the shell will be chosen as
that of Minkowski,

1
(13 ds? =dt?*—dr2—dz2—

r2de?, (21)

so that the symmetry axis is well defined and the local-
flatness condition is satisfied.2]. The metric outside the

(16) shell will be chosen as that representing out-going radiation
fluid, given by[9]

Clearly, the surface energy-momentum tensor given by Eq.

(14) can be interpreted as representing a massive thin shell

ds? =e PO(dT?~dR?) — d 22— R%d¢?, (22)

with its velocity w,, and principal pressureg, and p,

respectively, in the directionz, and ¢,, provided that it

satisfies some energy conditiofis].

whereb(¢) is an arbitrary function of with é&=T—R. Cor-
responding to the metri(22), the energy-momentum tensor

Using Eq.(5) and Egs.(14)—(16), one can show that the is given by

conservation law on the hypersurfake 8],

b — _ —
Talb™ [Ta,en (tf_Ta,en ae(aﬁv

. b
a7 Th=—g Kuk, (23)

has only one nonvanishing component, which can be writtemvherek,, is a null vector, defined as

as
do_ (p+pa) dh(r) (p+p,) di(7)
dr  2h(r) dr 21(7) dr
= [Tapn""ef —Tapn e,

where “|,” denotes the covariant differentiation with respect

to the three metricy,,, and T,

5 are the energy-momentum
tensors calculated, respectlvely \iT andV ™, and

—= (8,6, (29)

[

(18) which is the generator of the out-going radial null geodesic

congruencd9]. The presence of the out-going gravitational
waves is indicated by the only nonvanishing component of
the Weyl tensorC,, ., given by[17]

= — MMV M= —— >~
Wo=—C,,,LAM'LIM o€ (25)

MVNO

whereL* andM* are null vectors, the definitions of which
are given by Eq(8) in Ref.[17].
From Egs.(21) and (22) we find that the first junction

+u

ey =5 = (T =g RYTH Ao+ RET) 54},
+u +u

ew_(?x s ewzax o

(2) 9z z (¢) s @

conditions(6) now reduce to
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dr=[1-r'§(t)|Vdt=e "1 R &T)]"dT,
ro(t)=Ro(T), (26)

where &, is defined ast,=
pressions we find

T—Ry(T). From the above ex-

2
(i—:) =§E[R’S<T>+e‘b<fo>(1—R’é(T))J‘l, (27)

which results in

d2T 1 " —b(.f) ’ ’ 12
e 2A2{2R oRo— € "*0[b’(£0)(1—Rp)(1-R'p)
+2RoRo ],

2

T 2

—b(§o)
= a7 ———{2RG+b’(£)Ry(1-Rp)(1-R'§)}.

(28)

Inserting Egs.(10) and the corresponding expressions for

Kb into Eq. (15), and considering Eq28), we find

eb(£0)/2
- (A-1),
g KRo(l—R'g)”Z( :
eb(£0)/2
p,= [A(l—A)(l—R’z)
© KARK(1-R'2)¥ °
! " 1 ! ! !
—(1=A)RoR— 5b'(&o)Ro(Ro—A)
><(1—Ré>(1—R'S>],
eb(é0)/2 (
= (A-1)R}—
Pe= arz (4D b’ (&)

x(Rg—A)(l—Ré)(l—R'g)]. (29)

PHYSICAL REVIEW D62 124001

" _R,g 1 ! ! ! (,)_A
Ro=——— A+§b (§o)Ro(1_Ro)ﬁ , (p,=0).
0
(30

Substituting the above expression into E20), we obtain
eb(é0)/2

m( 1, (p,=0).

p=p,= (31

To further study the dynamics of the thin shell with
=0, we need to solve Eq30), which is found too difficult
to be done in the general case. Therefore, in the following we
shall consider a particular case in which

1-R'3

Ro= B, (32

!

Ro
B=At b (EIRYL-RY T (3

where g is an arbitrary constant. Ond®(T) is known, the
functionb’ (£) can be obtained from E@33) by quadrature.
Since we are mainly interested in the dynamics of the shell,
in the following we shall concentrate on E&2). Integrating
it we find that

Ry(T)=+(1—e 2FT)12 (34)
where the “+” sign corresponds to an expanding shell,

while the “—" sign corresponds to a contracting shell. In the
following let us consider the two cases separately.

A. Expanding thin shells

When the “+” sign in Eq. (34) is chosen, the integration
of it yields

%{(1_ e*2BT)l/2

—In[1+(1—e 2AT)12]},

Ro(T)=(T+Rnin) —

(39

whereR,,i, IS an integration constant. Whesi>0, we find
that

Rmina TZO,
Ro(T)= + oo, T— +oo,
0, T=0,
RITI=1, 1., (B>0) (6

When the cylindrical thin shell is made of counterrotating
dust particles, where half of the dust particles orbit aroundvhich shows that in this case the corresponding solution rep-
the symmetry axis in a right-handed direction with angularresents the expansion of a thin shell made of counterrotating
momentum per unit rest mags and the other half orbit in dust particles. The expansion starts from the monieadD
the opposite, left-handed direction with angular momentunwith the radius of the shell given bR(0)=R,i,. At this
per unit rest mass- p, the surface energy-momentum tensormoment the shell has zero radial velocity but infinitely large

is given by Eq.(14) with p,=0 [6]. Thus, settingp,=0 in
Eq. (29), we find

acceleration pointing outwards, as one can see fron{3.
Thus, the shell will expand untiT =+, where it reaches
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its maximal radiusRy(+ )=+, with its radial velocity
Rj(+)=+1 and acceleratioRy(+)=0.
When <0, we find

-1,
0, T=0,

T— —o0,

Ro(T)= (B<0).

(40)
Rmin, T=0,

RO(T):[O’ T=—|T4, Thus, in the pres_ent_ case_the shell starts to co_IIapse_ at the
momentT = — oo with its radiusRy( — ) = + o and its radial
velocity Ry(—=)=—1. As it collapses, it is radiating mass-

R,(T):[O’ T=0, (8<0) @7 less particles and gravitational waves, as one can see from

0 finite, T=—|T4, ) Egs. (23 and(25). At the momentT=0, it collapses to its

minimal radiusRy(0)=R,, where its velocity becomes

Thus, now the solution represents the expansion of a thigero. As far a®R,,j,#0, in this case no spacetime singularity
shell, starting from zero radius at the momant —|T4|. It is formed, and the centrifugal forces of the dust particles now
expands until the momeiit=0, where its radial velocity and are strong enough to halt the collapse. On the other hand,
acceleration are given, respectively, B}(T=0)=0 and from Eq.(32) we can see that =0 the acceleration of the
R;(T=0)=—«. Because of its huge acceleration that nowshell becomes infinitely large and points outwards. So, from
points inwards, the shell will collapse from this moment on,this moment on, the shell will expand, by following a pro-
by following a process similar to that to be described belowcess similar to that described in the last subsection. When

B. Collapsing thin shells
When the “~" sign in Eq. (34) is chosen, we find that
1
Ro(T) = (Rmin=T)+ (1 - #7)*2
—In[1+(1—e 2FT)2)}, (38)

where R, IS another integration constant. Thus, whén
>0, from Eq.(38) we find that

Rnin, T=0,
Ro(M=10,  T=|T4,
, 0, T=0,
Ro(T): —(1—9_25”1‘)2' T=|T1|, (,8>O),
(39

which shows that now the shell starts to collapse at the mo:
mentT=0 with zero radial velocity. The collapse ends up at
the momenfT =|T,|, where the whole shell contracts into a

linelike spacetime singularity, as Eq23) and (31) show.

Therefore, unlike the case studied by Ad], in the present
case the centrifugal forces of the counterrotating dust pa
ticles are not strong enough to prevent the collapse from

forming a spacetime singularity.
When 8<0, from Eqgs.(34) and(38), we find

+ oo
Ro(M={ R

T— —

T=0,

min s

r_

Rmin=0, the centrifugal forces are still not strong enough to
prevent the shell from collapsing into a zero radius, whereby
a spacetime singularity is formed.

IV. CONCLUSIONS

In this paper, the general formulas of a nonrotating dy-
namic thin shell that connects two arbitrary cylindrical re-
gions have been given in terms of the metric coefficients and
their first derivatives, using Israel’'s method. As an applica-
tion of these formulas, the dynamics of a thin shell made of
counterrotating noninteracting particles, which emits both
gravitational waves and massless particles, has been studied.
It has been found that in some cases the models represent an
expanding shell and others a collapsing shell. For the col-
lapsing shell, two possible final states exist. In one case, after
the shell collapses to a minimal nonzero radius, it starts to
expand, that is, the angular momentum of the dust particles
is strong enough to halt the collapse, so that a spacetime
singularity is prevented from forming on the symmetry axis.
However, in the other case, the rotation is not strong enough
to halt the collapse at a finite nonzero radius, and as a result
a spacetime singularity is formed finally. These results are
different from the ones obtained by AT in the radiation-free
case[6], but similar to the ones obtained by ST for rotating
spheroids with radiatiofi7].

ACKNOWLEDGMENTS

The financial assistance from CNPq and FAPERW.)
is gratefully acknowledged.

[1] P.S. Joshi,Global Aspects in Gravitation and Cosmology

(Clarendon, Oxford, 1993

[2] M.W. Choptuik, Phys. Rev. LetfZ0, 9 (1993; C. Gundlach,
Adv. Theor. Math. Phys2, 1 (1998.

[3] S.L. Shapiro and S.A. Teukolsky, Phys. Rev. Lé&6, 994

(199).

[4] C. Barrabs, W. Israel, and P.S. Letelier, Phys. Lett180, 41
(1992.

[5] C. Barrabs, A. Gramain, E. Lesigne, and P.S. Letelier, Class.
Quantum Grav9, L105 (1992.

124001-5



PAULO R. C. T. PEREIRA AND ANZHONG WANG

[6] T.A. Apostolatos and K.A. Thorne, Phys. Rev. 4B, 2435
(1992.

[7] S.L. Shapiro and S.A. Teukolsky, Phys. Rev.45, 2006
(1992.

[8] W. Israel, Nuovo Cimento Soc. Ital. FiB44, 1 (1966; B48,
463E) (1967.

[9] P.S. Letelier and A.Z. Wang, Phys. Rev.4D, 5105 (1994);
51, 5968E) (1995.

[10] E. Frehland, Commun. Math. Phy26, 307 (1972; A. Papa-
petrou, A. Macedo, and M.M. Som, Int. J. Theor. Phy3g,
975(1978; S.R. Jordan and J.D. McGrea, J. Physl3\ 1807
(1982; J. Stachel, J. Math. Phy25, 338(1984); A.Z. Wang,

M.F.A. da Silva, and N.O. Santos, Class. Quantum Gidy.

2417(1997).

PHYSICAL REVIEW D62 124001

[11] F. Echeverria, Phys. Rev. &7, 2271(1993; M. Khorrami and
R. Mansouri, J. Math. PhyS85, 951 (1994).

[12] P.R.C.T. Pereira, N.O. Santos, and A.Z. Wang, Class. Quan-
tum Grav.13, 1641(1996.

[13] M.A.H. MacCallum and N.O. Santos, Class. Quantum Grav.
15, 1627(1998.

[14] K. Thorne, Phys. Rev138 B251(1965.

[15] C.W. Misner, K.S. Thorne, and J.A. Wheeldgravitation
(Freemann, San Francisco, 19,78p. 953-955.

[16] S.W. Hawking and G.F.R. EllisThe Large Scale Structure of
SpacetimgCambridge University Press, Cambridge, England,
1973, pp. 88-96.

[17] A.Z. wang and N.O. Santos, Class. Quantum Grg. 715
(1996.

124001-6



