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Gravitational collapse of cylindrical shells made of counterrotating dust particles
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The general formulas of a nonrotating dynamic thin shell that connect two arbitrary cylindrical regions are
given using Israel’s method. As an application of them, the dynamics of a thin shell made of counterrotating
dust particles, which emit both gravitational waves and massless particles when it is expanding or collapsing,
is studied. It is found that when the models represent a collapsing shell, in some cases the angular momentum
of the dust particles is strong enough to halt the collapse, so that a spacetime singularity is prevented from
forming, while in other cases it is not, and a linelike spacetime singularity is finally formed on the symmetry
axis.

PACS number~s!: 04.20.Cv, 04.30.2w, 97.60.Lf
o
or
in
u
n

ha
b

na
-
e
a

en
b
l i
th

ee
in
ro

bi
he
e
it
tim
xis
ed
ds
th
ll

that
ori-
me

ed
en-

lis-
nor
dia-
the
re

ess
ent
pe-
he
n-
ra-
l
del
ere

oing
ur

evi-
of
e

out-

y-
-

es
I. INTRODUCTION

Gravitational collapse of a realistic body has been one
the most thorny and important problems in Einstein’s the
of general relativity. Because of the complexity of the E
stein field equations, the problem, even in simple cases s
as spacetimes with spherical symmetry, is still not well u
derstood@1#, and new phenomena keep emerging@2#. Par-
ticularly, in 1991 Shapiro and Teukolsky~ST! @3# studied
numerically the problem of a dust spheroid, and found t
only if the spheroid is compact enough can a black hole
formed. Otherwise, the collapse most likely ends with a
ked singularity. Later, Barrabe´s, Israel, and Letelier con
structed an analytical model of a collapsing convex thin sh
and found that in certain cases no apparent horizons
formed@4#. Their results were soon generalized to more g
eral cases@5#. However, since in all the cases considered
them, the external gravitational field of the collapsing shel
not known, one cannot exclude, similar to the ST case,
formation of an outer event horizon@4,5#. Since then, the
gravitational collapse with nonspherical symmetry has b
attracting more and more attention. In particular, by study
the collapse of a cylindrical shell that is made of counter
tating particles, Apostolatos and Thorne~AT! showed ana-
lytically that the centrifugal forces associated with an ar
trarily small amount of rotation, by themselves, without t
aid of any pressure, can halt the collapse at some nonz
minimum radius, and the shell will then oscillate until
settles down at some final, finite radius, whereby a space
singularity is prevented from forming on the symmetry a
@6#. Soon after AT’s work, Shapiro and Teukolsky studi
numerically the gravitational collapse of rotating spheroi
and found that the rotation indeed significantly modifies
evolution when it is sufficiently large. However, for sma
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enough angular momentum, their simulations showed
spindle singularities appeared to arise without apparent h
zons, too. Hence, it is possible that even spheroids with so
angular momentum may still form naked singularities@7#.

It should be noted that in the AT work it was consider
the only case where the shell has zero total angular mom
tum and is momentarily static and radiation-free. In a rea
tic case, the spacetime has neither cylindrical symmetry
zero angular momentum, and gravitational and particle ra
tions are always expected to occur. As a generalization of
AT work, in this paper we shall consider the case whe
cylindrical shell radiates gravitational waves and massl
particles, as it is collapsing, while keeping the requirem
that the total angular momentum of the shell be zero. S
cifically, the paper is organized as follows: In Sec. II, t
formulas for a general dynamic timelike thin shell that co
nects two arbitrary cylindrical regions are given, using Is
el’s formula @8#, while in Sec. III, a collapsing thin shel
made of counterrotating dust particles is studied. To mo
the particle radiation of the shell, we consider the case wh
the spacetime outside the shell is described by an out-g
radiation fluid@9#. The paper ends with Sec. IV, where o
main conclusions are presented.

II. DYNAMICS OF CYLINDRICAL THIN SHELLS
WITHOUT ROTATION

Both static@10# and dynamic@11# cylindrical thin shells
with zero total angular momentum have been studied pr
ously. However, in most of these studies a specific form
metric was usually assumed, which is valid only in som
particular cases, such as, the spacetime which is vacuum
side and inside the shell@6#. In this section, we shall give a
general treatment that is valid for any dynamic timelike c
lindrical thin shell, connecting two arbitrary cylindrical re
gions.

To begin with, let us consider the cylindrical spacetim
described by the metric,
©2000 The American Physical Society01-1
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ds2
2 5 f 2~ t,r !dt22g2~ t,r !dr22h2~ t,r !dz22 l 2~ t,r !dw2,

~1!

where $x2m%[$t,r ,z,w%, (m50,1,2,3) are the usual cylin
drical coordinates. For the spacetimes to be cylindrical, s
eral criteria have to be satisfied@12#. When the symmetry
axis is regular, those conditions are easily imposed. H
ever, when it is singular, it is still not clear which kind o
conditions should be imposed@13#.

In general the spacetimes described by Eq.~1! have two
Killing vectors. One is associated with the invariant trans
tions along the symmetry axis,j (z)5]z, wherez is the Kill-
ing coordinate length with2`,z,1`, and the other is
associated with the invariant rotations about the axis,j (w)
5]w with 0<w<2p, where the hypersurfacew50 is iden-
tical with the onew52p. Clearly, for the metric given
above, the two Killing vectors are orthogonal. Consequen
the metric represents spacetimes without rotation, and
polarization of gravitational waves has only one degree
freedom@14,15#.

Assume that a given spacetime is divided by a hypers
face S into two regions, say,V6, where the regionV2 is
described by the metric~1!, while the regionV1 is described
by the metric

ds1
2 5 f 1~T,R!dT22g1~T,R!dR22h1~T,R!dz2

2 l 1~T,R!dw2, ~2!

where $x1m%[$T,R,z,w%, (m50,1,2,3), is another set o
the cylindrical coordinates. The hypersurfaceS in the coor-
dinatesx6m is given, respectively, by

r 5r 0~ t !, R5R0~T!. ~3!

On the surface, the metrics~1! and ~2! reduce, respectively
to

ds2
2 ur 5r 0(t)5@ f 2

„t,r 0~ t !…2g2
„t,r 0~ t !…r 80

2~ t !#dt2

2h2
„t,r 0~ t !…dz22 l 2

„t,r 0~ t !…dw2,

ds1
2 uR5R0(T)5@ f 1

„T,R0~T!…

2g1
„T,R0~T!…R80

2~T!#dT2

2h1
„T,R0~T!…dz22 l 1

„T,R0~T!…dw2,

~4!

where a prime denotes the ordinary differentiation with
spect to the indicated argument. In this paper, we shall c
sider only the case whereS is timelike. Then, if we choose
the intrinsic coordinates of the hypersurface as$ja%
5$t,z,w%, (a51,2,3), wheret denotes the proper time o
the surface, we find that the metric on the hypersurface
be written as

ds2uS5gabdjadjb5dt22h~t!dz22 l ~t!dw2, ~5!

where
12400
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dt5@ f 2
„t,r 0~ t !…2g2

„t,r 0~ t !…r 80
2~ t !#1/2dt

5@ f 1
„T,R0~T!…2g1

„T,R0~T!…R80
2~T!#1/2dT,

h~t![h2
„t,r 0~ t !…5h1

„T,R0~T!…,

l ~t![ l 2
„t,r 0~ t !…5 l 1

„T,R0~T!…, ~6!

where the function dependence oft on t andT is given by
the first equation. Note that in writing the above expressio
we had chosendt, dT, anddt, without loss of generality, to
have the same sign, and already applied the first junc
conditions,

ds2
2 ur 5r 0(t)5ds1

2 uR5R0(T) . ~7!

It can be shown that the unit spacelike normal vector
the hypersurfaceS in the coordinatesx6m is given, respec-
tively, by

nm
15F f 1g1

f 12g1R80
2~T!

G 1/2

$2R08~T!dm
T1dm

R%,

nm
25F f 2g2

f 22g2r 80
2~ t !

G 1/2

$2r 08~ t !dm
t 1dm

r %. ~8!

Then, the nonvanishing components of the extrinsic cur
ture tensorKab

6 , defined by1

Kab5naS ]2xa

]ja]jb
1Gbd

a ]xb

]ja

]xd

]jbD , ~9!

are given by

Ktt
1 52

~ f 1g1!1/2

2@ f 12g1R80
2~T!#3/2H 2

f ,R
1

g1
1S f ,T

1

f 1
22

g,T
1

g1 D R08~T!

1S 2
f ,R

1

f 1
2

g,R
1

g1 D R80
2~T!1

g,T
1

f 1
R80

3~T!22R09~T!J ,

Kzz
152

1

2 F f 1g1

f 12g1R80
2~T!

G 1/2H h,R
1

g1
1

h,T
1

f 1
R08~T!J ,

Kww
1 52

1

2 F f 1g1

f 12g1R80
2~T!

G 1/2H l ,R
1

g1
1

l ,T
1

f 1
R08~T!J ,

~10!

where f ,T
1[] f 1(T,R)/]T, etc., andKab

2 can be obtained
from the above expressions by the replacement

f 1, g1, h1, l 1, R0~T!, T, R

→ f 2, g2, h2, l 2, r 0~ t !, t, r . ~11!

1Note that in this paper the definition for the extrinsic curvatu
tensor is different from that of Israel by a ‘‘2 ’’ sign @8#.
1-2
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In terms ofKab
6 andgab , the surface energy-momentu

tensor,tab , is defined as@8#,

tab5
1

k
$@Kab#

22gab@K#2%, ~12!

wherek@[8pG/c4# is the Einstein constant, and

@Kab#
2[Kab

1 2Kab
2 , @K#2[gab@Kab#

2. ~13!

Inserting Eq.~10! and the corresponding expressions forKab
2

into Eq. ~12!, we find thattab can be written in the form

tab5rwawb1pzzazb1pwwawb , ~a,b5t, z, w!,
~14!

where

r5
1

k H @Kzz#
2

h~t!
1

@Kww#2

l ~t! J ,

pz5
1

k H @Ktt#
22

@Kww#2

l ~t! J ,

pw5
1

k H @Ktt#
22

@Kzz#
2

h~t! J , ~15!

andwa , za , andwa are unit vectors, defined as

wa5da
t , za5h1/2~t!da

z , wa5 l 1/2~t!da
w . ~16!

Clearly, the surface energy-momentum tensor given by
~14! can be interpreted as representing a massive thin s
with its velocity wa , and principal pressurespz and pw ,
respectively, in the direction,za and wa , provided that it
satisfies some energy conditions@16#.

Using Eq.~5! and Eqs.~14!–~16!, one can show that the
conservation law on the hypersurfaceS @8#,

taub
b 52@Tab

1 n1ae(a)
1b2Tab

2 n2ae(a)
2b#, ~17!

has only one nonvanishing component, which can be wri
as

dr

dt
1

~r1pz!

2h~t!

dh~t!

dt
1

~r1pw!

2l ~t!

dl~t!

dt

52@Tab
1 n1ae(t)

1b2Tab
2 n2ae(t)

2b#, ~18!

where ‘‘ub’’ denotes the covariant differentiation with respe
to the three-metricgab , andTab

6 are the energy-momentum
tensors calculated, respectively, inV1 andV2, and

e(t)
1m[

]x1m

]t
5„f 12g1R80

2~T!…21/2$dT
m1R80

2~T!dR
m%,

e(z)
1m[

]x1m

]z
5dz

m , e(w)
1m[

]x1m

]w
5dw

m ,
12400
q.
ell

n

e(t)
2m[

]x2m

]t
5„f 22g2r 80

2~ t !…21/2$d t
m1r 80

2~ t !d r
m%,

e(z)
2m[

]x2m

]z
5dz

m , e(w)
2m[

]x2m

]w
5dw

m . ~19!

When no matter shell appears on the hypersurfaceS, we
have tab50, and the hypersurface represents a bound
surface@8#, with the junction conditions being given by Eq
~6! and Eq.~18!. The latter can be written in the form

Tab
1 n1ae(t)

1buS5Tab
2 n2ae(t)

2buS , ~tab50!. ~20!

Once we have the general formulas, let us turn to cons
their applications to some specific cases.

III. GRAVITATIONAL COLLAPSE OF CYLINDRICAL
SHELLS MADE OF COUNTERROTATING DUST

PARTICLES

In this section, we shall consider the gravitational collap
of a cylindrical shell made of counterrotating dust particle
The shell emits gravitational and particle radiations, when
is collapsing. The metric inside the shell will be chosen
that of Minkowski,

ds2
2 5dt22dr22dz22r 2dw2, ~21!

so that the symmetry axis is well defined and the loc
flatness condition is satisfied@12#. The metric outside the
shell will be chosen as that representing out-going radia
fluid, given by@9#

ds1
2 5e2b(j)~dT22dR2!2dz22R2dw2, ~22!

whereb(j) is an arbitrary function ofj with j[T2R. Cor-
responding to the metric~22!, the energy-momentum tenso
is given by

Tmn
1 5

b8~j!

R
kmkn , ~23!

wherekm is a null vector, defined as

km5
1

A2
~dm

T2dm
R!, ~24!

which is the generator of the out-going radial null geode
congruence@9#. The presence of the out-going gravitation
waves is indicated by the only nonvanishing component
the Weyl tensor,Cmnls , given by@17#

C0[2CmnlsLmM nLlMs52
b8~j!

2R
eb(j), ~25!

whereLm andMm are null vectors, the definitions of whic
are given by Eq.~8! in Ref. @17#.

From Eqs.~21! and ~22! we find that the first junction
conditions~6! now reduce to
1-3
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dt5@12r 80
2~ t !#1/2dt5e2b(j0)/2@12R80

2~T!#1/2dT,

r 0~ t !5R0~T!, ~26!

wherej0 is defined asj05T2R0(T). From the above ex-
pressions we find

S dT

dt D
2

5
1

D
[@R80

2~T!1e2b(j0)
„12R80

2~T!…#21, ~27!

which results in

d2T

dt2
52

1

2D2
$2R08R092e2b(j0)@b8~j0!~12R08!~12R80

2!

12R08R09#%,

r 09~ t !5
d2T

dt2
R081S dT

dt D
2

R09

5
e2b(j0)

2D2
$2R091b8~j0!R08~12R08!~12R80

2!%.

~28!

Inserting Eqs.~10! and the corresponding expressions
Kab

2 into Eq. ~15!, and considering Eq.~28!, we find

r5
eb(j0)/2

kR0~12R80
2!1/2

~D21!,

pz5
eb(j0)/2

kDR08~12R80
2!3/2H D~12D!~12R80

2!

2~12D!R08R092
1

2
b8~j0!R08~R082D!

3~12R08!~12R80
2!J ,

pw5
eb(j0)/2

kD~12R80
2!3/2H ~D21!R092

1

2
b8~j0!

3~R082D!~12R08!~12R80
2!J . ~29!

When the cylindrical thin shell is made of counterrotati
dust particles, where half of the dust particles orbit arou
the symmetry axis in a right-handed direction with angu
momentum per unit rest massp, and the other half orbit in
the opposite, left-handed direction with angular moment
per unit rest mass2p, the surface energy-momentum tens
is given by Eq.~14! with pz50 @6#. Thus, settingpz50 in
Eq. ~29!, we find
12400
r

d
r

r

R095
12R80

2

R08
H D1

1

2
b8~j0!R08~12R08!

R082D

D21 J , ~pz50!.

~30!

Substituting the above expression into Eq.~29!, we obtain

r5pw5
eb(j0)/2

kR0~12R80
2!1/2

~D21!, ~pz50!. ~31!

To further study the dynamics of the thin shell withpz
50, we need to solve Eq.~30!, which is found too difficult
to be done in the general case. Therefore, in the following
shall consider a particular case in which

R095
12R80

2

R08
b, ~32!

b5D1
1

2
b8~j0!R08~12R08!

R082D

D21
, ~33!

whereb is an arbitrary constant. OnceR08(T) is known, the
functionb8(j) can be obtained from Eq.~33! by quadrature.
Since we are mainly interested in the dynamics of the sh
in the following we shall concentrate on Eq.~32!. Integrating
it we find that

R08~T!56~12e22bT!1/2, ~34!

where the ‘‘1’’ sign corresponds to an expanding she
while the ‘‘2 ’’ sign corresponds to a contracting shell. In th
following let us consider the two cases separately.

A. Expanding thin shells

When the ‘‘1’’ sign in Eq. ~34! is chosen, the integration
of it yields

R0~T!5~T1Rmin!2
1

b
$~12e22bT!1/2

2 ln@11~12e22bT!1/2#%, ~35!

whereRmin is an integration constant. Whenb.0, we find
that

R0~T!5H Rmin , T50,

1`, T→1`,

R08~T!5H 0, T50,

1, T→1`,
~b.0!, ~36!

which shows that in this case the corresponding solution r
resents the expansion of a thin shell made of counterrota
dust particles. The expansion starts from the momentT50
with the radius of the shell given byR(0)5Rmin . At this
moment the shell has zero radial velocity but infinitely lar
acceleration pointing outwards, as one can see from Eq.~32!.
Thus, the shell will expand untilT51`, where it reaches
1-4
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its maximal radiusR0(1`)51`, with its radial velocity
R08(1`)511 and accelerationR09(1`)50.

Whenb,0, we find

R0~T!5H Rmin , T50,

0, T52uT1u,

R08~T!5H 0, T50,

finite, T52uT1u,
~b,0!. ~37!

Thus, now the solution represents the expansion of a
shell, starting from zero radius at the momentT52uT1u. It
expands until the momentT50, where its radial velocity and
acceleration are given, respectively, byR08(T50)50 and
R09(T50)52`. Because of its huge acceleration that no
points inwards, the shell will collapse from this moment o
by following a process similar to that to be described belo

B. Collapsing thin shells

When the ‘‘2 ’’ sign in Eq. ~34! is chosen, we find that

R0~T!5~Rmin2T!1
1

b
$~12e22bT!1/2

2 ln@11~12e22bT!1/2#%, ~38!

where Rmin is another integration constant. Thus, whenb
.0, from Eq.~38! we find that

R0~T!5H Rmin , T50,

0, T5uT1u,

R08~T!5H 0, T50,

2~12e22buT1u!2, T5uT1u,
~b.0!,

~39!

which shows that now the shell starts to collapse at the
mentT50 with zero radial velocity. The collapse ends up
the momentT5uT1u, where the whole shell contracts into
linelike spacetime singularity, as Eqs.~23! and ~31! show.
Therefore, unlike the case studied by AT@6#, in the present
case the centrifugal forces of the counterrotating dust p
ticles are not strong enough to prevent the collapse fr
forming a spacetime singularity.

Whenb,0, from Eqs.~34! and ~38!, we find

R0~T!5H 1` T→2`,

Rmin , T50,
y

12400
in

,
.

o-
t

r-
m

R08~T!5H 21, T→2`,

0, T50,
~b,0!.

~40!

Thus, in the present case the shell starts to collapse a
momentT52` with its radiusR0(2`)51` and its radial
velocity R08(2`)521. As it collapses, it is radiating mass
less particles and gravitational waves, as one can see
Eqs. ~23! and ~25!. At the momentT50, it collapses to its
minimal radiusR0(0)5Rmin , where its velocity becomes
zero. As far asRminÞ0, in this case no spacetime singulari
is formed, and the centrifugal forces of the dust particles n
are strong enough to halt the collapse. On the other ha
from Eq.~32! we can see that atT50 the acceleration of the
shell becomes infinitely large and points outwards. So, fr
this moment on, the shell will expand, by following a pr
cess similar to that described in the last subsection. W
Rmin50, the centrifugal forces are still not strong enough
prevent the shell from collapsing into a zero radius, where
a spacetime singularity is formed.

IV. CONCLUSIONS

In this paper, the general formulas of a nonrotating d
namic thin shell that connects two arbitrary cylindrical r
gions have been given in terms of the metric coefficients
their first derivatives, using Israel’s method. As an applic
tion of these formulas, the dynamics of a thin shell made
counterrotating noninteracting particles, which emits bo
gravitational waves and massless particles, has been stu
It has been found that in some cases the models represe
expanding shell and others a collapsing shell. For the c
lapsing shell, two possible final states exist. In one case, a
the shell collapses to a minimal nonzero radius, it starts
expand, that is, the angular momentum of the dust parti
is strong enough to halt the collapse, so that a space
singularity is prevented from forming on the symmetry ax
However, in the other case, the rotation is not strong eno
to halt the collapse at a finite nonzero radius, and as a re
a spacetime singularity is formed finally. These results
different from the ones obtained by AT in the radiation-fr
case@6#, but similar to the ones obtained by ST for rotatin
spheroids with radiation@7#.
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