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New constraints on multifield inflation with nonminimal coupling
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We study the dynamics and perturbations during inflation and reheating in a multifield model where a

second scalar fielgt is nonminimally coupled to the scalar curvatufetRy?). When¢ is positive, the usual
inflationary prediction for large-scale anisotropies is hardly altered whileyttiictuation in sub-Hubble

modes can be amplified during preheating for lafg€or negative values af, however, long-wave modes of

the x fluctuation exhibit exponential increase during inflation, leading to the strong enhancement of super-
Hubble metric perturbations even whgj is less than unity. This is because the effectivenass becomes
negative during inflation. We constrain the strengtlf aind the initialy by the amplitude of produced density
perturbations. One way to avoid nonadiabatic growth of super-Hubble curvature perturbations is to stabilize the
x mass through a coupling to the inflaton. Preheating may thus be necessary in these models to protect the
stability of the inflationary phase.

PACS numbds): 98.80.Cq

[. INTRODUCTION Multifield inflationary scenarios have received much at-
tention for the generality of inflation and preheating. In fact,
The idea of inflation is remarkable in the sense that itdensity perturbations in multifield models were analytically
cannot only solve the horizon and flatness problems of th@erived by several authors in the scheme of the slow-roll
standard big bang cosmology, but provides seeds of densipproximation/10]. In the presence of more than two scalar
perturbations relevant for the large scale strucfirie The  fie|ds, large-scale curvature perturbations are not necessarily
perturbations give an imprint on the cosmic microwaveconserved due to the existence of isocurvature perturbations.
background CMB) anisotropies, whose temperature fluctua-|, the context of scalar-tensor gravity theories, several au-
tions can be analyzed by present observations. The inflationp, ¢ [11,19 studied density perturbations in the two-field
ary p?‘radigm typically predicts the _”eaf'y scale_—invarian_t pri'system where there exists a Brans-Dicke or dilaton field in
mordial power spectrumi2,3], which is consistent with addition to inflaton. In particular, Ga@Bellido and Wands

observations of the Cosmic Background Explof@OBE) E12] constrained parameters of the gravity theories by com-

satellite. Since the accuracy of measurements is expected {0 - : ; . )
be improved in future observations, it is very important toParng the predicted spectral index with observational datas.

full h . ial . n addition to this, since the higher-dimensional generalized
tﬁeyir?f?ﬁt?gi?;dp;rzcﬁ)igm?rdla power spectrum predicted b)}Kaluza-KIein theorie$13] also give rise to a dilaton field by

Generally, it is assumed that only one scalar field called€ducing the effective four-dimensional theories, it is worth
the inflaton determines the dynamics of inflation, which Investigating to predict the primordial power spectrum in the
leads to the exponential expansion of the universe when thrésence of inflaton in generalized Einstein theories from a
inflaton slowly evolves along a sufficiently flat potential. In cosmological point of view. In this respect, Berkin and
the single-field model, density perturbations are typicallyMaeda[14] studied the new and chaotic inflationary models
“frozen” when a physical scale crosses the Hubble radiugvith a dilaton potentiall(o)=0, and constrained the pa-
during inflation. This makes it possible to evaluate the powerameters of models by produced density perturbations. Mul-
spectrum at the end of inflation by equating it at the firsttiple scalar fields also play important roles in the assisted
horizon crossing. In the preheating era after inflation, thanflation with exponential potentialsl5]. This scenario was
fluctuation of the inflaton can be enhanced by parametricecently extended to the assisted chaotic inflation induced by
resonanceé4,5], which may stimulate the growth of metric higher-dimensional theorigd6]|, and density perturbations
perturbations. In the single-field case, however, the supemere calculated in Ref17].

Hubble curvature perturbation is typically conserved during In the preheating era, scalar fields coupled to the inflaton
preheatind 6], while sub-Hubble modes can be amplified in can be resonantly amplified, which is typically more efficient
some models of inflatiol7] including the nonminimally than in the single-field case. It was also pointed out that there
coupled inflationary moddI8]. As long as the system is a is also an interesting possibility that super-Hubble metric
single-field model, and the stress energy is conserved, nongerturbations will be excited due to the growth of field per-
diabatic growth of the large-scale curvature perturbation canturbationg18—20. Since growth of metric perturbations can
not be expected during inflation and reheating including genbe expected as long as scalar fields are not severely damped
eralized Einstein theorid9]. in the inflationary period21,22 and are enhanced during
preheating, it is important to take care the dynamics of scalar
fields during inflation. When the effective mass of scalar
*Email address: shinji@gravity.phys.waseda.ac.jp fields is heavy relative to the Hubble parametetong wave
TEmail address: yajima@gravity.phys.waseda.ac.jp modes of field fluctuations exhibit exponential decrease dur-
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ing inflation [21]. In contrast, “light” fields such as the in- Il. THE MODEL AND BASIC EQUATIONS
flaton whose masses are smaller théare hardly affected
by the inflationary suppressidi9], and can lead to the en-
hancement of super-Hubble metric perturbations in preheal
ing era if they are amplified by parametric resonaf&@. In
this respect, one of the present authors recently investigated 1 1 1
the evolution of field and metric perturbations in the pres- £=—g —R— —(V¢>) —V(¢)— E(VX)Z— Eész
ence of a dilaton field with quadratic inflaton potentia8,
and found that the curvature perturbation in cosmological (2.1
relevant modes remains almost constant in this m¢deah-
delas Weinberg model, see RE24]), including the backre-
action effect of created particles.

From the viewpoint of quantum field theories in curved
spacetime, nonminimal couplings naturally arise, with their
own nontrivial renormalization group flows. The ultraviolet V(g)= m 2¢°. (2.2
fixed point of these flows are often divergent, implying that
nonminimal couplings may be important at high energiesThe variation of the action E¢2.1) yields the following
[25]. In the single-field case with a nonminimally coupled field equations:
inflaton field, Futamase and Maefi26] studied the dynam-
ics of chaotic inflation, and found that the nonminimal cou-  1— £x?y2
pling is constrained al|<10 2 in the quadratic potential, TGWZZfX(guvDX_VquX)_gqu(d’)
by the requirement of sufficient amount of the inflation. On
the other hand, such a constraint is absent in the self- 1 \
coupling potential for negativé, and as a bonus, the fine H(Vud) (Vi) =509,V ) (V)
tuning problem of the self-coupling. in the minimally
coupled case can be relaxed by large negative values of +(1=25)(V ) (V. x)
[27,28. Several authors evaluated scalar and tensor pertur- 1
bations generated during inflatip29—31] and preheatin{g] _(__25) 9, (VM) (Vi x), 2.3
in this model. Since the system is reduced to the single-field 2 e
model with some modified inflaton potential by a conformal

We investigate a model where a massless scalar fiétd
nonminimally coupled with the scalar curvatuRein the
bresence of an inflaton field:

whereG= «?/8m= m,;z is a gravitational coupling constant,
and¢ is a nonminimal coupling. In this paper, we adopt the
quadratic potential for the inflaton,

transformation, the super-Hubble curvature perturbation re- Hé—V'(¢)=0, (2.4
mains almost constant, while metric preheating is found to
be vital on sub-Hubble scal¢8]. Lx—&xR=0, (2.9

In the multifield model with the inflaton and a nonmini-
mally coupled scalar fielg, it was found thay particles can ~Where a prime denotes the derivative with respeapto
be efficiently produceduring inflationwhen¢ is negative in Let us consider the perturbed metric in the longitudinal
the unperturbed Friedmann-Robertson-Walker backgroungauge around a Friedmann-LeitmeiRobertson-Walker
[32]. The dynamics of scalar fields strongly depends on théFLRW) background
coupling é. In fact, although the exponential suppression of
super-Hubbley modes will take place for positivé due to
large effective mass relative to the Hubble rate, they can
grow exponentially by negative instability fg=0. Then it
is expected that negative nonminimal coupling may lead t
the enhancement of super-Hubble metric perturbations dur
ing inflation. In addition to this, it is of interest how metric
preheating proceeds on large scales, sinceytliieictuation
can also be amplified by parametric resonance
greater than of order unity33,34. In this paper, m\gtllg\fated H=a/a and scalar fields(t):
by above considerations, we will make precise analysis about ) 1 1
the evolution of field and metric perturbations during infla- ;> K Y ) :
tion and preheating in the presence of a nonminimallyH B 3(1—&xx?) 2¢ V(o) 2X +O&HXX |, @7
coupled scalar fieldy. We believe that our study will be
important in the sense that we can constrain the strength of 2
nonminimal coupling by the COBE normalization. In the H=— —22[¢2+(1—2§)X2—2§X(X—HX)]’
case where the power spectrum exceeds the observational 2(1=&x°x%)
upper bound by negative nonminimal coupling, we will give (2.9
one escape route from nonadiabatic growth of super-Hubble ) )
metric perturbations. ¢+3Hp+V'(¢)=0, (2.9

ds?=—(1+2®)dt*+a%(t)(1—-2¥)s; dx dx,
(2.6

with a(t) the scale factor, and,¥ are gauge-invariant po-

Qentials[3] Decomposing scalar fields intp;(t,x) — ¢;(t)

s e;3(t,x) (IJ=1,2), whereg,(t) are homogeneous parts
and S¢;(t,x) are gauge-invariant fluctuations, we obtain the

following background equations for the Hubble parameter
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Y+3Hy+ Ry=0 (2.10 structure on large scales still holds in the single-field case
’ [9]. Because of this adiabaticity of the curvature perturba-
where the scalar curvatureis given by tion, we only take care the perturbation at the first horizon
. crossing in order to evaluate the inflationary power spectrum.
R=6(2H?+H) In the multifield case, however, the curvature perturbation
2 on uniform-density hypersurfac¢s],
2 .
1 £y ol P+ AV(h) — X W H2(1—&x2x?) ( &)
S T R e s 2HE | R
+18H  x +6&(x "+ xx) - (2.11 (2.17
'_rhe Fourier_modes of the linearized perturbed Einstein equancludes the isocurvature perturbatiph0—14, which can
tions are written a$9] vary nonadiabatically during inflation and reheating. In fact,
in the present model, since the homogenepusnd thedy
W=, — 2¢KPx s (2.12 fluctuation in smallk modes can be strongly excited for
KTk 12y Xic ' negative¢ as is found in Eqs(2.10 and (2.15), this will
stimulate the growth of super-Hubble metric perturbations
_ £xxx and produce entropy perturbations. On the other hand, for
¥+ > K positive ¢, it is expected that long-wave modes will expo-
1-éx nentially decrease during inflation due to the large effective
) x mass relative to the Hubble raf@1,22, which may not
_ K . ' lead to the nonadiabatic growth of curvature perturbations on
=———| 6 1-28)x6 e ; . >
2(1—§K2X2)[¢ i €)X X super-Hubble scales even if field fluctuations will exhibit
] parametric amplifications in reheating phase. In the next sec-
—2&x(Sxk—Hdx) 1 (2.13  tion, we will make a detailed analysis about the dynamics of
field and metric perturbations during inflation and reheating.
. . k?
S +3HSD+ | — +V"(P) | Sy [Il. COSMOLOGICAL PERTURBATIONS DURING
INFLATION AND REHEATING
=2(¢+3HP) Dyt (P 3%y,  (2.14 Let us first review the dynamics of inflation with potential
5 (2.2) in the absence of the nonminimally couplgdfield.
Sxi+3H 5)'(k+ — +&R| Sy Neglecting the¢ term in Eq.(2.7) and the¢ term in Eq.
a? (2.9, we obtain the following approximate relation during
. ) o ) inflation:
=2(x+3HX) P+ x (P +3Wy) — Ex IRy, ,
47 m m
(2.15 H~ __¢ ¢~— — . (3.0

with
Combining these relations is to give

SRy=—| 12(2H2+H) D+ 6H (D, +4F,) my
=$(0)— , (3.2
d=¢( on
+6v 2k2c1> +4k2qf (2.1
k a2 k a2 k|- .16 © 47 m S0}t My 2
a=a(0)exg \/ =—— ——m ,
o - 3 my 48w
Note that®, and ¥, do not coincide in the nonminimally 33

coupled case, due to the nonvanishing anisotropic stress. In

the absence of the nonminimally coupledield (i.e., single-  \yhere 4(0) anda(0) are initial values of the inflaton and
field case, there exists a conserved quantity=—"Vy  the scale factor, respectively. In the initial stage of the infla-
+ (W + W, /H)H?/H for super-Hubblé& modes in the linear tion, the scale factor evolves exponentially as
perturbationd 3]. During reheating phase, although entropy ~a(0)exg 4 /3 (m/my) (0)t]. With the increase of the
perturbations can be produced whenperiodically passes last term in Eq(3.3), the expansion rate slows down, which
through zero, curvature perturbations on super-Hubble scalds followed by the oscillating stage of the inflaton. In order to
are typically conserved in single-field mod¢8g] including  solve several cosmological puzzles of the standard big bang
the nonminimally coupled inflaton ca$8]. Even in gener- cosmology, the number of e-foldind$=In(a/a(0)) is re-
alized Einstein theories including scalar-tensor and higherguired to beN=55, by which the initial value of the inflaton
curvature gravity theories, it was found that the conserveds constrained ag(0)=3m,,. The inflationary period ends
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when the slow-roll parametar=(V'/V)?/2«? grows of or-
der unity, which corresponds i~ 0.3my,.

If nonminimal coupling is taken into account, the dynam-
ics of the inflation can be changed. In fact, growth of ghe
field affects the Hubble parameter by E@.7), which also
alters the evolution of the inflaton by E.9). Let us first
investigate the evolution of thg fluctuation approximately.
Neglecting the contribution of metric perturbations in Eq.
(2.15 and introducing a new scalar fiedX,=ady, and a
conformal timen=fa~1dt, Eq.(2.15 yields

4

a
Xy + k2—(1—6§)§ 5X,=0, (3.9

PHYSICAL REVIEW D 62 123512

de Sitter background with nonminimal coupling, the fre-
quency of scalar fields can take negative values. Hence we
adopt the de Sitter invariant vacuum state giver] 36/

1 a'(ny ]
OX70)= 35 Ik + a((:oo) exp(ik 7o),
1| a(ny) i[a(ny))' ]
5X{<(770):kT/2[|k+ a((x) - a((:oo)> explik 7).
3.9

In the case ok>a'(7ng)/a(7y), this takes the similar form
as the conformal vacuum state, while mode functions depend

where a prime denotes the derivative with respect to the coren the choice of the vacuum for sm&ll However, in the
formal time. This solution can be expressed by the combinaeontext of the inflationary power spectrum, it is known that

tions of the Hankel functionsl!? (J=1,2) [32]:

Sxk=a e VpHP(kn) +coVnHP(kn)], (3.5

where the ordew of the Hankel functions is given by

712

(3.6)

VZ

Note that the choice aof,=/7/2 andc,=0 corresponds to

different choice of initial conditions has little affect on the
results[3].

In what follows, we numerically study the evolution of
scalar fields and super-Hubble metric perturbations for posi-
tive and negative values @f during inflation and reheating,
and also investigate the case where the coupling between

and y (39%¢%x?) is introduced at the end of this section.

A. Case of §>0

the state of the Bunch-Davies vacuum. The solution of the Let us first consider the minimally coupled case=0)

homogeneouy field also looks the form of Eq(3.5 with
k=0.

The Hankel functions take the following form in the limit
of kp—0 [35]:

21) L b
Hv<km~rwrw%2) , 37
whereI'(v) is the Gamma function with ordew. Taking
notice of the relationy~ — 1/(aH) during inflation, we eas-
ily find from Eq. (3.5 that long-wavesy, modes exponen-
tially increase a®y,~a’~ %> whenv>3/2. This case corre-
sponds to the negative by Eq.(3.6), leading to the particle
creation during inflation by negative instability as noted in
Ref.[32]. This efficient particle production for low momen-
tum modes is expected to enhance metric perturbations f

crease of the right-hand sidRHS) of Eq. (2.13. This will

before analyzing the positivé case. In this case, the infla-
tionary period proceeds as in the single-field case, as long as
x is initially small relative to the inflaton. We plot in Fig. 1
the evolution of the metric perturbatiotr, (=®,) and the
curvature perturbation, for a cosmological modek
=agHy where a; denotes the scale factor about 55
e-foldings before the end of inflation. The initial value of
inflaton is chosen ag(0)=3m,, in which case the infla-
tionary period continues untiht~20, leading to about 57
e-foldings at the end of inflation. The curvature perturbation,

[ \P+H2 Wy
k k H

+
\Ika

: (3.9

remains almost constant on large scales as is clearly seen in

wavelengths larger than the Hubble radius, due to the irﬁ—flg' L

When the system enters the reheating staggeriodi-

also stimulate the growth of field perturbations as expecte§@/ly pPasses through zero, during which entropy perturba-

by Egs.(2.14 and (2.15. In contrast, for positive, long-
wave Sy, modes decay exponentially in de Sitter back-
ground. Especially for the case @f>3/16 wherev takes
complex valuesgy, decreases asa %2 This makes the
term in the RHS of Eq(2.13 unimportant and super-Hubble

tions can be producdd8]. Nevertheless, this process is not
strong enough to lead to the overall increasé,odnd®, in
super-Hubble mode&see Fig. 1 Not only scalar field fluc-
tuations for low momentum modes are not relevantly ampli-
fied, but metric preheating is inefficient on large scales for

metric perturbations will not be strongly amplified even tak-$— *-

ing into account the parametric amplification pfand Sy
modes during preheating as shown in RéfL] in the model

of V(¢,x)=3m?$*+ 3g°p*x*.

Before analyzing the dynamics of the system, we should

mention initial conditions of field fluctuations. For positive
frequencywﬁ>0, we typically choose the conformal vacuum

stateSe=1/\2wy and 8¢, = (—iw,—H) d¢y . However, in

Let us define the power-spectrum §f as
(3.10

where/, is defined byZ,=k%?%, . Assuming that, remains
conserved on cosmological scales until it reenters the Hubble

123512-4
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length in the matter-dominant stage, the power spectrum gf, rj
the end of inflatior{=7?§k(te)] can be related with the den-

sity perturbationsy (k) at the horizon reentry 4,12

For the inflaton mase1~ 10*6mp, regulated by CMB obser-
vations, numerical calculations givg~2.4x10"* at the

52(k)~i73~ (te)
H 5 {nte/:

2
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FIG. 1. The evolution ofZ,
=k%¥?%, and ¥,=k¥F, during
inflation and reheating for a super-
Hubble modek=ayH, in the case
of £=0 with m=10"°my, and ini-
tial values ¢(0)=3m, x(0)
=10"3my. The inflationary pe-
riod ends atmt~20, after which
the system enters the reheating
stage. In this case, since the sys-
tem is effectively identical
with the single-field case,,
is conserved.Inset The evolu-
tion of field perturbationsé}sk
=k%25¢, /m, and Sxk
= kSlzﬁxk/mm .

g. 2, we plot the evolution oBy,=k>?5y,/m,, for
several ¢ with initial values #(0)=3m, and x(0)

= 10’3mp| . For£=0.01, sy, decreases only by one order of

magnitude during inflation. With the increase &fthe infla-

(3.11

tionary suppression becomes relevant and the decreasing rate
is getting larger. Wherg>3/16 (i.e., ¥°<0), super-Hubble

Oox\ fluctuations decay a8y,~a~
pling &. This means that the amplitude 6§, at the end of
inflation depends on the total amount of inflation. In the

2irrespective of the cou-

end of inflation. Then we obtain the density perturbation asimulation of initial values ¢(0)=3my and x(0)

Sn(K)~2x10"° by the relation(3.11).

pends on the strength of the couplisigWhen 0<¢<3/16,
the orderv of the Hankel function is in the range of<Ov
<3/2, and long-waveSy, modes evolve agy,~a"

10714

Xi

7o) 10®

1050

=10°my,, Sy, decreases of ordefy, <10 *° since the
For positive¢, y and long-wavesy, modes exponentially number of e-foldings is abolM~ 57 in this case. The homo-
decrease during inflation. This decreasing rate strongly degeneousy field is also affected by this suppression. Hegce

G2=v)  of the super-Hubble

123512-5

100

dependent terms in the RHS of EQ.13 can be negligible
relative to thep dependent term, leading to the conservation
curvature perturbation during inflation.

FIG. 2. Suppression of the
field fluctuation Sy during infla-
tion and reheating for a super-
Hubble mode&k=ayH, in the case
of ¢€=0.01,0.1,0.2,10,100 witim
=10"°m, and initial values
$(0)=3my,  x(0)=10"%m,.
When 0< £<3/16, Sy, decreases
as ~a"¥2") while sy,~a %?
for £€>3/16 independent of the
strength of¢. The homogeneoug
field exhibits the similar behavior.



SHINJI TSUJIKAWA AND HIROKI YAJIMA PHYSICAL REVIEW D 62 123512
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~ FIG. 3. The evolution 0By,
p AN 8~ Wy 8¢, and ¥, during preheating
10 Xk k E for a sub-Hubble modk=3 with
/ 3 ¢=100 and m=10"°my,. Note

3 that we start integrating from the

107 !' . end of inflation, and choose initial
E values as ¢(0)=0.28m, and

x(0)=10 *m, with the Sy«

107 \ -, fluctuation(3.12. &, almost coin-
S(I“)' cides withWw, in this case.
]
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As is found in Eq.(2.11), the scalar curvature reduces . _m ] . m
with the decrease of the inflaton, unless jhéeld is ampli- |5Xk|“km—, | Sxul/m~k*—, (3.12
fied. When the kinetic term of the inflaton becomes compa- pl M
rable to its potential energy, the scalar curvature begins to

oscillate due the oscillation of the inflaton. It is well known where?zk/(ma,) with a, the scale factor at the beginning
that y particles coupled t@p can be nonperturbatively pro- of preheating. Since sub-Hubble modes corresporﬁztch,

duced by parametric resonance during preheatingSrdn X ) X o
the present model, we can also expect the amplification 0t,he amplitude of th&y, fluctuation at the end of inflation is

the Sy, fluctuation due to the oscillating scalar curvature.found to be| Sxy|=m/my~10"°, which is not strongly sup-
This geometric preheating scenario was studied in Refgressed compared with the super-Hubble case. Then the
[33,34) neglecting metric perturbations. In Fig. 2, we find growth of the total variance

that the Sy fluctuation undergoes the parametric excitation

during the reheating eran(t=20) for the couplingé=10,

2
while there is no growth foé< 1. With the increase of, the <5X2>E if k2| Sx.2 dk= ﬂj |5;(k|2 d(logk)
growth rate oféy, gets gradually larger, leading to the effi- 272 272 ’
cient particle production. Nevertheless, as deeply studied in (3.13

Ref.[34], larger values of do not necessarily result in the

larger amount of the final fluctuation, due to the suppressiorig typically governed by sub-Hubble modes. This situation is

effect of the y particle production itself. In fact, the final similar to the preheating scenario with thg?é2x2 couplin
variance takes the maximum value&at 100—200[34]. This [21]. We depigt in Fig. 39the evolution 03)2(, 5;(5;“ angllff

indicates that long-wavedy, fluctuations are still much | . .
smaller relative to inflaton fluctuations even in the case of" preheat!ng phase for a §ub-HuppIe mdde 3 .W'th g
£2100 because of the very small amplitude at the end of 100. While thgﬁx,_( fluctuation exhibits parametric excita-
}L‘on by the oscillating scalar curvature, we find that sub-

inflation. As a result, the existence of the preheating era doe . ; .
not lead to the enhancement of super-Hubble metric pertu ubble metric perturbations are hardly enhanced during pre-

bations, whose source terms in the RHS of E213 are heating. In spite of the unsuppressed initial conditions for
completely dominated by the inflaton-dependent term. Weub-Hubbledy, and 6y, modes in the RHS of Eq2.13,
have numerically checked that the curvature perturbafjon the homogeneous componentsand y are strongly damped
and metric perturbation¥, ,®, on large scales exhibit the as in the case of super-Hubbf, modes. Then we cannot
same behavior as shown in Fig. 1, as long as the initial valuexpect the strong amplification of sub-Hubble metric pertur-
of y at the onset of inflation is much smaller than As a  bations, due to the suppressionyeftiependent source terms
result, the adiabatic picture of large-scale cosmological perin Eq. (2.13. However, this result may change if we take
turbations in the single-field case still holds even during preinto account second order metric perturbatid@s§] as in
heating in the presence of the positive nonminimal couplingRef. [21], which we do not consider in this paper. Since the

We should mention the evolution &y, and¥, ,®, in RHS of Eq.(2.14) can be negligible and the resonant term is
sub-Hubble modes during preheating. For lakgaodes, the absent in the LHS, the inflaton fluctuation is also hardly am-
adiabatic solution for th&y, fluctuation is estimated by Eq. plified as is found in Fig. 3 even in the presence of metric
(3.8 as perturbations.
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For positive&, we conclude that the curvature perturba-field for mt~10. In the initial stage wheré is larger thany,
tion in cosmologically relevant scales is conserved duringhe dynamics of inflation is approximately described by Egs.
inflation and preheating as long gss initially small relative (3.2 and (3.3). However, aftery exceeds¢ for mt=10,
to ¢. these relations can no longer be applied. With the increase of
X, the potentialV(¢) becomes gradually unimportant rela-
B. Case of¢é<0 tive to y-dependent terms in Eq(2.7) and the 1/(1
— £k?x?) factor also gets smaller, the Hubble expansion rate
decreases faster than in the 0 case. Then inflation ends at
mt.,~13 with the e-folding numbeN~42. Note that these

Let us next proceed to the case of negativén this case,
x and long-wavesy, modes can be enhanced during infla-
tion by negative instability as is found by Eg2.10 and ; T
(2.13.yTheganaIytic estimz/ition of Eq3.5 >\//vhigh neglects values are smaller than in the minimally coupled cang,

metric perturbations includes the following growing solution ~20 andN%'58.' Since the d?crease of the scalar curvature
in smallk modes: R=6(2H%+H) is accompanied by the decreaseHf the

growth of they field typically becomes irrelevant after the
_ 3 16 inflationary period terminatetsee Fig. 4 We show in the
|oxil<a®,  with c= 5( Vit §|§|_1)- (314 inset of Fig. 4 the evolution of and y for &= —0.005. In
this case, they field is hardly amplified, which results in
This growth rate gets larger with the increase|éf The almost the same dynamics of inflation as in §¥e0 case.
exponential increase of th&y, fluctuation also stimulates In Fig. 5 we show the evolution of large-scady, and
the growth of super-Hubble metric perturbations as is found¢y fluctuations for§=—0.05 with ¢(0)=3my and x(0)
in Eq. (2.13. Then metric perturbations will strengthen field = 10*3mp|. We numerically found that the growth of field
resonances by Eq€.14) and(2.15 in the perturbed metric perturbations is relevant fdi£|=0.02. In the case of=
case, as we numerically study it later. What we are mainly—0.05, Sy fluctuations in smalk-modes are enhanced from
concerned with is how the dynamics and produced perturbahe beginning as described in E8.14) with c~0.188. Re-
tions are modified during inflation and preheating by negacalling that the total amount of inflation is abolit~42,
tive nonminimal coupling. |6xi| is amplified about 1Dtimes during inflation by the
Let us first consider the case @f(0)=3m, where the analytic estimation of Eq.3.14) neglecting metric perturba-
number of e-foldings reach@$é~57 in the absence of the  tions. We plot in the inset of Fig. 5 the evolution of long-
field. If the negative nonminimal coupling is taken into ac- wave field perturbations in the unperturbed metric dase,
count, the total amount of inflation is not necessarily suffi-setting¥,=®,=0 in Egs.(2.14) and(2.15]. We can easily
cient to solve cosmological puzzles. For example, wherconfirm that numerical calculations coincide with the ana-
x(0)= 10‘3mp|, the dynamics of inflation is modified due to lytic result (3.14) fairly well. In the perturbed metric case,
the enhancement of the field for |£/=0.02. the evolution of theSy, fluctuation is almost the same as in
In Fig. 4, we plot the evolution of the homogeneadis the unperturbed metric case except for the final short stage of
and x fields for £&=—0.05 with initial values¢(0)=3m,, inflation, which indicates that théR term in the LHS of Eq.
and X(O)=10‘3mp|. The negative nonminimal coupling (2.15 mainly determines the growth &y, even taking into
leads to the growth of thg field, which catches up theé account metric perturbations.
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Sik 00,

0.100
FIG. 5. Growth of field fluc-
0.00100 tuations 8y, and 8¢, during in-
flation and reheating for a super-
Hubble modek=agH, in the case
10° of ¢é&=-0.05 and initial values
$(0)=3my,  x(0)=10"°my
with m=10"°m,. Both field
fluctuations are amplified during
107 inflation. Inset Sy, and 8¢ vs t
for ¢£&=-0.05 neglecting metric
perturbations. Althougidy, is en-
107 hanced as in the perturbed metric
case,d¢, does not grow in the ab-
sence of metric perturbations.
1011
0 10 20 30 40 50 60 70
mt

In contrast, the difference appears in the inflaton fluctuainflation when|&|=0.02 with initial values$(0)=3my; and
tion. If we neglect metric pertprba‘upns, tideb, fluptuayon X O):10*3mp|. In Fig. 6, we show the evolution oF  and
does not grow nonperturbatively in the massive inflatong, ¢, £=—0.05 andé=—0.005. Whené= —0.005, W
model. Including metric perturbations, the enhancement of alrnost coincides withb, as i.n thé case 0520' FOI”gzk
and Sy fluctuations ir.' smalk-modes stimulates the growth —0.05, however, super-Hubble metric perturbations are
of super-Hubble metric perturbations by &2.13. Then the strongly amplified during inflation, leading to the distortions

RHS of Eq.(2.19 leads to the amplification of thé¢o, ; .
fluctuation, which is absent in the rigid spacetime case. Thid the CMB spectrum. Note that the difference and_(I)k
appears in this case, due to the enhancement oj tfield

difference is clearly seen in Fig. 5. ) i L
Let us investigate the evolution of the curvature perturbaﬂUCtuat'on' While the super-Hubble curvature perturbation is
conserved foré=—0.005, it exhibits rapid growth during

tion ¢, and metric perturbationd, and®, on large scales. ° ) _ i
Since the growth of metric perturbations is accompanied bynflation for = —0.05. This means that the standard picture
the excitement of the field fluctuation,, increases during ©f adiabatic perturbations in the single-field case can no

It £ = 0. 005 AN 1

i E=-0.05 ] FIG. 6. The evolution of the
] \ | i curvature perturbatior?,, during
0.00010 | L ! v C ] inflation and reheating for a super-
F Hubble mode k=agH, in the
e - 0.10 . cases of ¢é=—0.05 and &=
P AN F 0.010 | ] —0.005 with ¢(0)=3m,, x(0)
10° F 0.0010 | s =10"3m,, and m=10 °m,.
F 0.00010 | ] We find thatZ, grows nonpertur-
E 1075 ] 3 batively during inflation foré=
108 i 106 ~0.005) ] ] —0.05, while it is conserved for
07 | ] £=-0.005. Inset The evolution
[ 108 . . ) . . mt ] of super-Hubble metric perturba-
] 0 10 20 30 40 50 60 70 tions ¥, and @, for ¢&=—0.05
ot L ] and ¢= —0.005.
0 10 20 30 40 50 60 70

123512-8



NEW CONSTRAINTS ON MULTIFIELD INFLATION . ..

TABLE I. The timemt;, the number of e-foldinghl, the value

Xt and the super-Hubble curvature perturbatigrat the end of
inflation with initial values¢(0)=3m, and x(0)= 10‘3mp,. With

PHYSICAL REVIEW D62 123512

Let us consider the case where initial valuesofare
changed. With the decreasex(0), larger|£| is required for
the growth of curvature perturbations. Whe(D) is close to

results in the smaller amount of e-foldings. We also find that larg
values of|£| (]€>0.02) leads to the nonadiabatic increase of th

curvature perturbation due to the enhancement ofytffield.

3 mt; N xi/my T
—0.005 18 57 0.0031 0.00023
-0.01 18 57 0.0094 0.00023
—-0.05 12 41 2.0 0.031
-0.1 8 23 2.7 0.018
-1 3 4 1.7 0.0028

eelarge values of £|, which prevents successful inflation. In

this case, inflation typically terminates with small amount of
e-foldings beforg), begins to grow significantly. We present
two-dimensional plots of and x(0) which divide the “al-
lowed” and “ruled out ” regions in Fig. 7 for the case of
#(0)=3m,. The “allowed” regions mean that conditions
of 8,(k)<2x 10 ° andN>55 are both satisfied at the end
of inflation for the inflaton massn=10‘6mp|. When x(0)
=0.1m,,, the separating curve is mainly determined by the
condition of 8,4(k)<2Xx 10 ° (i.e., {, remains almost con-
stant on super-Hubble scaleor x(0)=0.1m,, the condi-
tion of N>55 plays the dominant role rather than that of the

longer be applied in the presence of the nonminimallydensity perturbation. It is important to note that wide ranges

coupledy field with negative coupling.

of parameters are ruled out even in the casép£0.1 un-

In Table I, we show the number of e-foldings, the homo-less we take smaller values g{0). When|é[=1, we find
geneousy field, and the super-Hubble curvature perturbationthat nonlinear growth of super-Hubble curvature perturba-

at the end of inflation for several values éfwith initial

conditions ¢(0)=3m, and X(0)=10*3mp,. Since the en-
hancement of the field is weak for|£=0.02, ¢, remains
constant during inflation. Fd€|=0.02, the rapid growth of

tions is inevitable even for very small initigf as x(0)
:10750mp|.

One may consider that allowed regions may become
wider if initial values of inflaton are larger. However, this is

x makes the inflationary period terminate earlier as connot generally true. Since larger values¢otorrespond to the
firmed in Table I. This leads to the smaller amount of infla-1arger potential energy, the inflationary period during which

tion with the increase df¢|. For example, wheg=—1, the
system soon enters the reheating stage after only
e-foldings. We have to caution that largg does not neces-
sarily yield the larger values ¢of and ¢, at the end of infla-
tion, because the duration of inflation gets shorter. In f4¢t,
decreases with the increase |@f for |£]=0.05, although

the ¢ field dominates the dynamics of the system is longer.
Ahis prolonged inflation leads to the amplification of super-
Hubble ¢, as well as they field fluctuation. For example,
when ¢(0)=4m, and x(0)=10"3m, with é&=-0.02, {,
grows up toZ,~0.07, while for the smaller valugs(0)
=3my, {\ remains almost constant for the same valug.of

large |£| also leads to the distortions in the anisotropies ofFor ¢(0)=4my, andx(0)=10’3mp|, the allowed values of
CMB. The important point is that the successful inflationary¢ are found to be&|=<0.01, whose condition is tighter than
scenario can be completely violated with the existence of thén the case ok (0)=3m,. When x(0) is close to of order

large negative nonminimal coupling.

unity, larger values of¢(0) typically make the e-folding

FIG. 7. The parameter regions
of the coupling¢ and the initial
x(0) where the inflationary sce-
nario proceeds in successful way
or not, for the case of¢(0)
=3m, andm=10"°my;. We find
that large negative coupling pre-
vents successful inflation unless
we choose small values gf(0).

1.0 p———T T
0.010 .-
B F
= 1

= o0t b Ruled out
c [
e’ E‘
X 106 :_
- Allowed

0% |
10-10 E

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0
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number larger, which can broaden allowed regions in some m

cases. For example, whef(0)=4m,, and x(0)=m,, the g>a\m m—\/E (3.19
allowed values aré¢|=<0.007, while|£/=<0.001 for ¢(0) Pl
=3my and x(0)=m,,. However, wheng(0) takes further _ . o .
large values asp(0)=10my, £, grows nonadiabatically the x pamgle prodgchon is shl_Jt off in inflationary phasg.
even foré=—0.001. This indicates that largs(0) does not Neglecting metric perturbations, we have the analytic so-

necessarily result in the successful inflation in the presencition (3.5, where the order of the Hankel functions is given

of negative nonminimal coupling. by [32]
In the reheating phase, parametric amplification of xhe
fluctuation is relevant only for the case éf& —1 [33,34), , 9 942
because the scalar curvature gradually decreases during in- vi=g 12 e (3.20

flation. However, such large values |@f generally prevents
the successful inflationary scenario as explained above,
which will be ruled out even ify(0) is initially very small. ~ Since the Hubble expansion rate is approximately written as
This is in contrast with the positivé case where exponential H*~4m/3(m/m;,)?¢? during inflation, we obtain

suppression of long-wave modes in thAg, fluctuation do

not affect on the dynamics of inflation. In the absence of 9 3g?
other interactions, negative nonminimal coupling leads to the ViEaT 126 E(
strong distortions on CMB in wide ranges of parameters.

2
%) . (3.29

1 2.2 2 o _ Eqg. (3.19 corresponds to cancelling the second term in Eq.
C. The 59°¢“x* coupling is taken into account (3.21) by theg term. Whenv2<0, ie.,
So far, we have not considered the interaction betwgen
and y fields. Taking into account the simple four-point cou- m 3
pling 3g°42x? provides a way to escape nonadiabatic 9> 4T —\/ |+ — (3.22
growth of super-Hubble curvature perturbations. The back- Mpi 16
ground equations for the scale factor and inflaton are ob-
tained by changingV(¢)=3:im2¢? to V(¢,x)=im242  x modes exponentially decreaseces *2in the similar way
+319%¢x? in Egs.(2.7) and(2.9). The homogeneoug and  as in the large positivé case. Whery ranges in the region
the Sy, fluctuation satisfy of 4\/m(m/my) VIE[<g<4\m(m/my) [+ 3/16, x decays
) _ more slowly asxa "), However, as long as the condi-
x+3Hx+ (g%¢%+ ER) =0, (3.15  tion (3.19 is satisfied andy is initially small relative tog,
the y field hardly affects the dynamics of inflation, which
results in the conservation of the curvature perturbatjoon
Sxk super-Hubble scales.
Let us consider concrete cases. In Fig. 8 we plot the evo-
. . . . lution of a long-wavedy, mode foré=—0.05 and several
=2(x+3HY) P+ x (P +3V,)— Ex SR values ofg with initial conditions ¢(0)=3m, and x(0)
=10*3mp|. Wheng=0, the Sy, fluctuation exhibits expo-
—29%px 0Py (3.16 nential increase during inflation, leading to the nonadiabatic
growth of super-Hubble curvature perturbations. In the pres-
Then the effective mass of thg and super-HubbleSy, ~ ence of theg coupling, the conditions of Eq€3.19 and
modes is given by (3.22 yield g>1.6x10 ¢ and g>3.5x 10" °, respectively,
for the typical mass scalm= 10‘6mp|. As is found in Fig.
M= g2+ ¢R. (317 8 dx« decreases very rapidly asa 2 for g=§.60>< 10°¢,
while its decreasing rate is smaller fgp#=2.0< 10" °. In both
cases, however, large-scale curvature perturbations remain
almost constant during inflation and reheatisge the inset
of Fig. 9.
In the case ofé&|>1, Eq.(3.22 approximately takes the
form of Eq. (3.19, which readsg=7.1x 10 6\]¢| for the
#2. (3.18 inflaton massm=10*6mp|. Even for very large values of
|¢| such asé=—10% the ¢ effect can be removed foy
=7.1x 10 “. If the coupling betweew andy is greater than
When £<0, the negative effective mass leads to the expoof order 103, the y particle production during inflation dis-
nential increase of and long-wavedy, modes during infla- cussed in Ref{32] will be irrelevant. Wherg=10"3, since
tion. This effect is weakened in the presence of gheou- the g effect is typically dominant relative to the negative
pling. Especially for the positive effective mass, which nonminimal coupling unlesk| is unnaturally largey par-
corresponds to ticles are created during preheating in the usual manner due

3/

2

Sxict BHOx+| — + 9%+ ¢R
a

Neglecting the contribution of thg field relative to inflaton
in Eq.(2.11), the scalar curvature is approximately written as
R~2«k?m?¢? during inflation, which yields the relation

2+16 §< m)2
g w My

2
Mgt~
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g="0
L L L L '/' L 'é
0.0010 P e
10°¢ - 8=2% 1076 . FIG. 8. The evolution of the
107 » - 1 field fluctuation 8y, during infla-
1012 F\¥~g = §X10 . tion and reheating for a super-
10 F 0.10 ; ] Hubble mode k=agH, in the
1018 F oot0 L T ~ wooTTt . cases_Gof g_=0, 2x107°%, and
2 g2 K ! C . 5x10°% with ¢=-0.05, m
g?o"{ 1024 F 0.0010 | ! k g=0 ] =10"°m,, and initial values
1027 E 000010 ] $(0)=3my, x(0)=10"3m,.
103 F ) \ . Inset 7, vst for g=0, 2x10°6,
0% F 105 L g = 2x10°%, 5x10° ; and 5x 1078, For the values ofy
36 E mt E which satisfy the relation(3.19,
10 - 10 ' ' o ' : ] i.e, g>1.6x107%, the curvature
0¥ F 0 10 20 30 40 50 60 70 3 perturbation is conserved in large
104 F 3 scales.
0% O v s
0 10 20 30 40 50 60 70
mt

to theg resonancg5]. Since long-wavey modes are expo- large-scale curvature perturbation is almost conserved and
nentially suppressed during inflation for the case @f the number of e-foldings satisfiés>55. Since the evolution
>7.1x10 %\|&], the existence of the preheating era doesof the y fluctuation depends on its initial value at the begin-
not lead to the amplification of super-Hubble metric pertur-ning of inflation, we examined the allowed regions in two-
bations, which provides the standard conservation law oflimensional plots of andy(0). With theincrease ofé¢|, we

large-scale curvature perturbations. require smaller values of(0) for the successful inflationary
scenario. Whenié|=1, we find that strong enhancement of
IV. CONCLUSIONS large-scale curvature perturbations is inevitable even for very

. . . . small values ofy(0).
m Ygﬁ rda\ilﬁﬂsigd'ed _me dynam|.cs. an”d perturlbatlofpsl dm the As one escape route from nonadiabatic growth of super-
uitme ation with a nonminimaty coup egy field. Hubble metric perturbations, we considered the interaction
When the coupling: is positive,y and long-wavedyy fluc- 1 2¢%x? betweeng and y fields. Introducing this couplin
tuations are exponentially suppressed in de Sitter backed ?°X . X ' . 9 ping
makes the effectivqg mass heavy, which suppresses the in-

ground. In this case, the existence of thdield hardly af- lati il ducti . o
fects the dynamics of inflation, and the ordinary adiabatid'2ionary x particle production by negative nonminimal cou-

scenario in large-scale curvature perturbations is not modiing- If two couplings satisfy the conditiof8.19, the x
fied as long asy is initially small relative to inflaton. Al- fluqtuatlon_does not exhibit exponential increase durmg_ in-
though y fluctuations grow by parametric resonance duringﬂat'on- 'I_'h|s prote_c_ts super-Hubble curvature _perturba_tlons
preheating after inflation for large values&>1), this pro- from being amplified, because the system is effectively
cess is not sufficient to enhance super-Hubble metric pertudominated by inflaton in this case.
bations, since the inflationary suppression is strong. Although we have considered the simple massive infla-
In contrast, negative nonminimal coupling can lead to thdionary model, strong enhancement of long-wavéuctua-
strong inflationary y particle production in long-wave tions by negative nonminimal coupling will occur in
modes. This exponential increase of thdluctuation makes potential-independent way in de Sitter background. Since the
super-Hubble metric perturbations grow too, which violatesscalar curvature is approximately written Rs=4x2V()
the standard conservation property of large-scale curvaturduring inflation, super-Hubble curvature perturbations as
perturbations in adiabatic inflation models. We find that everwell as x fluctuations will also grow nonperturbatively in
the coupling &| less than unity yields the exponential growth other models of inflation while the potential eneryy ¢)
of the y fluctuation in smalk modes, which terminates the slowly decreases. In addition to this, exponential increase of
inflationary period earlier than in the minimally coupled cosmological perturbations leads to the production of infla-
case. This effect reduces the total amount of inflatien  ton particles. In spinodal inflation model87] where the
foldings), in addition to the nonadiabatic increase of super-second derivative 0¥ (¢) changes sign, the inflaton fluctua-
Hubble curvature perturbations. Large values &fgreater tion in small k modes exhibits exponential increase when
than unity make the inflationary phase very short, whosé/"(¢)<0 even in the single-field case. It is of interest to
amount of inflation is typically insufficient for the success of study the dynamics and perturbations in this model with a
the inflationary scenario. We have constrained the strength afonminimally coupledy field, in which amplifications of the
negative nonminimal coupling by two requirements that theinflaton fluctuation may further strengthen super-Hubble

123512-11



SHINJI TSUJIKAWA AND HIROKI YAJIMA PHYSICAL REVIEW D 62 123512

metric perturbations. the multifield inflation and preheating. These issues are left
There are other issues which we did not address in thigo future works.

paper. Since negative nonminimal coupling works to violate
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