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Topological inflation in supergravity
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We investigate a topological inflation model in supergravity. By means of numerical simulations,
it is confirmed that topological inflation can take place in supergravity. We also show that the condition
for successful inflation depends not only on the vacuum-expectation (dkié) of inflaton field but also
on the form of its Kaler potential. In fact, it is found that the required VEV of the inflatpncan be as
small as{¢)=1XMg, whereMg is the gravitational scale.

PACS numbd(s): 98.80.Cq, 04.65te, 11.27+d

[. INTRODUCTION not only on the superpotential, which determines the vacuum
expectation valu¢VEV) of inflaton ¢, but also on the form
Superstring theories compactified on#3)-dimensional  of its Kahler potential. We in fact find that the required VEV
space-time have many discrete symmetries in the low-energga@n be as small aép)=1XMg, which is far below the
effective Lagrangiar1]. A spontaneous breakdown of such lower bound of ¢) = 7,,=1."M¢ derived in Ref[9].
discrete symmetries creates topological defects, i.e., domain
walls, in the early universg2]. If the vacuum-expectation Il. TOPOLOGICAL INFLATION MODEL

\{aluel (VEY)MOffzscilgllg f|eld\<5 |sh Iarger th:?m 'tge %ravnal-l We begin with the topological inflation model proposed in
tional scaleMg==2x GeV, the region inside the wall pet 6] which is based orR-invariant supergravity. The
undergoes inflationary expansion and eventually becomegaitational scalé is set to be unity below. In this model

the present whole univerg®,4]. If the universe is open at s syperpotential for the inflaton superfighx, 6) is given
the beginning, it expands and the spontaneous breakdown g

the symmetries always takes place at some epoch in the early

universe. It has been recently argued that the quantum cre- W=02X(1—g¢?). (1)

ation of the open universe may take place with appropriate

continuation from the Euclidean instant§s]. Thus, topo- Here, we have imposed (1)gxZ, symmetry and omitted

logical inflation is a natural consequence of the dynamics ofigher-order terms for simplicity. Under the(1)gz we as-

the system, and it does not require any fine-tuning of initialSume

conditions for the beginning universe. Furthermore, it does

not cause the “graceful exit” problem and the universe be-

comes homogeneously radiation dominated after reheating
A simple and interesting model for topological inflation

X(0)—e 2X(0e'"),  $(6)— p(0e'?). 2

We also assume that the superfidds even andg is odd
) 1 under theZ,. This discreteZ, symmetry is an essential in-
was proposed in the framework of supergrayi}.” How- gredient for the topological inflatiof8,4]. In the above su-

ever, it was not explicitly shown whether topological inflfa- erpotential1), we always take? andg to be real constants
tion really takes place. In this paper, we perform a numerlca\f,)vithout loss 01; generality

a_maIy5|s on the aboye model and show that topological infla- The R- andZ,-invariant Kiler potential is given by
tion indeed occurs in a wide range of parameter space. We
also show that the condition for successful inflation depends Ky Ks
K(¢,X)= X2+ b|>+ kol X[ ¢l 2+ 77 X|*+ | d]*+ -,

*Present address: Faculty of Education, Yamagata University, &)
Yamagata 990-8560, Japan. wherek;, k,, andk; are constants of order unity.

0other topological inflation models were studied in the superstring The potential of a scalar component of the superfields
inspired model$7,8]. X(x,0) and ¢(x,0) in supergravity is given by
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ek 2K\ s 1 2
9z,0Z;

DZiWDZ]*V\/*—3|W|2 (zi=¢,X), —=————~2.0x10°. (11

The normalization is given by the data of anisotropies of the

with cosmic microwave background radiatiacitMB) by the
COBE satellitg 10]. Since thee-fold numberN correspond-
IW 9K ing to the COBE scale is about 60, which leads to
D, W= (9—2 (9—ZW. (5)
i i

v=2.3x10"2\/ke N2 _~1.8x1073-3.6x 1074

This potential yields am-invariant vacuum (12)

for 0.02<«=<0.1.
1 Uj The interesting point on the above density fluctuations is
()= \/_E 2’ that it results in the tilted spectrum whose spectrum imlex
is given by
at which the potential energy vanishes. Here, the scalar com- n—1_2 (13)
ponents of the superfields are denoted by the same symbols s e

as the corresponding superfieldszlfis larger than the criti-  \y/e may expect a possible deviation from the Harrison-
cal valu'encrz Whig:h will be discussed in the next section, the 7q|qvich scale-invariant spectrum= 1. Observational con-
topological inflation occurs. , _ straint onng is |ng— 1|<0.2[10], which implies 0< x<0.1.

~ For|X| and|¢|<1, we approximately rewrite the poten-  after inflation ends, the inflato may decay into ordi-

tial (4) as nary particles as discussed in Ri] and the reheating tem-
perature is low enough to avoid overproduction of gravitinos
[11] which are thermally produced at the reheating epoch.
, . - Recently, nonthermal production at the preheating stage was
If k= —1, Xfield quickly settles down to the origin and we found to be important in some inflation modgi?]. For the

setX=0 in our analysis takin,=—1. Forg>0, we can  prasent model, nonthermal production of gravitinos at the
|glent|fy the .|nflat0n f!eldgo(x)/\/i with the real part of_ Fhe preheating phase is roughly estimated as
field ¢(x) since the imaginary part op(x) has a positive

(X)=0,

(6)

V=041-g¢?*+vi(1-ky)|p|*—kv*|X[2.  (7)

mass and the real part has a negative mass. Because the n m3 T

L. X . g . 3/2 ® 14 R
positive mass of the imaginary part is larger than the size of (—) ~ = o | (14
the negative mass, the imaginary part is irrelevant for the S Jnonth v TR 10" GeV,

inflation dynamics and hence we neglect it. Then, we obtain h 2 dT h f the infl
a potential for the inflaton fop<1: wherem,(=v%), Ngp, s, andTg are the mass of the infla-

ton, the number density of gravitinos, entropy density, and
p reheating temperature, respectively. This is much less than
V(p)=v*— —v4p?, (8 the thermal production given by ng,/s)ty
2 ~10 (TR/10° GeV) and hence we can neglect the non-
thermal production of gravitinos.
where
k=2g+k;— 1. 9) I1l. NUMERICAL SIMULATION
We perform numerical simulations to decide whether to-
The slow-roll condition for the inflatorp is satisfied for 0  pological inflation takes place in supergravity and determine
<k<1 and 0s ¢=17 The Hubble parameter during the in- the condition for successful topological inflation. For the
flation is given byH=0v?//3. The scale factor of the uni- purpose, we follow time evolution of the domain wall and
verse increases by a factor ef when the inflatone rolls investigate whether it inflates or not. Since we consider a
slowly down the potential frompy to 1. Thee-fold number  planar domain wall whose width is order of the horizon
N is given by scale, we cannot adopt the Friedmann Robertson-Walker
metric. Instead, we assume that the spacetime has a reflection
symmetry of the coordinate perpendicular to the wall and

1
N=- K nen- (10 adopt the metric given by

— _At2 2 2 2 2 2
The amplitude of primordial density fluctuation$p/p ds?= —dt*+A%(t, X)) dx*+B(t, [X|)(dy*+dZ?),

due to this inflation is written as

whereA andB correspond to the scale factors in the direction
of x and y-z, respectively. If the inflation occurs and the
2We can always take positive since we have thg, symmetry ~ proper width of the wall becomes much larger than the ho-
(p—— ). rizon scale A andB expand asA~Boxet (as shown later
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and the universe approaches the de Sitter spacetime. Thughere an overdot denotes the time derivative and a dash the
we examine whether the proper width of the wall becomesspatial derivative;; are the extrinsic curvature tensors of
much larger than the horizon scale. Once it is realized, theonstant time hypersurface, given by

universe expands exponentially,4].

We adopt the numerical technique developed in R 1 2 3
The Einstein-Hilbert action is given by Ki=- A Ko=K3=- B’ (24)
1 1 and K denotes its trac&’=K! . The equation of motion for
_ a4, [Nl Zp_ = 2_ i
S_f dxV-g 2R 2(0#@ Vie)|. (16 the scalar fieldp becomes
Variating the above action with respect to the megjg,, . 9" A" 2B'\¢' dV(¢) B
we obtain the Einstein equations, e e e - DT R P (29)
G = —ERzT 17) We set the initial condition for numerical simulations.
R ) pye First, we consider an initial configuration of a domain wall.

For the convenience of numerical calculations, we take only
whereT,,, is the energy-momentum tensor, the region|x|/ 6<22 where §(= 5/\2v?) is the width of the
domain wall andy is the VEV of ¢. We impose the free
1 5 boundary condition, that isp’=A’=B’'=0 at the bound-
5 (9u@)"+ V(). (18 ariesx/s=—2 andx/6=2. Then, we adopt the following
initial configuration for the domain wall so that the gradient
Variation with respect to the scalar fiejdgives the equation ©f the field disappears at the boundaries,
of motion for the scalar field,

T,uv: 0"#@071/@_ g,uv

o(t=0x)
dav 3 5
De= d((p). (19 ,75_5(35) 3(8 X) (ogfglj)
¢ 6 41156 81156 5 8)°
In order to make it easier to follow time evolution of the B 15 x
system, we choose certain combinations of Einstein equa- 7 (—s—sz),
tions, which read 8 ¢
(26)
o o ,. 2B" B'? 2A'B’ _ .
—Gp=K3(2K-3K3)~ ——— ——+— with ¢(t=0,—X)=—¢(t=0, x) for —2=<x/6=<0. Thisis a
AB A"B® A°B deformed version of the static domain wall solution in a flat
i '2 spacetime pq= 7 tanh/8). The functione(t=0xX) is de-
=2 % (e (20)  cided so as to satisfy the following three conditiofts:it is
2 2 ’ a fifth-order odd polynomial function of, (2) the first term
coincides with that of the expansion of;; (3) it is smooth
1 ,, B ) atx/6=15/8, that isp’ = ¢" =0 atx/ 5= 15/8. Also,¢ is set
5Gu=K2"+ 5 (3K3=K) to be 0.
Next, on the initial hypersurface, we determine
T A,B,K2,K so as to satisfy the Hamiltonian constrai@o)
T ore (1) and the momentum constraif®1). We have freedom for the

initial hypersurface to have homogeneous and isotropic cur-

1 vature, which automatically satisfies the momentum con-
E(G}+ G5+G3-G)) straint(21). This choice leads to
K 1_ 42 ;
=I'C—(IC1)2—2(IC§)2 §=IC1=IC2:“negat|ve” const, (27
=02~ V(op), (22)  where “negative” implies that the universe is in an expand-

ing phase. Furthermore, we can take the conformally flat
spatial gaugeA=B, on the initial hypersurface and sAt

12
3
E(IC%)Z =B=1 atx=0. Finally, we determine the negative value of

1 .
TR Gt g

2 12
_¥.® _ M (23 We have confirmed that the results do not change even if we take

4 4pn? 2 wider ranges of the direction (e.g.,|x|/ 6=3).
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FIG. 3. Time evolution of- K} and — K 3 at the originx=0 is
FIG. 1. Time evolution of the domain wall in the caselgf  shown for the case of Fig. 1.

=0 andg=0.5 (=2.0). The vertical axis represents the value of
the scalar field. The horizontal axis represents the proper distangg. Since we adopt the reflection symmetry of the coordinate
from the domain wall core. Note that the proper width of the wall x and the free boundary condition, the conditiéti=B’
becomes much larger than the Horizon scale. As time elapses, theg atx=0 andx= *+ 28 must be satisfiedC is determined
domain wall expands and topological inflation takes place. Here wgq that the Hamiltonian constraili20) satisfies the above
setv=1.8x 10 3. But the result does not depend on the energyconditions.
scalev as shown later. Now the initial settings are completed and hence we have

only to follow the time evolution of five variables,

§=05 ¥ =00 k=00 v=183 =00 n=20 A, B, K, K3 and ¢. Note that we have introduced five

12 \‘\ T "] variablesA, B, K, K2, ande though only three variables
_ K!
X 1
L g =05k; =00v=18e-3
1Rl e, t=0 ° 7] (- nanns LS RIUULS LN IUULLN IAULRE UULE IULI IUULEE ILRN
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FIG. 2. The expansion rates of the scale factArandB, that is, distance/H(x=0)"1
—K}=A/A and — K 3=B/B are shown for the case of Fig. 1. As
the universe expands enoug‘h/C1 and — IC2 approach the same FIG. 4. Time evolution of the domain wall in the cases of dif-
value, the Hubble parameter(x=0), inside the wall. ferent« for the fixed VEV, #=2.0 (g=0.5), withv=1.8X10"2.
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Then, the Lagrangian density is given by

L(P) = Lyin(Pd) — V()
= —(1+ks|p|H)d, po"p*

k
o 1012+ 2141
1+kq|o|?

—vY1-g¢?? (29

Here we have setX=0. ldentifying the inflaton field
o(x)/\/2 with the real part of the fielgh(x), the Lagrangian
density becomes

L) =Lyin(@)—V(p)

2

1/ 1
== ( 1+ 2k3¢2)(&ﬂcp)z

. (30

4(1 g 2)2eXp(2‘P T 16% )
distance/H(x=0)"! v 2% 1+ Kq 2
FIG. 5. The results with =3.6x1074. The energy scale is 2%
different from that in Fig. 4. with the VEV 5= 2/g. In the present model we have four
free parameterk;, k,, ks andg. Howeverk,(=<—1) only
works as a stabilizer of th¥ field as explained before and it
are independent. This is partly because the second order dis not important for the dynamics of topological inflation
ferential equations have been reduced to the first order diftself. Once theX field is stabilized atX=0, the potential
ferential equations. Moreover, as for time evolutionl@f, V(¢) does not depend oky,. k3 is almost irrelevant for the
we use Eq(23) only atx=0 and acquire the value a0  dynamics of¢ field and only changes its VEV due to the
by integrating Eq(21) in the direction ofx in order to avoid  redefinition of¢ with a canonical kinetic term. Then, we set
numerical instability. k=0 first and later consider the case of nonzkgo Thus,
When inflation takes place) and B grow exponentially  we have only two relevant parameteks,andg. The poten-
so that the proper distance from the domain wall core ( tial \/(¢) has a pole atp= V2/[k,] for k;<0. But, we are
=0) also increases exponentially. In order to see whether

this happens or not, we follow time evolution of the width of £ =00k, =00v=18e-3

H : 12 (T T T T T T T T T T
the waI_I for a given _potentla‘I/(<p)._ _ ) o e o ose v om T e T | AN
To fix the potentialV(¢), we first consider the Kder N A T 1
potential with only terms up to the fourth order, 5 'l ’/
o8 [ i
|
k2 k3 06 I
—1¥|2 2 2| 112 4 4 ;
K X) = | X[+ 4[24 Kol XI2] b2+ -2 X[+ 22 8] i
4 4 o4 [ it/ b r Qo T
(28 o i/ PoEE —-
< ! ] ]
g=05k =00v=18e-3k=00 n=20 ~ 1.2 e HHHHHHHHHH
12 e e e e T S Fg=28 k=-381,=300 n=083 T 8 1, =337 n =091 ]
ky = 03 <> =219 T ky = -03 <> =178 ] [ 3 S —
’/\,_ v~—— F i,._.;,__l\,\,_ . [ /i I
/ / i 1 .-
] / - i I - ]
i 1 f 1 3
! / ! / ]
/ LM E )
/ / :L ! / x=0)1 ... l?lx=0 YoURNEEEEEe ]
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distance/H(x=0)"1

distance/H(x=0)"1
FIG. 6. The results for the same parameters in Fig. 1 except FIG. 7. The results withy~ 5., for k=0.0. They showsn,
ks3=*0.3. =0.95 fork=0.0.
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only interested in the dynamics gfup to the VEV 7 so that  scale of the scalar fiel¢p near the origin. Ask becomes
there is no problem ifk,|<g for k;<0. larger, the scalar fielg rolls down faster so that only the

We introduce dimensionless quantitieg=¢/Mg, x  small region of the original domain wall earns the vacuum

—xH(x=0), t=tH(x=0), K=K /H(x=0), and s energy and cannot overcome the gradient energy.

= 6H(x=0)=1/(\3g) where H(x=0)=0v2/\/3. As the The dependence on is.studied, which determines the
first step, we consider the simplest casekgf=0 andg  €nergy scale of the domain wall. The result with the same
=0.5(i.e., =2.0), which leads to the spectral index1.  parameters in Fig. 4 except for=3.6x10"* is shown in
Time evolution of the domain wall is depicted in Fig. 1. The Fig. 5. The results are quite the same and have no depen-
vertical axis represents the value of the scalar field. The horidence onv. This can be interpreted as follows: First, the
zontal axis represents the proper distance from the domaitlependence on only appears through the Hubble parameter
wall core. As time elapses, the domain wélie region for  during the inflation given by =v2/+/3. But, since the width
¢=0.8) expands and topological inflation really takes placeof the domain wall§~1/(y3gH), the rough criterions

As shown in Figs. 2 and 3, once the domain wall expands-H~* hecomes independent Bf that is,v. Also, rewriting
enough, the scale factorsandB increase at the same rate, the potential as/(¢)~\(¢>— 72) with A= (v/75)*, the in-

that is, —K1i~—K3~H(x=0) inside the wall. Thus, the gependence af is equivalent to that of . The independence
universe expands exponentially and approaches the de Sittgf ;, s also found in Ref[9].

spacetime. _ We now consider the cases of the nonzkso Since the
We consider the dependence erfor the VEV fixed, 7 inatic term £, is not canonical in these cases, we define

=2.0 (92.0'5)' The resu_lt is depicted in Fig. 4. For large the scalar fieldb with the canonical kinetic term as
the domain wall cannot inflate enougk.controls the mass

( \F
. 3
! 1+ 1k 2+ arCSIm( ?(P) (k3=0)
5¢ SRy T T — 3=0),
¢ 1 2 2 2ks
qD:Jl) de\/1+ §k3g02=< (3D

Ikl
1 \/17 aresit N7¢
S0\ 1 Slkle?+ ————— (ks<0).
[ 2 2 V2lks|

. . IV. CONCLUSIONS AND DISCUSSIONS
The results for the same parameters in Fig. 1 excepkfor

==+0.3 are depicted in Fig. 6. The positikg encourages

the occurrence of topological inflation while the negatiye ~_ We have studied a topological inflation in supergravity.
discourages. This is because the VEVdfis larger thany ~ First, we have shown that topological inflation really takes
for the positivek; while smaller for the negativies. place in supergravity. Also, the criterion of successful topo-

Finally, we discuss the criterion for the VEV af for  logical inflation depends not only on the breaking scale of
successful topological inflation within@x=<0.1. In previ- the discrete symmetry but also on the mass of the inflaton
ous ana]ysesy we search for 0n|y the parameter region Satigear the Orlgln..T_h|§ |.S becausle the inflaton rolls down rap-
fying |k, <g for negativek, because of the appearance of aldly from the origin if its mass is large. For a very flat case
pole of the potential. The conditiofk,|<g leads tog<1 favored by the observation of the spectral index=1-0.8
+ K so thaty>1.41(1.35) fork=0.0(0.1), where we have (-€. 0<x<0.1), we have found that the critical breaking
confirmed the occurrence of topological inflation. In order toSc@le7c, becomes as small &8¢, which is smaller than the

obtain the lower limit of, we add to the Kaler potential ~ Critical value, 7,,=1.7M¢ observed in Ref{9]. Finally we
the sixth order terms, have discussed the primordial spectrum produced by the to-

| | p_ological i.nflation. In general, the topological inflation pre-
AK=14|X|2[ |4+ 1, X% p]2+ —3|X|6+ _4|¢|6, (32  dicts the tilted spectrums<1 depending on<..4

9 9 The present topological inflation model is free from the
where there are four parameters but onlys relevant. If we  thermal and nonthermal overproduction of gravitinos since
take |, satisfyingl,>g(g—1), the pole smaller than the
VEV does not appear in the wholg —g parameter space.
The result for smaller; with «=0.0 is depicted in Fig. 7. 4 is possible to produce more exotic spectrum including blue
We find the critical value of the breaking scaley,  one. This is due to the exponential blow of the potential, which is
=0.95 (1.00) fork=0.0 (0.1), which corresponds (@)  significant for the regionp=Mg and makes the potential more
:1/\/5. complex than the simple double-well potential.
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