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Topological inflation in supergravity
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We investigate a topological inflation model in supergravity. By means of numerical simulations,
it is confirmed that topological inflation can take place in supergravity. We also show that the condition
for successful inflation depends not only on the vacuum-expectation value~VEV! of inflaton field but also
on the form of its Ka¨hler potential. In fact, it is found that the required VEV of the inflatonw can be as
small as^w&.13MG , whereMG is the gravitational scale.

PACS number~s!: 98.80.Cq, 04.65.1e, 11.27.1d
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I. INTRODUCTION

Superstring theories compactified on (311)-dimensional
space-time have many discrete symmetries in the low-en
effective Lagrangian@1#. A spontaneous breakdown of suc
discrete symmetries creates topological defects, i.e., dom
walls, in the early universe@2#. If the vacuum-expectation
value ~VEV! of a scalar fieldw is larger than the gravita
tional scaleMG.231018 GeV, the region inside the wal
undergoes inflationary expansion and eventually beco
the present whole universe@3,4#. If the universe is open a
the beginning, it expands and the spontaneous breakdow
the symmetries always takes place at some epoch in the
universe. It has been recently argued that the quantum
ation of the open universe may take place with appropr
continuation from the Euclidean instanton@5#. Thus, topo-
logical inflation is a natural consequence of the dynamics
the system, and it does not require any fine-tuning of ini
conditions for the beginning universe. Furthermore, it do
not cause the ‘‘graceful exit’’ problem and the universe b
comes homogeneously radiation dominated after reheati

A simple and interesting model for topological inflatio
was proposed in the framework of supergravity@6#.1 How-
ever, it was not explicitly shown whether topological infl
tion really takes place. In this paper, we perform a numer
analysis on the above model and show that topological in
tion indeed occurs in a wide range of parameter space.
also show that the condition for successful inflation depe

*Present address: Faculty of Education, Yamagata Univer
Yamagata 990-8560, Japan.

1Other topological inflation models were studied in the superstr
inspired models@7,8#.
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not only on the superpotential, which determines the vacu
expectation value~VEV! of inflaton w, but also on the form
of its Kähler potential. We in fact find that the required VE
can be as small aŝw&.13MG , which is far below the
lower bound of̂ w&5hcr.1.7MG derived in Ref.@9#.

II. TOPOLOGICAL INFLATION MODEL

We begin with the topological inflation model proposed
Ref. @6#, which is based onR-invariant supergravity. The
gravitational scaleMG is set to be unity below. In this mode
the superpotential for the inflaton superfieldf(x,u) is given
by

W5v2X~12gf2!. ~1!

Here, we have imposedU(1)R3Z2 symmetry and omitted
higher-order terms for simplicity. Under theU(1)R we as-
sume

X~u!→e22iaX~ueia!, f~u!→f~ueia!. ~2!

We also assume that the superfieldX is even andf is odd
under theZ2. This discreteZ2 symmetry is an essential in
gredient for the topological inflation@3,4#. In the above su-
perpotential~1!, we always takev2 andg to be real constants
without loss of generality.

The R- andZ2-invariant Kähler potential is given by

K~f,X!5uXu21ufu21k1uXu2ufu21
k2

4
uXu41

k3

4
ufu41•••,

~3!

wherek1 , k2, andk3 are constants of order unity.
The potential of a scalar component of the superfie

X(x,u) andf(x,u) in supergravity is given by

y,

g
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V5eKH S ]2K

]zi]zj*
D 21

Dzi
WDz

j*
W* 23uWu2J ~zi5f,X!,

~4!

with

Dzi
W5

]W

]zi
1

]K

]zi
W. ~5!

This potential yields anR-invariant vacuum

^X&50, ^f&5
1

Ag
[

h

A2
, ~6!

at which the potential energy vanishes. Here, the scalar c
ponents of the superfields are denoted by the same sym
as the corresponding superfields. Ifh is larger than the criti-
cal valuehcr, which will be discussed in the next section, t
topological inflation occurs.

For uXu and ufu!1, we approximately rewrite the poten
tial ~4! as

V.v4u12gf2u21v4~12k1!ufu22k2v4uXu2. ~7!

If k2&21, X field quickly settles down to the origin and w
setX50 in our analysis takingk2&21. For g.0, we can
identify the inflaton fieldw(x)/A2 with the real part of the
field f(x) since the imaginary part off(x) has a positive
mass and the real part has a negative mass. Becaus
positive mass of the imaginary part is larger than the size
the negative mass, the imaginary part is irrelevant for
inflation dynamics and hence we neglect it. Then, we ob
a potential for the inflaton forw!1:

V~w!.v42
k

2
v4w2, ~8!

where

k[2g1k121. ~9!

The slow-roll condition for the inflatonw is satisfied for 0
,k,1 and 0&w&1.2 The Hubble parameter during the in
flation is given byH.v2/A3. The scale factor of the uni
verse increases by a factor ofeN when the inflatonw rolls
slowly down the potential fromwN to 1. Thee-fold number
N is given by

N.2
1

k
ln wN . ~10!

The amplitude of primordial density fluctuationsdr/r
due to this inflation is written as

2We can always takew positive since we have theZ2 symmetry
(f→2f).
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r
.

1

5A3p

v2

kwN
;2.031025. ~11!

The normalization is given by the data of anisotropies of
cosmic microwave background radiation~CMB! by the
COBE satellite@10#. Since thee-fold numberN correspond-
ing to the COBE scale is about 60, which leads to

v.2.331022Ake2kN/2uN560.1.83102323.631024,
~12!

for 0.02<k<0.1.
The interesting point on the above density fluctuations

that it results in the tilted spectrum whose spectrum indexns
is given by

ns.122k. ~13!

We may expect a possible deviation from the Harriso
Zeldvich scale-invariant spectrumns51. Observational con-
straint onns is uns21u,0.2 @10#, which implies 0,k,0.1.

After inflation ends, the inflatonw may decay into ordi-
nary particles as discussed in Ref.@6# and the reheating tem
perature is low enough to avoid overproduction of gravitin
@11# which are thermally produced at the reheating epo
Recently, nonthermal production at the preheating stage
found to be important in some inflation models@12#. For the
present model, nonthermal production of gravitinos at
preheating phase is roughly estimated as

S n3/2

s D
non-TH

;
mw

3

v4/TR

&10214S TR

1010 GeV
D , ~14!

wheremw(.v2), n3/2, s, andTR are the mass of the infla
ton, the number density of gravitinos, entropy density, a
reheating temperature, respectively. This is much less t
the thermal production given by (n3/2/s)TH
;10211(TR/1010 GeV) and hence we can neglect the no
thermal production of gravitinos.

III. NUMERICAL SIMULATION

We perform numerical simulations to decide whether
pological inflation takes place in supergravity and determ
the condition for successful topological inflation. For th
purpose, we follow time evolution of the domain wall an
investigate whether it inflates or not. Since we conside
planar domain wall whose width is order of the horizo
scale, we cannot adopt the Friedmann Robertson-Wa
metric. Instead, we assume that the spacetime has a refle
symmetry of the coordinatex perpendicular to the wall and
adopt the metric given by

ds252dt21A2~ t,uxu!dx21B2~ t,uxu!~dy21dz2!,
~15!

whereA andB correspond to the scale factors in the directi
of x and y-z, respectively. If the inflation occurs and th
proper width of the wall becomes much larger than the
rizon scale,A and B expand asA;B}eHt ~as shown later!
7-2
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and the universe approaches the de Sitter spacetime. T
we examine whether the proper width of the wall becom
much larger than the horizon scale. Once it is realized,
universe expands exponentially@3,4#.

We adopt the numerical technique developed in Ref.@9#.
The Einstein-Hilbert action is given by

S5E d4xA2gF1

2
R2

1

2
~]mw!22V~w!G . ~16!

Variating the above action with respect to the metricgmn ,
we obtain the Einstein equations,

Gmn[Rmn2
1

2
R5Tmn , ~17!

whereTmn is the energy-momentum tensor,

Tmn5]mw]nw2gmnF1

2
~]mw!21V~w!G . ~18!

Variation with respect to the scalar fieldw gives the equation
of motion for the scalar fieldw,

hw5
dV~w!

dw
. ~19!

In order to make it easier to follow time evolution of th
system, we choose certain combinations of Einstein eq
tions, which read

2G0
05K 2

2~2K23K 2
2!2

2B9

A2B
2

B82

A2B2
1

2A8B8

A3B

5
ẇ2

2
1

w82

2A2
1V~w!, ~20!

1

2
G015K 2

281
B8

B
~3K 2

22K!

5
1

2
ẇw8, ~21!

1

2
~G1

11G2
21G3

32G0
0!

5K̇2~K 1
1!222~K 2

2!2

5ẇ22V~w!, ~22!

2R 2
22

1

2
G0

05K̇2
21

B82

2A2B2
2

3

2
~K 2

2!2

5
ẇ2

4
1

w82

4A2
2

V~w!

2
, ~23!
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where an overdot denotes the time derivative and a dash
spatial derivative.Ki j are the extrinsic curvature tensors
constant time hypersurface, given by

K 1
152

Ȧ

A
, K 2

25K 3
352

Ḃ

B
, ~24!

andK denotes its traceK[K i
i . The equation of motion for

the scalar fieldw becomes

ẅ2Kẇ2
w9

A2
2S 2

A8

A
1

2B8

B Dw8

A2
1

dV~w!

dw
50. ~25!

We set the initial condition for numerical simulation
First, we consider an initial configuration of a domain wa
For the convenience of numerical calculations, we take o
the regionuxu/d<23 whered(5h/A2v2) is the width of the
domain wall andh is the VEV of w. We impose the free
boundary condition, that is,w85A85B850 at the bound-
aries x/d522 and x/d52. Then, we adopt the following
initial configuration for the domain wall so that the gradie
of the field disappears at the boundaries,

w~ t50,x!

55 hF x

d
2

5

4 S 8

15

x

d D 3

1
3

8 S 8

15

x

d D 5G S 0<
x

d
<

15

8 D ,

h S 15

8
<

x

d
<2D ,

~26!

with w(t50,2x)52w(t50, x) for 22<x/d<0. This is a
deformed version of the static domain wall solution in a fl
spacetime,wflat5h tanh(x/d). The functionw(t50,x) is de-
cided so as to satisfy the following three conditions:~1! it is
a fifth-order odd polynomial function ofx, ~2! the first term
coincides with that of the expansion ofwflat ; ~3! it is smooth
at x/d515/8, that is,w85w950 atx/d515/8. Also,ẇ is set
to be 0.

Next, on the initial hypersurface, we determin
A,B,K 2

2 ,K so as to satisfy the Hamiltonian constraint~20!
and the momentum constraint~21!. We have freedom for the
initial hypersurface to have homogeneous and isotropic c
vature, which automatically satisfies the momentum c
straint ~21!. This choice leads to

K
3

5K 1
15K 2

25 ‘ ‘negative’’ const, ~27!

where ‘‘negative’’ implies that the universe is in an expan
ing phase. Furthermore, we can take the conformally
spatial gauge,A5B, on the initial hypersurface and setA
5B51 atx50. Finally, we determine the negative value

3We have confirmed that the results do not change even if we
wider ranges of the directionx ~e.g.,uxu/d53).
7-3
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FIG. 1. Time evolution of the domain wall in the case ofk1

50 andg50.5 (h52.0). The vertical axis represents the value
the scalar field. The horizontal axis represents the proper dist
from the domain wall core. Note that the proper width of the w
becomes much larger than the Horizon scale. As time elapses
domain wall expands and topological inflation takes place. Here
set v51.831023. But the result does not depend on the ene
scalev as shown later.

FIG. 2. The expansion rates of the scale factors,A andB, that is,

2K 1
15Ȧ/A and2K 2

25Ḃ/B are shown for the case of Fig. 1. A
the universe expands enough,2K 1

1 and 2K 2
2 approach the same

value, the Hubble parameterH(x50), inside the wall.
12350
K. Since we adopt the reflection symmetry of the coordin
x and the free boundary condition, the conditionA85B8
50 atx50 andx562d must be satisfied.K is determined
so that the Hamiltonian constraint~20! satisfies the above
conditions.

Now the initial settings are completed and hence we h
only to follow the time evolution of five variables
A, B, K, K 2

2, and w. Note that we have introduced fiv
variables,A, B, K, K 2

2, andw though only three variables

f
ce
l
the
e

y

FIG. 3. Time evolution of2K 1
1 and2K 2

2 at the originx50 is
shown for the case of Fig. 1.

FIG. 4. Time evolution of the domain wall in the cases of d
ferentk for the fixed VEV,h52.0 (g50.5), with v51.831023.
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are independent. This is partly because the second orde
ferential equations have been reduced to the first order
ferential equations. Moreover, as for time evolution ofK 2

2,
we use Eq.~23! only at x50 and acquire the value atxÞ0
by integrating Eq.~21! in the direction ofx in order to avoid
numerical instability.

When inflation takes place,A and B grow exponentially
so that the proper distance from the domain wall corex
50) also increases exponentially. In order to see whe
this happens or not, we follow time evolution of the width
the wall for a given potentialV(w).

To fix the potentialV(w), we first consider the Ka¨hler
potential with only terms up to the fourth order,

K~f,X!5uXu21ufu21k1uXu2ufu21
k2

4
uXu41

k3

4
ufu4.

~28!

FIG. 5. The results withv53.631024. The energy scalev is
different from that in Fig. 4.

FIG. 6. The results for the same parameters in Fig. 1 exc
k3560.3.
12350
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if-

er

Then, the Lagrangian density is given by

L~f!5Lkin~f!2V~f!

52~11k3ufu2!]mf]mf*

2v4u12gf2u2
expS ufu21

k3

4
uf4u D

11k1ufu2
. ~29!

Here we have setX50. Identifying the inflaton field
w(x)/A2 with the real part of the fieldf(x), the Lagrangian
density becomes

L~w!5Lkin~w!2V~w!

52
1

2 S 11
1

2
k3w2D ~]mw!2

2v4S 12
g

2
w2D 2 expS 1

2
w21

k3

16
w4D

11
k1

2
w2

, ~30!

with the VEV h5A2/g. In the present model we have fou
free parametersk1 , k2 , k3 andg. However,k2(&21) only
works as a stabilizer of theX field as explained before and
is not important for the dynamics of topological inflatio
itself. Once theX field is stabilized atX50, the potential
V(w) does not depend onk2 . k3 is almost irrelevant for the
dynamics off field and only changes its VEV due to th
redefinition ofw with a canonical kinetic term. Then, we s
k350 first and later consider the case of nonzerok3. Thus,
we have only two relevant parameters,k1 andg. The poten-
tial V(w) has a pole atw5A2/uk1u for k1,0. But, we are

pt FIG. 7. The results withh;hcr for k50.0. They showhcr

.0.95 fork50.0.
7-5
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only interested in the dynamics ofw up to the VEVh so that
there is no problem ifuk1u,g for k1,0.

We introduce dimensionless quantities,w̄5w/MG , x̄

5xH(x50), t̄ 5tH(x50), K̄i j 5Ki j /H(x50), and d̄
5dH(x50)51/(A3g) where H(x50)5v2/A3. As the
first step, we consider the simplest case ofk150 and g
50.5 ~i.e., h52.0), which leads to the spectral indexn51.
Time evolution of the domain wall is depicted in Fig. 1. Th
vertical axis represents the value of the scalar field. The h
zontal axis represents the proper distance from the dom
wall core. As time elapses, the domain wall~the region for
w&0.8) expands and topological inflation really takes pla
As shown in Figs. 2 and 3, once the domain wall expa
enough, the scale factorsA andB increase at the same rat
that is, 2K 1

1;2K 2
2;H(x50) inside the wall. Thus, the

universe expands exponentially and approaches the de S
spacetime.

We consider the dependence onk for the VEV fixed,h
52.0 (g50.5). The result is depicted in Fig. 4. For largek,
the domain wall cannot inflate enough.k controls the mass
r

a
f a

to

e
.

12350
ri-
in

.
s

tter

scale of the scalar fieldw near the origin. Ask becomes
larger, the scalar fieldw rolls down faster so that only the
small region of the original domain wall earns the vacuu
energy and cannot overcome the gradient energy.

The dependence onv is studied, which determines th
energy scale of the domain wall. The result with the sa
parameters in Fig. 4 except forv53.631024 is shown in
Fig. 5. The results are quite the same and have no de
dence onv. This can be interpreted as follows: First, th
dependence onv only appears through the Hubble parame
during the inflation given byH.v2/A3. But, since the width
of the domain walld;1/(A3gH), the rough criteriond
.H21 becomes independent ofH, that is,v. Also, rewriting
the potential asV(w);l(w22h2) with l5(v/h)4, the in-
dependence ofv is equivalent to that ofl. The independence
of v is also found in Ref.@9#.

We now consider the cases of the nonzerok3. Since the
kinetic termLkin is not canonical in these cases, we defi
the scalar fieldF with the canonical kinetic term as
F5E
0

w

dwA11
1

2
k3w255 1

2
wA11

1

2
k3w21

arcsinhSAk3

2
w D

A2k3

~k3>0!,

1

2
wA12

1

2
uk3uw21

arcsinSAuk3u
2

w D
A2uk3u

~k3,0!.

~31!
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The results for the same parameters in Fig. 1 except fok3
560.3 are depicted in Fig. 6. The positivek3 encourages
the occurrence of topological inflation while the negativek3
discourages. This is because the VEV ofF is larger thanh
for the positivek3 while smaller for the negativek3.

Finally, we discuss the criterion for the VEV ofw for
successful topological inflation within 0<k&0.1. In previ-
ous analyses, we search for only the parameter region s
fying uk1u,g for negativek1 because of the appearance o
pole of the potential. The conditionuk1u,g leads tog,1
1k so thath.1.41(1.35) fork50.0(0.1), where we have
confirmed the occurrence of topological inflation. In order
obtain the lower limit ofh, we add to the Ka¨hler potential
the sixth order terms,

DK5 l 1uXu2ufu41 l 2uXu4ufu21
l 3

9
uXu61

l 4

9
ufu6, ~32!

where there are four parameters but onlyl 1 is relevant. If we
take l 1 satisfying l 1.g(g21), the pole smaller than th
VEV does not appear in the wholek12g parameter space
The result for smallerh with k50.0 is depicted in Fig. 7.
We find the critical value of the breaking scale,hcr
.0.95 (1.00) fork50.0 (0.1), which corresponds tôf&
.1/A2.
tis-

IV. CONCLUSIONS AND DISCUSSIONS

We have studied a topological inflation in supergravi
First, we have shown that topological inflation really tak
place in supergravity. Also, the criterion of successful top
logical inflation depends not only on the breaking scale
the discrete symmetry but also on the mass of the infla
near the origin. This is because the inflaton rolls down r
idly from the origin if its mass is large. For a very flat ca
favored by the observation of the spectral index,ns.1 –0.8
~i.e., 0,k,0.1), we have found that the critical breakin
scalehcr becomes as small asMG , which is smaller than the
critical value,hcr>1.7MG observed in Ref.@9#. Finally we
have discussed the primordial spectrum produced by the
pological inflation. In general, the topological inflation pr
dicts the tilted spectrumns,1 depending onk.4

The present topological inflation model is free from t
thermal and nonthermal overproduction of gravitinos sin

4It is possible to produce more exotic spectrum including b
one. This is due to the exponential blow of the potential, which
significant for the regionw*MG and makes the potential mor
complex than the simple double-well potential.
7-6
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the reheating temperature can be as low as 108 GeV. Fur-
thermore, as pointed out in Ref.@13#, this model is consisten
with a leptogenesis scenario in which heavy Majorana n
trinos are produced in the inflaton decay and successive
cays of the Majorana neutrinos result in lepton asymme
enough to explain the observed baryon asymmetry in
present universe.
ys
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