PHYSICAL REVIEW D, VOLUME 62, 123506

Domain walls in SU(5)
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We consider the grand unified $8) model with a small or vanishing cubic term in the adjoint scalar field
in the potential. This gives the model an approximate or eXxagymmetry whose breaking leads to domain
walls. The simplest domain wall has the structure of a kink across which the Higgs field change® sign (
—®) and inside which the full SU) is restored. The kink is shown to be perturbatively unstable for all
parameters. We then construct a domain wall solution that is lighter than the kink and show it to be perturba-
tively stable for a range of parameters. The symmetry in the core of this domain wall is smaller than that
outside. The interactions of the domain wall with magnetic monopoles are discussed and it is shown that
magnetic monopoles with certain internal space orientations relative to the wall pass through the domain wall.
Magnetic monopoles in other relative internal space orientations are likely to be swept away on collision with
the domain walls, suggesting a scenario where the domain walls might act like optical polarization filters,
allowing certain monopole “polarizations” to pass through but not others. AGBilbmain walls will also be
formed at small values of the cubic coupling, this leads to a very complicated picture of the evolution of
defects after the grand unified phase transition.

PACS numbd(s): 98.80.Cq

[. INTRODUCTION to an acceptably low level. It is to pursue this scenario in
greater detail that we now study the structure of domain
Topological defects can be produced at a symmetryalls in the SW5) model.

breaking phase transition and would be long-lived relics of The bosonic sector of the $8) model is
the symmetric phase. If topological defects were produced
during a phase transition in the very early universe, they L=Tr(D,®)*~ V(D) (1)
could survive until the present epoch and thus provide a . .
window to the very early universe. The lack of observable’here @ is an adjoint of S&), D,b=g,>
defects in the present universe helps place strong constraints'9LX,.,®1X,, are the gauge fields, and the potential is
on particle physics model building and early universe cos9dven by

mology. 2 2 2y12 4
A prototype symmetry breaking relevant for grand uified V(@)= =mTr(@%) +h{TH(OT I+ A Tr(PD
particle physics is +yTr(d3)—V,, 2

SU(5) —[SU(3) X SU(2) X U(1)]/Zg. whereV,, is a constant that we will choose below. The(SU
) . symmetry is broken td SU(3)X SU(2)XU(1)]/Zg if the
The corresponding phase transition would produce magnetpiggs field acquires a vacuum expectation valEV)
monopoles. If the only factors affecting the evolution of theequal to

monopoles are the subluminal expansion of the universe and
monopole-antimonopole Coulombic interactions, the mono-

pole abundance grossly violates the observed absence of D,
monopoles in the present universe. The monopole over- 2115
abundance problem is solved by invoking superluminal uni-

versal expansiofi.e., inflation[1]) or by extending the par- Where

ticle physics model so that the(l) symmetry gets broken

for a short duration, leading to confining forces between _m @)
monopoles and antimonopol&8] and thus enhancing their = W

annihilation raté. Recently[4,5] we have investigated the

possibility that the grand unified phase transition may also 7

have produced a network of domain walls together with the N =h+ ==\, (5)
magnetic monopoles. These walls would interact with the 30

monopoles and sweep them away, reducing their abundaaneor the potential to have its global minimumdt= ®,, the
parameters are constrained to satisfy

= "_diag2,2,2-3,~3), 3

There is another possibility—that the grand unified phase transi- A=0, \'=0. (6)
tion never occurred and hence there never was a monopole over-
abundance probler8]. For the global minimum to havé(®,) =0, in Eqg.(2) we set
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N . Here we will examine the stability of the kink under gen-
Vo=—— " (7)  eral perturbations. So we write
The model in Eq(1) does not have any topological do- o=, +V. (10

main walls because the vacua related dy->—® are not

degenerate. However, if is small, there are walls connect- sjnce the kink solution is invariant under translations and
ing the two kinds of vacua that are almost topological. In ouryotations in thexy plane, it is easy to show that the pertur-
analysis we will sety=0, in which case the symmetry of the pations that might cause an instability arise from perturba-
model is SU(5)XZ, and an expectation ob breaks theZ,  tjons of the scalar field and can only dependzoifherefore
symmetry, leading to topological domain walls in addition to e may set the gauge fields to zero and tdke ¥ (t,z).
the magnetic monopoles arising from the (SUbreaking. The Z, kink is stable and hence we can restrict the scalar
In this paper we will study the domain walls present in theperturbations to be orthogonal @, . Furthermore, since the
SU(5)x Z, model. The simplest kind of domain wall is the stapjlity of the kink to diagonal perturbations has already
kink that has been studied in a single scalar field model withheen studied in Ref4], we only have to consider perturba-
Z;—1 (e.g.,[6]). In [5] we studied the interaction of the tjons that cannot be diagonalized by a global SU(3)

SU(5) kink with magnetic monopoles and found that the x Sy(2)x U(1) transformation that leaves the kink invari-
monopoles spread out along the kink on collision and nevegnt Therefore we can write

pass through. This confirmed the conjecture in Réf.that

kinks could sweep away magnetic monopoles. However, the 12
investigations of this paper show that the kink solution of the = 2 ST (11)
SU(5)XZ, model is unstable to perturbations. The model i=1 '

contains another domain wall solution that is lighter than the

vanish in the core of these new domain wall solutions anqyith ¢.,.
hence only a subgroup of the 8) is restored at the center. Next we analyze the linearized Sétinger equation for

For this reason, the interactions of these domain walls withy,o excitations)' = wi (2)exp(—iat) in the background of
magnetic monopoles are expected to be much more compl«-:me kink: 0

(as compared to the kinkdepending on the particular group
orientation of the monopole relative to the wall.

We will begin our analysis in Sec. Il by constructing the
kink and performing the stability analysis. Then in Sec. llI
we will proceed to construct the domain wall in the model,where ¢ =tanh(z) and r;=7/30. Since this equation is
prove that it is lighter than the kink, and show that it is identical for excitations along any of the 12 directions, we
perturbatively stable for a range of parameters. In Sec. IV wean drop the index The kink is unstable if there is a solu-
will consider the interaction of monopoles and domain wallstion to Eq.(12) with a negativen?. Substituting Eq(8) into
and show that a monopole whose orientation in the grouftq. (12) yields
space is aligned with a colliding domain wall will pass
through and not get swept away. We further conjecture that {— >+ m2[tanti(oz) — 1]} ho= w2, . (13
monopoles that are misaligned with the domain wall will be
swept away but have not yet shown this. We draw an anal-_, . . . .
ogy of the sweeping out process with that of a poIarizationIThls equation has a bound state solutiagsechgz) with

- 2_ _ 2 . . . .
filter that “sweeps out” orthogonally polarized light and eigenvaluew”= _m /2. Smcg this result is mdependen.t Of.
only lets through a certain polarization. the parameters in the potential, we conclude that the kink in

SU(5) is always unstable.

[—2—m?+ pA(2)(h+Nr)1Yo= 0Py, (12

II. SU(5) KINK: SOLUTION AND STABILITY

. . . . . . I1l. DOMAIN WALL

The kink solution is theZ, kink along the® direction

[see Eq(3)]. Therefore, The domain wall solution is obtained if we choose the
gauge fields to vanish at infinity and the scalar field to satisfy
® =tan(oz)d, (8)  the boundary conditions

with o=m/+/2 [see Eq(5)], and all gauge fields vanish. It is
straightforward to check thak, solves the equations of mo- D(z=—0)=P = 7 diag 2,—3,2,2- 3)
tion with the boundary condition®(z= )= +®,. 2415 o

As is well known[6], the masgper unit areaof the kink 3
is 7

= 77\/1:2(?\3+ m3)+5(Y=Brg) (14)
B 22 m o
N © and
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7 where primes refer to derivatives with respectztd-or ref-
——diag3,-2,—2,3-2) erence, the kink solutiohEg. (8)] corresponds t@(z)=0
2\15 —b(2)=c(z) andd(2) =  tanh@2).

The equations of motion fdp andc can be solved quite

=77\/1§2(7\3+73)—g(Y—\/§>\8)- (15  easily:

d(z= +oc):CI)+E

b(z)=—5d(z), c(z)=a(z). (25)

This is consistent with the boundary conditions in Edgl)

Herelz, \g, 73 andY are the diagonal generators of G

1 and(15). In addition, we require
3= 5diag1,-1,0,0,0, (16)
5
. a(z=ioo):+77\/1:2, d(z:iOO)zig. (26)
Ng= 2\/§diag1,1,—2,0,0), 17) Then the remaining equations we need to solve are
9 I
1 a’= —m2+(6h+—)\)d2+(2h+— afla (27
T3= Edlago,o,o,l,— 1), (18 10 2
) 39, 3\,
1 d’=| —m°+| 6h+ 1—0)\ d+ 2h+1—0 ac|d. (28)
Y= Tdiagz,z,z,— 3,—3). (19
2V15 These equations can be written in a cleaner form by rescal-
Note that local S(b) transformations can be used to ro- ng:
tate® ™ into —®~ so that the boundary conditions are like 12a d
those of the kink with®(z=+»)=—®(z=—»). How- A(z)= \/:— D(z)=—-6—, Z=mz (29

ever, then the solution for the domain wall will not be diag-
onal at allz. We prefer to use the above boundary conditionsype,
so that the solution is diagonal throughout.

The domain wall solution can be written as (1-p) (4+p)
A'=| -1+ — D2+ 5 A?|A (30
dpw(z)=a(z)A3+b(2)Ag+c(z)m3+d(2)Y. (20
. . . . D"=[~1+pD?+(1-p)A?]D (3D
The functionsa, b, ¢, andd must satisfy the static equations
of motion where primes o\ andD denote differentiation with respect
to Z, and
2\ N
a’=| —m?+|h+ —|d?+| h+ =|(a2+b?)+hc?|a 1 5\
5 2 p=|1+—; (32
6 12\
2\abd
N (21) Note thatpe[1/6/°) because of the constraints in E®).
The boundary conditions now are
2\ N = = = =
b”=[—m2+ h_’_?)dZ_’_(h_'_E (a2+b2)+hc2b A(Z ‘L‘OC) +1, D(Z iOO) +1. (33)
This system of equations has been solved by numerical
relaxation and a sample solution is shown in Fig. 1. To find
+ T(az_ b?), (22)  an approximate analytical solution, assume tR&IA|<1 is
> small everywhere. This assumption will be true for a certain
o range of the paramet@rwhich we can later determine. Then
A A the square brackets on the right-hand side of @€) are
n"_| _m2 — A2 | A2 2 2
c = m°+{ h+ 10)d +(h+ 5/C +h(a*+b )}c, very small. This gives
(23)
5 [ (1-p) |
i A= 1- D2} | . (34)
7\ 2\ 4+p 5
d’"=| —m?+ h+ 35 d?+ h+ = (a?+b?)
. We insert this expression fak into Eq. (31) and obtain the
s o\ d+)\b , bz) o0 kink-type differential equation
—|c —l|a*— =],
10 J5 3 D"=q[-1+D?]D, (35
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op————T—————— T 0
I 1 A=1, D:tan}‘(\[iz.

06 T~ ] (This approximation is exact fop=1.) A straightforward

evaluation then gives

- ] p
04 F _ M DWapprox_ M \[6 (41

whereM, is given in Eq.(9).
We can now compare the domain wall energy to the kink
o2ar 7 energy. If the domain wall is the least energy solution for the
RN T given boundary conditions, the energy of the exact solution
\ ] for the domain wall will be bounded above by the energy of
. ] the approximate solution. Note that this will be true even if
N ] the approximation used to find the analytical solution is not
AN ] good. Hence this simple argument shows that the domain
I Sl ] wall is lighter than the kink forp<36 or for h/A
02 S S S >—6.94/30. A numerical analysis shows that the domain
20 0 20 wall is lighter than the kink even in the range6.94/30
=h/\N>—7/30. Therefore the domain wall is lighter than the

FIG. 1. The domain wall solution fox=1 andh=-0.2 (p  Kink for the full range of parameters specified in E6).

(40)

a(z), d(z)

=2.25). The solid line showa(z) and the dashed line showl§z). Next we study the stability of the domain wall solution. It
is easy to show that the solution is stable to diagonal pertur-
where bations, so here we focus on off-diagonal perturbations. We
write
6p—1 6\
=" - (36) 20
PTE AHEO P=Do(2)+ 2 PADNY (42

and the solution is
whereN? are the non-diagonal generators of SU(5) afd

q are small perturbations satisfying the boundary conditions
D(Z)ztan?‘( EZ) (37 yA(+%)=0. Let us first consider the contribution to the
energy density due to fieldg®. To second order in pertur-
The parameteq lies in the interval0,6]. Forq=1 (i.e., p bations the contributions from different modes, labeled by
=1) it is easy to check that this analytical solution is exactindexa, do not couple. A more detailed analysis shows that
We can now check that our assumptiéd/A|<1 is self-  the mode corresponding to
consistent provideg is not much larger than a few.

The energy density for the fields and D can be found 01000
from the Lagrangian in Eq.l) together with theAnsatzin 1 0 0 0O
Eq. (20), the solution forb andc in Eq. (25) and the rescal- N, = E 0000 O 43)
ings in EqQ.(29). The resulting expression for the energy per 172
unit area of the domain wall is 0 0000
0 0 00O

m?3
MDW=12)\,fdZ[5A'2+D’2+V(A,D)] (38)

is one of the 8 modes that are most unstable.jtbe any of
these 8 fields. The contribution to the energy density due to

where s
2
+4 1 , m h
V(A,D)=—5A’~D?+ MA‘W BD4 E¢,=§(l// )2—7t/fz+ Z(z,b2+2a2+6d2)2
2 2
_ 22 A 9
TAp)ATDTES. 39 +Z¢//2 a’+ gdz + higher order terms, (44)

The energy can be found numerically. However, here we will

find an approximate analytic result. We can insert the apwherea andd are defined by Eq20). As in the case of the
proximate solution given above into E@8) but this leads to  kink, we are interested in the linearized Safirger equation
an expression that is not transparent. Instead it is more useftdr small excitationsy= y(z)exp(—iwt) in the background
to consider another approximation farandD: of the diagonal domain wall solution. Equati¢fd) leads to
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9 A
[—&§—m2+(6h+ —\ d2+(2h+ >

20 _ 2 X!
10 a }t//o—w bo- xf‘zef};[l—K(r)]. (48)
(45)
The monopole profile functionsP(r), M(r), N(r) and
K(r), are solutions of the static equations of motion with

" boundary conditions

— Yot o= 0o (46) = =
P(OO):U 1_21 M(OO)ZW §l (49)

If a"/a=0, as happens whem=1, then there are no non-
trivial solutions to Eq.(46) that satisfy the correct boundary
conditions. Therefore, the diagonal domain wall solution is N(o0)= 2, K(x)=1. (50)
stable for at least one choice of parameters in the potential, 6

namely, forp=1. By continuity there is a range of param-
eters aroundo=1 for which the domain wall is perturba-

Comparing this with Eq(27) allows us to write

When the monopole and the wall are very far from each
other, the combined field configuration can be described by

tively stable. the following Ansaze
IV. INTERACTION WITH MONOPOLES c(z") 3 d(z')
_ a
AND DISCUSSION Pu-ow=P(1) 573 a; XAt N(1) gy Y+ M)
To understand the interaction of the domain wall with , ,
magnetic monopoles, it is first useful to understand the struc- E az’) 1 b(z) 51)
ture of the domain wall core. Sina(z) is non-zero inside 2 a(—»)" "% 2Db(—x) 8

the domain wall, ®py(z=0)=a(0)(\3+ 73)xdiag(1, ) o N _
—1,0,1~1). Therefore, the symmetry inside the coreis wherez’' =z—z; andz, is the initial position of the domain
=SU(2)X SU(2)XU(1)xU(1). The first SU2) factor Wall. Whenr is small®y . pw— Py [Eq. (47)] and where’
arises due to rotations in thex2 block with the entries S sSmall®y . pw— Ppw [Eq. (20)] along thez direction. The
equal to 1 indpyy (first and fourth rows and columpsThe ~ gauge fields are the same as for the monopole alone. We
second S\(P) factor is due to the block with entries equal to have purposely chosen the embedding of the monopole so
—1 (second and fifth rows and columndhe two U1) fac- t_hat _aII interesting dynamics of thg monopole-wall interac-
tors arise since there are two diagonal generators dbSU tion is restn(_:ted to the fourth and flfth rows and. columns of
aside from those already accounted for in the two(BU ®wm+pw- This follows from the equations of motion and the
factors, which commute wittb 5\, (z=0). (We are ignoring Commutation properties of the generators appearing in the
any discrete factors that might be preseithe symmetry Ansdze (51). Let us then only consider the relevant part of
group K within the domain wall is to be contrasted with the the @y ;. pw mMatrix:
full SU(5) symmetry which is restored within the kink. The

fact that only a subgroup of the $8) symmetry is restored _ EP(r) az') [z x—|y)

in the core of the wall means that the interaction of the 2x27 2 a(—») \x+iy -z

monopole will now depend on the particular embedding of

the monopole in S() and its orientation in internal space 3 N(r d(z') (1 0) 52
relative to the domain wall. 2,15 d(—x)\0 1/

Consider a magnetic monopole whose winding lies in the

fourth and fifth rows and columns df. Staying close to the The form ofd,, suggests that the only field that is going to

notation of[5] we write the scalar field of such a monopole be considerably affected by the domain walNi§') because

as a is roughly constant in space. There is no angular depen-

dence in the term wittN(r) in Eq. (47) and henceN(r) does

not contribute to the winding of the monopole. Therefore, we

do not expect the wall to affect the winding. Essentially the

reason is that the S@) subgroup in which the monopole

where{r,} are the S(2) generator§see Eq(18)] and winding is located is not restored on the wall. We have

checked that the monopole passes right through the wall ex-
1 3 1 plicitly in this case by numerically colliding the monopole
)\ézmdiaQﬂ,—Z,l,0,0: \/;)\3—5)\8. and the wall.

If the magnetic monopole winding lies in the first and
fourth blocks, it will experience a region of restored (8J
symmetry inside the domain wall and hence we conjecture

3 that such monopoles will unwind on the wall. If our conjec-
X, = 2 X2r,, ture is correct, the domain walls behave similarly to optical
a=1 polarization filters, allowing monopoles with certain internal

3
Dyy(r)= P(r)Z1 X3+ M(DNGHN(N)Y,  (47)

The non-zero gauge fields are
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space polarizations to pass through and annihilating otheand magnetic monopoles would both be produced and would
polarizations. The detailed analysis of all possible monopolatart interacting. The outcome of an interaction would de-
embeddings is a challenging project, both numerically anghend on the internal space orientations of the monopole rela-
analytically, since one cannot avoid dealing with a largetive to the domain wall. Any given domain wall would be
number of the fields present in &). transparent to some monopoles but not to others. The relax-
There is another possibility that is worth pointing out. If a gtion of the system would depend on whether a monopole
domain wall and a magnetic monopole are misaligned insncounters a sufficient number of randomly orientiedin-
interr)al space, it may not be possible to superpose the tWRyrnal space domain walls, at least one of which might
solutions so as to get a monopole and a domain wall 10y eep it away. It remains to be seen if domain walls can

?ether.(tSuih a ﬁ!tuatlon "IQ’ knownI;L_o to_ccur v;/htgn ;Eemptt'ngprovide a means to solve the cosmological monopole over-
0 construct multimonopole or multistring solutionShen it 142 tee roblom.

is likely that there will be a long range force between the
domain wall and misaligned monopole that will bring them
together. On coming together the monopole could get anni-
hilated on the wall or else, in some cases, it may get aligned
and then pass through the wall.

Our considerations point to a very complicated aftermath We would like to thank Mark Trodden for many useful
of the grand unified theory phase transition. Domain wallsdiscussions. This work was supported by the DOE.
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