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Domain walls in SU„5…
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We consider the grand unified SU~5! model with a small or vanishing cubic term in the adjoint scalar field
in the potential. This gives the model an approximate or exactZ2 symmetry whose breaking leads to domain
walls. The simplest domain wall has the structure of a kink across which the Higgs field changes sign (F→
2F) and inside which the full SU~5! is restored. The kink is shown to be perturbatively unstable for all
parameters. We then construct a domain wall solution that is lighter than the kink and show it to be perturba-
tively stable for a range of parameters. The symmetry in the core of this domain wall is smaller than that
outside. The interactions of the domain wall with magnetic monopoles are discussed and it is shown that
magnetic monopoles with certain internal space orientations relative to the wall pass through the domain wall.
Magnetic monopoles in other relative internal space orientations are likely to be swept away on collision with
the domain walls, suggesting a scenario where the domain walls might act like optical polarization filters,
allowing certain monopole ‘‘polarizations’’ to pass through but not others. As SU~5! domain walls will also be
formed at small values of the cubic coupling, this leads to a very complicated picture of the evolution of
defects after the grand unified phase transition.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Topological defects can be produced at a symme
breaking phase transition and would be long-lived relics
the symmetric phase. If topological defects were produ
during a phase transition in the very early universe, th
could survive until the present epoch and thus provid
window to the very early universe. The lack of observa
defects in the present universe helps place strong constr
on particle physics model building and early universe c
mology.

A prototype symmetry breaking relevant for grand uifi
particle physics is

SU~5!→@SU~3!3SU~2!3U~1!#/Z6 .

The corresponding phase transition would produce magn
monopoles. If the only factors affecting the evolution of t
monopoles are the subluminal expansion of the universe
monopole-antimonopole Coulombic interactions, the mo
pole abundance grossly violates the observed absenc
monopoles in the present universe. The monopole o
abundance problem is solved by invoking superluminal u
versal expansion~i.e., inflation@1#! or by extending the par
ticle physics model so that the U~1! symmetry gets broken
for a short duration, leading to confining forces betwe
monopoles and antimonopoles@2# and thus enhancing the
annihilation rate.1 Recently @4,5# we have investigated th
possibility that the grand unified phase transition may a
have produced a network of domain walls together with
magnetic monopoles. These walls would interact with
monopoles and sweep them away, reducing their abund

1There is another possibility—that the grand unified phase tra
tion never occurred and hence there never was a monopole o
abundance problem@3#.
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to an acceptably low level. It is to pursue this scenario
greater detail that we now study the structure of dom
walls in the SU~5! model.

The bosonic sector of the SU~5! model is

L5Tr~DmF!22V~F! ~1!

where F is an adjoint of SU~5!, DmF5]mF
2 ig@Xm ,F#Xm are the gauge fields, and the potential
given by

V~F!52m2Tr~F2!1h@Tr~F2!#21l Tr~F4!

1g Tr~F3!2V0 , ~2!

whereV0 is a constant that we will choose below. The SU~5!
symmetry is broken to@SU(3)3SU(2)3U(1)#/Z6 if the
Higgs field acquires a vacuum expectation value~VEV!
equal to

F05
h

2A15
diag~2,2,2,23,23!, ~3!

where

h5
m

Al8
, ~4!

l8[h1
7

30
l. ~5!

For the potential to have its global minimum atF5F0, the
parameters are constrained to satisfy

l>0, l8>0. ~6!

For the global minimum to haveV(F0)50, in Eq.~2! we set

i-
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V052
l8

4
h4. ~7!

The model in Eq.~1! does not have any topological do
main walls because the vacua related byF→2F are not
degenerate. However, ifg is small, there are walls connec
ing the two kinds of vacua that are almost topological. In o
analysis we will setg50, in which case the symmetry of th
model is SU(5)3Z2 and an expectation ofF breaks theZ2
symmetry, leading to topological domain walls in addition
the magnetic monopoles arising from the SU~5! breaking.

In this paper we will study the domain walls present in t
SU(5)3Z2 model. The simplest kind of domain wall is th
kink that has been studied in a single scalar field model w
Z2→1 ~e.g., @6#!. In @5# we studied the interaction of th
SU~5! kink with magnetic monopoles and found that t
monopoles spread out along the kink on collision and ne
pass through. This confirmed the conjecture in Ref.@4# that
kinks could sweep away magnetic monopoles. However,
investigations of this paper show that the kink solution of
SU(5)3Z2 model is unstable to perturbations. The mod
contains another domain wall solution that is lighter than
kink and is perturbatively stable. The adjoint field does n
vanish in the core of these new domain wall solutions a
hence only a subgroup of the SU~5! is restored at the cente
For this reason, the interactions of these domain walls w
magnetic monopoles are expected to be much more com
~as compared to the kink!, depending on the particular grou
orientation of the monopole relative to the wall.

We will begin our analysis in Sec. II by constructing th
kink and performing the stability analysis. Then in Sec.
we will proceed to construct the domain wall in the mod
prove that it is lighter than the kink, and show that it
perturbatively stable for a range of parameters. In Sec. IV
will consider the interaction of monopoles and domain wa
and show that a monopole whose orientation in the gr
space is aligned with a colliding domain wall will pas
through and not get swept away. We further conjecture
monopoles that are misaligned with the domain wall will
swept away but have not yet shown this. We draw an a
ogy of the sweeping out process with that of a polarizat
filter that ‘‘sweeps out’’ orthogonally polarized light an
only lets through a certain polarization.

II. SU„5… KINK: SOLUTION AND STABILITY

The kink solution is theZ2 kink along theF0 direction
@see Eq.~3!#. Therefore,

Fk5tanh~sz!F0 ~8!

with s[m/A2 @see Eq.~5!#, and all gauge fields vanish. It i
straightforward to check thatFk solves the equations of mo
tion with the boundary conditionsF(z56`)56F0.

As is well known@6#, the mass~per unit area! of the kink
is

Mk5
2A2

3

m3

l8
. ~9!
12350
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Here we will examine the stability of the kink under ge
eral perturbations. So we write

F5Fk1C. ~10!

Since the kink solution is invariant under translations a
rotations in thexy plane, it is easy to show that the pertu
bations that might cause an instability arise from pertur
tions of the scalar field and can only depend onz. Therefore
we may set the gauge fields to zero and takeC5C(t,z).

TheZ2 kink is stable and hence we can restrict the sca
perturbations to be orthogonal toFk . Furthermore, since the
stability of the kink to diagonal perturbations has alrea
been studied in Ref.@4#, we only have to consider perturba
tions that cannot be diagonalized by a global SU(
3SU(2)3U(1) transformation that leaves the kink invar
ant. Therefore we can write

C5(
i 51

12

c iTi , ~11!

whereTi are all generators of SU~5! that do not commute
with F0.

Next we analyze the linearized Schro¨dinger equation for
small excitationsc i5c0

i (z)exp(2ivt) in the background of
the kink:

@2]z
22m21fk

2~z!~h1lr i !#c0
i 5v i

2c0
i , ~12!

where fk[tanh(sz) and r i57/30. Since this equation is
identical for excitations along any of the 12 directions, w
can drop the indexi. The kink is unstable if there is a solu
tion to Eq.~12! with a negativev2. Substituting Eq.~8! into
Eq. ~12! yields

$2]z
21m2@ tanh2~sz!21#%c05v2c0 . ~13!

This equation has a bound state solutionc0}sech(sz) with
eigenvaluev252m2/2. Since this result is independent o
the parameters in the potential, we conclude that the kin
SU~5! is always unstable.

III. DOMAIN WALL

The domain wall solution is obtained if we choose t
gauge fields to vanish at infinity and the scalar field to sati
the boundary conditions

F~z52`!5F2[
h

2A15
diag~2,23,2,2,23!

5hA 5

12
~l31t3!1

h

6
~Y2A5l8! ~14!

and
6-2
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F~z51`!5F1[
h

2A15
diag~3,22,22,3,22!

5hA 5

12
~l31t3!2

h

6
~Y2A5l8!. ~15!

Herel3 , l8 , t3 andY are the diagonal generators of SU~5!:

l35
1

2
diag~1,21,0,0,0!, ~16!

l85
1

2A3
diag~1,1,22,0,0!, ~17!

t35
1

2
diag~0,0,0,1,21!, ~18!

Y5
1

2A15
diag~2,2,2,23,23!. ~19!

Note that local SU~5! transformations can be used to r
tateF1 into 2F2 so that the boundary conditions are lik
those of the kink withF(z51`)52F(z52`). How-
ever, then the solution for the domain wall will not be dia
onal at allz. We prefer to use the above boundary conditio
so that the solution is diagonal throughout.

The domain wall solution can be written as

FDW~z!5a~z!l31b~z!l81c~z!t31d~z!Y. ~20!

The functionsa, b, c, andd must satisfy the static equation
of motion

a95F2m21S h1
2l

5 Dd21S h1
l

2D ~a21b2!1hc2Ga
1

2labd

A5
, ~21!

b95F2m21S h1
2l

5 Dd21S h1
l

2D ~a21b2!1hc2Gb
1

ld

A5
~a22b2!, ~22!

c95F2m21S h1
9l

10Dd21S h1
l

2D c21h~a21b2!Gc,

~23!

d95F2m21S h1
7l

30Dd21S h1
2l

5 D ~a21b2!

1S h1
9l

10D c2Gd1
lb

A5
S a22

b2

3 D , ~24!
12350
s

where primes refer to derivatives with respect toz. For ref-
erence, the kink solution@Eq. ~8!# corresponds toa(z)50
5b(z)5c(z) andd(z)5h tanh(sz).

The equations of motion forb andc can be solved quite
easily:

b~z!52A5d~z!, c~z!5a~z!. ~25!

This is consistent with the boundary conditions in Eqs.~14!
and ~15!. In addition, we require

a~z56`!51hA 5

12
, d~z56`!57

h

6
. ~26!

Then the remaining equations we need to solve are

a95F2m21S 6h1
9

10
l Dd21S 2h1

l

2Da2Ga ~27!

d95F2m21S 6h1
39

10
l Dd21S 2h1

3l

10Da2Gd. ~28!

These equations can be written in a cleaner form by res
ing:

A~z!5A12

5

a

h
, D~z!526

d

h
, Z5mz. ~29!

Then

A95F211
~12p!

5
D21

~41p!

5
A2GA ~30!

D95@211pD21~12p!A2#D ~31!

where primes onA andD denote differentiation with respec
to Z, and

p5
1

6 F11
5l

12l8G . ~32!

Note thatpP@1/6,̀ ) because of the constraints in Eq.~6!.
The boundary conditions now are

A~z56`!511, D~z56`!561. ~33!

This system of equations has been solved by numer
relaxation and a sample solution is shown in Fig. 1. To fi
an approximate analytical solution, assume thatuA9/Au!1 is
small everywhere. This assumption will be true for a cert
range of the parameterp which we can later determine. The
the square brackets on the right-hand side of Eq.~30! are
very small. This gives

A.F 5

41p H 12
~12p!

5
D2J G1/2

. ~34!

We insert this expression forA into Eq. ~31! and obtain the
kink-type differential equation

D95q@211D2#D, ~35!
6-3
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where

q5
6p21

p14
5

6l

l160l8
~36!

and the solution is

D~Z!.tanhSAq

2
ZD . ~37!

The parameterq lies in the interval@0,6#. For q51 ~i.e., p
51) it is easy to check that this analytical solution is exa

We can now check that our assumptionuA9/Au!1 is self-
consistent providedp is not much larger than a few.

The energy density for the fieldsA and D can be found
from the Lagrangian in Eq.~1! together with theAnsatzin
Eq. ~20!, the solution forb andc in Eq. ~25! and the rescal-
ings in Eq.~29!. The resulting expression for the energy p
unit area of the domain wall is

MDW5
m3

12l8E dZ@5A821D821V~A,D !# ~38!

where

V~A,D !525A22D21
~p14!

2
A41

p

2
D4

1~12p!A2D213. ~39!

The energy can be found numerically. However, here we
find an approximate analytic result. We can insert the
proximate solution given above into Eq.~38! but this leads to
an expression that is not transparent. Instead it is more us
to consider another approximation forA andD:

FIG. 1. The domain wall solution forl51 and h520.2 (p
52.25). The solid line showsa(z) and the dashed line showsd(z).
12350
t.

r

ll
-

ful

A.1, D.tanhSAp

2
ZD . ~40!

~This approximation is exact forp51.! A straightforward
evaluation then gives

MDWapprox5MkAp

6
~41!

whereMk is given in Eq.~9!.
We can now compare the domain wall energy to the k

energy. If the domain wall is the least energy solution for t
given boundary conditions, the energy of the exact solut
for the domain wall will be bounded above by the energy
the approximate solution. Note that this will be true even
the approximation used to find the analytical solution is n
good. Hence this simple argument shows that the dom
wall is lighter than the kink for p,36 or for h/l
.26.94/30. A numerical analysis shows that the dom
wall is lighter than the kink even in the range26.94/30
>h/l.27/30. Therefore the domain wall is lighter than th
kink for the full range of parameters specified in Eq.~6!.

Next we study the stability of the domain wall solution.
is easy to show that the solution is stable to diagonal per
bations, so here we focus on off-diagonal perturbations.
write

F5FDW~z!1 (
a51

20

ca~z!Na, ~42!

whereNa are the non-diagonal generators of SU(5) andca

are small perturbations satisfying the boundary conditio
ca(6`)50. Let us first consider the contribution to th
energy density due to fieldsca. To second order in pertur
bations the contributions from different modes, labeled
index a, do not couple. A more detailed analysis shows t
the mode corresponding to

N1[
1

2S 0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D ~43!

is one of the 8 modes that are most unstable. Letc be any of
these 8 fields. The contribution to the energy density due
c is

Ec5
1

2
~c8!22

m2

2
c21

h

4
~c212a216d2!2

1
l

4
c2S a21

9

5
d2D1higher order terms, ~44!

wherea andd are defined by Eq.~20!. As in the case of the
kink, we are interested in the linearized Schro¨dinger equation
for small excitationsc5c0(z)exp(2ivt) in the background
of the diagonal domain wall solution. Equation~44! leads to
6-4
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DOMAIN WALLS IN SU ~5! PHYSICAL REVIEW D 62 123506
F2]z
22m21S 6h1

9

10
l Dd21S 2h1

l

2Da2Gc05v2c0 .

~45!

Comparing this with Eq.~27! allows us to write

2c091
a9

a
c05v2c0 . ~46!

If a9/a50, as happens whenp51, then there are no non
trivial solutions to Eq.~46! that satisfy the correct boundar
conditions. Therefore, the diagonal domain wall solution
stable for at least one choice of parameters in the poten
namely, forp51. By continuity there is a range of param
eters aroundp51 for which the domain wall is perturba
tively stable.

IV. INTERACTION WITH MONOPOLES
AND DISCUSSION

To understand the interaction of the domain wall w
magnetic monopoles, it is first useful to understand the st
ture of the domain wall core. Sincea(z) is non-zero inside
the domain wall, FDW(z50)5a(0)(l31t3)}diag(1,
21,0,1,21). Therefore, the symmetry inside the core isK
[SU(2)3SU(2)3U(1)3U(1). The first SU~2! factor
arises due to rotations in the 232 block with the entries
equal to 1 inFDW ~first and fourth rows and columns!. The
second SU~2! factor is due to the block with entries equal
21 ~second and fifth rows and columns!. The two U~1! fac-
tors arise since there are two diagonal generators of SU~5!
aside from those already accounted for in the two SU~2!
factors, which commute withFDW(z50). ~We are ignoring
any discrete factors that might be present.! The symmetry
group K within the domain wall is to be contrasted with t
full SU~5! symmetry which is restored within the kink. Th
fact that only a subgroup of the SU~5! symmetry is restored
in the core of the wall means that the interaction of t
monopole will now depend on the particular embedding
the monopole in SU~5! and its orientation in internal spac
relative to the domain wall.

Consider a magnetic monopole whose winding lies in
fourth and fifth rows and columns ofF. Staying close to the
notation of@5# we write the scalar field of such a monopo
as

FM~r !5P~r ! (
a51

3

xata1M ~r !l881N~r !Y, ~47!

where$ta% are the SU~2! generators@see Eq.~18!# and

l88[
1

2A3
diag~1,22,1,0,0!5A3

2
l32

1

2
l8 .

The non-zero gauge fields are

Xi5 (
a51

3

Xi
ata ,
12350
s
al,

c-

f

e

Xi
a5e i j

a xj

er2
@12K~r !#. ~48!

The monopole profile functions,P(r ), M (r ), N(r ) and
K(r ), are solutions of the static equations of motion w
boundary conditions

P~`!5hA 5

12
, M ~`!5hA5

3
, ~49!

N~`!5
h

6
, K~`!51. ~50!

When the monopole and the wall are very far from ea
other, the combined field configuration can be described
the following Ansätze:

FM1DW5P~r !
c~z8!

c~2`! (
a51

3

xata1N~r !
d~z8!

d~2`!
Y1M ~r !

3FA3

2

a~z8!

a~2`!
l32

1

2

b~z8!

b~2`!
l8G , ~51!

wherez85z2z0 andz0 is the initial position of the domain
wall. Whenr is smallFM1DW→FM @Eq. ~47!# and whenz8
is smallFM1DW→FDW @Eq. ~20!# along thez direction. The
gauge fields are the same as for the monopole alone.
have purposely chosen the embedding of the monopole
that all interesting dynamics of the monopole-wall intera
tion is restricted to the fourth and fifth rows and columns
FM1DW . This follows from the equations of motion and th
commutation properties of the generators appearing in
Ansätze ~51!. Let us then only consider the relevant part
the FM1DW matrix:

F232[
1

2
P~r !

a~z8!

a~2`! S z x2 iy

x1 iy 2z D
2

3

2A15
N~r !

d~z8!

d~2`! S 1 0

0 1D . ~52!

The form ofF232 suggests that the only field that is going
be considerably affected by the domain wall isN(r ) because
a is roughly constant in space. There is no angular dep
dence in the term withN(r ) in Eq. ~47! and henceN(r ) does
not contribute to the winding of the monopole. Therefore,
do not expect the wall to affect the winding. Essentially t
reason is that the SU~2! subgroup in which the monopol
winding is located is not restored on the wall. We ha
checked that the monopole passes right through the wall
plicitly in this case by numerically colliding the monopo
and the wall.

If the magnetic monopole winding lies in the first an
fourth blocks, it will experience a region of restored SU~2!
symmetry inside the domain wall and hence we conject
that such monopoles will unwind on the wall. If our conje
ture is correct, the domain walls behave similarly to optic
polarization filters, allowing monopoles with certain intern
6-5
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space polarizations to pass through and annihilating o
polarizations. The detailed analysis of all possible monop
embeddings is a challenging project, both numerically a
analytically, since one cannot avoid dealing with a lar
number of the fields present in SU~5!.

There is another possibility that is worth pointing out. If
domain wall and a magnetic monopole are misaligned
internal space, it may not be possible to superpose the
solutions so as to get a monopole and a domain wall
gether.~Such a situation is known to occur when attempti
to construct multimonopole or multistring solutions.! Then it
is likely that there will be a long range force between t
domain wall and misaligned monopole that will bring the
together. On coming together the monopole could get a
hilated on the wall or else, in some cases, it may get alig
and then pass through the wall.

Our considerations point to a very complicated afterm
of the grand unified theory phase transition. Domain wa
A

12350
er
le
d
e

n
o
-

i-
d

h
s

and magnetic monopoles would both be produced and wo
start interacting. The outcome of an interaction would d
pend on the internal space orientations of the monopole r
tive to the domain wall. Any given domain wall would b
transparent to some monopoles but not to others. The re
ation of the system would depend on whether a monop
encounters a sufficient number of randomly oriented~in in-
ternal space! domain walls, at least one of which migh
sweep it away. It remains to be seen if domain walls c
provide a means to solve the cosmological monopole ov
abundance problem.
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