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Evolution of cosmological perturbations in the brane world
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The evolution of cosmological perturbations is studied in the context of the Randall-Sundrum brane world
scenario, in which our universe is realized on a three-brane in five-dimensional anti—déAg8i8espacetime.
We develop a formalism to solve the coupled dynamics of the cosmological perturbations in the brane world
and the gravitational wave in the AdS bulk. Using our formalism, the late time evolution of the cosmological
scalar perturbations at any scales larger than the AdS curvaturel ssagdiown to be identical to the one
obtained in the conventional 4D cosmology, provided the effect of heavy graviton modes may be neglected.
Here the late time means the epoch when the Hubble hokzohin the 4D brane world is sufficiently larger
than the AdS curvature scale If the inflation occurs sufficiently lower thah !, the scalar temperature
anisotropies in the cosmic microwave background at large scales can be calculated using the constancy of the
Bardeen parameter as is done in the 4D cosmology. The assumption of the result is that the effect of the
massive graviton with masse™ “>|"1 in the brane world is negligible, wheeg® is the scale factor of the
brane world. We also discuss the effect of these massive gravitons on the evolution of the perturbations.

PACS numbegs): 98.80.Cq

I. INTRODUCTION AND SUMMARY are recovered on the 3-brane. One of the fascinating features
of their model is that 5D spacetime is not necessarily com-
Much attention has been paid to the possibility that we argactified.
living on a 3-brane in higher dimensional spacetifii¢?]. In the RS model, the 3-brane is Minkowski spacetime.
This brane world picture alters the conventional notion ofSolutions for homogeneous expanding brane world are ob-
extra dimensions. Particularly if the bulk is anti—de Sittertained by many peoplg4—14]. It has been shown that the
(AdS) spacetime, the extra dimensions could be large oeyolution of the universe is identical to that of the conven-
even infinite. The action describing the brane world pictureional 4D cosmology at sufficiently low energies. However,
is given by in the real world, the universe has inhomogeneity which
leads to our structure of the universs—17. This inhomo-
12 geneity can be observed today, for example, in the cosmic
R+ —2) microwave background radiatiof€MB). Then the cosmo-
| logical perturbations in the brane world give direct tests for a
viability of the brane world idea. In addition, the inhomoge-
—()'J' d*x —gbrane+f d*X\—Opranelmatters (1) Neous fluctuations on the brane could be a powerful observ-
able to probe the existence of the extra dimensions. This is
because the inhomogeneous fluctuations on the brane inevi-
whereR ® is the 5D Ricci scalar, is the curvature radius of tably produce the perturbations of the bulk geomé§].
the AdS spacetime and?’=87G whereG is the Newton  The perturbations in the bulk affect the motion of the brane
constant in the 5D spacetime. The brane has tensi@md  in turn. Then, in general, the dynamics on the brane cannot
the induced metric on the brane is denotedjgg,.. Matter  be separated from the dynamics in the bulk. This could add a
is confined to the 4D brane world and is described by thenew property to the evolution of the cosmological perturba-
LagrangianC aer- We will assumeZ, symmetry across the tions and could reject the brane world idea.
brane. To study the evolution of cosmological perturbations, we
Recently, Randall and SundrufRS) constructed a simple should treat the coupled system of brane-bulk dynamics. The
model for a brane worlfi3]. They assumed the effect of the problem has a similarity with the dynamics of the domain
matter confined to the brane is negligible compared with thatvall interacting with the gravitational wave, which has been
of the surface tension. Their solution is described by thénvestigated in 4D spacetinj&9]. In our case, the matter on
metric the brane is dynamical. This makes the problem very diffi-
cult. We should find a solution for the brane with the cos-
[\2 o mological expansion and inhomogeneous fluctuations. The
ds?= (—) (dZ—d7?+ §;dx'dx). (2)  most straightforward way is to solve the 5D Einstein equa-
z tion, however, it would be difficult to carry out in general.
In this paper we propose a new method to deal with the
It has been shown that the usual 4D gravitational interactionproblem. We observe that the brane world cosmology can be

1
S= —zf d°xv—g
2k
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constructed by cutting the perturbed AdS spacetime along
the suitable slicing and gluing two copies of remaining

spacetime. The point is as follows. If we choose a slicing to
cut the 5D AdS spacetime, the jump of the extrinsic curva-
ture along the slicing is determined. Because the jump of the
extrinsic curvature should be equated with the matter local-
ized on the brane, the matter on the brane is also determinec
In other words, a solution for a brane with the given matter
can be obtained by finding a suitable slicing. To find the
suitable slicing for the given matter, we need two kinds of

coordinate transformations. One is a large coordinate trans
formation which leads to the slicing which determines the
background matter. Another is an infinitesimal coordinate
transformation which leads to the slicing which determines
matter perturbations. The coordinate transformations will be
determined by imposing the conditions on the matter such a
equation of state. More detailed procedures will be describeq
in the next section.

z=l

Rabdall-Sundram brane

Our main result is FIG. 1. Conformal diagram of the AdS spacetime. The thick line
shows the trajectory of the RS brane and the dotted line shows the
Sp brane with cosmological expansion. The RS solution is obtained by
7 =—2®,=const 3 deleting the AdS spacetime frons=| to the boundarg=0 (shaded

region and gluing two copies of the remaining spacetime.

at superhorizon scales and for late times when the Hubble . .

scaleH is sufficiently low (H<|"1). Here dp is the density using it. In Sec. Ill, we _calculat?lthe_perturbatlons_ at super-
fluctuations andb is the metric perturbations in the longi- horizon scales for late times <] using the forma!|sm. In
tudinal gauge in the brane world and we assumed the barfec' VI,_we calcul_alte the_ perturbations at subhonzgn scales
tropic index of the matter is constant. The point to observe i or late t|mes_H<I_ ; It W!” be _shown that the ?VOIU.“O” of
that the solutior(3) is identical to the one obtained in the 4D the perturbations is identical with the one obtained in the 4D
cosmology. We can also show that the late time evolution oFOSImO,l?gﬁ' fofrf any fs:};ales larger than the AdS cur\l{ature
the perturbations agrees with the one obtained in the 4[3¢@l€. If the effect of the massive gravitom>meyy Is negli-
cosmology at subhorizon scales larger than the AdS curvadible. In Sec. V we stu-dy the effect of the massive graviton
ture scald. m>mgss ON the evolution of the perturbations. Finally we

The assumption to obtain the above results is that thdiscuss the implication of our results on the brane world
effect of the massive graviton with mags>m,=|"le cosmology. In the Appendix, we listed useful formulas for
e

in the brane world is negligible wheefo is the scale factor calculations.

of the brane world. We can understand the fact that the mas-

sive graviton withm>mg¢; can modify the evolution from Il. FORMALISM

the following arguments. For late times, the cosmological

brane approaches to the RS brane. For the RS brane, the 4D

gravity is recovered by the zero-mode of 5D gravif8{20— We shall start with the Randall and Sundrum solution for

23]. The Kaluza-Klein modes give the correction to the 4Dthe brane world3]. They considered a single brane with

gravity. However, in the anti—de Sitter spacetime, the brangositive tensionr in the 5D anti—de Sitter spacetime. Setting

is protected from the Kaluza-Klein modes by the potentialthe surface tension of the brane by

barrier which arises from the curvature of the AdS space-

tiem. For earlier times, the cosmological brane is located at o= § (4)

largerz in the coordinat€?). The point is that, for largez, I’

the potential barrier becomes lower. Then the relatively light

graviton can interact with the brane. Thus for early times, theand assuming th&, symmetry across the brane, they found

4D cosmology will be susceptible to the Kaluza-Klein modesa solution described by the metfi). The brane is located at

of 5D graviton. If the brane interacts with the 5D gravita- z=I (see Fig. L From the metri¢2), we see the brane world

tional perturbations, the gravitational waves are inevitablyis Minkowski spacetime.

emitted to the 5D bulk. It will cause the modification in the  Next we will seek the brane world with the cosmological

evolution of the perturbations. This picture is consistent withexpansion. For this purpose, we note that the RS solution can

the result that the modes with large>m.;=1"1e% can be obtained by the following procedure. First cut the AdS

modify the evolution becaus®e.{; becomes smaller for ear- spacetime along=| and delete the AdS spacetime fram

lier times. =| to the boundaryz=0. Next glue two copies of the re-
The paper is organized as follows. In Sec. I, we describenaining spacetime along=| (see Fig. 1 The jump of the

our formalism in detail and derive the background solutionextrinsic curvature at=| should be equated with the matter

A. Background
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FWOE) Ly L

(f(u)—g(v))?’ (f(u)—g(v))?
(®)

(3) Delete the AdS spacetime frop=0 to the boundary
and glue two copies of remaining spcaetime. The jump of the
extrinsic curvature at the brang=0) is determined by the
first derivative of the metric with respect o

eZB(th) =4

‘\Cosmologica ral 1 fr /) +g'(t/)
(V=T Funh =g ’

1 f g )
BLO= T\ T =gn

L L =g W +f g

. 9
2 f/(t/)g’ (t/) ©

FIG. 2. The solution for a brane with cosmological expansion is . .
obtained by deleting the AdS spacetime frgm 0 to the boundary where we denote the power series expansion near the brane

(shaded regionand gluing two copies of the remaining spacetime. &S

. t
atz=|. Thus we must put the suitable matter on the brane to a(y,t)=ag(t) +ai(t)|y|+ azT()yz' . (10
glue the spacetime. Then the content of the matter on the

brane is restricted as E¢4). The above argument implies The jump of the extrinsic curvature should be equated with

that if we use the different slicing to cut the AdS spacetime, -
we need different matter to glue the spacetime. This is ber_natter on the brane. Taking the 5D energy momentum tensor

cause the jump of the extrinsic curvature depends on the

slicing we use to cut the AdS spacetime. Thus if we can find TM=diag 0,— p,p,p,p)8(y), (11)
appropriate slicing to cut the AdS spacetime, we can put

suitable matter resulting the cosmological expansion on thénhe junction condition can be read off &see Appendix A
brane(see Fig. 2

Now, we explicitly carry out the procedure to find the _ 2.8 & ﬂ
appropriate slicing. ()=~ e 6 * 6 )
(1) Start with the AdS spacetime:
o p() p)
12 . 31<‘>=‘K29B°(€‘T‘T-
dsz=(2> (dZ—d7*+ §;dx'dx). (5) (12)

(4) Determine the matter content on the brane by impos-
(2) Make the coordinate transformation from the coordi-ing the equation of state

nate systemz,7,x') to (y,t,x') by
p=wp. (13

2=1f(W=g@)), =1 (W+g(v)), ® Then it gives one constraint dnandg. There remains one

. ~ freedom inf andg. SinceefoY=2Y determines the time slic-
where u,v are the null coordinates of the new COOI’dInatemg in the brane Wor'd, itis a gauge freedom in the brane

system;u=(t—y)/l,v=(t+y)/l andf(u) andg(v) are the  \orld. We fix the gauge degree of freedom by demanding

arbitrary functions. The resulting metric is thatt is the cosmological time,
d52=4M(dy2—dt2) e230=4wz . (14
o Combining Eqgs(13) and (14), we can determine the func-
+ —Zaijdx'dxl, (7)  tion f(t) andg(t). They dependence of the metric can be
(f(u)—g(v)) obtained automatically by replacirfgt) to f(u) andg(t) to

g(v). Hence we obtained the coordinate transformation
where f'(x)=df(x)/dx and g’ (x) =dg(x)/dx. For future  which leads to a brane with matter of given equation of state.
convenience, we put The induced metric on the brane becomes
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dszz_dt2+eza0(t)5iidxidxj’ (15 ‘-I-’o+4c.¥o‘-1’o+ do(-Do-l—Z(.do-l-Z&g)q)o
where e®o®=[f(t/1)—g(t/l)]"* is the scale factor of the _ Ee’Z“O(ZVZ\IfO—VZQJO)
brane world. From Eqg13) and(14), we can verify thaty, 3
andp satisfy 2( B 30,
=§<?6p—75p) (18

p+3ao(p+p)=0,
In the conventional 4D cosmology, in addition to these equa-
87G 4 2 tions, we have the equation
4

K'p
= p+ , (16)
o3 36 ®y— V=0, (19

wherex*o=487G,. The former is the usual conservation of for matter with no anisotropic stress. Then we have closed
the energy. Since the term proportional 4o falls rapidly, ~ Set of the equations. However in the brane world, the corre-
the latter is identical with the Friedmann equation for lateSPondent equation derived from the 5D Einstein equation is
times. We show the solution d{u) andg(v) for late times

_ -2«
in Appendix A. The solution has two constants of the inte- Ex=—€ (0= Vo+Ny), (20)
gration. We will normalize the scale factor a&(!=!presenl i ) . )
1 where E is the nondiagonali(j) component andN is the

(y,y) component of the metric perturbations. The equation
containsE,, so we cannot have closed set of equations for
B. Perturbations the variables on the brane. This is because the inhomoge-

In the previous subsection, we obtained the brane world€0us fluctuations on the brane inevitably produces the
with the cosmological expansion. In the real world the unj-9ravitational wave in the bulk, which gives the effective

verse has inhomogeneity which leads to our structure of th@MiStoropic stress to the perturbations. _
universe. Then it is important to obtain the solution for an However, the procedure to obtain the background solution

inhomogeneous brane world. In this paper, we will concenc@n be applied for the inhomogeneous brane. The strategy is
trate our attention to the scalar perturbations. Unlike the ho@S follows. We first consider the perturbed 5D AdS space-
mogeneous brane, we cannot place the inhomogeneous braffg€ in the coordinate systers). We assume the perturba-
in the exact AdS spacetime as is shown in R&8]. This is tions are sm.all enough to treat by linear perturbgtlons. Be-
because the inhomogeneous perturbations in the brane worf@use there is no matter in the bulk, the perturbations should
inevitably produces the perturbations in the geometry of th&@lisfy the vacuum wave equation in the bulk. In the coordi-
bulk. The perturbations in the bulk affects the motion of theate systent2), the wave equation can be solved easily with
brane in turn. Then the equations for metric perturbationdn® help of the transverse-traceleds) gauge. In the 5D
and matter perturbations in the brane world cannot be sep&Pacetime, the free graviton has five independent compo-
rated from the dynamics in the bulk. We should solve the 50"€Nts Which include one scalar component. Thus there is one
perturbations at the same time. The coupled equations for thériable for the choice of the perturbed AdS spacetime. Next,
brane dynamics and gravitational perturbations in the bulkVe take the coordinate transformati() to provide the cos-
are in general very difficult to deal with. molog|cal background. The transformation functida) and

The nonseparable nature of the brane-bulk dynamics ca@(v) is determined by the background matter. The perturba-
be seen from the power series expansion of the 5D Einsteifions in the coordinate systery,¢,x') is then easily obtained
equation near the brane. We will denote the power serie8Y the usual procedure of the coordinate transformation.
expansion near the brane as in ). The dynamical vari- Once the perturbed A(_js spacetime is obtained, one might
ables of the brane are the potential perturbatigscurva- ~ attémpt to cut the spacetime alopg:0 and glue two copies
ture perturbationd” ,, density perturbationdp and velocity of remaining spacetime as is done for the background space-

perturbationsy (see Appendix B We have two equations time. However, we need to be more careful. The presence of
from conservations of energy-momentum ter{i=0 matter on the brane bends the brane. For the background

matter we made coordinate transformation so that the brane

Sp=(p+p)(3Wy+e “0V2p) is located aty=0. However the matter perturbations also
bends the brane. Then the perturbed brane is no longer lo-
—3ay(Sp+ p), cated aty=0 (see Fig. 3 The perturbations evaluated yat

=0 is not the perturbations induced on the brane. Since the
) observers in the brane world are confined to the brane, we
((p+p)e“w) =—3age v+ p+(p+p)Py, should evaluate the perturbations induced on the brane. Thus
(17) we should make(infinitesima) coordinate transformation
xM=xM+ &M to ensure thay=0 denotes the location of the
and the trace part of the Einstein equation in the brane worltrane. In general, the coordinate transformation makes
from 5D Einstein equation: gy.(u=t,x") nonzero. These components can be gauged
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coordinate

\ transformation
y= \ (infintesimal)

/  matter perturbations

FIG. 3. Bending of the brane
due to the matter perturbations.
Due to the bending, the brane is
not located aty=0. Furthermore,
the brane is not perpendicular to
they axis. We should make infini-
tesimal coordinate transformation.

away, so we will takeg,,,=0. Now the gluing can be per- 1
formed so as to determine the cosmological perturbations.  S(z)"+ —S(z)' +
Then we impose the conditions on the matter perturba- z
tions to determine the variable for the choice of the perturbed (24)
AdS spacetime and the |nf|n|te5|mal coqr_dmate transforma\-NhereS(Z), denotesd(z)/dz The solutions are given by
pon. The pointis th"."t Imposing the cond|t_|ons on the matterIinear combinations of the Bessel function and the Neumann
is equivalent to solving the Einstein equation. Let us rememg. - ion J (m2)+a,N,(m2). The coefiicienta,, is deter-
ber that we impose the equation of state wp (13) on the . 2 m' "2 S ‘ m
matter in deriving the background solution, which gives themmed by the boundary conditions at-. We take the
; 9 9 : ' 9 boundary conditions that the positive frequency functions are
Friedmann equation and conservation of the energy on thlx?1 0ina atz—co. Then the solution is aiven b
brane(16). The same is true of the perturbations. going ’ 9 y

We summarize the procedure to obtain the inhomoge-

4
m?— ;) S(z)=0, m?=w?—k?,

. [(z\? [ d%k L o
neous brane. _ _ o h=|- J' 3f dmhm(k)H(z J(mz)e ferelkx
(1) Let us start with the AdS spacetime with linear scalar | (27)
perturbations:
2 (h=y,b,¥,E), (25)
I .
dsZ:(E) (22— (1+2¢)dr?+2b ;dx'dr whereH{ is the Hunkel function of the first kind. From the
A A o gauge fixing conditions, the coefficierttg,(k) satisfy
+[(1-2W¥) 6, +2E ;; JdXdx)), (21)
J )] k4|2
whereb ; denotessb/dx' andE ;; denotesi’E/dx'9x!. The Pl = 2k2+3m? Enl0,
independent component of the scalar 5D graviton is one. We
will use the transverse-traceless gauge to fix the gauge free- 2i K25 mPk2|2
dom. The gauge fixing conditions are given by bn(k)=— ﬁEm(k)a
2k“+3m
_ 24 2B _
¢—3V+VE=0, ) 222
Vo (k)= ————=E(k),
26+V2b=0, (k) 2k?+3m? mtfo)
b+ 2% —2v2E=o0. (22) En(k)=17En(K), (26)

) » ) ) o whereE (k) is the arbitrary coefficient. This corresponds to
Using these conditions, the Einstein equation in the bulk beg,e gne degree of freedom of the 5D scalar graviton and
comes represents the spectrum of the gravitational waves emitted

from the perturbed brane.
#h 3oh &*h (2) Make the coordinate transformation to provide the

2k —
922 707 972 +V*h=0, (23 cosmological background:

. . _ . z=1(f(u)—g(v)), 7=I(f(u)+g(v)), (27)
whereh=¢,b,¥ andE. Taking the solutions of the form
h(z, 7,x')=(z/1)?S(z)e '“"e'*, the equation foS(z) is ob-  The perturbations in the cosmological background can be
tained as obtained using Eq8) as
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d3k
(2m)®

XHM(mle «00)12g ity

h:Je’Z“(y't)f f dmhy(k)

(28)

whereld is the factor which comes from the Jacobian of the
transformation(27):

aT .
W:I(—f’(u)Jrg’(v)):Iae*“,

=—la'e™ ¢,

Iy

—I(f"(u)+g'(v))
(97- ! ! ! -
§=I(f (W+g'(v)=la'e™?,

Jz .
E:I(f’(u)—g’(v))=—lae‘“. (29
In addition, we mak€infinitesima) coordinate transforma-
tions xM=xM+ ¢M to ensure that the brane is locatedyat
=0. After imposing the gauge conditioms, =0, there re-
mains one freedom of the coordinate transformatigh).(

PHYSICAL REVIEW D 62 123502

A. Calculation of perturbations

(1) In thek— 0 limit, we see onlyE survives in Eq(26).
Then we shall start with

ds?=

2
lE) (dZ—d7?+(8;+2E;;)dxdx). (33

(2) We make the(large coordinate transformatiof6).

SinceE does not change in this coordinate transformation,
the metric is given by

ds?=e?PU0(dy?—dt?) +e2*00( 5, + 2E ;) dx dX.
(34)

Due to the bending of the brane by matter perturbations, the
brane is not located at=0. We perform theinfinitesimal
coordinate transformation

MM M M= (g g e,
After this coordinate transformation, the perturbed metric is
given by

(35

ds?=e?P0((1+2N)dy?— (1+ 2d)dt?+ 2Adtdy)
+e22UN([(1-2W) 8 + 2E ;; ]dx'dx + 2B ;dx'dt

Then we take a slicing along the spacetigre0 to cut the +2G ;dxdy), (36)
spacetime.
L= . where
(3) Cut the spacetime at=0 and glue two copies of the
remaining spcaetime along=0. From the junction condi- D=4 8 &Y+ BE,
tions the matter on the brane is determined in terntsgfk)
and &Y. Ve — gttt o'y
(4) Finally impose the two conditions on the matter per- af—a'd,
turbations and determing.,(k) and &. We will impose the 2
- . \ . E=E+¢,
condition on the anisotropic stress and equation of state of
the matter. ) ot
B= é‘:_e (B a)f ,
Ill. EVOLUTION OF PERTURBATIONS AT A—py_ gt
SUPERHORIZON SCALES =&-&,
Following the formalism developed in the previous sec- G=e?B gyt ¢,
tion, we calculate the evolution of the perturbations. To sim- _
plify the calculations, we first consider the long-wave pertur- N=¢g + B' &+ BE. (37)

bations in the brane world. We shall take the limit
We will denote the power series expansion near the brane as

k—0. (30

D(y,t)=Do(t) + Dy (D)]y[+---. (38
We will calculate the evolution for late times where the

Hubble scales is sufficiently low We take the gauge conditio=A=0 andBy=0E;=0

(see Appendix BLL This determineg' and ¢ in terms of&:

H<l"1. (31) y .
ft:f dygy"'To, TOZ_eZQOEo,

We will take the assumption that the modes witte™ “0 0

>|"1 do not contribute to the perturbations in the brane

world. Then we assume

E=— f ydyew‘“)gy—éo. (39
0

mle “0<1, (32
Then we obtain the metric perturbations induced on the
The effect of these modes will be discussed in Sec. V. brane

123502-6



EVOLUTION OF COSMOLOGICAL PERTURBATIONS IN . .. PHYSICAL REVIEW B2 123502
Do= P15+ Ty, &)= ek, . (45)

Vo=—a &)~ C.Yo:roy The coefficientg,, is determined demanding the equation of
statedp=c25p. In the coordinatet(y), E can be written as
No= &1+ B1&0, (40) °

and the first derivative of the metric perturbations ~ '
P E(t,y)=e 20 f dmHS)(mle2vV)12g, e Im7ty),

Dy =EL+ L1 &+ &Y+ BaTo, (46)

ol s o
Vi=—a18— apfp— aép— axTo, Let us take the limitmle *<1. Then we can use the

R asymptotic form of the Hunkel function for small argument:
Ny= &)+ B1&+ B2&§+ B1To,

~2a : § % 2 1
Bu=e R0 28+ 2a0tg 201 ) To) HP@)~ 45+ 02 ), (47)
z
E,=E,—e 2%0g). (41
(3) We take the perturbed energy momentum in the gpvhere we neglect the overall numerical coefficiéhtan be
spacetime as evaluated as
0 0 0
5Tk,": 0 —6p (e+p)e v ; | §(y), E(t,y)= jdm(—+ e2“(yt))|25meimr(t,y),
0 —(etpje, ops; 42) (49)

where we assume the anisotropic stress of the matter is zerdsing the Jacobian of the transformatit)
The jump of the first derivative of the metric perturbations
should be equated with the matter perturbations on the brane.

J .
This junction condition is obtained dsee Appendix BL é =[(—=f"(t/)+g'(t/))=lage™ “o,
=0
1 y
W,=—a;Ng+ = k?5p,
° oz [(f/(t/)+g'(t/)) la'e™ %0
J— = — g =—la e @ s
b= g Ng+ w2 2L+ 2P Mly-o
1=BiNot+ 3 2 |
w aT B
B,=—2(B1— aq)e*v, x =1(f"(t/)+g'(t/))=la,e” %,
y=0
Combining Egs.(41) and (43), we can write the perturbed 9z 1 (D) —a’ (t/1)= — | erne 0 49
energy momentum tensor in terms &f andE,(k): ot y=0 (P =g’(Wh) %€ 49

K28p=—6( oy~ ad&y+ arTy), . . . 2aof
we can verify the following equations abogf=e““°E, and

K26p=2(&4+ 20— (2ag+3a’) & To=— e2%0E,;
+(B1+2a1)To),
- - - —1+2i Ene '™
KX (p+p)eov =28~ 2aoéy+ k*(p+p)To, @186=Fréb= f "me )
0=E,—e"?"0g). (44) o
. . ) _a L aptag
(4) Imposing the constraints on the matter determines the “150:f dm| —2ao—ime 0+ 2i me- o
unknown functiong” andE,,. First & is determined by the '
shareless condition: XELe 'm,
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op
a, &)= f dm( —4ag—2a3+mPe 2% e —2®,=const. (56)

the solutions for metric perturbations and density perturba-
tions are identical with those obtained in the conventional 4D
cosmology. Note that, ifw+ cg, the modes withme™ “0
XEne '™, (50 >H should contribute tab in order to satisfysp=cZsp.
Once these modes contribute dg,, ®, is no longer con-
and stant. This also agrees with the 4D cosmology.

agt 3agayt ag

This is one of the main results of our work. We notice that
—image” *0+ 2i )

me @0

- a _
aoTozf dm( —9i _Oa )Emem,., IV. EVOLUTION OF PERTS%FZ?_';TSIONS AT SUBHORIZON
me “0

In this section we shall study the evolution of perturba-
_'AI_ _ J dm( o0 ) E o ims tions at su_bhorizon scalég™ “0>H. We derive the_ equation
0 me @/ ™ ' to determineE (k) for each mode witlk. We again use the
(51)  assumption that the modes withe™ “0>| ~1 do not contrib-
ute to the perturbations in the brane world. Then we investi-

where we usedr2|2, aol2~ (HI)2<1. Then, we obtain gate the late time evolution of perturbations at subhorizon
scales larger than the AdS curvature scald ~*>ke™ @0
. : . >H).
K2a15p=f dm(6a3+6image “0)Ee ™,
A. Calculations of perturbations
K2a16p=f dm(6wa2—6image™ (1) We start with the perturbed AdS spacetime
. 12 :
+2m?e 2%)E, e M7, (52) ds’= E) (dZ2—(1+2¢)dm*+2b ;dXdT
_ 2\ A - o
wherep=wp. We assumeg=w=const. Then we observe +[(1—2%) 8 +2E ;]dXdx), (57)

that the equation of statép=wdp is satisfied ifme™ <o
<H. It implies that E,, should select the modes with
me~ “0<H. Note that the assumptiamle™ “0<1 is consis-
tent with the result that only the modes withe “o<<H

where¢,b, ¥ andE is given by Eq.(26).
(2) The perturbations iny,t,x') coordinate is obtained by
the coordinate transformation. The resulting metric becomes

contribute to the perturbations for late timies<| 2. [see Eqs(28) and (29)]
B. Evolution of perturbations at superhorizon scales ds?=e?D((1+2N)dy?— (1+2d)dt?+ 2Adtdy)
Let us evaluate the metric perturbatichg and¥, in the 2a(y.0) N n s
brane world(40). From Egs.(40), (50), and(51), we obtain +e" W U([(1-2W) 5+ 2E jJdx'dx + 2B jdxX'dt
_ +2G ;dxidy), (58)
(I)OZ"PO: f demeilmT. (53)
where

For late times where the Hubble horizon is sufficiently larger
than the curvature scale of the AdS spacethel 1, #(t)
is given by(see Appendix A

b=(la")?e ¢,

B=(la')e b,
t) 1-213(1+w)
m(t)~le ao(;) (54) N=—(la)2e %A ¢,

BecauseE,, selects the modes witne™ “o<H, we find that A=—-2(12aa’)e % ¢,

m7<<1. Then the metric fluctuations are constant. The den-

sity fluctuations becomes é:“ a)e b, (59)

47G,8p=—3ajdy, (55  In addition, we perform théinfinitesima) coordinate trans-
formation by
where we usex*o=487G,. We finally obtain the metric _
perturbations and density fluctuations on the brane XMoxM4 gM o eM= gy €0 &y, (60)
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We will take the gauge conditio®=A=0 andBy=0,E,
=0. This determineg' and ¢ in terms of& as

ge foydy<2\+'§y>+?o, Fo=e20(Bo— £),

E=— foydy(é+e2<ﬂ-a>gy)—ﬁo. (61)
Then we obtain the metric perturbations on the brane
CDO:(i)-i-Blf%-i-';l'o,
Vo=V —a; &~ a,Ty,
No=RNo+ &+ B1&, (62
and the first derivative of the metric perturbations
(I)l:é%+,31§>1/+/32§%+®1+'-&0+/.31:r01
W=~y 8 — apfl— ar+ V1 — aphg— ax T,
Ni= &5+ B1&)+ Botl+Ni+ 1 To,
By= e~ 200( — 28} + 2ax&h— 21 To— 2a162%0E,
—Ag+ ez"oél—ezaoéo),
E,=E,—e 2% —G,. (63)

(3) Combining the junction conditiong3) and (63), we
can write matter in terms ofY andE,(k):

K28p=—6(arot)+ (ar— a1 B1) &~ ¥,
+ apho+ ay To— ayNp),

K?op=2(&+ Zdoé%+ (2a,+ Bo— B3
- 2a1,81)§%+ (’1\31_2@1+A0+ Zdvo
+(B1+2a1) To— (B1+2a1)Np),

KZ(P+ P)e“ov = Zg%_ 2a0§%_ ezaoél+ 2a162“0|§0
+2B,To+ 290G+ A,
0=—2e 2%g}+2E, - 2G,. (64)

(4) Imposing the condition on the anisotoropic stress
and the equation of state§= op/ 8p determines&) and
Em(k). Substitutingé}=e?*o(E,— Go) into Sp—c28p=0,
we obtain the following form of the equation for eakh

PHYSICAL REVIEW [B2 123502

J’ dmFt,m;k)E,(k)=0. (65)

Because the detailed form B{t,m;k) is rather complicated,
we omit it here. Defining the Fourier transformation of the
function F(t,m;k) by

F(t,m;k)=J dm'F(m’,m;k)e" "™, (66)
this equation becomes
f dmF(m’,m;k)E(k)=0. (67)

The problem is to find the eigenstate of the makm’,m)
with eigenvalue 0. SincE(t,m;k) consists of the combina-
tion of the oscillating function, the existence of the solution
is very likely.

B. Evolution of perturbations at subhorizon scales

The equation to determing,(k) is rather complicated.
However we can deduce the evolution of perturbations for
late timesH<I"1 from the following arguments. We take
the assumption that the massive modes witk™ “o>| 1
can be neglected. We can evaluate the metric perturbations
as

) fd 3m? (1+1(k| - 0)2>E (k)e™!
— m - e @ e w‘r,
0 2k2+3m2l” 6 m

v fd 3m? (1 1(|<| - 0)2)E (ke
= dm———|1-<(kle”™® e T,
0 2k?+3m2\~ 6 m
(68)

where we neglect the terms of the ord{(mle™ *0)2). Then
we find that

®y—Vo=0(kle™0)?). (69)

For kle™“0—0 but not necessarilke™ “o<H, these agree
with the result obtained in Eq53). A notable point is that
this equation is sufficient to show that the 4D cosmology is
reproduced. From the 5D Einstein equation, we have already
obtained the three equations for,, WV, Sp andv [conser-
vation of the energy momentuiti7) and trace-part of the
Einstein equation(18)]. Thus, for kle” %<1, we have
closed set of equations about the metric perturbations and
density fluctuations, which is identical with the one obtained
in the conventional 4D equation. Then we conclude that if
the effect of the massive modes withle” “0>1 can be
neglected, the cosmological perturbations are not interfered
by the extra dimension. Whether the modes witthe™ “0

>1 contribute to the perturbations or not is determined by
En(k) which can be obtained from E¢67).

V. DEVIATION FROM 4D COSMOLOGY

In the previous two sections, we show that the late time
evolution of the perturbations is not modified by the 5D
graviton if the effect of the modes witime™ “0>| 1 is neg-
ligible. Let us investigate the effect of these massive modes.
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. \ Vags
. ‘VAdS .

FIG. 4. Volcano potential for
5D gravity. The location of the
brane determines the height of the
“barrier” which protects the
brane from massive modes.

fz=0 2= z=0 z=l z=z, (&) z

To simplify the calculation, we assunke—0. Without tak-  h(z,7,x") Satisgigs the wave equatior23). Defining
ing the limit mle™ %<1, a;£% and aT becomes h(z,7,x")=(z/1)*“y(z)e"'*7e"™, the wave equation can be
rewritten as

a1§0=—f dm(mle‘“O)EmH(ll)(mIe‘“o)e‘i”” 1 d2 1 , 15 1
—EEJFVAds(Z) I#(Z):zm W(2), VAds(Z)=§§-
+d0e*“0f dm(imI?)E H{Y(mle™ “0)e~im7, (74)

The problem can be understood as the potential problem in
one dimensional quantum mechanics whereepresents the
energy. If we cut the AdS spacetime z&t| and put the
brane there, the potential term proportional d—1) ap-
—&oewoJ dm(imI?)E H{Y(mle™ “0)e M7, pears. Imposing th&, symmetry across the brane, the po-
tential becomes a ‘“volcano” potential. The term propor-
(700 tional to the delta function is responsible for the
normalizable zero mode of the 5D graviton which repro-

C.YO-’I\—O: a’glzf dm(m|e*aO)EmHgl)(mle*ao)efimT

Then we can evaluat#, as duces the 4D gravity on the brane. The brane is protected
from the the massive modes by the potential barvigs
\Poz(l—&glz)f dm¥ (1) E(k)e o7, (see Fig. 4 Only the modes with largen can affect the

gravity on the brane. Let us consider the cosmological brane

B g (1) C for early times. For early times, the brane is located at large
V(D) =(mle” *0)Hi~(mle™ “0). 7D 2>1. For largerz, the potential barrieV 5q4s is lower, then
he mode with smallem can affect the gravity on the brane.
his picture is consistent with the result that the modes with
largem>mg;=1"te% can modify the evolution of the met-
ric perturbations because.;; becomes smaller for early
times.

We shall investigate the effect of the massive modes. Th
evolution of ¥,,, can be estimated using the asymptotic form
of the Hunkel function for large argumemt{!)(z)=1/\/z.
We find thatW¥ ,(t) behaves as

V(e ®0M2 (m>]~1e%), (72)
VI. DISCUSSIONS

Then, the modes with ] ] ]
The cosmological perturbations in the brane world pro-

m>mer=loft,  lerr=le™ %, (73)  vide useful tests for the brane world idea. This is because the
perturbations in the brane world interact with the perturba-
modify the evolution of the metric perturbations and hencetions in the bulk which is inherent nature of perturbations in
of the density fluctuations. Because we have normalized ththe brane world. The dynamics of the brane cannot be sepa-
scale factor ag®o(=tpreset=1, |, becomes larger thah  rated from the dynamics of the bulk. This is because the
for early times. inhomogeneous fluctuations on the brane inevitably produces
The result can be interpreted as follows. For late timesthe gravitational waves in the bulk, which in turn affect the
the trajectory of the brane is identical with the RS brésee  evolution of perturbations on the brane. Thus, naively, we
Fig. 2. Thus the behavior of the gravity in the brane world think the evolution of the cosmological perturbations is
for late times can be deduced from the arguments for R$nodified significantly.
solution. In the coordinate system, f,x'), the perturbations We showed that this is not a case for late tikec]| 1
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and at scales larger than the AdS curvature scale. The metric 6 e
. . : M_ M 2 Gbrane M
perturbations become frozen once the perturbations exit the GN==0n T & LN
horizon as in the conventional 4D cosmology. This result is ' V9
important for the inflationary scenario in the brane world. If 6
the scalel ! is sufficiently higher than the scales of the =—oN+e PPN (M,N=y,t,x). (A1)

inflation, and if heavy graviton modes may be neglected the 12

constancy of the curvature perturbations can be used to esti- .
mate the scalar temperature anisotropies of the CMB at largé/e take for the energy momentum tensor in the 5D space-
scales. Our results are consistent with those of Red],  tme

where curvature perturbations on large scales is shown to be _, . .

conserved, and the density perturbations generated during TN—[—o-d|ag0,1,1,1,])+dlaqo,—p,p,p,p)]é(y)(.Az)
high-energy inflation on the brane are calculated.

The assumption in obtaining the above results is that thg,o jump of the first derivative of(y,t) and 8(y,t) gives

; i ; — aag] —1
effect of massive gravitons witm=>m =€l "= can be  he 5(y) function to the Einstein tensor. The Einstein tensor
neglected. The contribution of these modes depends on thg given by

initial spectrum of the fluctuations. If the primordial fluctua-
tions are generated during inflation at low enerdies| 2, 0 _2na=2B(.2. " m_ n_o 12, 10
heavy gravitions are significantly suppres$é]. Then, in Go 3¢ Tataf-a’-2at '),
this case, the assumption seems to be natural.

Another modification of the evolution arises if the scales
of the perturbations becomes smaller thafhis modifica-

G)=3e 2A(—a—2a*+af+a'’+a'B"),

tion is not important for late time evolution because the cos- GS= —3e A(B'ata'f—a’ —aa’),

mological scales is significantly larger tharHowever at the

beginning of the inflation, we should consider the scales G = 5i_e—2ﬁ(_25{_3('12_B+2a~+3a,2+18n)
ot ; T y

comparable td. Then the modification becomes important to (A3)

predict the primordial spectrum of the fluctuations during

inflation. Equating the coefficient of(y) we obtain the junction con-

The key to quantify these modifications is the understandgitions
ing of E,(k). The equation foE,(k) obtained in this paper

might give a way to estimate the effect of the interaction o pt)
with bulk graviton on the perturbations in the brane world, ay(t)=—k2efo| —+ —|,

o N 6 6
which is the intrinsic feature of the brane world cosmology.

Finally, we comment on the possibility for the extension ¢ ¢
of the present work. In this paper, we have considered the — 2080 T _ &_ &

. . . . Bl(t) K€ .

spatially flat universe. The extension to the nonflat universe 6 3 2
may be possible using the coordinate system in IRef]. (A4)

The extension of our method to vector and tensor perturba- ) . .
tions is straightforward. The tensor perturbations were calcuFollowing Ref.[9], we make power series expansion of the
lated in the de Sitter background and the agreement with 4fFinstein equation near the brane. Tyf’ec_)rder_of the ¢.y),
gravity was demonstrated in a certain lifi@5]. It will be  (¥.0) component of the Einstein equation gives
interesting to investigate the effect of the vector components .
of 5D graviton on the 4D cosmological perturbations. ot 202 = AnG (3_ p) " k"p(p+3p)
Note addedWhile the present work was being completed, 0 0 43 36 '
related paperf27-3Q appeared on the hep-th.

p+3a(p+p)=0, (A5)
ACKNOWLEDGMENTS where k*o=487G,. The integration of the first equation
We would like to thank S. Kawai, T. Shiromizu, and T. gives
Tanaka for helpful comments. The work of K.K. was sup- 847G A2
ported by the JSPS. al= 3 2o+ 32 +e4a0C, (AB)

whereC is the constant of the integration and is proportional
to the mass of the AdS-Schwarzshild mass. Because the bulk
is AdS spacetime in our solutio,=0. These equations are

In this appendix, we derive the junction conditions andequivalent with Eq.(16). The y° order of (0,0) and i(j)
obtain a solution for the background. The junction conditionscomponents of the Einstein equation giveand, in terms
can be obtained from the 5D Einstein equation: of ag, a1, By andB;:

APPENDIX A: BACKGROUND—EINSTEIN EQUATION
AND JUNCTION CONDITION

123502-11



KAZUYA KOYAMA AND JIRO SODA
L, 2
ay=agtaofo—2a1t+ a B+ X

. . .. 2
_ 2 2
Ba=agt2a9+ Botal—2a,16,+ |—2

(A7)

Let us find the functiorf(u) andg(v) for late times. For
late times, we can neglec((p/o)?). Then the solution for
e “0is given by

£\ —2/3(1+w)
e “o=f(t/l)—g(t/l)=a, 7 (A8)
Combining this equation wite?fo=1,
f (t/l)g'(t/
(t/Hg'(t/l) (A9)

f(t/hy—g(t/n) =
we can obtain the first order differential equation f¢t/I),
) a t) —(5+3w)/3(1+w)

f(t/)= s )

3(1+w) I

3
><(—1+\/1+

t 2

For late timest/I>1, we obtain the solution fof(t) and
g(t):

1/t) ~28+tw) 3(1+w) t
fh=a, 517 Tr3w i) TP
e 1/t| 28w 3(1+w) t
g(t/h=a, 7|7 e i) TR
(A11)
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There are three degrees of freedom in the gauge transforma-
tions

XMoo xMp M M= gy g0 gy (B2)

By this gauge transformations, metric perturbations are
transformed as

D=+ g+ p e+ BE,
V=V-a'-a'®,
E=E+¢
B=B+&—e2B-ag,
A=A+g-¢,
G=G+e?F g +¢,
N=N+& +B&+p'&. (B3)

Using these degrees of the freedom, we impose the gauge
conditions so that the resulting coordinate becomes Gaussian
Normal (GN) coordinate because the metric perturbations in
the GN coordinate on the brane are the metric perturbations
observed by the observers confined to the brane. In the GN
coordinate, the transverse component of the mejje, («

wherea, andb, is the constants of integration. Then we =t x') vanish[G(y,t,x')=A(y,t,x)=0] and the brane is

obtain

t) 1-213(1+w)
) \ (A12)

T(t)~le‘“0(|—
where we takéo, =0.

APPENDIX B: PERTURBATIONS—EINSTEIN EQUATION
AND JUNCTION CONDITIONS

1. Gauge fixing and Einstein tensor

In this section, we derive the 5D Einstein equation for

located aty=0. The former conditions are achieved $and
& and the latter condition is achieved Y. The conditions
G=A=0 determinet! and¢ as

&= foydy<A+'§y>+et<t,xi>,

E=— fydy(é+e2(5‘“)§y)+ e(t,x),
0
(B4)

perturbed AdS spacetime and derive the junctions condi-
tions. We will concentrate on the scalar perturbations. We

put the perturbed 5D AdS spacetime as
ds?=e?PUV((1+2N)dy?— (1+2d)dt>+ 2Adtdy)
+e2UN([(1-2W) 5, +2E ;;JdX'dx + 2B ;dxdt

+2G ;dxdy). (B1)

where €' and e are functions with noy dependence. These
residual gauge transformations enable us to impose two ad-
ditional gauge fixing conditions. We takBy(y=0,x')
=Ey(y=0t,x")=0 gauge on the analogy of the longitudinal
gauge in the conventional 4D cosmological perturbations
theory. The Einstein tensor is calculated as
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5GS=e 2((6a?+6aB)®—3a'N'—3aN—(6a"+12¢'?—6a’' B )N—3V"+3(B+2a)V+3(B' —4a')¥')
+V2(e 2A[E"—(B+2a)E— (B’ —4a’)E']—-2e 22¥ + e 2*N+e 2(@*A)(B+2a)B),
5G§=e*2ﬁ(—(6a’2+6a'ﬁ')|\|+3a'q>'+3£1c'1>+(6&+12('12—6&[3)q>+3\'1'f—3('ﬁ—4a)\1f—3(/3'+2a')qf')
+V2(e P [—E+(B—4a)E+ (B +2a')E']-2e 2*¥ + e 2P+ e 2@ A[B+(2a— B)B]),
5GY=e 2P(3W' +3ad’ +3a'N-3(8' —a' )W —3(B—a)¥’)

+eZBVZ(—E’+(,B’—a’)E+(,B—d)E’+e2“( —,8’B+%B’)),

. . . . 1.
(Baa'+a'—2a’'B)B+ B’+a'B—§B'D ,

. 3.
B >«

5GiY=e23((2a'+ﬁ')N+(a’—3’)®—q>'+2qf'+e23

1 1
_(3a12+a11_2a1B1)B_(B7_Ear)B/_’_EBH}) ’
|

5G?=e23(—(2a+;'3)q>—(d—/'3)|\|+ N—2W +e 28

5G|=e 2P5/(D"+ (4a+2B+6a>)D+(B+2a)D+ (B +2a")D' —N—(4a"+2p"+6a'>)N—(B'+2a" )N’
—(B+2a)N+2¥ +6aV —6a' V' —2W")+V2(e 2%(d+N—V)+e 2A[e 2B+ aB)
—3aE+3a’E'—E+E"])S|— (e >*(P+N-V¥)+e ?[e 2YB+aB)-3aE+3a’'E'—E+E"])], (B5

where we denoté’ = dh/dy andh=ah/ét.

2. Einstein equation and junction conditions
In this subsection, we derive the junction conditions. The Einstein equation is given by
SGN =Kk2e A(6TN—NTN). (B6)

We take for the 5D energy-momentum tensor

0 0 0
5-|-Rl/|: 0 —op (ptple “uv; 8(y). (B7)
0 —(ptpe*; Op b

Equating the coefficients af(y) in the Einstein equation gives the following junction conditions:

1
¥ =—a1Ng+ gkzép,

0, 1)
% %

CI)1:B1N0+ K2 3 2

B1=—2(B1—a;)e“w,

E]_:O, (88)
where we use@fo=1.
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