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Evolution of cosmological perturbations in the brane world
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The evolution of cosmological perturbations is studied in the context of the Randall-Sundrum brane world
scenario, in which our universe is realized on a three-brane in five-dimensional anti–de Sitter~AdS! spacetime.
We develop a formalism to solve the coupled dynamics of the cosmological perturbations in the brane world
and the gravitational wave in the AdS bulk. Using our formalism, the late time evolution of the cosmological
scalar perturbations at any scales larger than the AdS curvature scalel is shown to be identical to the one
obtained in the conventional 4D cosmology, provided the effect of heavy graviton modes may be neglected.
Here the late time means the epoch when the Hubble horizonH21 in the 4D brane world is sufficiently larger
than the AdS curvature scalel. If the inflation occurs sufficiently lower thanl 21, the scalar temperature
anisotropies in the cosmic microwave background at large scales can be calculated using the constancy of the
Bardeen parameter as is done in the 4D cosmology. The assumption of the result is that the effect of the
massive graviton with massme2a0. l 21 in the brane world is negligible, whereea0 is the scale factor of the
brane world. We also discuss the effect of these massive gravitons on the evolution of the perturbations.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION AND SUMMARY

Much attention has been paid to the possibility that we
living on a 3-brane in higher dimensional spacetime@1,2#.
This brane world picture alters the conventional notion
extra dimensions. Particularly if the bulk is anti–de Sit
~AdS! spacetime, the extra dimensions could be large
even infinite. The action describing the brane world pictu
is given by

S5
1

2k2E d5xA2gS R 51
12

l 2 D
2sE d4xA2gbrane1E d4xA2gbraneLmatter, ~1!

whereR 5 is the 5D Ricci scalar,l is the curvature radius o
the AdS spacetime andk258pG where G is the Newton
constant in the 5D spacetime. The brane has tensions and
the induced metric on the brane is denoted asgbrane. Matter
is confined to the 4D brane world and is described by
LagrangianLmatter. We will assumeZ2 symmetry across the
brane.

Recently, Randall and Sundrum~RS! constructed a simple
model for a brane world@3#. They assumed the effect of th
matter confined to the brane is negligible compared with t
of the surface tension. Their solution is described by
metric

ds25S l

zD
2

~dz22dt21d i j dxidxj !. ~2!

It has been shown that the usual 4D gravitational interacti
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are recovered on the 3-brane. One of the fascinating feat
of their model is that 5D spacetime is not necessarily co
pactified.

In the RS model, the 3-brane is Minkowski spacetim
Solutions for homogeneous expanding brane world are
tained by many people@4–14#. It has been shown that th
evolution of the universe is identical to that of the conve
tional 4D cosmology at sufficiently low energies. Howeve
in the real world, the universe has inhomogeneity wh
leads to our structure of the universe@15–17#. This inhomo-
geneity can be observed today, for example, in the cos
microwave background radiation~CMB!. Then the cosmo-
logical perturbations in the brane world give direct tests fo
viability of the brane world idea. In addition, the inhomog
neous fluctuations on the brane could be a powerful obs
able to probe the existence of the extra dimensions. Thi
because the inhomogeneous fluctuations on the brane in
tably produce the perturbations of the bulk geometry@18#.
The perturbations in the bulk affect the motion of the bra
in turn. Then, in general, the dynamics on the brane can
be separated from the dynamics in the bulk. This could ad
new property to the evolution of the cosmological perturb
tions and could reject the brane world idea.

To study the evolution of cosmological perturbations, w
should treat the coupled system of brane-bulk dynamics.
problem has a similarity with the dynamics of the doma
wall interacting with the gravitational wave, which has be
investigated in 4D spacetime@19#. In our case, the matter o
the brane is dynamical. This makes the problem very di
cult. We should find a solution for the brane with the co
mological expansion and inhomogeneous fluctuations.
most straightforward way is to solve the 5D Einstein equ
tion, however, it would be difficult to carry out in general

In this paper we propose a new method to deal with
problem. We observe that the brane world cosmology can
©2000 The American Physical Society02-1
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constructed by cutting the perturbed AdS spacetime al
the suitable slicing and gluing two copies of remaini
spacetime. The point is as follows. If we choose a slicing
cut the 5D AdS spacetime, the jump of the extrinsic cur
ture along the slicing is determined. Because the jump of
extrinsic curvature should be equated with the matter lo
ized on the brane, the matter on the brane is also determ
In other words, a solution for a brane with the given mat
can be obtained by finding a suitable slicing. To find t
suitable slicing for the given matter, we need two kinds
coordinate transformations. One is a large coordinate tra
formation which leads to the slicing which determines t
background matter. Another is an infinitesimal coordin
transformation which leads to the slicing which determin
matter perturbations. The coordinate transformations will
determined by imposing the conditions on the matter suc
equation of state. More detailed procedures will be descri
in the next section.

Our main result is

dr

r
522F05const ~3!

at superhorizon scales and for late times when the Hub
scaleH is sufficiently low (H! l 21). Heredr is the density
fluctuations andF0 is the metric perturbations in the long
tudinal gauge in the brane world and we assumed the b
tropic index of the matter is constant. The point to observ
that the solution~3! is identical to the one obtained in the 4
cosmology. We can also show that the late time evolution
the perturbations agrees with the one obtained in the
cosmology at subhorizon scales larger than the AdS cu
ture scalel.

The assumption to obtain the above results is that
effect of the massive graviton with massm.me f f5 l 21ea0

in the brane world is negligible whereea0 is the scale factor
of the brane world. We can understand the fact that the m
sive graviton withm.me f f can modify the evolution from
the following arguments. For late times, the cosmologi
brane approaches to the RS brane. For the RS brane, th
gravity is recovered by the zero-mode of 5D graviton@3,20–
23#. The Kaluza-Klein modes give the correction to the 4
gravity. However, in the anti–de Sitter spacetime, the br
is protected from the Kaluza-Klein modes by the poten
barrier which arises from the curvature of the AdS spa
tiem. For earlier times, the cosmological brane is located
largerz in the coordinate~2!. The point is that, for largerz,
the potential barrier becomes lower. Then the relatively li
graviton can interact with the brane. Thus for early times,
4D cosmology will be susceptible to the Kaluza-Klein mod
of 5D graviton. If the brane interacts with the 5D gravit
tional perturbations, the gravitational waves are inevita
emitted to the 5D bulk. It will cause the modification in th
evolution of the perturbations. This picture is consistent w
the result that the modes with largem.me f f5 l 21ea0 can
modify the evolution becauseme f f becomes smaller for ear
lier times.

The paper is organized as follows. In Sec. II, we descr
our formalism in detail and derive the background solut
12350
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using it. In Sec. III, we calculate the perturbations at sup
horizon scales for late timesH, l 21 using the formalism. In
Sec. VI, we calculate the perturbations at subhorizon sc
for late timesH, l 21. It will be shown that the evolution of
the perturbations is identical with the one obtained in the
cosmology for any scales larger than the AdS curvat
scale, if the effect of the massive gravitonm.me f f is negli-
gible. In Sec. V we study the effect of the massive gravit
m.me f f on the evolution of the perturbations. Finally w
discuss the implication of our results on the brane wo
cosmology. In the Appendix, we listed useful formulas f
calculations.

II. FORMALISM

A. Background

We shall start with the Randall and Sundrum solution
the brane world@3#. They considered a single brane wi
positive tensions in the 5D anti–de Sitter spacetime. Settin
the surface tension of the brane by

k2s5
6

l
, ~4!

and assuming theZ2 symmetry across the brane, they foun
a solution described by the metric~2!. The brane is located a
z5 l ~see Fig. 1!. From the metric~2!, we see the brane world
is Minkowski spacetime.

Next we will seek the brane world with the cosmologic
expansion. For this purpose, we note that the RS solution
be obtained by the following procedure. First cut the A
spacetime alongz5 l and delete the AdS spacetime fromz
5 l to the boundaryz50. Next glue two copies of the re
maining spacetime alongz5 l ~see Fig. 1!. The jump of the
extrinsic curvature atz5 l should be equated with the matte

FIG. 1. Conformal diagram of the AdS spacetime. The thick li
shows the trajectory of the RS brane and the dotted line shows
brane with cosmological expansion. The RS solution is obtained
deleting the AdS spacetime fromz5 l to the boundaryz50 ~shaded
region! and gluing two copies of the remaining spacetime.
2-2
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EVOLUTION OF COSMOLOGICAL PERTURBATIONS IN . . . PHYSICAL REVIEW D62 123502
at z5 l . Thus we must put the suitable matter on the brane
glue the spacetime. Then the content of the matter on
brane is restricted as Eq.~4!. The above argument implie
that if we use the different slicing to cut the AdS spacetim
we need different matter to glue the spacetime. This is
cause the jump of the extrinsic curvature depends on
slicing we use to cut the AdS spacetime. Thus if we can fi
appropriate slicing to cut the AdS spacetime, we can
suitable matter resulting the cosmological expansion on
brane~see Fig. 2!.

Now, we explicitly carry out the procedure to find th
appropriate slicing.

~1! Start with the AdS spacetime:

ds25S l

zD
2

~dz22dt21d i j dxidxj !. ~5!

~2! Make the coordinate transformation from the coor
nate system (z,t,xi) to (y,t,xi) by

z5 l „f ~u!2g~v !…, t5 l „f ~u!1g~v !…, ~6!

where u,v are the null coordinates of the new coordina
system;u5(t2y)/ l ,v5(t1y)/ l and f (u) andg(v) are the
arbitrary functions. The resulting metric is

ds254
f 8~u!g8~v !

„f ~u!2g~v !…2
~dy22dt2!

1
1

„f ~u!2g~v !…2
d i j dxidxj , ~7!

where f 8(x)5d f(x)/dx and g8(x)5dg(x)/dx. For future
convenience, we put

FIG. 2. The solution for a brane with cosmological expansion
obtained by deleting the AdS spacetime fromy50 to the boundary
~shaded region! and gluing two copies of the remaining spacetim
12350
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e2b(y,t)54
f 8~u!g8~v !

„f ~u!2g~v !…2
, e2a(y,t)5

1

„f ~u!2g~v !…2
.

~8!

~3! Delete the AdS spacetime fromy50 to the boundary
and glue two copies of remaining spcaetime. The jump of
extrinsic curvature at the brane (y50) is determined by the
first derivative of the metric with respect toy:

a1~ t !5
1

l

f 8~ t/ l !1g8~ t/ l !

f ~ t/ l !2g~ t/ l !
,

b1~ t !5
1

l S f 8~ t/ l !1g8~ t/ l !

f ~ t/ l !2g~ t/ l !

1
1

2

2 f 9~ t/ l !g8~ t/ l !1 f 8~ t/ l !g9~ t/ l !

f 8~ t/ l !g8~ t/ l !
D , ~9!

where we denote the power series expansion near the b
as

a~y,t !5a0~ t !1a1~ t !uyu1
a2~ t !

2
y2
••• . ~10!

The jump of the extrinsic curvature should be equated w
matter on the brane. Taking the 5D energy momentum ten
as

TN
M5diag~0,2r,p,p,p!d~y!, ~11!

the junction condition can be read off as~see Appendix A!

a1~ t !52k2eb0S s

6
1

r~ t !

6 D ,

b1~ t !52k2eb0S s

6
2

r~ t !

3
2

p~ t !

2 D .

~12!

~4! Determine the matter content on the brane by imp
ing the equation of state

p5wr. ~13!

Then it gives one constraint onf and g. There remains one
freedom inf andg. Sinceeb0(y50,t) determines the time slic
ing in the brane world, it is a gauge freedom in the bra
world. We fix the gauge degree of freedom by demand
that t is the cosmological time,

e2b054
f 8~ t/ l !g8~ t/ l !

„f ~ t/ l !2g~ t/ l !…2
51. ~14!

Combining Eqs.~13! and ~14!, we can determine the func
tion f (t) and g(t). The y dependence of the metric can b
obtained automatically by replacingf (t) to f (u) andg(t) to
g(v). Hence we obtained the coordinate transformat
which leads to a brane with matter of given equation of sta

The induced metric on the brane becomes

s

.

2-3
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KAZUYA KOYAMA AND JIRO SODA PHYSICAL REVIEW D 62 123502
ds252dt21e2a0(t)d i j dxidxj , ~15!

where ea0(t)5@ f (t/ l )2g(t/ l )#21 is the scale factor of the
brane world. From Eqs.~13! and~14!, we can verify thata0
andr satisfy

ṙ13ȧ0~r1p!50,

ȧ0
25

8pG4

3
r1

k4r2

36
, ~16!

wherek4s548pG4. The former is the usual conservation
the energy. Since the term proportional tor2 falls rapidly,
the latter is identical with the Friedmann equation for la
times. We show the solution off (u) andg(v) for late times
in Appendix A. The solution has two constants of the in
gration. We will normalize the scale factor asea0(t5tpresent)

51.

B. Perturbations

In the previous subsection, we obtained the brane wo
with the cosmological expansion. In the real world the u
verse has inhomogeneity which leads to our structure of
universe. Then it is important to obtain the solution for
inhomogeneous brane world. In this paper, we will conc
trate our attention to the scalar perturbations. Unlike the
mogeneous brane, we cannot place the inhomogeneous b
in the exact AdS spacetime as is shown in Ref.@18#. This is
because the inhomogeneous perturbations in the brane w
inevitably produces the perturbations in the geometry of
bulk. The perturbations in the bulk affects the motion of t
brane in turn. Then the equations for metric perturbatio
and matter perturbations in the brane world cannot be s
rated from the dynamics in the bulk. We should solve the
perturbations at the same time. The coupled equations fo
brane dynamics and gravitational perturbations in the b
are in general very difficult to deal with.

The nonseparable nature of the brane-bulk dynamics
be seen from the power series expansion of the 5D Eins
equation near the brane. We will denote the power se
expansion near the brane as in Eq.~10!. The dynamical vari-
ables of the brane are the potential perturbationsF0, curva-
ture perturbationsC0, density perturbationsdr and velocity
perturbationsv ~see Appendix B!. We have two equations
from conservations of energy-momentum tensorTm

mn50,

ḋr5~r1p!~3Ċ01e2a0¹2v !

23ȧ0~dr1dp!,

„~r1p!ea0v…•523ȧ0ea0v1dp1~r1p!F0 ,
~17!

and the trace part of the Einstein equation in the brane w
from 5D Einstein equation:
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C̈014ȧ0Ċ01ȧ0Ḟ012~ ä012ȧ0
2!F0

2
1

3
e22a0~2¹2C02¹2F0!

5
k2

3 S b1

2
dr2

3a1

2
dpD . ~18!

In the conventional 4D cosmology, in addition to these eq
tions, we have the equation

F02C050, ~19!

for matter with no anisotropic stress. Then we have clo
set of the equations. However in the brane world, the co
spondent equation derived from the 5D Einstein equation

E252e22a0~F02C01N0!, ~20!

where E is the nondiagonal (i , j ) component andN is the
(y,y) component of the metric perturbations. The equat
containsE2, so we cannot have closed set of equations
the variables on the brane. This is because the inhomo
neous fluctuations on the brane inevitably produces
gravitational wave in the bulk, which gives the effectiv
anistoropic stress to the perturbations.

However, the procedure to obtain the background solut
can be applied for the inhomogeneous brane. The strateg
as follows. We first consider the perturbed 5D AdS spa
time in the coordinate system~5!. We assume the perturba
tions are small enough to treat by linear perturbations.
cause there is no matter in the bulk, the perturbations sho
satisfy the vacuum wave equation in the bulk. In the coor
nate system~2!, the wave equation can be solved easily w
the help of the transverse-traceless~TT! gauge. In the 5D
spacetime, the free graviton has five independent com
nents which include one scalar component. Thus there is
variable for the choice of the perturbed AdS spacetime. N
we take the coordinate transformation~6! to provide the cos-
mological background. The transformation functionf (u) and
g(v) is determined by the background matter. The pertur
tions in the coordinate system (y,t,xi) is then easily obtained
by the usual procedure of the coordinate transformation.

Once the perturbed AdS spacetime is obtained, one m
attempt to cut the spacetime alongy50 and glue two copies
of remaining spacetime as is done for the background sp
time. However, we need to be more careful. The presenc
matter on the brane bends the brane. For the backgro
matter we made coordinate transformation so that the br
is located aty50. However the matter perturbations als
bends the brane. Then the perturbed brane is no longe
cated aty50 ~see Fig. 3!. The perturbations evaluated aty
50 is not the perturbations induced on the brane. Since
observers in the brane world are confined to the brane,
should evaluate the perturbations induced on the brane. T
we should make~infinitesimal! coordinate transformation
x̄M5xM1jM to ensure thatȳ50 denotes the location of th
brane. In general, the coordinate transformation ma
gym(m5t,xi) nonzero. These components can be gau
2-4
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FIG. 3. Bending of the brane
due to the matter perturbations
Due to the bending, the brane i
not located aty50. Furthermore,
the brane is not perpendicular t
they axis. We should make infini-
tesimal coordinate transformation
-
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away, so we will takegym50. Now the gluing can be per
formed so as to determine the cosmological perturbation

Then we impose the conditions on the matter pertur
tions to determine the variable for the choice of the pertur
AdS spacetime and the infinitesimal coordinate transform
tion. The point is that imposing the conditions on the mat
is equivalent to solving the Einstein equation. Let us reme
ber that we impose the equation of statep5wr ~13! on the
matter in deriving the background solution, which gives t
Friedmann equation and conservation of the energy on
brane~16!. The same is true of the perturbations.

We summarize the procedure to obtain the inhomo
neous brane.

~1! Let us start with the AdS spacetime with linear sca
perturbations:

ds25S l

zD
2

„dz22~112f!dt212b,idxidt

1@~122Ĉ!d i j 12Ê,i j #dxidxj
…, ~21!

whereb,i denotes]b/]xi andE,i j denotes]2E/]xi]xj . The
independent component of the scalar 5D graviton is one.
will use the transverse-traceless gauge to fix the gauge
dom. The gauge fixing conditions are given by

f23Ĉ1¹2Ê50,

2ḟ1¹2b50,

ḃ12Ĉ22¹2Ê50. ~22!

Using these conditions, the Einstein equation in the bulk
comes

]2h

]z2
2

3

z

]h

]z
2

]2h

]t2
1¹2h50, ~23!

whereh5f,b,Ĉ and Ê. Taking the solutions of the form
h(z,t,xi)5(z/ l )2S(z)e2 ivteikx, the equation forS(z) is ob-
tained as
12350
-
d
-
r
-

e
e

-

r

e
e-

-

S~z!91
1

z
S~z!81S m22

4

z2D S~z!50, m25v22k2,

~24!

whereS(z)8 denotesdS(z)/dz. The solutions are given by
linear combinations of the Bessel function and the Neum
function J2(mz)1amN2(mz). The coefficientam is deter-
mined by the boundary conditions atz→`. We take the
boundary conditions that the positive frequency functions
ingoing atz→`. Then the solution is given by

ĥ5S z

l D
2E d3k

~2p!3E dmhm~k!H2
(1)~mz!e2 ivteikx,

~h5c,b,Ĉ,Ê!, ~25!

whereH2
(1) is the Hunkel function of the first kind. From th

gauge fixing conditions, the coefficientshm(k) satisfy

fm~k!5
2k4l 2

2k213m2
Em~k!,

bm~k!52
4iAk21m2k2l 2

2k213m2
Em~k!,

Ĉm~k!52
m2k2l 2

2k213m2
Em~k!,

Êm~k!5 l 2Em~k!, ~26!

whereEm(k) is the arbitrary coefficient. This corresponds
the one degree of freedom of the 5D scalar graviton a
represents the spectrum of the gravitational waves emi
from the perturbed brane.

~2! Make the coordinate transformation to provide t
cosmological background:

z5 l „f ~u!2g~v !…, t5 l „f ~u!1g~v !…, ~27!

The perturbations in the cosmological background can
obtained using Eq.~8! as
2-5
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h5Je22a(y,t)E d3k

~2p!3E dmhm~k!

3H2
(1)~mle2a(y,t)!l 2Eme2 ivt(t,y), ~28!

whereJ is the factor which comes from the Jacobian of t
transformation~27!:

]t

]y
5 l „2 f 8~u!1g8~v !…5 l ȧe2a,

]z

]y
52 l „f 8~u!1g8~v !…52 la8e2a,

]t

]t
5 l „f 8~u!1g8~v !…5 la8e2a,

]z

]t
5 l „f 8~u!2g8~v !…52 l ȧe2a. ~29!

In addition, we make~infinitesimal! coordinate transforma
tions x̄M5xM1jM to ensure that the brane is located atȳ
50. After imposing the gauge conditionsgym50, there re-
mains one freedom of the coordinate transformation (jy).
Then we take a slicing along the spacetimeȳ50 to cut the
spacetime.

~3! Cut the spacetime atȳ50 and glue two copies of the
remaining spcaetime alongȳ50. From the junction condi-
tions the matter on the brane is determined in terms ofEm(k)
andjy.

~4! Finally impose the two conditions on the matter pe
turbations and determineEm(k) andjy. We will impose the
condition on the anisotropic stress and equation of stat
the matter.

III. EVOLUTION OF PERTURBATIONS AT
SUPERHORIZON SCALES

Following the formalism developed in the previous se
tion, we calculate the evolution of the perturbations. To s
plify the calculations, we first consider the long-wave pert
bations in the brane world. We shall take the limit

k→0. ~30!

We will calculate the evolution for late times where th
Hubble scales is sufficiently low

H! l 21. ~31!

We will take the assumption that the modes withme2a0

. l 21 do not contribute to the perturbations in the bra
world. Then we assume

mle2a0!1. ~32!

The effect of these modes will be discussed in Sec. V.
12350
-
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-
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A. Calculation of perturbations

~1! In thek→0 limit, we see onlyÊ survives in Eq.~26!.
Then we shall start with

ds25S l

zD
2

„dz22dt21~d i j 12Ê,i j !dxidxj
…. ~33!

~2! We make the~large! coordinate transformation~6!.
Since Ê does not change in this coordinate transformati
the metric is given by

ds25e2b(y,t)~dy22dt2!1e2a(y,t)~d i j 12Ê,i j !dxidxj .
~34!

Due to the bending of the brane by matter perturbations,
brane is not located aty50. We perform the~infinitesimal!
coordinate transformation

xM→xM1jM, jM5~jy,j t,j ,i !. ~35!

After this coordinate transformation, the perturbed metric
given by

ds25e2b(y,t)
„~112N!dy22~112F!dt212Adtdy…

1e2a(y,t)
„@~122C!d i j 12E,i j #dxidxj12B,idxidt

12G,idxidy…, ~36!

where

F5 j̇ t1b8jy1ḃj t,

C52ȧj t2a8jy,

E5Ê1j,

B5 j̇2e2(b2a)j t,

A5 j̇y2j t8,

G5e2(b2a)jy1j8,

N5jy81b8jy1ḃj t. ~37!

We will denote the power series expansion near the bran

F~y,t !5F0~ t !1F1~ t !uyu1•••. ~38!

We take the gauge conditionG5A50 and B050,E050
~see Appendix B1!. This determinesj t andj in terms ofjy:

j t5E
0

y

dyj̇y1T̂0 , T̂052e2a0Ė̂0 ,

j52E
0

y

dye2(b2a)jy2Ê0 . ~39!

Then we obtain the metric perturbations induced on
brane
2-6
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F05b1j0
y1 Ṫ̂0 ,

C052a1j0
y2ȧ0T̂0 ,

N05j1
y1b1j0

y , ~40!

and the first derivative of the metric perturbations

F15 j̈0
y1b1j1

y1b2j0
y1ḃ1T̂0 ,

C152a1j1
y2ȧ0j̇0

y2a2j0
y2ȧ1T̂0 ,

N15j2
y1b1j1

y1b2j0
y1ḃ1T̂0 ,

B15e22a0
„22j̇0

y12ȧ0j0
y12~a12b1!T̂0…,

E15Ê12e22a0j0
y . ~41!

~3! We take the perturbed energy momentum in the
spacetime as

dTN
M5S 0 0 0

0 2dr ~e1p!e2a0v ,i

0 2~e1p!ea0v ,i dpd i j

D d~y!,

~42!

where we assume the anisotropic stress of the matter is z
The jump of the first derivative of the metric perturbatio
should be equated with the matter perturbations on the br
This junction condition is obtained as~see Appendix B1!

C152a1N01
1

6
k2dr,

F15b1N01k2S dr

3
1

dp

2 D ,

B1522~b12a1!ea0v,

E150. ~43!

Combining Eqs.~41! and ~43!, we can write the perturbed
energy momentum tensor in terms ofjy andEm(k):

k2dr526~ ȧ0j̇0
y2ȧ0

2j0
y1ȧ1T̂0!,

k2dp52„j̈0
y12ȧ0j̇0

y2~2ä013ȧ0
2!j0

y

1~ ḃ112ȧ1!T̂0…,

k2~r1p!ea0v52j̇0
y22ȧ0j0

y1k2~r1p!T̂0 ,

05Ê12e22a0j0
y . ~44!

~4! Imposing the constraints on the matter determines
unknown functionjy andEm . First j0

y is determined by the
shareless condition:
12350
ro.

e.

e

j0
y5e2a0Ê1 . ~45!

The coefficientEm is determined demanding the equation
statedp5cs

2dr. In the coordinate (t,y), Ê can be written as

Ê~ t,y!5e22a(y,t)E dmH2
(1)~mle2a(y,t)!l 2Eme2 imt(t,y).

~46!

Let us take the limitmle2a!1. Then we can use the
asymptotic form of the Hunkel function for small argumen

H2
(1)~z!;

2

z2
1

1

2
1O~z2,z4, . . . !, ~47!

where we neglect the overall numerical coefficient.Ê can be
evaluated as

Ê~ t,y!5E dmS 2

m2l 2
1

1

2
e22a(y,t)D l 2Eme2 imt(t,y),

~48!

Using the Jacobian of the transformation~6!

]t

]y U
y50

5 l „2 f 8~ t/ l !1g8~ t/ l !…5 l ȧ0e2a0,

]z

]yU
y50

52 l „f 8~ t/ l !1g8~ t/ l !…52 la8e2a0,

]t

]t U
y50

5 l „f 8~ t/ l !1g8~ t/ l !…5 la1e2a0,

]z

]tU
y50

5 l „f 8~ t/ l !2g8~ t/ l !…52 l ȧ0e2a0, ~49!

we can verify the following equations aboutj0
y5e2a0Ê1 and

T̂052e2a0E
ˆ̇

0:

a1j0
y5b1j0

y5E dmS 2112i
ȧ0

me2a0
D Eme2 imt,

a1j̇0
y5E dmS 22ȧ02 ime2a012i

ä01ȧ0
2

me2a0
D

3Eme2 imt,
2-7



e

h

e

en

at
ba-
4D

a-

sti-
on

es

KAZUYA KOYAMA AND JIRO SODA PHYSICAL REVIEW D 62 123502
a1j̈0
y5E dmS 24ä022ȧ0

21m2e22a0

2 imȧ0e2a012i
ȧ̈013ȧ0ä01ȧ0

3

me2a0
D

3Eme2 imt, ~50!

and

ȧ0T̂05E dmS 22i
ȧ0

me2a0
D Eme2 imt,

T̂
˙

05E dmS 222i
ȧ0

me2a0
D Eme2 imt,

~51!

where we usedȧ0
2l 2,ä0l 2;(Hl )2!1. Then, we obtain

k2a1dr5E dm~6ȧ0
216imȧ0e2a0!Eme2 imt,

k2a1dp5E dm~6wȧ0
226imȧ0e2a0

12m2e22a0!Eme2 imt, ~52!

wherep5wr. We assumecs
25w5const. Then we observ

that the equation of statedp5wdr is satisfied if me2a0

!H. It implies that Em should select the modes wit
me2a0!H. Note that the assumptionmle2a0!1 is consis-
tent with the result that only the modes withme2a0,H
contribute to the perturbations for late timesH, l 21.

B. Evolution of perturbations at superhorizon scales

Let us evaluate the metric perturbationsF0 andC0 in the
brane world~40!. From Eqs.~40!, ~50!, and~51!, we obtain

F05C05E dmEme2 imt. ~53!

For late times where the Hubble horizon is sufficiently larg
than the curvature scale of the AdS spacetimeH, l 21, t(t)
is given by~see Appendix A!

t~ t !; le2a0S t

l D
122/3(11w)

. ~54!

BecauseEm selects the modes withme2a0!H, we find that
mt!1. Then the metric fluctuations are constant. The d
sity fluctuations becomes

4pG4dr523ȧ0
2F0 , ~55!

where we usek4s548pG4. We finally obtain the metric
perturbations and density fluctuations on the brane
12350
r

-

dr

r
522F05const. ~56!

This is one of the main results of our work. We notice th
the solutions for metric perturbations and density pertur
tions are identical with those obtained in the conventional
cosmology. Note that, ifwÞcs

2 , the modes withme2a0

.H should contribute toF0 in order to satisfydp5cs
2dr.

Once these modes contribute toF0 , F0 is no longer con-
stant. This also agrees with the 4D cosmology.

IV. EVOLUTION OF PERTURBATIONS AT SUBHORIZON
SCALES

In this section we shall study the evolution of perturb
tions at subhorizon scaleske2a0.H. We derive the equation
to determineEm(k) for each mode withk. We again use the
assumption that the modes withme2a0. l 21 do not contrib-
ute to the perturbations in the brane world. Then we inve
gate the late time evolution of perturbations at subhoriz
scales larger than the AdS curvature scalel ( l 21.ke2a0

.H).

A. Calculations of perturbations

~1! We start with the perturbed AdS spacetime

ds25S l

zD
2

„dz22~112f!dt212b,idxidt

1@~122Ĉ!d i j 12Ê,i j #dxidxj
…, ~57!

wheref,b,Ĉ and Ê is given by Eq.~26!.
~2! The perturbations in (y,t,xi) coordinate is obtained by

the coordinate transformation. The resulting metric becom
@see Eqs.~28! and ~29!#

ds25e2b(y,t)
„~112N̂!dy22~112F̂!dt212Âdtdy…

1e2a(y,t)
„@~122Ĉ!d i j 12Ê,i j #dxidxj12B̂,idxidt

12Ĝ,idxidy…, ~58!

where

F̂5~ la8!2e22bf,

B̂5~ la8!e2ab,

N̂52~ l ȧ !2e22bf,

Â522~ l 2ȧa8!e22bf,

Ĝ5~ l ȧ !e2ab. ~59!

In addition, we perform the~infinitesimal! coordinate trans-
formation by

xM→xM1jM, jM5~jy,j0,j ,i !. ~60!
2-8
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We will take the gauge conditionG5A50 and B050,E0
50. This determinesj t andj in terms ofjy as

j t5E
0

y

dy~Â1 j̇y!1T̂0 , T̂05e2a0~B̂02 Ė̂!,

j52E
0

y

dy~Ĝ1e2(b2a)jy!2Ē0 . ~61!

Then we obtain the metric perturbations on the brane

F05F̂1b1j0
y1T̂

˙
0 ,

C05Ĉ2a1j0
y2ȧ0T̂0 ,

N05N̂01j1
y1b1j0

y , ~62!

and the first derivative of the metric perturbations

F15 j̈0
y1b1j1

y1b2j0
y1F̂11Â

˙
01ḃ1T̂0 ,

C152a1j1
y2ȧ0j̇0

y2a2j0
y1Ĉ12ȧ0Â02ȧ1T̂0 ,

N15j2
y1b1j1

y1b2j0
y1N̂11ḃ1T̂0 ,

B15e22a0~22j̇0
y12ȧ0j0

y22b1T̂022a1e2a0Ê
˙

0

2Â01e2a0B̂12e2a0Ĝ
˙

0!,

E15Ê12e22a0j0
y2Ĝ0 . ~63!

~3! Combining the junction conditions~43! and ~63!, we
can write matter in terms ofjy andEm(k):

k2dr526„ȧ0j̇0
y1~a22a1b1!j0

y2Ĉ1

1ȧ0Â01ȧ1T̂02a1N̂0…,

k2dp52„j̈0
y12ȧ0j̇0

y1~2a21b22b1
2

22a1b1!j0
y1F̂122Ĉ11Â

˙
012ȧ0Â0

1~ ḃ112ȧ1!T̂02~b112a1!N̂0…,

k2~r1P!ea0v52j̇0
y22ȧ0j0

y2e2a0B̂112a1e2a0Ê
˙

0

12b1T̂01e2a0Ĝ
˙

01Â0 ,

0522e22a0j0
y12Ê122Ĝ0 . ~64!

~4! Imposing the condition on the anisotoropic stresspT

and the equation of statecs
25dp/dr determinesj0

y and

Em(k). Substitutingj0
y5e2a0(Ê12Ĝ0) into dp2cs

2dr50,
we obtain the following form of the equation for eachk:
12350
E dmF~ t,m;k!Em~k!50. ~65!

Because the detailed form ofF(t,m;k) is rather complicated,
we omit it here. Defining the Fourier transformation of th
function F(t,m;k) by

F~ t,m;k!5E dm8F̃~m8,m;k!e2 imt, ~66!

this equation becomes

E dmF̃~m8,m;k!Em~k!50. ~67!

The problem is to find the eigenstate of the matrixF(m8,m)
with eigenvalue 0. SinceF(t,m;k) consists of the combina
tion of the oscillating function, the existence of the soluti
is very likely.

B. Evolution of perturbations at subhorizon scales

The equation to determineEm(k) is rather complicated.
However we can deduce the evolution of perturbations
late timesH, l 21 from the following arguments. We tak
the assumption that the massive modes withme2a0. l 21

can be neglected. We can evaluate the metric perturbat
as

F05E dm
3m2

2k213m2 S 11
1

6
~kle2a0!2DEm~k!e2 ivt,

C05E dm
3m2

2k213m2 S 12
1

6
~kle2a0!2DEm~k!e2 ivt,

~68!

where we neglect the terms of the orderO„(mle2a0)2
…. Then

we find that

F02C05O„~kle2a0!2
…. ~69!

For kle2a0→0 but not necessarilyke2a0,H, these agree
with the result obtained in Eq.~53!. A notable point is that
this equation is sufficient to show that the 4D cosmology
reproduced. From the 5D Einstein equation, we have alre
obtained the three equations forF0 , C0 , dr andv @conser-
vation of the energy momentum~17! and trace-part of the
Einstein equation~18!#. Thus, for kle2a0!1, we have
closed set of equations about the metric perturbations
density fluctuations, which is identical with the one obtain
in the conventional 4D equation. Then we conclude tha
the effect of the massive modes withmle2a0.1 can be
neglected, the cosmological perturbations are not interfe
by the extra dimension. Whether the modes withmle2a0

.1 contribute to the perturbations or not is determined
Em(k) which can be obtained from Eq.~67!.

V. DEVIATION FROM 4D COSMOLOGY

In the previous two sections, we show that the late ti
evolution of the perturbations is not modified by the 5
graviton if the effect of the modes withme2a0@ l 21 is neg-
ligible. Let us investigate the effect of these massive mod
2-9
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FIG. 4. Volcano potential for
5D gravity. The location of the
brane determines the height of th
‘‘barrier’’ which protects the
brane from massive modes.
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To simplify the calculation, we assumek→0. Without tak-
ing the limit mle2a0!1, a1j0

y and ȧ0T̂ becomes

a1j0
y52E dm~mle2a0!EmH1

(1)~mle2a0!e2 imt

1ȧ0e2a0E dm~ iml2!EmH2
(1)~mle2a0!e2 imt,

ȧ0T̂05ȧ0
2l 2E dm~mle2a0!EmH1

(1)~mle2a0!e2 imt

2ȧ0e2a0E dm~ iml2!EmH2
(1)~mle2a0!e2 imt.

~70!

Then we can evaluateC0 as

C05~12ȧ0
2l 2!E dmCm~ t !Em~k!e2 ivt,

Cm~ t !5~mle2a0!H1
(1)~mle2a0!. ~71!

We shall investigate the effect of the massive modes.
evolution ofCm can be estimated using the asymptotic fo
of the Hunkel function for large argumentH1

(1)(z)}1/Az.
We find thatCm(t) behaves as

Cm~ t !}e2a0(t)/2 ~m. l 21ea0!. ~72!

Then, the modes with

m.me f f5 l e f f
21 , l e f f5 le2a0, ~73!

modify the evolution of the metric perturbations and hen
of the density fluctuations. Because we have normalized
scale factor asea0(t5tpresent)51, l e f f becomes larger thanl
for early times.

The result can be interpreted as follows. For late tim
the trajectory of the brane is identical with the RS brane~see
Fig. 2!. Thus the behavior of the gravity in the brane wor
for late times can be deduced from the arguments for
solution. In the coordinate system (z,t,xi), the perturbations
12350
e

e
e

,

S

h(z,t,xi) satisfies the wave equation~23!. Defining
h(z,t,xi)5(z/ l )3/2c(z)e2 ivteikx, the wave equation can b
rewritten as

S 2
1

2

d2

dz2
1VAdS~z!D c~z!5

1

2
m2c~z!, VAdS~z!5

15

8

1

z2
.

~74!

The problem can be understood as the potential problem
one dimensional quantum mechanics wherem represents the
energy. If we cut the AdS spacetime atz5 l and put the
brane there, the potential term proportional tod(z2 l ) ap-
pears. Imposing theZ2 symmetry across the brane, the p
tential becomes a ‘‘volcano’’ potential. The term propo
tional to the delta function is responsible for th
normalizable zero mode of the 5D graviton which repr
duces the 4D gravity on the brane. The brane is protec
from the the massive modes by the potential barrierVAdS
~see Fig. 4!. Only the modes with largem can affect the
gravity on the brane. Let us consider the cosmological br
for early times. For early times, the brane is located at la
z. l . For largerz, the potential barrierVAdS is lower, then
the mode with smallerm can affect the gravity on the brane
This picture is consistent with the result that the modes w
largem.me f f5 l 21ea0 can modify the evolution of the met
ric perturbations becauseme f f becomes smaller for early
times.

VI. DISCUSSIONS

The cosmological perturbations in the brane world p
vide useful tests for the brane world idea. This is because
perturbations in the brane world interact with the perturb
tions in the bulk which is inherent nature of perturbations
the brane world. The dynamics of the brane cannot be se
rated from the dynamics of the bulk. This is because
inhomogeneous fluctuations on the brane inevitably produ
the gravitational waves in the bulk, which in turn affect th
evolution of perturbations on the brane. Thus, naively,
think the evolution of the cosmological perturbations
modified significantly.

We showed that this is not a case for late timeH, l 21
2-10
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and at scales larger than the AdS curvature scale. The m
perturbations become frozen once the perturbations exit
horizon as in the conventional 4D cosmology. This resul
important for the inflationary scenario in the brane world.
the scalel 21 is sufficiently higher than the scales of th
inflation, and if heavy graviton modes may be neglected
constancy of the curvature perturbations can be used to
mate the scalar temperature anisotropies of the CMB at la
scales. Our results are consistent with those of Ref.@24#,
where curvature perturbations on large scales is shown t
conserved, and the density perturbations generated du
high-energy inflation on the brane are calculated.

The assumption in obtaining the above results is that
effect of massive gravitons withm.me f f5ea0l 21 can be
neglected. The contribution of these modes depends on
initial spectrum of the fluctuations. If the primordial fluctu
tions are generated during inflation at low energiesH, l 21,
heavy gravitions are significantly suppressed@26#. Then, in
this case, the assumption seems to be natural.

Another modification of the evolution arises if the sca
of the perturbations becomes smaller thanl. This modifica-
tion is not important for late time evolution because the c
mological scales is significantly larger thanl. However at the
beginning of the inflation, we should consider the sca
comparable tol. Then the modification becomes important
predict the primordial spectrum of the fluctuations duri
inflation.

The key to quantify these modifications is the understa
ing of Em(k). The equation forEm(k) obtained in this pape
might give a way to estimate the effect of the interacti
with bulk graviton on the perturbations in the brane wor
which is the intrinsic feature of the brane world cosmolog

Finally, we comment on the possibility for the extensi
of the present work. In this paper, we have considered
spatially flat universe. The extension to the nonflat unive
may be possible using the coordinate system in Ref.@14#.
The extension of our method to vector and tensor pertu
tions is straightforward. The tensor perturbations were ca
lated in the de Sitter background and the agreement with
gravity was demonstrated in a certain limit@25#. It will be
interesting to investigate the effect of the vector compone
of 5D graviton on the 4D cosmological perturbations.

Note added. While the present work was being complete
related papers@27–30# appeared on the hep-th.
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APPENDIX A: BACKGROUND—EINSTEIN EQUATION
AND JUNCTION CONDITION

In this appendix, we derive the junction conditions a
obtain a solution for the background. The junction conditio
can be obtained from the 5D Einstein equation:
12350
ric
he
s
f

e
ti-

ge

be
ng

e

he

-

s

-

,
.

e
e

a-
u-
D

ts

,

-

s

GN
M5

6

l 2
dN

M1k2
A2gbrane

A2g
TN

M

5
6

l 2
dN

M1e2bk2TN
M ~M ,N5y,t,xi !. ~A1!

We take for the energy momentum tensor in the 5D spa
time

TN
M5@2s diag~0,1,1,1,1!1diag~0,2r,p,p,p!#d~y!.

~A2!

The jump of the first derivative ofa(y,t) andb(y,t) gives
the d(y) function to the Einstein tensor. The Einstein tens
is given by

G0
0523e22b~ȧ21ȧḃ2a922a821a8b8!,

Gy
y53e22b~2ä22ȧ21ȧḃ1a821a8b8!,

Gy
0523e22b~b8ȧ1a8ḃ2ȧ82ȧa8!,

Gj
i 5d j

i e22b~22ä23ȧ22b̈12a913a821b9!.
~A3!

Equating the coefficient ofd(y) we obtain the junction con-
ditions

a1~ t !52k2eb0S s

6
1

r~ t !

6 D ,

b1~ t !52k2eb0S s

6
2

r~ t !

3
2

p~ t !

2 D .

~A4!

Following Ref.@9#, we make power series expansion of t
Einstein equation near the brane. They0 order of the (y,y),
(y,0) component of the Einstein equation gives

ä012ȧ0
254pG4S r

3
2pD1

k4r~r13p!

36
,

ṙ13ȧ0~r1p!50, ~A5!

where k4s548pG4. The integration of the first equatio
gives

ȧ0
25

8pG4

3
r1

k4r2

36
1e24a0C, ~A6!

whereC is the constant of the integration and is proportion
to the mass of the AdS-Schwarzshild mass. Because the
is AdS spacetime in our solution,C50. These equations ar
equivalent with Eq.~16!. The y0 order of (0,0) and (i , j )
components of the Einstein equation givea2 andb2 in terms
of a0 , a1 , b0 andb1:
2-11
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a25ȧ0
21ȧ0ḃ022a1

21a1b11
2

l 2
,

b25ȧ0
212ä01b̈01a1

222a1b11
2

l 2
.

~A7!

Let us find the functionf (u) andg(v) for late times. For
late times, we can neglectO„(r/s)2

…. Then the solution for
e2a0 is given by

e2a05 f ~ t/ l !2g~ t/ l !5a* S t

l D
22/3(11w)

. ~A8!

Combining this equation withe2b051,

4
f 8~ t/ l !g8~ t/ l !

f ~ t/ l !2g~ t/ l !
51, ~A9!

we can obtain the first order differential equation forf (t/ l ),

ḟ ~ t/ l !5
a*

3~11w! S t

l D
2(513w)/3(11w)

3X211A11S 3

2
~11w!

t

l D
2C. ~A10!

For late timest/ l @1, we obtain the solution forf (t) and
g(t):

f ~ t/ l !5a*
1

2 S t

l D
22/3(11w)S 11

3~11w!

113w

t

l D1b* ,

g~ t/ l !5a*
1

2 S t

l D
22/3(11w)S 211

3~11w!

113w

t

l D1b* ,

~A11!

wherea* and b* is the constants of integration. Then w
obtain

t~ t !; le2a0S t

l D
122/3(11w)

, ~A12!

where we takeb* 50.

APPENDIX B: PERTURBATIONS—EINSTEIN EQUATION
AND JUNCTION CONDITIONS

1. Gauge fixing and Einstein tensor

In this section, we derive the 5D Einstein equation
perturbed AdS spacetime and derive the junctions co
tions. We will concentrate on the scalar perturbations.
put the perturbed 5D AdS spacetime as

ds25e2b(y,t)
„~112N!dy22~112F!dt212Adtdy…

1e2a(y,t)
„@~122C!d i j 12E,i j #dxidxj12B,idxidt

12G,idxidy…. ~B1!
12350
r
i-
e

There are three degrees of freedom in the gauge transfo
tions

xM→xM1jM, jM5~jy,j0,j ,i !. ~B2!

By this gauge transformations, metric perturbations
transformed as

F5F̂1 j̇ t1b8jy1ḃj t,

C5Ĉ2ȧj t2a8jy,

E5Ê1j,

B5B̂1 j̇2e2(b2a)j t,

A5Â1 j̇y2j t8,

G5Ĝ1e2(b2a)jy1j8,

N5N̂1jy81ḃj t1b8jy. ~B3!

Using these degrees of the freedom, we impose the ga
conditions so that the resulting coordinate becomes Gaus
Normal ~GN! coordinate because the metric perturbations
the GN coordinate on the brane are the metric perturbat
observed by the observers confined to the brane. In the
coordinate, the transverse component of the metricgym ,(m
5t,xi) vanish @G(y,t,xi)5A(y,t,xi)50# and the brane is
located aty50. The former conditions are achieved byj and
j t and the latter condition is achieved byjy. The conditions
G5A50 determinej t andj as

j t5E
0

y

dy~Â1 j̇y!1e t~ t,xi !,

j52E
0

y

dy~Ĝ1e2(b2a)jy!1e~ t,xi !,

~B4!

wheree t and e are functions with noy dependence. Thes
residual gauge transformations enable us to impose two
ditional gauge fixing conditions. We takeB0(y50,t,xi)
5E0(y50,t,xi)50 gauge on the analogy of the longitudin
gauge in the conventional 4D cosmological perturbatio
theory. The Einstein tensor is calculated as
2-12
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dG0
05e22b

„~6ȧ216ȧḃ !F23a8N823ȧṄ2~6a9112a8226a8b8!N23C913~ ḃ12ȧ !Ċ13~b824a8!C8…

1¹2
„e22b@E92~ ḃ12ȧ !Ė2~b824a8!E8#22e22aC1e22aN1e22(a1b)~ ḃ12ȧ !B…,

dGy
y5e22b

„2~6a8216a8b8!N13a8F813ȧḞ1~6ä112ȧ226ȧḃ !F13C̈23~ ḃ24ȧ !Ċ23~b812a8!C8…

1¹2
„e22b@2Ë1~ ḃ24ȧ !Ė1~b812a8!E8#22e22aC1e22aF1e22(a1b)@Ḃ1~2ȧ2ḃ !B#…,

dG0
y5e22b

„3Ċ813ȧF813a8Ṅ23~b82a8!Ċ23~ ḃ2ȧ !C8…

1e22b¹2X2Ė81~b82a8!Ė1~ ḃ2ȧ !E81e22aS 2b8B1
1

2
B8D C,

dGi
y5e22bX~2a81b8!N1~a82b8!F2F812C81e22bF ~3ȧa81ȧ822a8ḃ !B1S ḃ2

3

2
ȧ DB81a8Ḃ2

1

2
Ḃ8GC

,i

,

dGi
05e22bX2~2ȧ1ḃ !F2~ ȧ2ḃ !N1Ṅ22Ċ1e22bF2~3a821a922a8b8!B2S b82

1

2
a8DB81

1

2
B9GC

,i

,

dGj
i 5e22bd j

i
„F91~4ä12b̈16ȧ2!F1~ ḃ12ȧ !Ḟ1~b812a8!F82N̈2~4a912b916a82!N2~b812a8!N8

2~ ḃ12ȧ !Ṅ12C̈16ȧĊ26a8C822C9…1¹2
„e22a~F1N2C!1e22b@e22a~Ḃ1ȧB!

23ȧĖ13a8E82Ë1E9#…d j
i 2„e22a~F1N2C!1e22b@e22a~Ḃ1ȧB!23ȧĖ13a8E82Ë1E9#…, j

,i , ~B5!

where we denoteh85]h/]y and ḣ5]h/]t.

2. Einstein equation and junction conditions

In this subsection, we derive the junction conditions. The Einstein equation is given by

dGN
M5k2e2b~dTN

M2NTN
M !. ~B6!

We take for the 5D energy-momentum tensor

dTN
M5S 0 0 0

0 2dr ~r1p!e2a0v ,i

0 2~r1p!ea0v ,i dpd i j
D d~y!. ~B7!

Equating the coefficients ofd(y) in the Einstein equation gives the following junction conditions:

C152a1N01
1

6
k2dr,

F15b1N01k2S dr

3
1

dp

2 D ,

B1522~b12a1!ea0v,

E150, ~B8!

where we useeb051.
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