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Polarization signal of distant clusters and reconstruction of primordial potential fluctuations

Naoki Seto and Misao Sasaki
Department of Earth and Space Science, Osaka University, Toyonaka 560-0043, Japan

~Received 21 July 2000; published 27 November 2000!

We examine the polarization signal of the cosmic microwave background radiation associated with distant
clusters. The polarization is induced by the Thomson scattering of microwave photons with ionized gas of
clusters and contains information of quadrupole temperature anisotropies observed at the clusters. The three-
dimensional map of the signal is expressed in terms of the spin-weighted harmonics for its angular dependence.
Its radial dependence is expanded perturbatively with respect to the distances~equivalently redshifts! to the
clusters. The independent information that we can extract from the map is clarified explicitly.

PACS number~s!: 98.70.Vc
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I. INTRODUCTION

The reconstruction of large-scale density fluctuations is
important topic in modern cosmology. Nowadays there
mainly two methods for this reconstruction. The redshift s
veys of galaxies probe the density~more strictly the number
density of galaxies! fluctuations around our local~nearby!
universe. The anisotropies of the cosmic microwave ba
ground~CMB! contain information of potential fluctuation
at the last scattering surface~LSS!. The redshift survey has
been extended deeper and deeper into the universe an
brought us enormous information on the three-dimensio
matter distribution. On the other hand, the CMB data,
though carrying information of the deepest universe, are
two-dimensional nature as they are. It therefore would
very interesting to explore the possibilities of extracting o
three-dimensional information of primordial fluctuation
around the LSS.

The linear polarization of the CMB is induced at a clus
of galaxies by Thomson scattering of CMB photons with t
ionized gas~electron! of the cluster@1,2#. The polarization
signal is related to one component of the CMB quadrup
moment observed at the cluster. Using this fact, Sazonov
Sunyaev@3# predicted the linear polarization signal of near
clusters with approximations that the temperature aniso
pies observed at these clusters are the same as that obs
at our galaxy. They used quadrupole moment of CMB m
sured by the Cosmic Background Explorer satellite@4#.

As pointed out by Kamionkowski and Loeb@5#, the LSS
of an observer~cluster! depends on the position of the ob
server. Therefore the LSS of a distant cluster is shifted fr
our LSS and its polarization signal would probe thre
dimensional information of potential fluctuations around o
LSS.1 Kamionkowski and Loeb noticed this effect and com
mented that the polarization signal of clusters might be u
to reduce the cosmic variance limitation of large-scale po
spectrum.

Considering further the shift of LSS mentioned above,
can expect that correction terms in the polarization sig

1The LSS of a distant cluster is also smaller than ours due to
light-cone effect.
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proportional to the redshift of clusters}z would reflect the
first radial derivative of the potential fluctuations at our LS
In the same manner the signal proportional to the squar
redshift}z2 would reflect the second radial derivative and
on. In this paper we calculate the three-dimensional map
polarization signal induced by the quadrupole temperat
anisotropies of CMB at distant clusters~see also Refs.
@6–8#!. Then we clarify the information we can extract o
from the map. There are many astrophysical or cosmolog
effects on the polarization of the CMB, such as, the pecu
velocities of clusters or reionization of the universe~see, e.g.,
Refs.@3,5#!. We do not go into these issues but investigat
basic problem about reconstruction of the primordial pot
tial fluctuations from the quadrupole anisotropies of CM
observed at distant clusters.

II. FORMULATION

A. Polarization induced by the Thomson scattering

Polarization of CMB in the direction of a cluster reflec
the temperature anisotropy of CMB observed at the clus
In this subsection we briefly review this effect following Ko
sowsky @2#. Let us consider a nearly monochromatic pla
electromagnetic wave propagating to thez direction. We de-
note its electric field as

Ex5ax~ t !cos@v0t2ux~ t !#, Ey5ay~ t !cos@v0t2uy~ t !#.
~1!

Here the amplitudesax(t), ay(t) and the phasesux(t), ux(t)
are nearly constant in the oscillation time scalev0

21 of the
wave. The Stokes parameters characterize the polarizatio
radiation field and are defined as follows~Chandrasekhar@9#,
Rybicki and Lightman@10#!

I 5^ax
2&1^ay

2&, ~2!

Q5^ax
2&2^ay

2&, ~3!

U5^2axay cos~ux2uy!&, ~4!

V5^2axay sin~ux2uy!&, ~5!

where angle brackets represent time averages.
e
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Next we calculate the polarization induced by the Tho
son scattering. The cross section of this process is de
mined by the polarization vector of the incident waveê8 and
that of the scattered waveê as @9#

ds

dV
5

3sT

8p
u ê• ê8u2, ~6!

wheresT is the Thomson cross section~Fig. 1!. When the
incident wave is natural (Q5U50), it is completely de-
scribed by the angular dependence of the intensityI 8(u,f).
Using the above cross section~6! and transformation of the
Stokes parameters under rotation of coordinate systems
obtain the Stokes parametersI, Q, and U for the scattered
wave as

I 5
3sT

16pE dV~11cos2u!I 8~u,f!, ~7!

Q5
3sT

16pE dV sin2u cos~2f!I 8~u,f!, ~8!

U52
3sT

16pE dV sin2u sin~2f!I 8~u,f!. ~9!

The parameterV which characterizes the circular polariz
tion remains zero in the Thomson scattering.

Let us consider a cluster of galaxies~as a cloud of ionized
gas! whose optical deptht for the Thomson scattering i
much smaller than unity. In this optically thin limit we obta
the total Stokes parametersQ andU that are induced by the
cluster by replacingsT with the optical deptht in Eqs. ~8!
and ~9!. To evaluate the Stokes parameters we expand
angular dependence of the intensityI 8 in terms of the spheri-
cal harmonics as follows:

I 8~u,f!5(
lm

Ilm8 Ylm~u,f!. ~10!

Then Eqs.~8! and ~9! become

Q5
3t

4p
A2p

15
Re~I822!, U52

3t

4p
A2p

15
Im~I822!,

~11!

FIG. 1. The Thomson scattering of the CMB photon with io
ized gas of a cluster. Initially unpolarized radiation becomes po
ized by the quadrupole anisotropy of the incident waveI 8.
12300
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or these are simply combined as

Q2 iU 5
3t

4p
A2p

15
I822. ~12!

Therefore, by measuring the polarization parameters (Q,U)
in the direction of a cluster, we can, in principle, measure
quadrupole anisotropyI822 of the CMB observed at the clus
ter. In reality the incident waves have some degree of po
ization. The primordial contribution at smalll is expected to
be much smaller than the temperature anisotropy for typ
cold dark matter~CDM! models, but the total magnitude ca
become nonnegligible depending on the reionization hist
~e.g., Refs.@6,8,11#!. Furthermore, one cannot deny the po
sibility of a large tensor contribution to the CMB quadr
pole. In this paper, however, we ignore such contributio
and focus on a somewhat fundamental problem; what in
mation of the primordial potential field can we reconstruct
using the quadrupole momentT22 observed at different
places?

B. Temperature anisotropies of the CMB

In an optically thin universe after decoupling, propagati
of the gauge invariant brightness~temperature! perturbation
Ts on the Newtonian hypersurface is written as~Kodama and
Sasaki@12#!

d

dh
$Ts@h,x~h!,g#1C@h,x~h!#%5

]

]h
~C2F!, ~13!

where C and F are the Newtonian and spatial curvatu
perturbation, andx(h) represents the null geodesic of th
propagating photon that is parametrized by the conform
time h. The temperature perturbationTs is related to the
intensity perturbationDI asTs5DI /(4I ).

This equation can be formally integrated and the funct
Ts at an epochh is written in terms of quantities at decou
pling hdec as

Ts@h,x~h!,g#5Ts@hdec,x~hdec!,g#

1C@hdec,x~hdec!#2C@h,x~h!#

12E
hdec

h ]

]h8
C@h8,x~h8!#dh8. ~14!

As the anisotropic pressure perturbation is negligible a
decoupling, we have putF52C.

For adiabatic perturbations the large scale behavior of
brightness perturbationT at decoupling is approximately
given by the potential field at the same time~Ref. @13#!

Ts@hdec,x~hdec!,g#.2
2

3
C@hdec,x~hdec!#. ~15!

This is an efficient approximation to discuss small-l ~large
angle! temperature anisotropies~e.g., Ref.@14#!. Thus we
consider two effects for anisotropiesTs seen at clusters tha

r-
4-2



-
or
an
n

er
co
ic

re

e
op
-

e
e
ed
e

to

can

nal

e-

ing

ear
-

POLARIZATION SIGNAL OF DISTANT CLUSTERS AND . . . PHYSICAL REVIEW D62 123004
are known as~i! the Sachs-Wolfe~SW! effect TSW and ~ii !
the integrated-Sachs-Wolfe~ISW! effect TISW,

Ts5TSW1TISW, ~16!

TSW@h,x~h!,g#[
1

3
C@hdec,x~hdec!#, ~17!

TISW@h,x~h!,g#[2E
hdec

h ]

]h8
C@h8,x~h8!#dh8.

~18!

Note that the anisotropyTs(h,x,g) is defined on the shear
free ~Newtonian! hypersurface. Nevertheless, since the co
dinate gauge transformation affects only the monopole
dipole components of the anisotropy, our analysis does
depend on the choice of the hypersurface.

C. Transformation of coordinate systems

In this section we discuss the relation between two sph
cal coordinate systems centered at different places. We
sider a homogeneous and isotropic universe whose metr
given by

ds25a~h!2@2dh21dr21 f ~r !2~du21sin2udf2!#,
~19!

where the functionf (r ) depends on the spatial curvatu
radiusB and is defined as

f ~r !55
B sinF r

BG , closed model,

r , flat model,

B sinhF r

BG , open model.

A null geodesic from~or into! the origin r 50 along u
5const andf5const is trivially solved in this coordinat
system and calculation of the temperature anisotr
T(O8,g) observed at a clusterO8 is very easy using a coor
dinate system centered atO8 ~hereafter call theO8 system!.
However, the linear potential fieldC is more informative
when it is expressed in terms of the coordinate system c
tered at the EarthO ~the O system!. Therefore, we need th
relation between the spherical coordinate systems center
different pointsO and O8. We denote the position of th

clusterOO
→

8[dêc (d: distance to the cluster!.
We first set the direction ofu50 parallel to the direction

of the cluster,OO
→

8, both for the two systems. Then, due

the rotational symmetry around the axisOO
→

8, we can take
the same azimuthal anglef in the two systems.2 In the fol-
lowing we relate the radial distanceR and the angleQ in the
O system with the correspondingr andu in the O8 system.

2The direction off50 is arbitrary. See also Sec. II E.
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We examine the case of a closed universe, but the results
be straightforwardly extended to flat and open models.

Since the two-dimensional space spanned by (r ,u) with
the metric ~19! can be embedded in the three-dimensio
Euclidean space (X1 ,X2 ,X3) as a two-sphere of radiusB, the
correspondence of the two coordinate systems (R,Q) and
(r ,u) is simply obtained by rotation of theO8 system around
the X2 axis with the anglea[d/B ~see Fig. 2!. Then we
obtain the following embedding relation for the thre
dimensional coordinates (X1 ,X2 ,X3):

X1

B
5sin

R

B
cosQ5sin

r

B
cosu cosa1cos

r

B
sina,

~20!

X2

B
5sin

R

B
sinQ5sin

r

B
sinu, ~21!

X3

B
5cos

R

B
5cos

r

B
cosa2sin

r

B
cosu sina. ~22!

Using the above, an event (h,R,Q,f) in the O system can
be perturbatively expressed in terms of the correspond
event (h,r ,u,f) in the O8 system as

h5h,

R5r 1d cosu1O~d2!,

Q5u2
d

B
sinu cot

r

B
1O~d2!,

f5f. ~23!

Here we have assumedr @d. This assumption formally
breaks down when we calculate the ISW contribution n
the cluster~see the next section!. Nevertheless, this contribu

FIG. 2. Correspondence of the two coordinate systems (R,Q)
and (r ,u) centered at different placesO andO8, respectively. We
consider a closed universe with curvature radiusB. Two systems
coincide with each other by rotation of anglea[d/B around theX2

axis.
4-3
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NAOKI SETO AND MISAO SASAKI PHYSICAL REVIEW D 62 123004
tion is found to be negligible at thed1-st order for h0

2hdec@d, whereh0 is the conformal time at present.
Using the above equations~23!, the potential perturbation

CO8(h,r ,u,f;êc) in the O8 system is expressed in terms
that in theO system as

CO8~h,r ,u,f;êc!5CO@h,R~r ,u!,Q~r ,u!,f#

5CO~h,r ,u,f;êc!1] rCO~h,r ,u,f;êc!

3@R~r ,u!2r #1]uCO~h,r ,u,f;êc!

3@Q~r ,u!2u#1O~d2!. ~24!

D. Quadrupole moment at a cluster

In Sec. II A, we have discussed the relation between
polarization and temperature anisotropies. Here we calcu
the quadrupole anisotropy of CMB at a clusterO8 which is
observed as the Stokes parameterQ2 iU in the direction
from the EarthO. The quadrupole modeT22 seen at the clus
ter O8 is written as

~Q2 iU !}X~ êc ,d![E T~h02d,dêc ,g!Y22* ~g;êc!dVg ,

~25!

where we have explicitly denoted the orientation of the po
axis êc to show our specific choice of the coordinate assign
for each clusterO8.

The large angle~small l ) temperature anisotropies a
dominated by the Sachs-Wolfe effect and the integra
Sachs-Wolfe effect. The Sachs-Wolfe effect is written
terms of the potential fieldC in the O8 coordinates as

TSW~h02d,dêc ,g!5
1

3
CO8@hdec,~h02d2hdec!g#.

~26!

With Eqs. ~24!, ~25!, and ~26! we can evaluate the quadru
pole modeXSW due to the SW effect.

To evaluate the integral~25! we expand the linear poten
tial field C in the O system by the spherical harmonics a

CO~h,r ,u,f;êc!5(
lm

F~h!C lm~r ;êc!Ylm~u,f;êc!.

~27!

Here the functionF(h) represents the time dependence
the linear potential fluctuation and is proportional toD/a (D
is the linear growth rate of density contrast!. In the case of
the Einstein–de Sitter universe or at an early mat
dominated stage of general models, we haveD/a5const
@15#. Thus we fixD/a51 ath5hdec and normalize the time
dependence byF(hdec)51.

After some algebra we obtain the following result:
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XSW~ êc ,d!5
C22~h0 ;êc!

3
1

1

3
dF2C228 ~h0 ;êc!

1
1

A7
C328 ~h0 ;êc!

1
4

A7B
C32~h0 ;êc!cot

h0

B G1O~d2!,

~28!

where the prime denotes the radial derivative and we h
put h02hdec5h0 ~sincehdec!h0), and have used formula
for the spherical harmonics such as

cosuY22~u,f!5
1

A7
Y32~u,f!. ~29!

Similarly the quadrupole mode induced by the integrat
Sachs-Wolfe effect is written as

XISW~ êc ,d!52iC228 ~h;êc!i12dS 2iC228 ~h;êc!i

1
1

A7
iC328 ~h;êc!i

1
4

A7B
IC32~h;êc!cot

h

BI D 1O~d2!,

~30!

where we have defined an integral operatori•••i as

iy~h!i[E
0

h0
F8~h02h!y~h!dh. ~31!

The d0-th order term is essentially the same as the re
obtained in Eq.@3#. The formulas~28! and ~30! are easily
extended to general background geometry. We obtain
formulas for the flat universe in the limitB→` and for the
open universe by replacement cot@x#→coth@x#.

In the Einstein–de Sitter Universe the ISW effect va
ishes (F850) and the quadrupole moment is determin
solely by the three-dimensional information of the potent
field C at the decoupling. In this case, we have the followi
result up to the second order ofd:

3X~ êc ,d!5C221dS 2C228 1
1

A7
C328 1

4

A7

C32

h0
D

1d2S 4

7
C229 1

1

7h0
C228 2

3

7h0
2
C222

1

A7
C329

2
4

A7h0

C328 1
4

A7h0
2
C321

1

7A3
C429

1
3A3

7h0
C428 1

5A3

7h0
2

C42D 1O~d3!, ~32!
4-4



o
a

ll
w

th

ys

e-

n

e
ar

a

POLARIZATION SIGNAL OF DISTANT CLUSTERS AND . . . PHYSICAL REVIEW D62 123004
where we have denotedC lm(h0 ;êc) by C lm for simplicity.

E. All sky map and reconstruction of the linear potential field

The result given in the previous subsection depends
the specific choice of the coordinate system defined for e
cluster. We have set the direction ofu50 toward the direc-

tion of the clusterêc}OO
→

8. Here in order to consider an a
sky map of the quadrupole moments seen at clusters,
express the coefficientC lm(r ;êc) in terms of the harmonic
coefficients for a spherical coordinate system fixed at
Earth. We denote the direction of a clusterêc in this fixed
coordinate as~see Fig. 3!3

êc5~sinuc cosfc ,sinuc sinfc ,cosuc!, ~33!

and the linear potential field as

C~h,r ,u,f!5(
lm

F~h!C lm~r !Ylm~u,f!. ~34!

The relation between the two coefficientsC lm(r ;êc) and
C lm(r ) is given by the two successive rotations of the s
tem byRz(2fc) andRy(2uc), whereRa(a) is the rotation
operator around thea axis with anglea:

C l2~r ;êc!5^ l2uRy~2uc!Rz~2fc!uC~r ,u,f!& ~35!

5 (
l 8m8

^ l2uRy~2uc!Rz~2fc!u l 8m8&

3^ l 8m8uC~r ,u,f!& ~36!

5(
m8
A 4p

2l 11
C lm8~r ! 22Ylm8~uc ,fc!.

~37!

3We choose the direction off50 in theO8 system parallel toEu

in Fig. 3.

FIG. 3. Relation between the coordinate system specific to e
cluster and the Earth fixed coordinate system.
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Here we have followed the notation of Sakurai@16#. Namely,
the ket-vectoru f & represents an angular functionf (u,f) and
bra-vector^ f u its complex conjugate. The inner product d
notes the angular integrals

^gu f &[E
0

2p

dfE
0

p

du sinug* ~u,f! f ~u,f!. ~38!

The function 2sYlm(u,f) in Eq. ~37! is the spin-weighted
spherical harmonic@17# and is given in terms of the rotatio
matrix of the scalar spherical harmonicu lm&[Ylm as

2sYlm~u,f![A2l 11

4p
^ lsuRy~2u!Rz~2f!u lm&.

~39!

Thus the all sky ~three-dimensional! map of X5XSW
1XISW is expressed in terms of the coefficientsC lm defined
on a fixed coordinate system as

XSW~ êc ,d!5A4p

45 22Y2m~uc ,fc!C2m~h0!

1dF2A4p

45 22Y2m~uc ,fc!C2m8 ~h0!

1
A4p

21 S C3m8 ~h0!1
4

B
C3m~h0!cot

h0

B D
3 22Y3m~uc ,fc!G1O~d2! ~40!

and

XISW~ êc ,d!52A4p

5 22Y2m~uc ,fc!iC2m~h!i

12dF2A4p

5 22Y2m~uc ,fc!iC2m8 ~h!i

1
A4p

7 S iC3m8 ~h!i1
4

B IC3m~h!cot
h

BI D
3 22Y3m~uc ,fc!G1O~d2!. ~41!

Assuming that we have the all sky map ofX, we can extract
out information ofC lm for each (l ,m) mode by using the
orthonormal relation for the spin-weighted harmonics

E
0

2p

dfE
0

p

du sinu 2sYlm* ~u,f! 2sYl 8m8~u,f!5d l 8 ldm8m .

~42!

From Eqs.~40! and ~41!, we see that by observing thed
dependence~or equivalently the linear redshift dependenc!
of the polarization map, we obtain information of the line
potential fluctuations in the combination

ch
4-5
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2A4p

45
C2m8 ~h0!22A4p

5
iC2m8 ~h0!i , ~43!

for l 52 modes and

A4p

21 S C3m8 ~h0!1
4

B
C3m~h0!cot

h0

B D
1

A4p

7 S iC3m8 ~h!i1
4

B IC3m~h!cot
h

BI D ,

~44!

for l 53 modes.
In the case of the Einstein–de Sitter universe, the mu

pole componentsC lm(h0) for small l at the last scattering
surfacer 5h0 can be obtained directly from the temperatu
anisotropiesT. If we have the polarization map we can fu
ther obtain the following information: From theO(d) map
and the temperature anisotropyT, we obtain

C2m8 ~h0!, C3m8 ~h0!, ~45!

and from the polarization map up toO(d2) order and the
temperature anisotropyT,

C2m9 ~h0!, C3m9 ~h0!, 9
C4m8 ~h0!

h0
1C4m9 ~h0!. ~46!

Note that we cannot separateC4m8 (h0) from C4m9 (h0). Us-
ing information of the polarization up to thedn ~or zn) order
we would know the derivative coefficients]h0

i C2m(h0) and

]h0

i C3m(h0) separately fori<n but not for l>4 modes.

So far we have inquired a basic problem of reconstr
tion, considering an idealistic and simplified situation. He
we have to mention two points that would be important
apply our reconstruction method to real observational d
The first point is that the polarization signalQ2 iU of a
cluster is obtained by a combination of the temperature
isotropyT22 at the cluster and its optical deptht, as shown in
Eq. ~12!. We have implicitly assumed that we can separ
them. This could be achieved, for example, by using x-
and thermal Sunyaev-Zeldovich data. The second poin
that distribution of clusters is not homogeneous on our li
cone~both in redshift and angular position!. To extract out
information of the potential field from inhomogeneo
sample of clusters it would be necessary to develop a w
able statistical method.

III. EXAMPLES

As shown in the previous section the polarization sig
contains both the SW and ISW effects. The former refle
local quantity at the last scattering surface and more inter
ing from the point of reconstructing the linear potential fie
C.

In this section we calculate the magnitude of these t
effects for concrete models. We investigate flat cold-da
matter ~CDM! models with cosmological constantl0 (V0
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1l051). We use the primordially Harrison-Zeldovich spe
trum with the CDM transfer function given in Bardeen et a
@18#. The Hubble parameter is fixed ath50.7 (h is the
Hubble parameter in units of 100 km/sec/Mpc!. The shape
parameterG of the CDM transfer function is set atG
5hV0.

We first calculate the rms value for thed0-th signal ofX
@Eqs.~40! and ~41!#,

2A4p

45
C2m~h0!22A4p

5
iC2m~h0!i , ~47!

and the same quantities for thed1-st order correction forl
52 mode both for the SW and ISW effects@Eq. ~43!#

2A4p

45
C2m8 ~h0!, 22A4p

5
iC2m8 ~h0!i . ~48!

For l 53 mode at thed1-st order the SW effect is constitute
by two terms@Eq. ~44!# and we treat them separately. W
evaluate the rms values of the three quantities

A4p

21
C3m8 ~h0!, 4

A4p

21h0
C3m~h0!,

A4p

7 S iC3m8 ~h!i14IC3m~h!

h I D . ~49!

In Fig. 4 we plot the ratio of thed1-st signal atz50.5 to the
d0-th signal. First, note that the magnitude of thed1-st cor-
rection is significant even atz50.5. Forl 52 mode the SW
effect is larger than the ISW effect forV0*0.3 and thed1-st
signal becomes comparable to thed0-th signal forV0.1.0.
For l 53 modes, theC3m contribution to the SW effect is

FIG. 4. Ratio of thed1-st order polarization signal and thed0-th
signal for a cluster atz50.5. We consider flat CDM models with
cosmological constant. The dashed lines represent the contribu
of the SW effect and the solid of the ISW effect. Forl 53 modes,
there are two SW terms. The long-dashed line represents the
proportional toC and the short-dashed line the term proportional
C8.
4-6
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larger than theC3m8 contribution. Here the ISW effect is
stronger than the case ofl 52 and the SW effect become
dominant only forV0*0.8.

IV. SUMMARY

The polarization signal of CMB associated with a dista
cluster reflects temperature anisotropies observed at the
ter. Using this effect we can, in principle, obtain thre
dimensional information of potential fluctuations around t
last scattering surface~LSS!. In this paper we have calcu
lated the three-dimensional map of the polarization signa
clusters induced by the temperature anisotropies in hom
neous and isotropic background universe. We have con
ered adiabatic scalar perturbations and included both
Sachs-Wolfe effect and the integrated-Sachs-Wolfe eff
Our formulation is valid for general background geometri
The radial part of the three-dimensional map is expres
perturbatively with respect to the distances~or equivalently
redshifts! of clusters, and angular dependence is written
terms of the spin-weighted harmonics. Using the orthon
mality of the harmonics, the independent information th
can be extracted out from the map is clarified explicitly.

In the case of the Einstein–de Sitter universe,
integrated-Sachs-Wolfe effect vanishes and the tempera
anisotropies solely probe the local quantities around the L
oc

v

-

12300
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f
e-

id-
e
t.
.
d

n
r-
t

e
re

S.

We showed that using the polarization signal up to thezn-th
order, the derivative coefficients]h0

i C lm would be separately

obtained forl 52 and 3 modes. But we cannot separate th
for modes withl>4.

For general background cosmological models the po
ization signal also contains the integrated-Sachs-Wolfe
fect. In Sec. III we have examined the first (z1-th! order
polarization signal for typical flat CDM models with cosmo
logical constant. We found that the Sachs-Wolfe effect do
nates the signal ofl 52 modes for density parameterV0
*0.3, but it dominates thel 53 signals only forV0*0.8.
The integrated-Sachs-Wolfe effect is a nonlocal effect a
troublesome from the point of view to reconstruct the p
mordial potential fluctuations. But it mainly comes from tim
variation of the potential field at relatively recent epoc
Hence we might be able to separate its effect by probing
large-scale matter distribution with other observational to
~e.g., Ref.@19#!.
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