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Polarization signal of distant clusters and reconstruction of primordial potential fluctuations
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We examine the polarization signal of the cosmic microwave background radiation associated with distant
clusters. The polarization is induced by the Thomson scattering of microwave photons with ionized gas of
clusters and contains information of quadrupole temperature anisotropies observed at the clusters. The three-
dimensional map of the signal is expressed in terms of the spin-weighted harmonics for its angular dependence.
Its radial dependence is expanded perturbatively with respect to the dis{aeegalently redshifisto the
clusters. The independent information that we can extract from the map is clarified explicitly.

PACS numbe(s): 98.70.Vc

[. INTRODUCTION proportional to the redshift of clustersz would reflect the
first radial derivative of the potential fluctuations at our LSS.
The reconstruction of large-scale density fluctuations is ahn the same manner the signal proportional to the square of
important topic in modern cosmology. Nowadays there argedshiftez? would reflect the second radial derivative and so
mainly two methods for this reconstruction. The redshift sur-0n. In this paper we calculate the three-dimensional map of
veys of galaxies probe the densityiore strictly the number Ppolarization signal induced by the quadrupole temperature
density of galaxiesfluctuations around our locaghearby ~ anisotropies of CMB at distant clustefsee also Refs.
universe. The anisotropies of the cosmic microwave backt6—8)). Then we clarify the information we can extract out
ground (CMB) contain information of potential fluctuations oM the map. There are many astrophysical or cosmological
at the last scattering surfa¢eS9). The redshift survey has €ffects on the polarization of the CMB, such as, the peculiar
been extended deeper and deeper into the universe and ocities of clusters or relonization o_f the unlve(see, €.g.,
brought us enormous information on the three-dimensionakl) ef_s.[3,5]). We do not go into thgse ISSUES bl.ﬂ Investigate a
matter distribution. On the other hand, the CMB data, al- asic problem about reconstruction of the primordial poten-

S ; ) tial fluctuations from the quadrupole anisotropies of CMB
though carrying information of the deepest universe, are of pserved at distant clusters.
two-dimensional nature as they are. It therefore would be
very interesting to explore the possibilities of extracting out
three-dimensional information of primordial fluctuations

around the LSS. A. Polarization induced by the Thomson scattering

The Illnear polarization of the'CMB Is induced at a qluster Polarization of CMB in the direction of a cluster reflects
.Of gaIaX|es by Thomson scattering of CMB photon; W'.th thethe temperature anisotropy of CMB observed at the cluster.
ionized gas(electron of the cluster{1,2]. The polarization |, yhis subsection we briefly review this effect following Ko-
signal is related to one component of the CMB quadrupoléq, \qiy[2]. Let us consider a nearly monochromatic plane
moment observed at the cluster. Using this fact, Sazonov a ectromagnetic wave propagating to theirection. We de-
Sunyae\f 3] predicted the linear polarization signal of nearby note its electric field as
clusters with approximations that the temperature anisotro-
pies observed at these clusters are the same as that observad, =a_(t)cog wot — Oy(t)], E,=a,(t)cod wot— 6,(t)].
at our galaxy. They used quadrupole moment of CMB mea- 1
sured by the Cosmic Background Explorer sate[litg

As pointed out by Kamionkowski and Lo¢b], the LSS  Here the amplitudea,(t), a,(t) and the phaseg,(t), 6,(t)
of an observeKcluste) depends on the position of the ob- are nearly constant in the oscillation time sc.tanl@1 of the
server. Therefore the LSS of a distant cluster is shifted fronwave. The Stokes parameters characterize the polarization of
our LSS and its polarization signal would probe three-radiation field and are defined as followhandrasekhd®],
dimensional information of potential fluctuations around ourRybicki and Lightmar{10])

LSS?! Kamionkowski and Loeb noticed this effect and com-

Il. FORMULATION

mented that the polarization signal of clusters might be used I:(a§>+<a§), 2
to reduce the cosmic variance limitation of large-scale power
spectrum. Q=(a})~(a}), ®
Considering further the shift of LSS mentioned above, we
can expect that correction terms in the polarization signal U=(2a,a, cog 6,— 6,)), (4)
V=(2a.a,sin(6,—6,)), (5)

The LSS of a distant cluster is also smaller than ours due to the
light-cone effect. where angle brackets represent time averages.
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FIG. 1. The Thomson scattering of the CMB photon with ion-

ized gas of a cluster. Initially unpolarized radiation becomes polar-

ized by the quadrupole anisotropy of the incident wle
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or these are simply combined as

2 ,
EI 22-

Therefore, by measuring the polarization paramet€rsJ()

in the direction of a cluster, we can, in principle, measure the
guadrupole anisotrop¥ ,, of the CMB observed at the clus-
ter. In reality the incident waves have some degree of polar-
ization. The primordial contribution at smalis expected to

be much smaller than the temperature anisotropy for typical
cold dark matte(CDM) models, but the total magnitude can

] 37
—iU=——

Q 4

(12)

become nonnegligible depending on the reionization history
(e.g., Refs[6,8,11]). Furthermore, one cannot deny the pos-

Next we calculate the polarization induced by the Thom-Sibility of a large tensor contribution to the CMB quadru-
son scattering. The cross section of this process is deteRole. In this paper, however, we ignore such contributions

mined by the polarization vector of the incident wasfeand
that of the scattered waweas[9]

, (6)

where o is the Thomson cross sectigkig. 1). When the
incident wave is natural@=U=0), it is completely de-
scribed by the angular dependence of the interisity, ¢).

Using the above cross sectio®) and transformation of the

and focus on a somewhat fundamental problem; what infor-
mation of the primordial potential field can we reconstruct by
using the quadrupole momeri,, observed at different
places?

B. Temperature anisotropies of the CMB

In an optically thin universe after decoupling, propagation
of the gauge invariant brightnesemperaturk perturbation
75 on the Newtonian hypersurface is written(&®dama and
Sasaki[12])

Stokes parameters under rotation of coordinate systems, we

obtain the Stokes parametdrsQ, and U for the scattered
wave as

3
|:%;J dQ(1+co0)l’ (6, ), (7)
3
Qzl%;f dQ sirRocog2¢)1' (6,¢4), (8
30'1' . . ,
U=-T6- dQ sirtasin(2¢)1' (6, ). 9)

The parametel which characterizes the circular polariza-
tion remains zero in the Thomson scattering.

Let us consider a cluster of galaxies a cloud of ionized
ga9 whose optical depthr for the Thomson scattering is
much smaller than unity. In this optically thin limit we obtain
the total Stokes paramete@zandU that are induced by the
cluster by replacingrt with the optical depthr in Egs.(8)

d 9
ﬁ{Ts[n,X( 7), Y1+ ¥[nx(n)]}= %(\I’—@), (13

where ¥ and ® are the Newtonian and spatial curvature
perturbation, andk(#) represents the null geodesic of the
propagating photon that is parametrized by the conformal
time . The temperature perturbatidhy is related to the
intensity perturbatio\l as7,=Al/(4l).

This equation can be formally integrated and the function
7T at an epochy is written in terms of quantities at decou-

pling 7g4ecas
T 7. %X(1), ¥1=Td ndec:X(Mded . V]
+ Y[ 7dec: X(Mged ] — V[ 7,X(7)]

n
+2
Ndecd

d
7‘1’[77',X(77’)]d77’- (14)

and (9). To evaluate the Stokes parameters we expand thAs the anisotropic pressure perturbation is negligible after

angular dependence of the intendityin terms of the spheri-
cal harmonics as follows:

1'(0,0) =2 TjnYim( 6, ).

Im

(10

Then Eqgs(8) and(9) become

_37 ZWRI’ U 37 277| -
Q=7-V 15 R 22), == 2. V15 'm( 22),

11

decoupling, we have pub=—"V.

For adiabatic perturbations the large scale behavior of the
brightness perturbatiory” at decoupling is approximately
given by the potential field at the same tirfiRef. [13])

2
Td MoecX(1ded 1=~ 3 V[ Ngec:X(Mged 1. (19)

This is an efficient approximation to discuss snmallarge
angle temperature anisotropig®.g., Ref.[14]). Thus we
consider two effects for anisotropi€s seen at clusters that
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are known agi) the Sachs-WolféSW) effect 7, and (ii) X3axis
the integrated-Sachs-Wolf¢SW) effect 7isw, o 440
T=Tswt Tisw, (16) , J ~ LSS’
0=0 g W -
1 e Tl Lss
7;%[ 77!)(( 77)17]5 5111[770'60)(( ﬂde&], (17) o >
K (? ! li ! P -7 —B —————— T~ S~ -~
IZSW[W'X(W):'J’]EZJ C;‘P[ﬂ X(n')]dn". - ..
e (18) Xraxis

Note that the anisotrop¥(7,x,y) is defined on the shear-

free (Newtonian hypersurface. Nevertheless, since the coor- X2axis

d?nate gauge transformation _affects only the mOUOF’O'e and FIG. 2. Correspondence of the two coordinate systeRi®}
dipole components_ of the anisotropy, our analysis does nQatnd r,0) centered at different plac&3 and O’, respectively. We
depend on the choice of the hypersurface. consider a closed universe with curvature raddusTwo systems

coincide with each other by rotation of angle=d/B around theX,
C. Transformation of coordinate systems axis.

In this section we discuss the relation between two spheri- ine th f a closed uni but th |
cal coordinate systems centered at different places. We coffy€ €xamine the case of a closed universe, but the results can

sider a homogeneous and isotropic universe whose metric e s.traightforwardly exte_nded to flat and open model-s.
given by Since the two-dimensional space spanned hy)( with

the metric(19) can be embedded in the three-dimensional
ds’=a(n)[ —d#n?+dr?+f(r)?(d6>+sirfad¢?)], Euclidean spaceXy,X,,X3) as a two-sphere of radil the
(190  correspondence of the two coordinate systelRgdY) and
(r,0) is simply obtained by rotation of th®’ system around
where the functionf(r) depends on the spatial curvature the X, axis with the anglex=d/B (see Fig. 2 Then we
radiusB and is defined as obtain the following embedding relation for the three-
dimensional coordinatesXg,X,,X3):

r
in = closed model,
Bsing|: X, R o o
—=sin = cos® = sin = cosf cosa+ cos= Sina,
f(ry=4¢1T1, flat model, B B B B
i (20
Bsinl—{— , open model.
B X, R L
E=sm Esm@=sm§sm0, (21
A null geodesic from(or into) the origin r=0 along 6
=const and¢=const is trivially solved in this coordinate R
system and calculation of the temperature anisotropy  S_ COS—=COSLCOSa—SinLCOSl9 sina. (22)
7(O', ) observed at a clust@’ is very easy using a coor- B B B B

dinate system centered @' (hereafter call the®’ system. ] _
However, the linear potential field is more informative Using the above, an eveny(R,0,¢) in the O system can

when it is expressed in terms of the coordinate system cerf€ perturbatively expressed in terms of the corresponding
tered at the Eartl® (the O systen). Therefore, we need the €vent (.r,6,¢) in the O’ system as
relation between the spherical coordinate systems centered at

different pointsO and O'. We denote the position of the =
clusterOO '=de, (d: distance to the cluster 5

We first set the direction of=0 parallel to the direction R=r+dcosf+0(d?),
of the cIuster,O_O> ", both for the two systems. Then, due to

. —> d . r 2

the rotational symmetry around the axdO ', we can take ©=0— 5 sind cotz +0(d%),
the same azimuthal angtg in the two systemé.In the fol-
lowing we relate the radial distané®and the angl® in the b= 23)

O system with the correspondingand 6 in the O’ system.

Here we have assumed>d. This assumption formally
breaks down when we calculate the ISW contribution near
°The direction of¢p=0 is arbitrary. See also Sec. Il E. the cluster(see the next sectignNevertheless, this contribu-
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tion is found to be negligible at thel-st order for 7,

— ngec>d, Wheren, is the conformal time at present.
Using the above equatiori23), the potential perturbation

Vo (7.1,6,¢;€) intheO’ system is expressed in terms of
that in theO system as

Vo (n.r,0,¢,6) =Vl 7,R(r,0),0(r,0),¢]
=Wo(n.r,0,¢:8)+ 0, Vo(n.r,0,¢;e)

X[R(r,0) =11+ g% o( 7.1 ,0,;€)
X[O(r,0)— 6]+ 0(d?). (24)

D. Quadrupole moment at a cluster

In Sec. Il A, we have discussed the relation between the
polarization and temperature anisotropies. Here we calculatg

the quadrupole anisotropy of CMB at a clus@t which is
observed as the Stokes paramefe+iU in the direction
from the EarthO. The quadrupole modé,, seen at the clus-
ter O’ is written as

(Q—iU)“X(éc,d)Ef Timo—d,d&, Y)Y 7:8)d0,,
(25)

where we have explicitly denoted the orientation of the polar
axiséc to show our specific choice of the coordinate assigned

for each cluste©’.
The large angle(small I) temperature anisotropies are

PHYSICAL REVIEW D 62 123004

- Vol 70;6) 1 , -
Xsw(€;,d)= T+ §d — Vo 70:€)

1 -
+ ﬁq’éz( 70,€)

+0(d?),

+ i\If (7n 'éc)cot@
\/78 320 7/0» B

(28

where the prime denotes the radial derivative and we have
put 79— 7gec= Mo (SiNCe 7gec< 70), and have used formulas
for the spherical harmonics such as

1

cosOY o 0, ¢) = \/7Y32( 0,4). (29

imilarly the quadrupole mode induced by the integrated-
Sachs-Wolfe effect is written as

Xisw(€,d) =25 n;e)|+2d| — [T 5 7;€)]|

1 A
+ —=[|ViA7;
r—7|| 37 &)

dominated by the Sachs-Wolfe effect and the integratedvhere we have defined an integral operdtor| as

Sachs-Wolfe effect. The Sachs-Wolfe effect is written in

terms of the potential field” in the O’ coordinates as

. 1
Tsw(mo—d,de;,y) = §‘Por[77dec,( 70— d— 7ged V1.
(26)

With Egs. (24), (25), and(26) we can evaluate the quadru-
pole modeXs,, due to the SW effect.

To evaluate the integrdR5) we expand the linear poten-
tial field ¥ in the O system by the spherical harmonics as

Wo(’?:r,e,dﬁéc):% F()Wim(r:€)Yim(6, ¢;€).
(27)

Here the functionF(7) represents the time dependence of

the linear potential fluctuation and is proportionalita (D
is the linear growth rate of density contradn the case of

the Einstein—de Sitter universe or at an early matter-

dominated stage of general models, we h&vka=const
[15]. Thus we fixD/a=1 at = 54ecand normalize the time
dependence biF (74ed =1.

After some algebra we obtain the following result:

+ 2l vamencot?] | +oa?)
/7B 32 7,&)COt 5 (d9),
(30)
70
Iyeml= [ "F o my(mdn. @

The d°%th order term is essentially the same as the result
obtained in Eq[3]. The formulas(28) and (30) are easily
extended to general background geometry. We obtain the
formulas for the flat universe in the limB— -« and for the
open universe by replacement [cgt-coti x].

In the Einstein—de Sitter Universe the ISW effect van-
ishes £'=0) and the quadrupole moment is determined
solely by the three-dimensional information of the potential
field ¥ at the decoupling. In this case, we have the following
result up to the second order df

3X(6,,d)=Wtd| — W, + Ly 2 Ve
€, 22 22 \/7 32 \/77]0
+d? 411f"+ ! P! 3 30 1\1/"
7 22 7770 22 7713 22 \/7 32
4 Wi+ 4 Vot Loy
o 2 \Tmd 7 738 %
33, 53
7_\1'42"' ——Va +0(d%), (32
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z Here we have followed the notation of Sakurbb]. Namely,
the ket-vectolff) represents an angular functié(é, ¢) and

0=0 bra-vector(f| its complex conjugate. The inner product de-
notes the angular integrals

6.0 9.) E 2m -
1 <g|f>EJ dqsf dosinog* (0,4)f(0,4). (38
E9 N 0 0
X IO Tl
e The function _.Y,(8,¢) in Eq. (37) is the spin-weighted
=0 spherical harmoni€l7] and is given in terms of the rotation
matrix of the scalar spherical harmonien)=Y,,, as
¢C Y

21 +1
FIG. 3. Relation between the coordinate system specific to each Y im(8,0)= (Is| Ry(— O)R,(— @)|Im).
cluster and the Earth fixed coordinate system. A (39)
where we have denotetn(7o;€;) by ¥y, for simplicity.  Thys the all sky (three-dimensional map of X=Xgy
+ Xsw is expressed in terms of the coefficiedts,, defined
E. All sky map and reconstruction of the linear potential field on a fixed coordinate system as

The result given in the previous subsection depends on yp=
the specific choice of the coordinate system defined for each y_ & qy=~/—— .V, (8 W
cluster. We have set the direction 60 toward the direc- swl&.d) 2522 Per Pe)Wam(70)

tion of the clustelécoco_é’. Here in order to consider an all A
sky map of the quadrupole moments seen at clusters, we +d =\ 75 -2Yaml Oc )V om( 70)
express the coefficien?,(r;e;) in terms of the harmonic
coefficients for a spherical coordinate system fixed at the Vam - - 7o
Earth. We denote the direction of a clustrin this fixed 21| Vam(70)+ g ¥am(70)cOt 57
coordinate agsee Fig. 3

-~ 2

e.=(sinf, cose, ,sinf. sing,,cosb,), (33 X 5Y3m(0c,¢c) |+0(d) (40
and the linear potential field as and

~ 4
\If(n,r,e,d)):% F()Wim(r)Yim(6,¢). (34) Xsw(&,d)=2 V?W—ZYZm(HC!(ﬁC)”\PZm("])”

- 41
The relation between the two coefficients, (r;e.) and +2d| — \/?_ZYZm(ac,%)H‘PQm( 7|
W (r) is given by the two successive rotations of the sys-
tem byR,(— ¢¢) andRy(— 6.), whereR,(«a) is the rotation A 4 n
operator around tha axis with anglea: + T(H‘Pém( )|+ g‘\lfgm( n)cotg‘ )
Wo(r;e) =(12|Ry(— O) R, — ) | W (r, 6, 35
I2( ec) < | y( c) z( ¢c)| ( ¢)> ( ) % 72Y3m(0m¢c) +O(d2). (41)
= 2 (12|[Ry(— 0)RA— ¢)|I'm’) Assuming that we have the all sky map.¥f we can extract
I'm out information ofW¥,,,, for each (,m) mode by using the
X{'m'|W(r,0,¢)) (36)  orthonormal relation for the spin-weighted harmonics
2 T
Am f d JdesinB,Y* 0,0) Yy im (0,)=5816mim-
:2 2|+1qjlm’(r)72Ylm’(0m¢c)- o ¢ 0 s Im( ¢) sY1rm (6, 9) ['1%m'm
m’ (42

(37)
From Egs.(40) and (41), we see that by observing tte
dependencéor equivalently the linear redshift dependence
3We choose the direction @f=0 in theO' system parallel t&s,  Of the polarization map, we obtain information of the linear
in Fig. 3. potential fluctuations in the combination
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- Ao T T T T T
=V zg¥en(m0) =2\ 5l ¥om(mol, (43 I 1=2 ] I 1=3 ]
1 - 1 -
for =2 modes and ; ] :
Vi 4 Mo o} I :o I
o1 W3 770)+§‘I’3m( ﬁo)COtE loé | _'-g i
\/E 4 7 01 ¢ o1F
# 5 Faml  an meot ) | ; :
(44) I I
for | =3 modes. o o
In the case of the Einstein—de Sitter universe, the multi- 00t 040608 1 U0 0z040608 1
pole componentsl, (7o) for smalll at the last scattering 0 0

0 0

surfacer = 7y can be obtained directly from the temperature
anisotropies’. If we have the polarization map we can fur-  FIG. 4. Ratio of thed®-st order polarization signal and tdé-th
ther obtain the following information: From th®(d) map  signal for a cluster ar=0.5. We consider flat CDM models with

and the temperature anisotroffywe obtain cosmological constant. The dashed lines represent the contribution
of the SW effect and the solid of the ISW effect. He¥r3 modes,
Wn(m0), Yin(70), (45)  there are two SW terms. The long-dashed line represents the term

proportional to¥ and the short-dashed line the term proportional to
and from the polarization map up ©(d?) order and the W',
temperature anisotropy,
+Xo=1). We use the primordially Harrison-Zeldovich spec-
" " W am( 70) " trum with the CDM transfer function given in Bardeen et al.
2m(70), W3m((70), 9,,—0+\I’4m( 70)- (46) [18]. The Hubble parameter is fixed &t=0.7 (h is the
Hubble parameter in units of 100 km/sec/Mp&he shape
Note that we cannot separaie], (7o) from W’ (o). Us-  parameterl’ of the CDM transfer function is set af

ing information of the polarization up to th (or z") order ~ =h{,. _
we would know the derivative coefficienﬁgo‘lfm( 70) and We first calculate the rms value for tiid-th signal of X
ai,/ Wanm(70) separately foi<n but not forl=4 modes. [Eqs.(40) and (41)},

0

So far we have inquired a basic problem of reconstruc- A A
tion, considering an idealistic and simplified situation. Here ~ V25 ¥am(70)—2 ?H\PZm( 70|, (47
we have to mention two points that would be important to

apply our reconstruction method to real observational datayq the same quantities for tlid-st order correction fot

The first point is that the polarization sign@—iU of a  _» mode both for the SW and ISW effedBq. (43)]
cluster is obtained by a combination of the temperature an-

isotropy7,, at the cluster and its optical depthas shown in A A

Eg. (12). We have implicitly assumed that we can separate - \/E\Ifém( 70), —2\/?||‘If§m( n)ll. (48
them. This could be achieved, for example, by using x-ray

and thermal Sunyaev-Zeldovich data. The second point i& | —3 mode at thei®
that distribution of clusters is not homogeneous on our ligh

cone (both in redshift and angular positipriTo extract out
information of the potential field from inhomogeneous

-st order the SW effect is constituted
rby two terms[Eq. (44)] and we treat them separately. We
evaluate the rms values of the three quantities

sample qf (;Iusters it would be necessary to develop a work- \/E ’ A
able statistical method. qugm( 7o), 4T%‘1’3m( 70),
Ill. EXAMPLES \/_77 Wan(7)
As shown in the previous section the polarization signal 7( R 7’)||+4‘ ) 49

contains both the SW and ISW effects. The former reflects

local quantity at the last scattering surface and more interestn Fig. 4 we plot the ratio of the-st signal az=0.5 to the

ing from the point of reconstructing the linear potential field d°-th signal. First, note that the magnitude of st cor-

. rection is significant even a&=0.5. Forl =2 mode the SW
In this section we calculate the magnitude of these tweeffect is larger than the ISW effect f6Y,=0.3 and thed*-st

effects for concrete models. We investigate flat cold-darksignal becomes comparable to tti®th signal for(Q,=1.0.

matter (CDM) models with cosmological constaing (g For I =3 modes, theb 5, contribution to the SW effect is
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larger than theW ;. contribution. Here the ISW effect is We showed that using the polarization signal up tozh¢h
stronger than the case b2 and the SW effect becomes order, the derivative coefficienﬁém\lf,m would be separately

dominant only for(2¢=0.8. obtained forl =2 and 3 modes. But we cannot separate them
for modes withl =4.
IV. SUMMARY For general background cosmological models the polar-

o . . . . ization signal also contains the integrated-Sachs-Wolfe ef-
The polarization signal of CMB associated with a d'Stamfect. In Sec. lll we have examined the first{th) order

cluster reflects temperature anisotropies observed at the clus=:" .~ * . i _
ter. Using this effect we can, in principle, obtain three_polanzatlon signal for typical flat CDM models with cosmo-

dimensional information of potential fluctuations around the'0gical constant. We found that the Sachs-Wolfe effect domi-

last scattering surfacé.S9). In this paper we have calcu- nates the signal of=2 modes for density parametél,

lated the three-dimensional map of the polarization signal 01?0.3, but it dominates thé=3 signals only for€o=0.8.

clusters induced by the temperature anisotropies in homog r’gﬁbllgfgrgef?jna(t:ﬁ:_\/\glrf o?‘ff\(/aig/vlioarggggtﬁc?fiﬁg arri1_d
neous and isotropic background universe. We have consid- P P

ered adiabatic scalar perturbations and included both thglordial potential fluctuations. But it mainly comes from time

Sachs-Wolfe effect and the integrated-Sachs-Wolfe effec‘.’ariaﬂon of Fhe potential field at re!atively recent epoch.
Our formulation is valid for general background geometries. ence we might be able to separate its effect by probing the

The radial part of the three-dimensional map is expresse[(,?rge-scale matter distribution with other observational tools

perturbatively with respect to the distandes equivalently €.g., Ref[19)).

redshiftg of clusters, and angular dependence is written in

terms of the spin-weighted harmonics. Using the orthonor-

mality of the harmonics, the independent information that N.S. would like to thank N. Sugiyama and G.-C. Liu for

can be extracted out from the map is clarified explicitly. ~ useful discussions. This work has been supported by the
In the case of the Einstein—de Sitter universe, thelapanese Grant in Aid for Science Research Fund of the

integrated-Sachs-Wolfe effect vanishes and the temperatuidinistry of Education, Science, Sports and Culture Grant

anisotropies solely probe the local quantities around the LSNos. 01416(N.S) and 12640269M.S.).
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