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We obtain a large class of AdS spacetimes warped with certain internal spaces in 11-dimensional and type
IIA or 1IB supergravities. The warp factors depend only on the internal coordinates. These solutions arise as the
near-horizon geometries of more general semilocalized multi-intersectiopd@ines. We achieve this by
noting that any spher@r AdS spacetimeof dimension greater than 3 can be viewed as a foliation involving
S® (or AdS;). Then the 8 (or AdS;) can be replaced by a three-dimensional lens spaca BTZ black holg,
which arises naturally from the introduction of a NWYdr a pp wave to the M-branes or the D3-brane. We
then obtain multi-intersections by performing a Kaluza-Klein reduction or Hegtiality transformation on
the fiber coordinate of the lens spa@@ the BTZ black holg These geometries provide further possible
examples of the AAS/CFT correspondence and of consistent embeddings of lower-dimensional gauged super-
gravities inD=11 orD=10.

PACS numbses): 11.25.Mj, 04.65+e, 11.10.Kk

[. INTRODUCTION near-horizon limits of semi-localized multiple intersections
in both type IIA and type IIB theories.

Anti—de Sitter (AdS) spacetimes naturally arise as the The possibility of this construction is based on the follow-
near-horizon geometries of non-dilatorpebranes in super- ing observations. As is well known, a non-dilatoqidrane
gravity theories. The metric for such a solution is usually thehas the near-horizon geometry AgSS'. The internal
direct sum of AdS spacetime and an internal sphere. Thesesphere can be described geometrically as a foliation of
geometries are of particular interest because of the conjectu® X S surfaces witm=p+q+ 1 (see Appendix A and so,
that supergravity on such a background is dual to a conforin particular, ifn=4, then-sphere can be viewed in terms of
mal field theory on the boundary of the AdS spacetimea foliation with $xS"~* surfaces, viz.

[1-3]. Examples include all the anti—de Sitter spacetimes

AdS, with 2<d=<7, with the exception ofl=6. The origin d0Qi=da*+cosadQ3+siadQ?_,. D

of AdS; is a little more involved, and it was first suggested in . . )

[4] that it was related to the ten-dimensional massive typdn Appendix B, we show that when a non-dilatoidorane

lIA theory. Recently, it was shown that the massive type [IAWith an n-sphere in the transverse space intersects with a
theory admits a warped-product solution of Ad®ith S*  Kaluza-Klein  monopole [a  Taub-NUT (Newman-Unti-

[5], which turns out to be the near-horizon geometry of aTa.mbu“no with ChargeQN] in a semi-localized manner, the
semilocalized D4- or D8-brane intersectifsi. It is impor- ~ net result turns out to be.effgcti\_/ely a coordinate tra'nsforma-
tant that the warp factors depend only on the interrfal Stion of a solution with a dlstr_lbutlon of pune-branes with no
coordinates, since this implies that the reduced theorp in NUT present. The round®Sin Eq. (1) becomes the cyclic
—6 has AdS spacetime as its vacuum solution. The considens space 8Zq with the metric

tent embedding oD =6, N=1 gauged supergravity in mas-
sive type IlIA supergravity was obtained [id]. Ellipsoidal .,
distributions of the D4 or D8 system were also obtained, Qn @
giving rise to AdS domain walls i =6, supported by a

scalar potential involving 3 scalaf8]. wheredw= (), is the volume form of the unit 2-sphere. This

In fact, configurations with AdS spacetime in a warpedmetric retains the same local structure as the standard round
spacetime are not rare occurrences[9h a semi-localized 3-sphere, and it has the same curvature tensor, buy the
M5 or M5 systeni6] was studied, and it was shown that the coordinate on th& (1) fibers is now identified with a period
near-horizon geometry turns out to be a warped product ofvhich is 1Qy of the period for 8 itself. We can now per-
AdS; with an internal 6-space. This makes it possible toform a dimensional reduction, orgduality transformation,
study AdS/four-dimensional conformal field theory (CEJT  on the fiber coordinatg, and thereby obtain AdS spacetime
from the point of view of M theory. In this paper, we shall in a warped spacetime. The warp factor depends only on the
consider AdS with a warped spacetime in a more generahternal “latitude” coordinatea, but is independent of the
context and obtain such geometries for all the Ad8s the lower-dimensional spacetime coordinates. In fact, the
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M5/M5 system with Adg found in[9] can be obtained in can be viewed as B (1) bundle over Adg We then per-
precisely such a manner from the D3-brane by using type llorm a HopfT-duality transformation on the fiber coordinate
or IIB T duality. Note that an isotropi@-brane can be to obtain a solution with AdSin a warped spacetime in M
viewed as carrying a single unit of NUT charge. Althoughtheory, as the near-horizon geometry of a semi-localized M2
this semi-localized way of introducing a Taub-NUT seemsor M2 system.

trivial, in that it amounts to a coordinate transformation, per- |n Secs. IV and V, we apply the same analysis to the
forming a Kaluza-Klein reduction on the fiber coordinate M2-NUT and M2-pp-wave systems, and the M5-NUT and
does create a non-trivial intersecting component, since thgi5—pp-wave systems, respectively; we obtain various con-
Kaluza-Klein 2-form field strength now carries a non-trivial figurations of AdS spacetime in warped spacetimes by per-
flux. This fact was used if10] to construct multi-charge forming Kaluza-Klein reductions and Hoftduality trans-
p-branes starting from flat spacetime. formations on the fiber coordinates.

An analogous procedure can instead be applied to the |n Sec. VI, we consider the D4-D8 system, which has the
anti—de Sitter spacetime, rather than the sphere, in the neafear-horizon geometry of a warped product of Ad®d S.
horizon limit Ad$,;xXS" of a non-dilatonicp-brane. As dis- We perform a HopfT-duality transformation on the fiber
cussed in Appendix A, AdScan be described in terms of a coordinate of the foliating lens space df &nd thereby em-
foliation of AdS, < S surfaces withd=p+q+1 and so, in  ped AdS in a warped spacetime solution of type 1B theory.
particular, ford=4 it can be expressed as a foliation of  \We end with concluding remarks in Sec. VII. In Appen-
AdS; x §773: dix A, we show how arbitrary-dimensional spheres and AdS

_ spacetimes can be described in terms of foliations. In Appen-
dsf\dsd:dpz”LCOSH PdS/ZAngJ“S'nI”F pdQG 4 B i B, we show that the solution describing the semi-local
) . ) intersection of a non-dilatonip-brane with a Kaluza-Klein
In the presence of ap wave that is semi-localized on the monopole (Taub-NUT) is equivalent, after a coordinate

world volume of thep-brane, the Adgturns out to have the  transformation, to a solution purely composed of distributed
form of aU(1) bundle over AdgS[11], p-branes, with no NUT.

II. D3-NUT SYSTEMS AND AdSs IN M THEORY

dr?
— W 1442 2 -1_ 2
dspgs,= — W Hdt*+ — +r?Wldy+ (W=~ 1)dt]?, FROM T DUALITY

@ AdS; spacetime arises naturally from type IIB theory as
whereW=1+Q,,/r?, andQ,, is the momentum carried by the near-horizon geometry of the D3-brane. Its origin in M
the pp wave. This is precisely the structure of the extremaltheory is more obscure. One way to embed the AuiSM
Barados-Teitelboim-ZanelliBTZ) black hole[12]. We can  theory is to note thaS® can be viewed as &(1) bundle
now perform a Kaluza-Klein reduction, drduality transfor- overC P2, and hence we can perform a HopHuality trans-
mation, on the fiber coordinatg In the near-horizon limit formation on theU(1) fiber coordinate. The resulting
where the “1” in W can be dropped, we obtain Ad$h a  M-theory solution becomes AdS CP?x T2 [13]. However,
warped spacetime with a warp factor that depends only oithis solution is not supersymmetric at the level of supergrav-
the foliation coordinatep. ity, sinceCP? does not admit a spin structut@hargedspi-

A T-duality transformation on such a fiber coordinate ofnors exist but, after making thie-duality transformation, the
AdS; or S® has been called the Hopfduality[13]. It has the  relevant electromagnetic field is described by the winding-
effect of (unjtwisting the AdS or S°. The effect of this mode vector and it is only in the full string theory that states
procedure on the six-dimensional dyonic string, whose nearcharged with respect to this field arise. It was therefore ar-
horizon limit is Ad$;xX S, was extensively studied ifl1].  gued in[13] that the lack of supersymmetfand indeed of
In this paper, we apply the same technique to Ad8S®  any fermions at allis a supergravity artifact and that, when
geometries that are themselves factors in the foliation surthe full string theory is considered, the geometry is super-
faces of certain larger-dimensional AdS spacetimes oBymmetric. Such a phenomenon was referred as “supersym-
spheres. metry without supersymmetry” ifil4].

In Sec. Il, we consider the semi-localized D3-NUT sys- Recently, Ad§ in warped 11-dimensional spacetime was
tem and show that the effect of turning on the NUT chargeconstructed if{9]. It arises as the near-horizon limit of the
Qy in the intersection is merely to convert the internal semi-localized M5-M5 intersecting system. After performing
5-sphere, viewed as a foliation ot 8S®, into a foliation of ~ aT-duality transformation, the warped spacetime of the near-
Sl><(§’/ZQN), where 53,/2QN is the cyclic lens space of or- horizon limit becomes AdsX (S5/ZQN). In this section, we
derQy. We can then perform &-duality transformation on shall review this example in detail and show that the M5-M5
the Hopf fiber coordinate of the lens space and thereby olsystem originates from a semi-localized D3-NUT intersec-
tain an Ad$ in a warped spacetime as a solution in M tion in type IIB supergravity.
theory, as the near-horizon geometry of a semi-localized M5
or M5 system. A. D3-NUT system

In Sec. Ill, we consider a semi-localized D3 jpp-wave Any p-brane with a transverse space of sufficiently high
system, for which the AdSbecomes a foliation of a circle dimension can intersect with a NUT. The D3-NUT solution
with the extremal BTZ black hole, which is locally Ad&nd  of type IIB supergravity is given by
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TABLE I. The D3-NUT brane intersection. Heve¢ and — de- X;=Tr COSa COSH, X,=TI COSa Siné,
note the world volume and transverse space coordinates respec- (10)
tively, and * denotes the fiber coordinate of the Taub-NUT. z=1Qy\ r?sirfa.
towp W, W3 X3 Xp Zy Zp Z3 Y In terms of the new coordinates, the metric for the solution
D3 X X X X = = = = = H becomes
NUT X X X X X X - - = % K dSiOHB:H_llz(_dtz'f'dW%‘f'dW%‘f'dW%)
+HY2(dr2+r2dm2),
dsioe=H YA —dt?+dwi+ - - - +dwj)
Q
+HYdx2+ dx5K (d 2+ 22dQ3) H=1+ 3, 11
+K~1(dy+Qnw)?],
(dy+Qnw)?] where
Fe=dtAdPwAdH 1+ * (dtAd*wAdH 1), (5) 1 dy 2
P . o dMZ=da?+c2d6?+ —s? dQ3+ —+w) , (12
where z2=2z7+25+25, and o is a 1-form satisfyingdw 4 Qn

=(),. The solution can be best illustrated by Table I. ands=sina, c=cosa. Thus, we see thang describes a

The functionK is associated with the NUT component of " "~ 1o .
the intersection; it is a harmonic function in the overall trans-fOIIatlon of S* times the lens Spa(ﬁB/ZQN' For a unit NUT

verse Euclidean 3-space represented as coordinates. by chargeQy=1, the metriad M2 describes the round 5-sphere
The functionH is associated with the D3-brane component.and the solution becomes an isotropic D3-brane. It is inter-

It satisfies the equation esting to note that the regular D3-brane can be viewed as a
semi-localized D3-brane intersecting with a NUT with unit
aEH + Ka)zzH —0. (6)  charge! In the near-horizon limit —0, where the constant 1

in the function H can be dropped, the metric becomes
Equations of this type were also studied[k5—25. In the ~ AdSsXMs:
absence of NUT charge, i.eK=1, the functionH is har- 2
monic in the the tra}nsverse 6—spgcg of the l?3—brane. WhendS%O“B:Q—UZrZ(_dt2+dWidWi)+Q1/2_r2
the NUT chargeQy is non-zeroK is instead given by r

d 2
Kop 2N ) +QY2 da?+c?d6?+ ;52 dQS+ i ]
z ' QN
(13

and the functiorH cannot be solved analytically, but only in
terms of a Fourier expansion )'hcoqrdinates. The usual way B. M5-M5 system and AdS; in M theory
to solve for the solution is to consider the zero modes in the ] o ] )
Fourier expansion. In other words, one assumes fthas Since the near-horizon limit of a semi-localized D3-brane

independent of. The consequence of this assumption is thaC NUT is a direct product of Adgand an internal 5-sphere
P ' d P tthat is a foliation of a circle times a lens space, it follows that

the resulting metric no longer has an AdS structure in its : . :
near-horizon region. Ifi6], it was observed that an explicit if we perform aT-duality transformation on theJ(1) fiber

closed-form solution foH can be obtained in the case where coordmatey, we shall obtain Ad$in a warped spac_etlme as
the “1” in function K is dropped. This solution is given by a solution of the type IIA theory. The warp factor is associ-

6] ated with the scale facta® of dy? in Eq. (13). This type of
Hopf T duality has the effect of untwisting a 3-sphere into
Qn Qu S?x St [11]. If one performs th&@-duality transformation on
K=—, H :1+2 — . (8)  the original full solution(5), rather than concentrating on its
z K (|x—Xoul*+4Qn2)? near-horizon limit, then one obtains a semi-localized

) ) NS5-D4 system of the type IIA theory, which can be further
In this paper, we shall consider the case where the D3-brangieq pack toD=11 to become a semi-localized M5-M5

is located at the origin of the space and so we have system, obtained ifi6]. In [9], the near-horizon structures

Q

T e ©

1An analogous observation was also madgiifi], where multi-

o i . . . charge solutions were obtained from flat space by making use of the
wherex“=x'x". Thus, the D3-brane is also localized in the ¢, that € can be viewed as (1) bundle over & In other

space of thex as well. Let us now make a coordinate trans-words, flat space can be viewed as a NUT, with unit charge, located
formation on theU(1) coordinate.
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TABLE Il. The D3—pp-wave brane intersection. Here de- dr?
notes the wave coordinate. dSZAds3: —r2Wldt?+ r2W[dy+ (W™ 1—1)dt]?+ et
t y Xl X2 Zl 22 23 24 25 26 Q (18)
W=1+ —.
D3 X X X X - - — — - — H 2
wave X ~ - - - - - - = - W

Note that the above metric is exactly the extremal BTZ black
hole[12], and hence it is locally AdS Thus we have dem-
Gonstrated that the semi-localized D3p-wave system is in
act a warped product of AdS(the extremal BTZ black
ole) with a 7-sphere, where’Ss described as a foliation of
nslx S surfaces. Note that the metri¢17) can also be ex-
pressed as a direct product of AGSS®, with the AdS met-
ric written in the following form:

of these semi-localized branes of M theory were analyze
and AdS was obtained as a warped spacetime solution. W
refer the readers to RgPB] and shall not discuss this solution
further, but only mention that, from the above analysis, it ca
be obtained by implementing tileduality transformation on
the coordinatg in Eq. (13).

dsi=s"2(dsigs, +da®+c%d6?). (19)
I1l. D3 —pp-WAVE SYSTEM AND EXTREMAL BTZ
BLACK HOLE Making a coordinate transformation tan@)=e”, the met-
In this section, we study the semi-localizpg wave in- fic becomes
tersecting with a D3-brane. The solution is given by d%dez-i—Sinhz pd6?+ costt PdSZAdssa (20
A2y e=H Y —W Ld2+W(dy+ (W 1—1)dt)? which is precisely the Ad$Smetric written as a foliation of a
10118 circle times AdS (see Appendix A
+dX+dx3]+HYAdZ+ - - +dZ), The extremal BTZ black hole occufg8] as the near-

horizon geometry of the boosted dyonic string in six dimen-
_ _1 sions, which can be viewed as an intersection of a string and
Fe=dt/\dyAdxi/\dxp/\dH a 5-brane iD =10. The boosted D1-D5 system was used to
+* (dtAdyAdx Adx/AdH ™). (14)  obtain the first stringy interpretatidi29] of the microscopic
entropy of the Reissner-Nordstmoblack hole inD=5. The
boosted dyonic string has three parameters, namely the elec-

The solution can be illustrated by Table II. . .
In the usual construction of such an intersection, the hartrIC and magnetic chargée, Qm, and the boost momen

. : tum parameteQ,,. On the other hand, the extremal BTZ
monic functionsH andW depend only on the overall trans- black hole itself has only two parameters: the cosmological

verse space coordinates The near-horizon limit of the so- constant, proportional tm and the masgwhich is
lution then becomes & S°, where K is the generalized equal to the angular momentum in the extremal limithich
Kalgorodov_ metric inD =5, a_no! t_he geometry is dual to a 5 related t0Q,,. (Analogous discussion applies @=4
conformal field theory in the infinite momentum fraff®].  [30]) In our construction of the BTZ black hole in warped
On the other hand, the semi-localized solution is givepdly  gpacetime, the original configuration also has only two pa-

rameters, namely the D3-brane chafgerelated to the cos-
mological constant of the BTZ black hole, and thp-wave
(15 charge, associated with the mass.

He 2 W=1+Q,
|2I*

Q
|27

X2+

A. NS1-D2 and M2-M2 systems and Adg

We can perform &-duality transformation on the coordi-
natey in the previous solution. The D3-braneTislual to the
1 1 _ rQ? D2-brane, and the wave Bdual to the NS-NS string. Thus
X1 = C0Sa COSH,  Xp=-COSasing, z=_ —vi, the D3-pp-wave system of the type 1IB theory becomes an
(16) NS1-D2 system in the type IIA theory, given by

We now let

ds3oa =W — (WH) ~1dt2+HY(dx{+dx5
where v, coordinates, satisfying;v,=1, define a 5-sphere Sioia T-(wh) (dxg+dxy)

with the unit sphere metridQ§=dvidvi . Using these coor- +W’1dyf,+dz§+ L. +dz§], 21)
dinates, the metric of the semi-localized D3-wave system
becomes eb=W-12H14

dsfoig= QY% 2(dsigs, + da?+c?d6?+5%d0F), (17) , _ o
A D3-brane with an 3<R world volume was obtained if27].

In that solution, which was rather different from ours, the dilaton

Wheredsidss is given by was not constant.
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TABLE Ill. The NS1-D2 brane intersection. TABLE V. The M2-M2-NUT brane intersection.
t X¢ Xo Y1 Zn Z, Zz3 Zy Zs Zg t Xs X2 Y1 Y2 Zn Z; Zz3 Y U U
D2 X X X - - - - - - - H M2 X X X - - - - - - - — H
NST X - - X — - - = - - W M2 X - - X X - - - - - - W
NUT X X X X X — — — * x x K

F(4):dt/\dxl/\dX2/\dH_1, F(3)=dt/\dyl/\dW_1 o
B. Further possibilities

This solution can be represented diagrammatically as Table Note that in the above examples, we can replace the round

[l. 2 ; )
In the near-horizon limit where the 1 W is dropped, the sphered(ls by a lens space of the following form:

metric of the NS1-D2 systert21), in terms of the new co- d§/ 2
ordinates(16), becomes d02=da?+c?df?+s? d5+ ~—+Z)) . (26)
N

dsfo=Qu Q%% ¥ ds}ys + da’+c?d 6%+ s°d0E
where c=cosa, s=sina and do={,. As we have dis-
+(QuwQ) ~'sdyi], (22 cussed in Appendix B, this can be viewed as an additional
NUT with charge@N intersecting with the system. We can

where now perform a Kaluza-Klein reduction drduality transfor-
r4dt?z  dr? mation on the fiber coordinatg, leading to many further
dsidsz= T o. toz (23)  examples of warped products of Ag8r AdS; with certain
w

internal spaces. The warp factors again depend only on the
Thus we see that the near-horizon limit of the NS1-D2 Sys‘_c:oordinates of the internal space. These geometries can be

tem is a warped product of AdSwith a certain internal viewed as the near-horizon limits of three intersecting
8-space, which is a warped product of a 7-sphere with &ranes, with chargeQ, Qy andQy . Of course, this system

circle. can equally well be obtained by replacing the horospherical

We can further lift the solution back =11, where it AdSs in Eq. (13) with Eq. (19).
becomes a semi-localized M2-M2 system, For example, let us consider the M2-M2 system with an

additional NUT component. The solution of this semi-
ds?,=(WH)YY — (WH) ~*dt?+H 1(dx3+ dx3) localized intersecting system is given by
+WH(dyi+dy3), +dZ+ - - +dZ], ds2,= (WH)Y — (WH) " 1d2+H X2+ dx2)
Fay=dtAdx Adxp/AdH +WH(dyi+dy3), +K(dZ+2%dQ5)
+dtAdy, Ady,Adw L, (24) +K ™ H(dy+Qw)?+duZ+du3],

The configuration for this solution can be summarized in |:(4):dt/\dxl/\dxz/\dH*1
Table IV.

It is straightforward to verify that the near-horizon geom- +dtAdy;/Ady,AdW (27)
etry of this system is a warped product of AdBith a cer-
tain 9-space, namely where the function$i, W andK are given by

dsty=Qu’ Q™% ¥ dsiys, + da’+¢’d 6%+ 5°d03 _ Q
_ (|u?+4Qu2)?’
+(QuQ) s (dy2+dyd) ], 29 luf*+4Qu
. o . Q
wheredsf\dSZ is an AdS metric given by Eq(23), and the W=1+Q,| |x|2+ ———, (28)
internal 9-space is a warped product of a 7-sphere and a |u[*+4Qnz
2-torus.
Qu
TABLE IV. The M2-M2 brane intersection. Ka_?-
VX X V1 Y2 4 2z 4 B % We illustrate this solution in Table V.

M2 X X X — — — - - - - - H The near-horizon structure of this solution is basically the
M2 X - — X X — — — _— _ _ w same as that of the M2-M2 system with the rouridirSthe

foliation replaced by the lens spacé/ISQN. We can now
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TABLE VI. The D2-D2-D6 brane intersection. If the functionK associated with the NUT components of
the intersection takes the fork=Qy/z, then the function
t Xs Xo Y1 Y2 7zt Zp Zz U W H associated with the M2-brane component can be solved in
D2 X X X - - _— _ _ _ _ H the semi-localized form
D2 X - - X X - - - - - W Q
D6 X X X X X — — - X x K H=14+ —— (32

(IX|>+4Qy2)%

perform Kaluza-Klein reduction on the fiber coordingtend  Thus, the solution is also localized on the space of xhe
the solution becomes the semi-localized D2-D2-D6 brane incoordinates. Let us now make a coordinate transformation
tersection, given by

X;=r cosau;, z=3iQy r?sirfa, (33
dsZoua= (WH)¥K 1 — (WH) " 1dt2+H L (dx{+dx3) | H oen
where u;ui=1, defining a 3-sphere, with the unit 3-sphere

-1 2 2
W (dyr +dy;), metric given bydQ3=du;dy; . In terms of the new coordi-

+K(dZ+22d02) +duZ+du?], nates, the metric for the solution becomes
F = dtAdx AdxpAdH L+ dtAdy, Ady, AdW 2, dsi;=H 23— dt*+dwi+dwd) + H(dr?+ r’dM?),
(29)
Q
e/=(WHYK™¥  F=QnQ,. (30) H=1+ 75, (34)
The solution can be illustrated by Table VI. Where
IV. M2-NUT AND M2 —pp-WAVE SYSTEMS d 2

2 2 2 2,12 2 y
) ) i dM?=da“+c°dQ5+ 357 dQ5+| ==+ w (35

In this section, we apply an analogous analysis to the Qn

M2-brane. We show that the semi-localized M2-brane inter-

secting with a NUT is in fact an isotropic M2-brane with the Thus we see tha M is a foliation of a regular 3-sphere,
internal 7-sphere itself being described as a foliation of dogether with a lens spa®/Zq, . WhenQy=1 the metric
regular S and lens space’&q, , whereQy is the NUT  dM?2 describes a round 7-sphere and the solution becomes an
charge. Reducing the system Bo=10, we obtain a semi- isotropic M2-brane. Interestingly, the regular M2-brane can
localized D2-D6 system whose near-horizon geometry is &€ viewed as an intersecting semi-localized M2-brane with a
warped product of AdSwith an internal 6-space. We also NUT of unit charge. In the near-horizon limit—0, where
show that a semi-localizegp wave intersecting with the the 1 in the functiorH can be dropped, the metric becomes
M2-brane is in fact a warped product of Ag$the BTZ  AdS,XM;.

black holg and an 8-space. The system can be reduced to

D=10 to become a semi-localized DO-Neveu-Schwarz-1- B. D2-D6 system

brane(NS1) intersection. In the M2-brane and NUT intersectig81), we can per-

form a Kaluza-Klein reduction on thg coordinate. This

gives rise to a semi-localized intersection of D2-branes and
The solution for the intersection of an M2-brane and aD6-branes:

NUT is given by

A. M2-brane—NUT system

o . Va2 ) dsToua=H "~ Y8(—dt?+ dws +dwj)

dsglzj;<;z;jtzzt1?z§i iwidt ;[Nd:; o FHIK Y A+ -+ HIKT

X (dZ+dz+d2),

Fay=dtAdw; Adw,AdH ™, (31) AT,
wherez?=z3+ 73+ z5 anddw={,. The solution can be il-

lustrated by Table VII. Fay=dtAd?wAdH 1,
TABLE VII. The M2-NUT brane intersection. Fo=e 32 (dtAd?wAd*xA\dK 1), (36)
towg Wy X3 Xp X3 Xq 23 Zp Z3 Y The solution can be illustrated by Table VIII.
M2 X X X - - - - - - - _ Again, in the usual construction of a D2-D6 system, the

H
NUT X X X X X X X — — — =+ x harmonic functiongd andK are taken to depend only on the
overall transverse space coordinatesn the semi-localized
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TABLE VIII. The D2-D6 brane intersection. TABLE IX. The D2-D6-NUT system.
t Wy W, Xy Xo Xz X4 23 Z, Z3 t Wy Wy Xy Xo Xz Y Zg Zp Z3
D2 X X X - - - - - - - H D2 X X X - - - - - - - H
D6 X X X X X X X - - = K D6 X X X X X X X - - - K
NUT X X X - - - * X X X K

construction, the functiofd depends ox as well. In terms
of the new coordinates defined in E@3), the metric be- This metric can be viewed as describing the near-horizon

comes geometry of a semi-localized D3-D5-NS5 system in the type
1a IIB theory. This metric(41) provides a background for con-
rs i i ' ive ri
— —5/8 _ 442 sistent reduction of type 1IB supergravity to give rise to four-
dSionn (ZQ ) [H™%(—dt*+dwi +dw)) dimensional gauged supergravity with AdS background.

In order to construct the semi-localized D3-D5-NS5 inter-
secting system in the type IIB theory, we start with the D2-
D6-NUT system, given by

+HI8(dr2+r?)(da?+c2d02+ 1s2d02)].  (37)

Thus, in the near-horizon limit where the 1 i can be
dropped, the solution becomes a warped product of ,AdS
with an internal 6-space:

d S%ouA — (ZQN) - 1/4Q3/8Sl/4
X (dshgs, T da?+c?d03+5s%d03), (39

dsioua=H "o Y8~ dt?+dwi +dws)
+H¥KE(dZ+d+dB)
+H3¥BK YK (dx®+x2d3) + K~ X (dy+ Qnw)?],

] ] . é_ 1y lide 34
Whereds:f1 is the metric on Adg given by ef=HTK,

ré dr? Fay=dt/Ad®wAdH ™,
5(—dt2+dw§+dw§)+r—2. (39) @

The internal 6-space is a warped product of a 4-sphere with a

2-sphere. where x2=x3+x5+x3 and the functionH, K and K are
given by

dszAdsf
Fo=e 32 (dt/\d2w/\d*x\dK™1), (42)

C. AdS, in type IIB from T duality

In the above discussion, we found that our starting point _ Q On =
is effectively to replace the round 7-sphere of the M2-brane =1+ (4D x+4Qy2)%’ K‘Tv K=
by the foliation of a round 3-sphere together with a lens N N

3
spaceS /ZQN' We can also replace the round 3-sphere byIt is instructive to illustrate the solution in Table IX.

another lens spac®’/Zg , given by We can now perform th& duality on the coordinate,
5 and obtain the semi-localized D3-D5-NS5 intersection of the
1 type 1IB theory, given by

Qu
~5. 43

iy
~—y—|— [0}
N

d02=1| dn2+ (40)

dsioip=H"Y(KK) "™ —dt?+dw +dw;HK

As discussed in Appendix A, the lens space arises from in- -

troducing a NUT around the fiber coordinate with NUT X (dxi+dxG+dxg) + KKdy?

chargeQy. The system can then be viewed as the near- +HK(dZA+dz+dB)]. (44)
horizon limit of three intersecting branes, with charggs

Qy and QN. For example, with this replacement the D2-D6 It is straightforward to verify that the near-horizon structure
system becomes a D2-D6-NUT system. Performing &of the above D3-D5-NS5 system is of the for@hl). The
T-duality transformation on the fiber coordinage the §  solution can be illustrated by Table X.

untwists to become?x St. The resulting type 1B metric is

given by TABLE X. The D3-D5-NS5 system.
Qsc. 1/2 _ t wy W, Xy X9 Xz YV Zg Z, Zz
dst,,B=(mQN) (dsids4+da2+%czdﬂg+%szdﬂg 05 %« « -« - -~ - - 4
(4QuQW)° N5 <« . LT e x ok
+Wdy2). (41) K
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TABLE XI. The M2—pp-wave brane intersection. TABLE Xll. The NS1-DO brane intersection.
M2 X X X - - —- - - — — — H NS1I X X - - - — — — — - H
wave X ~ - - - - — — — — — W DO X - - — — — — - - — W
D. M2-pp-wave system The metric of the near-horizon region describes a warped
The M2-pp-wave solution is given by product of Ad$ with an 8-space:

ds?,=H 23w idt+W[dy+ (W t—1)dt]?+dx?} dsioia=8"2"Q%%Qy % ¥4(dsiys, + da®+45°d0),
51
+HY(dZ+22d0J), 6y

wheredsidsz is the metric of Ad$, given by Eq.(23). The
NS1-DO0 system can be illustrated by Table XII.
In the M2-pp-wave and NS1-DO systems, the internal
When both function$! andW are harmonic on the overall SPac€ has a round 7-sphere. We can replace it by foliating
transverse space of tht coordinates, the metric becomes a WO ens spaces’®q, and S/Zg, . As discussed in Appen-

direct product of the Kaigorodov metric with a 7-sphere indix B, this can be achieved by introducing two NUTSs in the
the near-horizon limit. Here, we instead consider a semiintersecting system. We can then perform Kaluza-Klein re-

Fay=dtAdyAdx\dH ™. (45)

The solution can be illustrated by Table XI.

localized solution, withH andK given by ductions orT-duality transformations on the two associated
fiber coordinates of the lens spaces. The resulting configura-
Q Q/4 tions can then be viewed as the near-horizon geometries of
H=—, W=1+Q,|x*+—|. (46) . . . ~
z z four intersectingp-branes, with charge®, Q,,, Qn andQy .
Making the coordinate transformation V. M5-NUT AND M5 —pp-WAVE SYSTEMS
cosa rQt? A. M5-NUT and NS5-D6 systems
X= s 22:+, (47) . i . . .
r 2 sina The solution of an M5-brane intersecting with a NUT is
given by
the metric becomes Ad& S’, with
3 ds?=H Y(—d?+dw+ - - - +dw?)
dsiy =47 (dspgs +da?) + QY07 (48) +HPY A+ K(d 2+ 22dQ2) + K~ L(dy+ w)?],
Here dsj s, is the metric of Ad§ (the BTZ black holg Fay="(dtAd®wAdH™). (52)

given by Eq.(18). Thus, we have demonstrated that the . :
semi-localized M2pp-wave system is a warped product of The solution can be illustrated by Table XIll.

AdS, and an 8-space. Making the coordinate transformation In the usual construction where the harmonic functibins
tan(a/2)=e, the first.part of Eq(48) can be expressed as andK depend only the coordinate, the metric does not have

an AdS structure in the near-horizon region. Here, we instead
consider a semi-localized solution, given by

ds;=dp?+costf pdsiys - (49)
This is AdS, expressed as a foliation of Ad$see Appendix H=1+ %,— K=%. (53
(x“+4Qn2) z

A).

After an analogous coordinate transformation, we find that

E. The NS1-DO system the metric can be expressed as

Reducing the above solution on the coordingie it be-
comes an intersecting NS1-DO system, with ds?,=H Y(—dt®+dwdw,) +H?3(dr?+r2dM3),

dSlOIIA: H _S/AW_wﬁ:_dtz'f'Wd)@
+WH(dZ+---+dZ)],

TABLE XIll. The M5-NUT brane intersection.

tow, w, Wz Wg Ws X3 73 Zp Zz Y

F(3):dt/\dX/\dH_1, F(z):dt/\dw—l, M5 X X X X X X — — — — —

NUT X X X X X X X - = = *
e?=H" 13" (50)
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TABLE XIV. The NS5-D6 brane intersection. TABLE XVI. The DO-D4 brane intersection.

t Wy W, W3 Wy, Ws Xq Z3 Z, Z3 t Xy Xo Xg X4 24 Zp Z3 24 Zg
NS5 X X X X X X — — — — H D4 X X X X X - - - - — H
D6 X X X X X X X - - = K DO X - — - - - - - - - W

5 o1 , [dy 2 Using analogous coordinate transformations, we find that the
dMj=da"+ 359 dQ5+ oy (54 metric of the semi-localized M5sp-wave system becomes

. . - . 10232 21 ~240)2 21340 2
Thus, in the near-horizon limit, the metric is AgSM,, dst;=4Q%%s ™ (dsjys + da®+c?dQf) + Q?%d03,
whereM, is a foliation of a lens space3&QN. (59

We can dimensionally reduce the soluti@d?) on the 2 ) ) )
fiber coordinatey. The resulting solution is the NS-NS Wheredsys, given by Eq.(18), is precisely the extremal
5-brane intersecting with a D6-brarigee Table XIV. BTZ black hole and hence is locally AdSAfter making the
The solution is given by coordinate transformation tam(2)=e”, the first part of the
metric (59) can be expressed as
dsfoua=H YK Y8~ dt?>+dwidw;)
+ 3K Vo {3 T 5 ol dsz=dp?+sint? pdQ3+ cosH pds3. (60)
b V2 34 This is AdS written as a foliation of Adgand S.
€= ! Performing a dimensional reduction of the soluti@Y)

F(3)=e¢’2* (dADPWALH Y, on the coordinatg,, we obtain a DO-D4 intersecting system,

given by
— o 3¢/2 5 -1
F(2)—e ¢ *(dt/\d wAdxA\dK ). (55) dsionA:H73/8V\/77/8(_dt2+wd)qui+HWdZdZi),
In the near-horizon limit, the metric becomes a warped prod- 1y 3ia B 1
uct of AdS, with a 3-space e’=H "W, Fp=dtAdw
3/4 r dr2 Fa=e ?2 (dtA\d*x/\dH™1). (61)
dStoin=r5qmaS" | 5 (—dt?+dwdw) + —5
(2Qn) Q r

The near-horizon limit of the semi-localized DO-D4 system
is a warped product of AdSwith an 8-space:
+da2+%32dQ§). (56) pecp dSw P
ds2oa=2""Q% Qe Y4 (d s+ da®+ c?d 03+ £s2d03),
62
B. M5—pp-wave and D0-D4 systems 62
The solution of an M5-brane with pp wave is given by whereds; is given by Eq(23). We illustrate this intersecting
y Lo . ) system with Table XVI.
dsi,=H Y3~ W dt?+W[dy, +(W '~ 1)dt] In this example in the internal space the rourfdaBd $
LA+ A+ HEY A2 - +d2), can be replaced by a lens spaééZ%N and the foliation of a
lens space BZ@N, respectively. We can then perform

Fa=*(dtAdy, Ad*xAdH™1). (57)  Kaluza-Klein reductions ofr-duality transformations on the
fiber coordinates of the lens spaces, leading to four-
The solution can be illustrated by Table XV. component intersections with charg®@sQ,,, Qy andQy.

We shall consider semi-localized solutions, with the func-

tionsH andW given by VI. AdSg IN TYPE IIB FROM T DUALITY

Q , 4Q So far in this paper we have two examples of intersecting
H=23, W=1+Qu| X+ — /. (58) Dp/D(p+4) systems in the type IIA theory that give rise to
warped products of AdS, with certain internal spaces,
TABLE XV. The M5-pp-wave brane intersection. namely forp=0 andp=2. It was observe@b] also that the
D4-D8 system, arising from massive type IIA supergravity,
t Yy Xy Xo X3 X4 Zy Zp Z3 Z, Zg gives rise to the warped product of Ag®ith a 4-sphere in
the near-horizon limit:
M5 X X X X X X — — — — — H
wave X ~ - - - - - - - - - W

dsfoa=5"1dshys 9 %(da®+c%d0F)]. (63
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TABLE XVII. The D5-D7-NS5 brane intersection. T-duality transformation on the fiber coordinate of the lens
space(BTZ black holeg.
towy w, wz Wy X3 Xz Xz Yy Z It is important to note that the warp factor depends only
D5 x X X X x - - — — _ A on the internal foliation coordinate but not on the lower-
D7 x x X X X X X X - — n dimensional spacetime coordinates. This implies the possi-
2 bility of finding a larger class of consistent dimensional re-
NS5 X X X X X —- — — - X K

duction of 11-dimensional or type IIA and IIB supergravities

on the internal space, giving rise to gauged supergravities in

éower dimensions with AdS vacuum solutions. The first such

example was obtained [IT]. In this paper, we obtain further

to a non-dilatonico-brane intersectin ith a NUT or a exampl_es for possible conS|§tent embeddings of lower-
! cp ! ing wi dimensional gauged supergravity =11 andD = 10. For

wave. . . X
We can now introduce a NUT in the intersecting systemfhxample’ V\éefObtao'ln vacuum lsolutlonj Lcarsthe embedc_itl'ng pf
which has the effect, in the near-horizon limit, of replacing € Six= and four-cimensional gauge Supergravities in

the round 3-sphere by a lens space, given in(Bg.We can ;[jype ”B thleory agdA;gr the emb_etzd(_:lintg of”tAh(teh seven-
then perform a Hopf-duality transformation and obtain an @'Ménsional gauge Supergravity in type eory.

embedding of Ad§in type IIB theory:

Note that the D4-D8 system is less trivial than the previou
examples, in the sense that it cannot be mapped tyality
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The D5-D7-NS5 semi-localized solution can be obtained APPENDIX A: SPHERES AND AdS SPACETIME
by performing theT duality on the D4-D8-NUT system. The FROM FOLIATIONS
solution is given by
There are two closely parallel constructions which arise in

dsio,,8=(HlK)’l"‘[—dterdwar~-~+dvvﬁ the varipus intersections in\(olving NUTs .and waves. The
former involves a construction of the unit metric on the
+H K (dXE+dx5+dx5) + HoKdy?+H H,d 2] sphere 8971 as a foliation of 8x S surfaces, while the

(65) latter involves an analogous construction of the unit metric
on AdS,, 4+1, as a foliation of Adgx S surfaces.

The functionsH,, H, andK are given by Consider first the construction of the u_niT*SJrl metric.
’ We start from the unit metriclef,de'dX' and dQS
Q, Qu =dYadY? on the spheres”Sand 8, defined as the surfaces
H 1: 1+

N R iyl — ava_
4Qu|X| + 223 |X| XX'=1, Y9y¢=1 (A1)

sy Ho=Q2z, K
77|

(66)  in RP*tandRI** respectively. We now introduce Cartesian
coordinatesZ?=(Z',Z?) in RP9*2, defined by
It is straightforward to verify that the near-horizon structure
of this system is of the fornt64). The solution can be illus-
trated by Table XVII.

Z'=X'cosa, Z2=Y?Zsina, (A2)

and soZ”Z”A=1, thus defining a unit spherg?*9*! in
RP*A+2  Clearly Eq.(A2) defines a complete parametriza-
VII. CONCLUSION tion of points inRP*972, with 0O<a =<1, and sox and the

In thi btai . AdS i onstrained coordinated andy? on the spheresPSand
n IS paper, we optain various SPacelimes Warpeg, ., iqe coordinates for the unit spher&"S$*1 with a mani-

with certain internal spaces in 11-dimensional and type ”AfestSO(p+q+2) isometry group action on thz* coordi-

and 1IB supergravities. These solutions arise as the near- . . . >

) i : ) “nates. The metric on P$971 is given by dQ
horizon geometries of more general semi-localized multi- L p+g+1
9 9 =dzAdZ”, and so from the above definitions we obtain

intersections of M-branes iD=11 or NS-NS branes or
D-branes inD=10. We achieve this by noting that any big- do? —da?+coLadQ2+sirtadQ?.  (A3)
ger sphere(AdS spacetime can be viewed as a foliation prart P d

involving S* (AdS;). Then the § (AdS;) can be replaced by The foliating surfaces at a fixed value of the “latitude” co-
a three-dimensional lens spa¢BTZ black holg, which  ordinatea are $x 9, with radii cosa and sina for the two
arises naturally from the introduction of a NUPf) wave.  factors. The construction is a generalization of the Clifford
We can then perform a Kaluza-Klein reduction or Hopftorus $x S foliating S°.
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In a similar manner, one can construct a metltia%+q+l d<2=dR2+ R2dQ2 (B4)
on the unit Adg, 4., as follows. We start from a unit ’
AdS,, with metric dw5=dX*dX"7,,, and a units? with

) 5 ! .,  Where
metric dQ2g=dY?dY?, where the coordinateX on RP
satisfy the indefinite-signature condition —2 1 ., 1fdy 2
dﬂgzzd92+ 7 ——-+cosfde (B5)
X¥X'n,,=-1, n,,~dag—-1,-111...,1), N

Ad
A4 is the metric on the cyclic lens spac@BQN. Locally, this is

while the coordinate¥? on R4 ! satisfyY2Y2=1 as before. just the standard metric on the unit 3-sphere. Viewed as a

We now define coordinated®=(Z#,Z?) by U(1) bundle over Sthe coordinatey on theU(1) fibers is
taken always to have the periodr4 WhenQy=1, the to-
Zk=X*coshp, Z%=Y?@sinhp, (A5)  pology is therefore precisely>SHowever, ifQy is a larger
integer, the fiber coordinate has a period that is smaller by
which therefore satisfy the fraction 10, than the period that would be needed fdr S

itself, and consequently the topology i§/BQN.

A9B_  _ _ a1
2°2°npe=—1, map=diag—1,-111....1). The solution(B1) can therefore be recast as

(AB)

_ g —2/3 1/3, 2 2
The coordinateg”, subject to this constraint, therefore de- dsi;=Hy **dwedw, +HY¥(dxg+ - - +dx

fine AdS, | q+1, With a manifestSO(p+q—1,2) isometry. ~ ~
The metricdw} , ;. ,=0dZ*dZ87,g is given by tdz+ - +dz), (B6)

dw§+q+l=dp2+cosﬁ pdw§+sinthd(2§. (A7) with the harmonic function given by

Qx
APPENDIX B: NUTs WITHOUT NUTs H2:1+Ek . o, o
(Ix=Xoil“+2]?)

(B7)

In this appendix, we show explicitly that the semi-
localized intersection of g-brane with a Kaluza-Klein . ~ . 4
monopole(a NUT) can be recast, after appropriate coordi-The coordlnat'egi reside onk™/ 2oy and aregrelated &
nate transformations, as a restricted class of ordinary distritRnd the coordinatest(¢,y) on the lens space’&q by
uted p-branes. For definiteness, we take the case of a semi-

localized intersection of the M2-brane with a NUT as an Z,+iz,=Rsin} '+ )2,
example. The analysis for the other cases is essentially iden-
tical. Do L 9ai(Y/QN—¢)/2
The semi-localized solution obtained|[ii] is given by zzt+iz;=Rcosz ge N (B8)
dsile—2/3qudWM+ H1’3[(dx§+ e +dx§) In other words, if we make the following coordinate trans-

formation f 22,23,Y) 10 (24,2,,23.24),
+K(dz§+dz§+dz§)+K’l(dy+Aidzi)2], ormation from {,,2,,23,y) 10 (21,25,23,24)

[ 2Qn(r +23) (2, +i12,) M2
Q ) i3, On( 3)(Z1+1i2y) /200y
K—E, A;jdz=Qycosfde, /z"lz+z§
- o~ -ZQN(r_ZS)(Zl_iZZ)-lIZ.
H=1+>, —— ,?k —, (B1) Zgtiz,= — el’2vy, (BY)
K (|x—Xokl*+4Qnl2]) NZi+ 7,

whereQ, denotes the M2-brane charge Iocate&@t Qnis Whererzzszr z§+ zg, then the metrigB3) is seen to be
the NUT charge, and we take nothing but

2 — ~ ~ ~ ~
(21,25,23)= %(SinGCOS(p, singdsing cosh). (B2) ds’=dZ+dZ+dZ+dZ. (B10)
N
The semi-localized M2-brane—NUT intersectigBl) can
It now follows that the part of the metric therefore be obtained by starting from a standard distribution
o of pure M2-branegB6), with charges spread over only four
d$=K(dZ+dz+dZ)+K Y(dy+Adz)?> (B3) of the eight transverse directions as in E§7). This is pre-
cisely equivalent to the semi-localized M2-brane—NUT in-
is nothing but the locally flat metric tersection(B1) with unit NUT charge,Qy=1. To obtain
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higher values of the NUT charge, one simply has to factober coordinate does create a non-trivial intersecting compo-

the R* space of théi coordinates byZ,, , as defined above. nent, since thg Kaluza-Klein 2-form field strength now car-
N ries a non-trivial flux.

Note that although this semi-localized way of introducing a The above discussion carries overutatis mutandisto

NUT seems trivial, in that it amounts to a coordinate tranSyhe cases of the semi-localized M5-brane—NUT and D3-
formation, performing Kaluza-Klein reduction on the fi- prane—NUT.
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