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Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses
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An analysis is given of thermoelastic noiébermal noise due to thermoelastic dissipaionfinite sized
test masses of laser interferometer gravitational-wave detectors. Finite-size effects increase the thermoelastic
noise by a modest amount; for example, for the sapphire test masses tentatively planned for LIGO-II and
plausible beam-spot radii, the increasesi40 percent. As a side issue, errors are pointed out in the currently
used formulas for conventional, homogeneous thermal noisise associated with dissipation which is ho-
mogeneous and described by an imaginary part of the Young’s modulfisite sized test masses. Correction
of these errors increases the homogeneous thermal nois&byercent for LIGO-II-type configurations.

PACS numbsd(s): 04.80.Nn, 05.40-a

I. INTRODUCTION AND SUMMARY large radius and length compared to the size of the light's
beam spot on the mirrored test-mass face. In this limiting
Internal thermal noisés one of the most dangerous noise case, BGV showed that the spectral dens}yf) of the
sources in a laser interferometer gravitational wave detectdhermoelastic gravitational-wave noise scales as the inverse
in the frequency range 10 Hz to~200 Hz. Itis caused by cube of the beam-spot radiug, S,=1/r3, so it is desirable
a fluctuational redistribution of thermal energy inside each oto maker, large. However, when, is no longer small com-
the detector's mirror-endowed test masses. This energy rerared to the test-mass size, the BGV analysis breaks down.
distribution produces a fluctuational Change of the test The principa| purpose of this paper is to exp|ore, quanti_
mass’s shape and thence a change of the position of its Migatively, the sign and magnitude of that breakdown. As we
rored face, which in turn mimics a gravity-wave-induced ghq|| see, that breakdowthe., finite size of the test masses

mo_;[_ir(?n ?If ﬂt]e E_ESt ranas_s’st_(:enttir of m@ﬁ b | increasesthe thermoelastic noise; but for expected beam-
e fluctuation-dissipation theorefg] describes a rela- spot radii f,=3/10 the test-mass radiag, the increase is

tionship between thermal noise and the energy d|SS|pat|onmOdest €10 percent

(entropy increasethat occurs inside the test mass, when the A second purpose of this paper is to show how the BGV

front of the test mass is subjected to an oscillatory driving nalvsis of thermoelastic noi n be simolified consider
force [Eq. (3) below]. There are various types of internal analysis of tnermoelaslic noise can be simplied consider-

thermal noise, each one associated with a specific dissipaticiP!; @hdladapting techniques due to Bondu, Hello and Vi-
mechanism. Until recently, gravitational-wave experimenterd'€t[5] (BHV)], to show how to generalize the BGV analysis
have focused almost exclusively ¢romogeneous thermal IO finite sized test masses. _
noise[1]—i.e., noise associated with all forms of dissipation A third purpose is to point out and correct errors in the
that are describable by an imaginary part of the Young'sBHV formulas for homogeneous thermal noise in finite sized
modulus which is homogeneous inside the test nfasg., test masseformulas that are currently used in designing test
dissipation due to homogeneously distributed impurities andnasses and predicting the performance of gravitational wave
dislocation$. Thermoelastic dissipatiofdissipation due to detectors The corrections of the BHV formulas increase
heat flow down temperature gradients, which are producetiomogeneous thermal noise b5 percent for beam-spot
by inhomogeneous compression and expansion of the testadii =3/10 the test-mass radias and thus are primarily of
mass materialis not homogeneous; but until recently it was conceptual importance, not practical importance.
thought thatthermoelastic noiséthermal noise associated In Sec. Il, we outline our method of computing ther-
with thermoelastic dissipatigrwould be negligible in Laser- moelastic noise, in Sec. Ill we use our method to verify the
Interferometer Gravitational Wave Observat¢iyGO) test  BGV result for thermoelastic noise in the limit of arbitrarily
masses, compared to homogeneous thermal noise. large test masses, in Sec. IV we compute the thermoelastic
Indeed, this is so in the fused silica test masses of LIGO-hgjse in finite sized test masses and estimate the accuracy of
detectors—i.e. of the first detectors that will operate in LIGOqyr analysis, in Sec. V we correct the errors in the BHV
[3]. However, a careful analysis late last year by Braginskycomputation of conventional, homogeneous thermal noise,

vincingly that for the sapphire test masses currently planned

for LIGO-II (the second generation detectors in LIG®er-

moelastic noise will be significantly larger than homoge-

neous thermal noise, and in fact will be so large as to sig-

nificantly constrain the performance of LIGO-II detectors in  Our analysis of thermoelastic noise is a simplification of

the frequency band betweenl0 Hz and~200 Hz. one of the procedures developed by BGV: Appendix C of
The BGV computation of thermoelastic noise was basedRef. [4]. The foundation of the analysis is Levin6] “di-

on an idealization in which each test mass has an arbitrarilyect” method of computing thermal nois@f which ther-

II. METHOD OF CALCULATION
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moelastic noise is a special case the contribution of the test-mass thermoelastic noise to the
Levin begins by noting that the gravitational-wave detec-gravitational-wave noise is lf times the sum 08,(f) over

tor's laser beam reads out a difference of generalized posthe four test massegsvhich might have different beam-spot

tions q(t) of the detector’'s four test masses, with eagh sizes and thus different noiges

given by an average, over the beam spot's Gaussian power

profile, of the normal displacemedz=u, of the test-mass 4 SqA(f)
face: Sh(f)= > (4)
A=1 L
a (2w e*rz”g T
q:f f ﬁ52(l’,¢)rd odr Thg rateWiss Of thermoelgsn_c dissipation is given by the
oJo zri(1—e 37M) following standard expressioffirst term of Eq.(35.1) of
) s Landau and Lifshitd7], cited henceforth as L
a (2me ' Iy
= 8z(r,p)rd ¢dr. 1 Td K -
J. ], 2 SHn e W wdiss=<d—f> =< | T<V6T>2rd¢drdz>. ©)

Here (r,¢) are circular polar coordinates centered on the
beam-spot centegwhich we presume to be at the center of

the ?II’CU|aI’ test-mass farer, is the_radlus at which the ne o5t mass material ad is the temperature perturbation
spot's power flux has dropped toeléf 'tf czentral value, and produced by the oscillating pressu@Sdt is the rate of
ais the test-mass radiuéThe factore *”"o must be<1 in  increase of the test mass's entropy due to the flux of heat
order to keezp 2dn‘fractlon losses small, so we shall approxi-_ , v sT flowing down the temperature gradieﬁt‘)‘T, < is
mate 1-e~?'" by unity throughout this paperLevin then  the material’s coefficient of thermal conductivity, and
appeals to a very general formulation of the fluctuation<(...) denotes an average over the pressure’s oscillation pe-
dissipation theorem, due to Callan and Welf@h to show  riod 1/f=2#/w. (For conceptual clarity we explicitly write
that the test-mass thermal noise can be computed by the fohe average(---) throughout this paper, even though in
lowing thought experiment: practice it gives just a simple factécog wt)=1/2)

We imagine applying a sinusoidally oscillating pressure  To compute the thermal noise, then, we must calculate the
oscillating temperature perturbatia¥T (r, ¢,z,t) inside the
test mass, perform the integi@l) over the test-mass interior
cogwt) 2) and the time average to obtain the dissipation rate, then plug

° that rate into Eq(3) and then Eq(4).
to one face of the test mass. Heffg is a constant force The computation of the oscillating temperature perturba-
amplitude, w=2=f is the angular frequency at which one tion is made fairly simple by two well-justified approxima-
wants to know the spectral density of thermal noise, and th&ons[4]:
pressure distributiof2) has precisely the same spatial profile ~ First: The radius and length of the test mass areH
as that of the generalized coordinagewhose thermal noise ~14 cm and the speeds of sound in the test-mass material
S,(f) one wishes to compute. are c,~5 km/s, so the time required for sound to travel

The oscillating pressure feeds energy into the test mass, across the test mass 1g,,,¢~30 us, which is~300 times
where it gets dissipated by thermoelastic heat flow. We comshorter than the gravitational-wavand pressure-oscillation
pute the rate of this energy dissipatioi;s, averaged over period 7y, =1/f~0.01 s. This7so,ng< 74, Means that we
the period 2r/w of the pressure oscillatioflsThen the can approximate the oscillations of stress and strain in the

fluctuation-dissipation theorem states that the spectral deriest mass, induced by the oscillating pressBreas quasi-
sity of the noiseSy(f) is given by static It seems reasonable to expect this approximation to
produce a fractional error

Here the integral is over the entire test-mass interior using
cylindrical coordinatesT is the unperturbed temperature of

2,2
e’ /rO

P=F
0 7-rr2

Sq(f) _ 8kBTV\/diss

f 1
F2w? ® € quasistatic> Md: ~ 0N
0 Tow fsouna 300

(6)

[Eq. (2) of Ref. [6]]; herekg is Boltzmann's constant. The i oy final answer for the thermoelastic noisg(f). Here
interferometer’s gravitational-wave sigria(t) is the differ-

ence of the generalized positiogsof the four test masses, 1 Cs
divided by the interferometer arm length Correspondingly f sound™ oo min(a,H) =30000 Hz ()

for the currently contemplated LIGO-II test masses: sapphire

Ut is here that our analysis is simpler than that of BGV. Instead ofVith a~H~14 cm. o
computingW,..and using Eq(3) for the thermal noise, BGV com- SecondThe time scale for diffusive heat flow to alter the
pute the imaginary parfi(x) of the test-mass susceptibility —~ temperature distribution,/r~Cyprj/x~100 s, is ~10°
(which is much harder to compute thivs) and then evaluatg,  times longer than the pressure-oscillation perigg (here
in terms of J(y) [their Eq.(14)]. Cy=7.9x10° erg g ' K ! is the specific heat per unit
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mass at constant volumg=4.0 g/cnt is the density,r,
~4 cm is the spot size and «
=4.0<10° erg cm! s K!is the thermal conductiv-
ity, and our values are for a sapphire test mas3®is 7

PHYSICAL REVIEW [B2 122002

2
) <f(v*®)2rd¢drdz>.
(13

an

Waiss™= “T( (1-20)Cyp

> 74, Means that, when computing the oscillating temperaThis Wy, can be inserted into Eq3) to obtain the ther-
ture distribution, we can approximate the oscillations ofmoelastic noise.

stress, strain and temperatureaaiabatic (negligible diffu-
sive heat flow. The only place that heat flow must be con-
sidered is in the volume integréb) for the dissipation. The
dominant contribution to that volume integral will come
from a region with radius-r, and thickness-r, near the

Il INFINITE TEST MASSES
A. Dissipation and noise computed via BGV techniques

We illustrate the above computational procedure by using

beam spot. The region of the integral in which the ff“diabati‘?t to verify the BGV[4] result for thermoelastic noise in the
approximation breaks down is predominantly a thin “bound-cage where each test mass is arbitrarily large compared to the

ary layer” near the beam spot with radiugand thickness of
order the distance that substantial heat can flow in a tim
~7qw= Uf, i.e., thickness of order

B [ & 4 /100 Hz ; .
I hear= Cvpf_o' mm - or sapphire.

)

This region of adiabatic breakdown is a fractiom ../, Of
the region that contributes substantially to the integral, so w
expect a fractional error

IMeat
€ adiabatic™ ~0.01

(o]

9)

in Sy(f) due to breakdown of the adiabatic approximation.
The quasistaticapproximation permits us, at any moment

of time t, to compute the test mass’s internal displacement

field u, and most importantly its expansion

> >

V-u,

(10

from the equations of static stress balafEg. (7.4) of LL
[71]
(1-20)V2U+V(V-u)=0 (12)

(where o is the Poisson ratjo with the boundary condition
that the normal pressure on the test-mass fade(bgt) [Eq.

spot size.

€ Following BGV, we approximate the test mass as an in-
finite half space. Then the solution to the quasistatic stress-
balance equatiofiLl) is given by a Green’s-function expres-
sion [LL Eq. (8.1 with F,=F,=0, F,=P(r,¢)],
integrated over the surface of the test mass. Taking the di-
vergence of that expressidor, equivalently, taking the di-
vergence of Eq(39) of BGV], we obtain the following equa-
gon for the pressure-induced expansion:

B (1+o)(1-20)F,

0=
wr2E

coq wt)

2
o ei(x/2+y/2)/ro

xzf f dx'dy’

where we have converted from polar coordinates to Cartesian
coordinates. Following a clever procedure implicit in the
BGV analysis[in going from their Eq.(39) to (40)], we
insert into the integral(14) an integral of the Dirac delta
function written as

[(x=x")?+(y—y")?+ 273
(14

+

I

* 1 teo H ’ "
5(X_x/ _Xn)dx//: _f f e|k><(X—X —X )dkxdx//
2 —o

(15

(2)] and that all other non-tangential stresses vanish at th@nhd a similar expression fgrs(y—y’ —y")dy”, and we re-

test-mass surface. Onéehas been computed, we can evalu-
ate the temperature perturbatiéim from the law ofadia-
batic temperature chanddeq. (6.5 of LL [7]]

—a|ET

M= Cp(1-20)

(12

here «, is the linear thermal expansion coefficienE is
Young’s modulus an€,, is the specific heat per unit mass at

constant volumé@.This temperature perturbation can then be

plugged into Eqg.(5) to obtain the dissipatioWgss as an
integral over the gradient of the expansion

2LL use the volumetric thermal expansion coefficient 3a, and
the specific heat per unit volum@,=pC,, .

12200

write x—x" andy—y’ in the denominator ag” andy”,

thereby obtaining a new version of E@d.4) with integrals
overk,,ky,,x",y’",x",y". The integrals ovek’,y’,x",y" are
then readily carried out analyticallthey are well-known
Fourier transformps to yield Eq.(40) of BGV:®

(1+o)(1—-20)F,
2m°E

<) ] e

3Note that our notation differs slightly from that of BGV: Ouis
theirz, ourz is_theirx, and they have factored out the aats which
they write ase'!.

0= CcoSwt

—kir§/4e* klzei(kXX+kyy)d kXd ky ) (16)
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WherekLEJkX?jL kyz. The nonzero components of the gradient of this expansion
It is straightforward to take the gradient of this expres-are

sion, square itwith one term an integral ovés ,k, and the 20 2 .

other overk; k), and integrate ovex andy (from —< to = | ake k2, (kr)k3dk, (233

+) and overz (from 0O too); the result isf(ﬁ@)zdxdydz ar Atulo
expressed as an integral ovewy,z,k, k, ,kj; k| . The inte-
N y e, 0 2u (=
grals can be done easily, first oveto get 1/k, +k; ), then —=——| a(k)e *4y(kr)k3dk.
overx andy to get Dirac delta functions, then over tkis. 9z Mtuplo
The result, when inserted into E€L3), is (23b
2. 2 By squaring the gradient, integrating over the interior of the
(1+0)key T _, . -
WdiSS:—ZZQ,FO' (17) test mass, and using the relations
V2mCyp“ry, Sk )
By then inserting this into Eq3), we obtain the BGV result fo In(kr)In(k'ryrdr = —— — (24)

for the thermoelastic noiggheir Eq.(12)]
2, o2k T? (which follow from the Fourier-Bessel integraland by re-
S™(f)= 8(1+0) kaikeT (18) placing the Lamecoefficients by the Poisson ratio and
4 V2mC2p%r3w? Young’s modulus[Egs. (21)], and inserting the resulting
) o [(VO)?rd¢drdz into expressior(13), we obtain the same
Here the superscript ITM means for an “infinite test mass.” result(17) as we got using BGV techniques. By inserting this
into Eq. (13), we obtain the thermoelastic noi§Es).

B. Derivation via BHV techniques
Equation(17) for Wyss can also be derived in cylindrical IV. FINITE SIZED TEST MASSES
coordinates I(,z, ¢) using the techniques of BHY5]: The

displacemenﬁ has componentBHV Egs. (5) and(6) with
the denominator in Eq5) corrected fromu to x+X\ and
with 8= «; see passage following BHV E)]

ursza(k)

0

A. BHV solution for displacement

Consider a finite sized, cylindrical test mass with radius
and thicknesdH, and with the Gaussian shaped light spot
centered on the cylinder’s circular face. For this case, Bondu,
Hello and Vinet(BHV) [5] have constructed a rather accu-
e ¥, (kr)kdk, rate but approximate solution of the static elasticity equa-

tions. Unfortunately, their solution satisfies the wrong
boundary conditions and thus must be corrected:
e—kZJO(kr)kd K, The error arises when BHV expand the Gaussian-shaped
pressurdg?) as a sum over Bessel functions. BHV incorrectly
19 omit a uniform-pressure term from the sum. As a result, the
. pressure that they imagine applying to the test-mass face
Up=0, [their Eq.(18)],
where %

o Korla Perv(r)=F, coswtmE_l PmJo(Km') (25

a(k)= WFO Coswt (20

+2u
ANtu

1- +kz

* M
u,= fo a(k)( 1+ m'i‘kz

[whereJ, is the Bessel function of order zerky, is related
[BHV Eq. (11), with the overall sign corrected from to +,  to them'th zero {,, of the order-one Bessel functiah(x)
with w,= \2r,, cf. BHV Eq. (2), and withF,coswt inserted by Km={m/a, andp,, are constant coefficients given belpw
because our method of applying the fluctuation-dissipatiofas a vanishing surface integral

theorem is dynamical while BHV’s method is static and a

BHV setF,=1]. In Egs.(19) the J, are Bessel functions J Pgyy2mrdr =0. (26)
and\ and u are the Lamecoefficients(and u is also the 0

shear modulus which are related to the Young’'s modulBs

and the Poisson ratio by In qther words, their applied pressu(’éS) is equal to the
desired pressurB(r) [Eqg. (2)] minus an equal and opposite
Eo E net force F,coswt) applied uniformly over the test-mass
A=z M= : 2D face:
(1-20)(1+0) 2(1+0)
The divergence of the displacemé) is Pgrv(r)=P(r)—poF, coswt; (27
— 2/'1’ ” —kz 2 1
——m . a(k)e™“Jy(kr)kdk. (22 Po=—3. (28)

122002-4
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[Recall that we are approximating—]e‘az”s by unity; see U5Hv(r,2)_ N c,7°
discussion following Eq(1).] o Focosot  m(3nt2m) | S04 2
It is evident, then, that to get the correct distribution of
elastic displacemerﬁ inside the test mass, we must add to _ A2p car?
the BHV displacement a correction. This correction is the Au(3N+2w) L
displacement caused by the spatially uniform pressure -
poF,coswt on the test-mass face. That _unlform preisure n E B..(2)Jo(Knf ), (31b)
causes the test mass to accelerate with acceleration m=1

=[(F, coswt)/M]e,, whereM = ma’Hp is the mass of the
test mass ang is its density. In the reference frame of the BHV(r 2)=0. (310
accelerating test mass, all parts of the test mass feel a “gravi-

tational” acceleratiorge, equal and opposite ta, i.e. g= Here the coefficients, andc, are[e ; ;
; o quations following Egs.
—(F, coswt)/M (which can be treated as quasistatic, though(24) and (26) of BHVi) !

it oscillates at frequencw). Thus, the displacement is the
same as would occur if the test mass were to reside in the

gravitational fieldge, with a uniform pressure on its face 2 0(§m)pm _ ~2Co (32
counteracting the force of gravity. The solution for this dis- =1 b H
placement is given by LL7] (problem 1, p. 18* Translating

into our notation and converting from the Young's modulusandA andB.. are the followina functions of [Egs. (19
and Poisson ratio to the Lanueefficients via Eq(21), we ;. (2'8) of BHmV]: g [Egs. (19

obtain
An(2)=yme Km?+ 5, ekm?
ou, NpPor z K
= - — Z N tpu
F, coswt 2#(3)\“‘2#)( H)’ (293 > +2M(ame*'<m1+Bme"mz) (33)
2 + 2

Su _ Apof _ (Mtwpo [ 27 . (D)= g 5 |ekm

Focoswt 4uH(3N+2u) w(3N+2u) 2H 2(N+2p)
(29b N3 N

+e———ant+
2(N+2p) “m T Ym|®
The total corrected displacement, in cylindrical coordi- K

nates, is mZ At

— —kmz _ Kmz
+ 2 )\+2M(ame Bm€™), (39

_ BHV _,,BHV _ .
U=u " +oU, Uu=u; "+dU;, u,=0, (30 where ¢, Bm, ¥m and é,, are constants given bjEgs.

(21)—(24) of BHV:

whereuP™ is the BHV displacemenfttheir Egs.(15) plus

(25) and (17) plus (26)]; Qum=exp(—2knH) (359
Pm(AN+2u1) 1-Qnt+2k, HQ
w2 M2 + “m™ km,u(k+,u) (1-Q n;z 4:2H22 (35D
Focosol  2u(3n+ 25 Cof TCur?) " m 'l m
+ 3 An(23y(knr), @la g - PnA*24)Qn 17 Qu* 2KnH (350
m=1 Kmu(At ) (1-Qp)%—4k3H?Qp,
4LL seek to solve a problem in whictin the presence of the Y= — _ Pm
uniform gravitational acceleratipninstead of having a uniform 2Kmpu (N + )
pressure applied to the face of the cylindrical test mass, the face has 2.2
vanishing displacement. Their solution actually satisfies our desired [2KH N+ ) + 2k H]Qm+ (1= Qp)
boundary conditions but not theirs; therefore, they comment on it _ 2 L2142
o - (1-Qm)*—4kyHQn
being inaccurate near the test-mass face. For our problem it is ac-
curate. (35d)
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2

PmQ a a
o= St ) fo r Jo(ke ) Jo(Kar ) dr = —-J§( L) G,
, (42)
X2ka2(7\+;U')_Zﬂka_M(l_Qm) (350
, a
(1-Qu) >~ 4KZH?Q,, [“rastanrdr=o, 43
0
with [equation following Eq(18) in BHV]
5 2 the volume integral of‘{7®)2 can be evaluated analytically.
2 ag” "o The result, after some algebra and after averaging <o
Pm="5 > Jo(kpr)rdr. (36) 1/2. is
a‘Jg({m)Jo mrg '
1 -
In the spirit of our approximating &e‘az”g by unity [dis- F7<f (VO)?rd ¢drdz>

cussion following Eq(1)], BHV suggest approximating the

upper limit of this integral by=; the integral can then be 2 aZé?H
done analytically, givinglequation preceding Eq.19) of et S
BHV] (3N +2u)?
exp( — k2r2/4) ; @ & KnPr(1— Q) I5(Lm)
TR 37 T 20t 2 1 [(1- Q) 4RZQT
_ 2 _
This is a good approximation to the exact form(®$) for X[(1=Qm)*(1+Qm) + 8HKnQm(1—Qp)
smallm (which turn out to give the dominant contribution to +AH2KZQm(1+ Q) - (44)

the noisg, but for largem it can severely underestimapg, .

B. Expansion and the integral of its squared gradient

C. Thermoelastic noise
Inserting Eq.(44) into Eq.(13) and then into Eq(3), and

It is straightforward to compute the expansiB=V-u  ysing Eqgs.(21) for the Lamecoefficients, we obtain for the
and the components of its gradient from expressi@®,  gpectral density of thermoelastic noise in a finite sized test

(31) and(30); the results are

Oz _ Po
F, coswt 3N+2u

z\ 2(cptcq2)
T H] T 3n+2u

0

+ 2 [knAn(2)+Br(2)o(knf ), (38)

and

a0/ r - ,
Focosot le Kl KmAm(2) + B(2) 191kl ),
[0} =

mass:
S ™M=CESy (45)

HereS, ™ is the BGV resuh(18) for the spectral density for
an |nf|n|te test mass, an@Zyy, is the following finite-test-

mass correction to the spectral density:

, (277)3’2r(3,( a®Hc?
(

FTM™
as 1+ 0)?

o a%KppZ(1—- Q) I5(Lm)
2: p

(393 (1-Qm)*— 4H?KZQnl?
o1z _ 26 X[(1= Q) (1 + Q) + 8HKyQuu(1— Qp)
Focoswt 3N+ 2u +2 [kiAAn(2)
+B(2)1do(Knr), (39 +4HZKEQm(1+ Qm)]] : (46)

where the primes denote derivatives with respeatdad the

coefficientc, is

Using the(nonstandardorthogonality relations

2

The square rooiCery, of this finite-test-mass correction
is plotted in Fig. 1 as a function of the test-mass thickri¢ss
and radiusa measured in units of the beam-spot radiys

—ct 2pH (40) [One can easily show from E@46) that Cgry, depends on

H, a andr, only through the dimensionless ratibigr , and
alr,, as must be the case on dimensional grodndstice
that the noise is larger, at fixed, for largea, smallH test
masses(thin diskg than for smalla, largeH test masses

a a . . .
jo rJ,(Kyr)Jdq(kor)dr= 7J§(§m) S 41y  (long cylinders. However, for plausible parameters the dif-

ference is only a few tens of percent. The reason for the
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Hir,

FIG. 1. Contour plot of the correctid@gy to the thermoelastic
amplitude noise/Sy(f) due to the finite size of the test mg$ys.
(45) and (46)]. This correction is shown as a function of the test-
mass radiug and thicknes$i, both measured in units of the beam-

PHYSICAL REVIEW [B2 122002

low ~10 ppm requireg,<4 cm. (ii)) There are practical
limitations R<50 km on the radii of curvature of the test-
mass mirrors; if the beam waist is half way between the
mirrors of an arm’s optical cavity so the spot sizgsare the
same on the two mirrors, andKis significantly larger than
the arm lengthL=4 km, then the spot sizes arg,
=(N?LR/87%)Y* (where A\=1.06 um is the light wave-
length, soR=<50 km requireg <4 cm.

For the plausible range,<4 cm, Fig. 2 shows that the
finite-test-mass correction to the amplitude noise K0 per-
cent.

D. Errors in our analysis

There are three significant sources of error in our analysis.
We expect them to produce a net erroQpyy and thence in
the test-mass noisgS; " that is <1 percent, for the ex-
pected LIGO-Il parameter regime a{14 cm, H
~12 cm, r,=4 cm). More specifically:

One error source is the quasistatic approximation. We
have already estimated this as producing a fractional error

spot radiug , (the radius at which the light beam’s energy flux has & agistaiic 0-003 InS;, [Eq. (6)], and the error inyS, will be

dropped to M of its central value.

half this, =0.0015.
The second error source is the adiabatic approximation.

greater noise in a thin disk is that it experiences greater déAe have already estimated that this produces a fractional
formation, when a force acts at the center of its face, thaRrror e ygiapaic~ 0.01 inSy [Eq. (9)], and the error in/S; will

does a long cylinder, and thus the integiE3), to which the
noise is proportional, is large(See, e.g., Sec. 12 ¢7], or
Sec. 305 of8].)

The current “straw-man” (“reference”) design for
LIGO-II includes sapphire test masses wihk 14 cm and

be half this,<0.005.

The third error source is one that we have not discussed:
A failure of the elastic displacemenB1) to satisfy the
boundary conditionT,,=0 on the test mass’s cylindrical
sides,r=a. As was discussed by BHY5], the cy and ¢,

H=12.2 cm. In Fig. 2 we plot the finite-test-mass correctionterms in the displacement3l) are a correction to the

Cerm as a function of beam-spot rading (in centimeters
for such test massedor which we use the BGV values
of the parameters «=5.0x10 % K1 «=4.0x10°
ergklem?! st p=40glent, C,=7.9x10F erg

g ! K1, E=4x10% erg/cnt, 0=0.29). Although we
continue our plot up to,=6 cm, it may be impractical or
undesirable to operate with, much larger than 4 cm. Two
reasons for this ardi) Each time the light beam encounters

2
a test mass, a fractiorr e~ 2o of its power is lost around
the test-mass side$diffraction losses™); keeping this be-

1.14
112
1.10
1.08
1.06
1.04
1.02
1.00

C

7y, Cm

FIG. 2. CorrectiorCgy to the thermoelastic amplitude noise as
a function of the beam-spot radiug, for test masses with the

parameters currently being contemplated for LIGO-II: 30 kg sap-

phire cylinders with radiug=14 cm and thicknessl=12.2 cm.

leading-order displacement, designed to improve the satis-
faction of theT,,(a) =0 boundary condition. We shall refer
to these terms as the “Saint-Venant correctidis]. In our
final answer forSy(f) [Eqgs.(45) and(46)], this Saint-Venant
correction makes a fractional contributieh6 per cent, for
LIGO-II type test masses and plausible beam ragji

=<4 cm. The rms value of ,(a) with the Saint-Venant cor-
rection included is smaller than that without the Saint-
Venant correction by about a factor 3, so it is reasonable to
expect that the remaining error #,(f) due toT, (a)#0 is
=<1/3 of the Saint-Venant correction, i.e., a remaining frac-
tional error

1
5 X 0.06=0.02.

2 47

& SVS

The fractional error inyS; will be half this, <0.01—which
is larger than the other two errors.
Combining these three errors in quadrature, we expect our

formulas fory'S{™ to make a net fractional error of mag-
nitude

SCery O Sy
FTM
Sq

<0.01 (49)

Crm
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for LIGO-lI-type test masses and beam-spot radj
=4 cm.

V. CONVENTIONAL THERMAL NOISE

PHYSICAL REVIEW D62 122002

s=ma? >, %;gm).

m=1

(59

When the approximatiof37) is made forp,,, U, takes the

Because of the boundary-condition error that BHV makeform given by BHV/[their Eq.(30)]

in solving the elasticity equation@nd because of an addi-
tional algebraic error discussed belgvtheir result for the
conventional thermal noise must be corrected.

The conventional thermal noise is given by Levin’s for-
mula (3) with W5 the time-averaged dissipation produced
by an imaginary parfi(E)=®(w)E of the Young's modu-
lus:

Woiss= qu)(a))(U)

=w<1>(w)f<>\®2+2Msﬁjsﬁj>rdrd¢dz. (49

Here (U) is the time-averaged elastic enerdy;S; is the

square of the strain associated with the displacerﬁemere
is an implied sum over andj, and the integral is over the
test-mass interior; cf. Eq12) of Ref. [6].

The expansior® is given by Eq.(38), and the compo-
nents of the strain on the spherical,

ér, €4 éz are readily computable from the displacement
(30), (29), (31) via[Egs.(A.1)—(A.4) of BHV]

u

r
Srr:ur,ra S(/)c/):T! SZZ: Uzz,

1

Srz:Szr:E(uz,r_’_ur,z)a (50

where commas denote partial derivatives. By evaluating
these strain components, inserting them and the expansion

(38) into Eq.(49), averaging over time, integrating over the
test mass, and reexpressing the Lasuefficients in terms of
the Young's modulus and Poisson ratio, we obtain

Wiiss= o ® (@) (Uy+ AU)F2, (5
HereU, is given by
1-o?)ma® NS
Uo:( o) > Umpm o(ém), (52
E m=1 gm
with [equation following Eq(29) of BHV]
1- Q%+ 4k HQ
Up=——5— o (53
(1-Qm)*— 4k H"Qn
while AU is
2
AU= m?H*p3+ 12H20pes+ 72(1— o) s?],
67TH3E[ Po Pos+ 72 )s°]
(54)
with

1-02 & exp — 2r2/2a?
o=—= 2 Un P enf /22 (56
makE m=1 m‘JO(gm)
ands takes the form
Zexp — (Arél4a?)
s= E F(—mo (57)

=1 hdo(m)
The approximation$56) and(57) are rather good for realis-
tic parameter values, despite the fact that for largeq. (37)
is a very poor approximation tp,,, because largen make
small contributions tdJ, ands.

Equations(54) and (57) for AU differ from Eq. (31) of
BHV for two reasons:(i) BHV used the wrong boundary
conditions at the test-mass falee beginning of Sec. IV A

orthonormal basi@Pové; correcting this leads to all the terms in E&4) in-

volving p, . (ii) BHV seem to have made an algebraic error:
Egs.(54) and(57) should agree with BHV Eq.31) whenp,
is set to zero, but they do not; it might be that BHV acciden-
tally omitted theS],,, term or theS;, term when evaluating
Eq. (49.

Inserting Eq(51) into Eq.(3), we obtain the BHV expres-
sion for the conventional thermal noigtheir equation fol-
lowing Eq. (31)]

8kgT
P(w)(Ug+AU),

w

sy ()= (58)

where (to reiteraté U, is given by Eqs(52) [or (56)] and
(53), while AU is given by Eqgs(54) and(55) [or (57)].

If the test mass is infinite in size, then the conventional
thermal noise has the following form, derived by BHitteir
Eq. (14) with w,=/2r,, which differs from the formula
derived earlier by Leviri6]—his Eq.(2)]:

4kgT 1—0?
o \27Er,
As for thermoelastic noise, we define a finite-test-mass cor-

rection CZ;,, to be the ratio of the finite-test-mass spectral
density(58) to that(59) for the infinite test mass:

IT™ _
q

P(w). (59

FTM
Sq

CIZZTM: IT™ * (60)
Sq

We plot the square root of this correcti@re., the amplitude-
noise correctiopas a function of beam-spot radiugin Fig.

3 for a LIGO-II type test mass. We show there two curves,
Cerm as given by the BHV formulas, and as given by our

122002-8



THERMOELASTIC NOISE AND HOMOGENEOUS THERMAL . .. PHYSICAL REVIEW [B2 122002

1.0 spot radius, compared rol/rg for thermoelastic noise and
Sy 1Ir, for conventional, homogeneous thermal nigee-

0.9 tailed experimental studies of these other forms of thermal
noise are much needed as part of the research and develop-

0.8 <o, ment for interferometric gravitational-wave detectors, and

Cttm oy are being planned.

0.7 419,, In some of the planned experiments, very small beam
radii r , and/or high frequenciesmay be used. For

0.6

0 1 2 rscm 4 5 6 rosrgeatz,/ K
o C\/pf

FIG. 3. Cery= VS, ™/ VS, the finite-test-mass correction to 100 Hz .
the conventional, homogeneous thermal noise, as a function of the =0.4 mm f for sapphire, (62)
beam-spot radius,, for test masses with the parameters currently
being contemplated for LIGO-II: 30 kg sapphire cylinders with ra- the adiabatic approximation breaks down seriolisly Eq.
dius a=14 cm and thicknessi=12.2 cm. The curve labeled (9) and associated discussjoand our analysis of ther-
“BHV" is the result derived in Ref[5] [their Egs.(29), (28), and  moelastic noise must be redone taking account of the diffu-
equation following(31)]; the curve labeled “corrected” is our cor-  sjye redistribution of temperature during the elastic oscilla-
rected version of their resufour Egs.(58), (52) and (54)]. tions. Some foundations for doing this have been laid by

BGV [4]. For frequencies
corrected formulas. Note that the BHV errors have only a

small influence: their noise was too low by a factes =t _ Cs
percent whem,<4 cm. = sound™ min(a,H)
10" H 10 cm f hi 62
VI. CONCLUSION = ZW or sapphire (62

In this paper we have sketched a fairly simple method o
analyzing thermoelastic thermal noise in interferometric de . ; :
tectors, we have used that method to derive formulas for thB.r eaks %own ser|ICJu§I{/cf. thb (6) é’md ?si_ouated dlstcufs;h
noise in cylindrical test masses with finite radius, thicknesss'on]’ and our analysis must be redone taking account ot the

and beam spots, and we have corrected the correspondiﬁ@ite propagation speed of the test mass’s elastic deforma-
ions.

finite test-mass formulas for conventional thermal noise. Ou Aft leti vsis of th lasti L
formulas should be useful in optimizing the test-mass de- er completing our analysis of thermoelastic noise in

signs for interferometric gravitational wave detectors. finite sized test masses, we Iearneq that Sergey \(yatchanin
Because thermoelastic noise arises from physical pro[g]_ has been carrying out an ar_1a|y5|s of th_|s_ Same ISsue, but
cesses associated with ordinary thermal fluctuations, therm&p'NY SomeWhat different techmqu_es. In writing the final ver-
conductivity and thermal expansion, anchist influenced by sion O.f this paper, we have benefitted from email exchanges
“dirty” processes such as lattice defects and impuries. Wit him.
cept through the easily measured conductivity and expan-
sion), the predictions for thermoelastic noise should be very
reliable. Nevertheless, experimental tests of the theory would For helpful advice we thank Michael Gorodetsky, Eric
be useful and are being planned. Gustafson, James Hough, David Shoemaker, Jean-Yves Vi-
Other forms of thermal noise do rely in crucial, ill- net, Rainer Weiss, and especially Vladimir Braginsky and
understood ways on dirty processes and thus are far lessergey Vyatchanin. A lively interchange of email with
reliably understood than thermoelastic noise. This is espevyatchanin has helped us understand more deeply the issues
cially the case of thermal noise associated witthomoge-  underlying thermoelastic noise, and we expect that his manu-
neous dissipation in and just beneath the test mass’'script[9] will shed valuable new light on those issues. This
dielectric-mirror coatinggfor which Levin [6] predicts, in  research was supported in part by National Science Founda-
the infinite-test-mass limit, a dependerfgg- llrg on beam- tion Grant PHY-9900776.

f . o L
(wherecg is the sound spegdthe quasistatic approximation

ACKNOWLEDGMENTS

[1] P. R. SaulsonFundamentals of Interferometric Gravitational [4] V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin,

Wave Detector$World Scientific, Singapore, 1994see espe- Phys. Lett. A264, 1 (1999; cited in text as BGV. In this
cially Chap. 7, and Fig. 16.2 and associated discussion. paper, thermoelastic noise is referred to as noise duketio
[2] H. B. Callen and T. A. Welton, Phys. Re83, 34 (195)). modynamical fluctuationsbecause it arises when thermody-
[3] B. C. Barish and R. Weiss, Phys. Toda; 44 (1999; see also namical fluctuations of the distribution of heat inside the test
http://www.ligo.caltech.edu/ mass produce, via the finite thermal expansion coefficient,

122002-9



YUK TUNG LIU AND KIP S. THORNE

changes of the test-mass shape. BGV refer to homogeneous
thermal noise as due tBrownian fluctuationsbecause it is
caused by a Brownian-motion-type feeding of thermal energy
into and out of the test mass’s low-order normal modes of
vibration.

[5] F. Bondu, P. Hello, and J.-Y. Vinet, Phys. Lett. 246, 227
(1998 cited in text as BHV. This paper contains a number of
errors, mostly typographical. Because the paper is so funda-
mental to thermal-noise modeling, the following list of errors
may be of help to other researchdiginet (private communi-
cation agrees with this list.In Egs.(3) and (5) the denomi-
nator . should bex + 1 [same as in Eqg4) and(6)]; assum-
ing the Landau-Lifshitz sign convention for the stress tensor as
in Appendix A of BHV, the second boundary condition after
Eq. (8) should be®,(r,z=0)=—p(r) and the last boundary
condition after Eq(17) should be®,(r,z=0)=—p(r); the
overall minus signs in Eq$9)—(11) should all be changed to
+; there should be a factqr in the denominator of Eq12);
in the equation fop,,, preceding Eq(19), the o in the de-

(6]

[7]
(8]

(]

122002-10

PHYSICAL REVIEW D62 122002

nominator should ber; in Eq. (19), in the third term on the
right side,k,a should bekz [cf. our Eq.(33)]; Egs.(21)—

(24) should take the forms given in our Eq85a—(35€; and
Egs.(28) and(31) for AU should take the forms given in our
Egs.(54), (55 and(57).

Yu. Levin, Phys. Rev. 7, 659(1998. Note that Levin made
an error in calculating the oscillating elastic energy, when ap-
plying his method to conventional, homogeneous thermal
noise. His Eqs(A5) and (14) should actually have the form
derived by BHV/[5] [their Eq.(13)], and correspondingly, his
final formula (1), (15) for the conventional thermal noise
should actually be that derived by BHN\heir Eq.(14) with
Wo=1/2r,; our Eq.(59)].

L. D. Landau and E. M. LifshitzTheory of Elasticitythird ed.
(Pergamon, Oxford, 1986

A. E. H. Love, A Treatise on the Mathematical Theory of
Elasticity, fourth ed.(Cambridge University Press, Cambridge,
England, 1927; reprinted by Dover, New York, 1944

S. P. Vyatchanirin preparatioi



