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Detection of variable frequency signals using a fast chirp transform

F. A. Jenet and T. A. Prince
Division of Physics, Mathematics, and Astronomy and the LIGO Laboratory, California Institute of Technology,
Pasadena, California 91125
(Received 1 February 2000; published 14 November 2000

The detection of signals with varying frequency is important in many areas of physics and astrophysics. The
current work was motivated by a desire to detect gravitational waves from the binary inspiral of neutron stars
and black holes, a topic of significant interest for the new generation of interferometric gravitational wave
detectors such as LIGO. However, this work has significant generality beyond gravitational wave signal
detection. We define a fast chirp transfofFCT) analogous to the fast Fourier transform. Use of the FCT
provides a simple and powerful formalism for detection of signals with variable frequency just as Fourier
transform techniques provide a formalism for the detection of signals of constant frequency. In particular, use
of the FCT can alleviate the requirement of generating complicated families of filter functions typically
required in the conventional matched filtering process. We briefly discuss the application of the FCT to several
signal detection problems of current interest.

PACS numbsg(s): 04.80.Nn, 02.30.Nw, 84.40.Ua, 95.75.Pq

[. INTRODUCTION Detection of a signahg(t) in the presence of white noise in
a data strearh(t) of lengthT is based on the matched filter
The detection of periodic signals is a well-developed artoutput:
In contrast, the detection of signals with variable frequency
is an active area of research in signal processing. Consider-
able progress has been made in recent years using a variety
of time-frequency techniques which include wavelets, bilin-
ear transforms, and short time Fourier transfo®3FT's)  where hy;,;(t) is an optimal filter function in the time do-
[1,2]. main. For white noise, the optimum filter has an impulse
In this paper, we consider the detection of deterministiacesponse given by, (7) =hg(T—7), in the interval <7
signals with unknown parameters. The case of deterministieT. To detect a signal beginning at tinhgin a data stream
signals with unknown amplitude, phase, frequency, and aref arbitrary length we compute the quantity:
rival time has been treated in the literatliBg4]. In this pa-
er, we generalize to an arbitrary number of parameters and *
gonsidergsignals with a determin)i/stic, but pargmetrized, fre- S(to)= fﬂCdThfih(?’)h[(toJr -7l ()]
guency evolution. We call these “variable frequency sig-
nals.” Specifically, we consider signals of the form whereh(t) is zero outside a finite region of interest. When
colored noise is present, it is conventional to work in the
A(t)codd(t,Ng, ... Ay)), O<t<T, frequency domain. For matched filtering of real signals with
hg(t)= 0 1) an unknown arrival time, one constructs a signal estimator of
the form

T T
szf dths(t)h(t):f drh (1)h(T—17), (2
0 0

otherwise,

sent various parameters which describe the phase evolution df S0 : (4)

(e.g. frequency, frequency derivative, ¢tdn general,¢() 0

may depend non-linearly on time. For this paper, the “in- ~ . ) i i

stantaneous frequency” ¢f, must be a well-defined quan- Whereh(f) is the Fourier transform of the signal plus noise,

tity and the frequency evolution of the signal must be well"(t), defined as

resolved in the data. Variable frequency signals include the .

class of signals usually known as chirps, i.e. signals which F](f):f dt h(t)e'2=t, (5)

have a monotonically increasing or decreasing instantaneous —o

frequency. Such signals appear in many contexts, such as

almost-periodic signals with a small frequency drift or peri- hg(f) is the Fourier transform of the signal waveform and

odic signals emitted from accelerated systems. Chirps arg,(f) is the one-sided noise power spectral density. An op-

discussed often in the literature of signal proces$tg,2.  timum filter output is calculated for each realization fof

We will concentrate on chirp signals in order to simplify the from Eq. (1) using different values of the parameters. The

description of the chirp transform algorithm. approach of matched filtering thus requires the construction
A standard technique for the detection of signals in theof a “dense” set of signal waveforms which cover the pa-

presence of noise is the “matched filter” technigl®6].  rameter space of possible signals.

whered(t,\g, ... ,Ay) is real and the\g, ... Ay} repre- E{ = (PR (f)e 127Mo
S(tg)=4R
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Other approaches to the variable frequency detectio®(j,,\q, ... \y)
problem include techniques based on either synthesizing a
multichannel filterbanK7] or resampling the data at a vari- 4 [N Rk hE (Ko g, - . . Ay)e 2ok /No
able ratg8,9]. These techniques are used widely in theradio = No o Sy(Ko)

pulsar community and, like the conventional matched filter-
ing approach described above, differ significantly from the (7)
algorithm presented here.

Just as the Fourier transform can be considered a form ofhe Appendix shows that for variable frequency waveforms,
matched filtering using a dense set of sine and cosine funds(t) =A(t)cogé(t, Ao, . .. Ay)), the discrete matched fil-
tions appropriate for periodic signals of unknown amplitudeter outputs can be expressed as generalized Fourier integrals,
and phase, we wish to define a transform which perform&nd in discrete notation take on a particularly simple form:
matched filtering for a dense set of variable frequency sig-
nals with unknown parameters. By using the Fourier trans- o
form for periodic signals, we avoid the need of explicity ~ S(Ao. - - - ,7\M)=R€{ 2 Gy e Poto - ”")} 8
storing and computing the individual filter functions, i.e. the lo=0
sine and cosine functions in the time domain. Analogously, No-1
the appropriate transform for variable frequency signals will . _ = DKoo g .. N
avoid the need of generating a large set of filter functions and>Uohos - Am) = N_ORE{ kOEZO Hipe (oJoho M)}’
will provide a prescription for densely covering the set of

No—1

possible signal waveforms. We will informally call the trans- ©)

form for varlable_frequency waveforms a “chirp transform.’i where G; and 4, can be considered as the time or fre-
The term “chirp transform” has been used elsewhere in o i % i f d ahtke i\ N

the literature. For instance, Oppenhegtnal. [10] describe a quency series to be transformed, ahdko,jo.No, - . - Au)

“chirp transform algorithm” which is a special case of the is a real phase function of the form given in EQ9).

“chirp-z transform.” The chirpz transform is well-known In the next section we define the chirp transform and

and can be used to evaluate quadratic chirps. The meth ow how it can be used to evaluate discrete transforms of
described in our paper is general and not constrained to qu%—e type shown in Eqs8) and(9). Appropriate forms of the

. . . : : .. FCT will replace both the forward and inverse transforms
dratic chirp functions. We call the algorithm described in thlscontained in Eqs(8) and (9). An inverse FCT is not appli-

paper the “fast chirp transform(FCT). . . | .
The techniques discussed in this paper appear to be r able to the detection problem and will not be considered in

lated to filter bank design, to wavelet analysis, and to is Paper. The above fo_rmulation of the matched filtering

STFT's. In fact, the chirp transform can be viewed as a preprocess_ included the starting phase asa s_earch parameter. An
scription for coherently adding the outputs of a bank Of_alternatlve approach is to convolve the S|gnal .W'th both the
variable-length STFT’s with a particular time-domain rela_m-phase, cos), and quadrature-phase, s filters and

tionship. Thus, the fast chirp transform may already exist ir]then sum the squares of the results. This formulation is in-

some other formalism in the signal processing literature, bu?epepdent of ﬁ.he sltar;ungb ptr;a?e. Inlotr_der to nc]lai(e the _c(:jhwp
we are currently unaware of it. The work of Sch{itd] and ransform appiicable to both formulations and to a wider

of Williams and Schut£12] describes an approach which is _class of problems in general, the [Reoperator will not be

similar in several aspects, but differs in that constant Iengtl’lndu.deOI in the definition. If necessary, this operator can be
STFT's are used rather than variable-length transforms. applied after the transform.
In Sec. Il, we give the discrete forms of the matched filter

outputs and discuss how these may be expressed in the foritl. THE TWO-PARAMETER FAST CHIRP TRANSFORM

of the discrete analog to generalized Fourier integrals. In

Sec. lll we derive the two-parameter fast chirp transform that

can be used to evaluate the discrete matched filter expres- As an initial example, we consider the problem of the

sions. In Sec. IV we generalize the definition of the FCT todetection of a quadratic chirp, e.g. a signal of the form

an arbitrary number of parameters. In Sec. V we briefly dish(t)=A(t)cod2m(ft+ %'ftZ)). We wish to detect this sig-

cuss several applications of the fast chirp transform. nal by matched filtering with a dense set of quadratic chirp
waveforms. This requires evaluation of the sums of the form

in Eq. (6). Note that if f were zero, the signal waveform
would be periodic and we might discretely sample the input
The discrete forms of the time-domain and frequency dosignal and then compute a power spectral estimate using the
main matched filter outpuf€Eqs. (2) and(4)] are given by  fast Fourier transforntFFT).
Here we define a FCT for the quadratic chirp analogous to
the FFT. This definition will be generalized to an arbitrary

A. Example: quadratic chirp (linear frequency drift )

Il. DISCRETE MATCHED FILTERING

S(No, .- Am) parameter frequency waveform in the next section. For sim-
No—1 plicity we first define the discrete chirp transfo(CT) for
= 2 he(j.Ng, - .. Am)h(j), and (6 the quadrat.|c chirp in analogy with the discrete Fourier trans-
j=0 form (DFT):
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ot Hikgk = Clicy k)
Hye k= z h. ei27r[k0(j0/N0)+k1(jO/NO)2], (10) 01 01
0l g=o o Ni—1 _
=3 el2mkalia/ND| gizmkolig "()/Nol
whereh; is the discretely sampled data. The quadratic na- 11=0
ture of the chirp is specified by the ternjiy(No)? in the No(i1) -1 _ _
exponential. Ifk; is zero, we have the usual DFT. X E hjoﬂ(r)nin(jl)e'ZWko(Jo/No) . (19
To derive the fast chirp transform, we begin by breaking 10=0

the interval{j,=0, ... Ng— 1} into a set of contiguous sub- L S .
o o~ 1} 9 As before,ny(j,) is the number of points in the interval. We

intervals call k, andk; the “conjugate variables” of the linear and
_min, - quadratic terms, respectively, in the same sense that fre-
Nt Jo(ir)=t 2ko(io INg) +Ki (i /Ng)?] quency and time are a conjugate variable pair. Note that both
Hikg k= .ZO _ ;ﬂ hj e < oto e atio T, summations can be implemented using FFT’s and thus we
177 Jo=ig (1) are justified in calling the transform fast chirp transform.
1D The non-linearity of the quadratic chirp is absorbed into the
_ specification of the boundaries of the contiguous intervals.
wherejg""(j1) is the lower boundary of each of the inter- Thjs is the key concept of the FCT. Note that the definition

vals. The requirement that the intervals be ContigUOUS |mof C{kOrkl} is genera] and does not depend exp||c|t|y on the

plies jo""(j1+1)=jg "(i1) +No(j1), where no(j1) is the g adratic nature of the phase evolution. The same definition

number of points in the interval. will apply to other non-linear phase evolution functions.
The boundaries are chosen as follows: we demand that the We may also write

termk,(jo/Ng)? change by no more tham for values ofk,

appropriate for the quadratic chirp signals being considered. Ni—1
If the termk,(j OINO_)2 Chz_inges by more thain over a single C{ko’kl}: E eiz"Tkl(jllNl)C{ko’jl} , (15
sample, then the signal is not considered to be finely enough i1=0

sampled to resolve the phase evolution. This limitation is ] o o
analogous to the Nyquist sampling limit for periodic signals.Where we have used the notati6g. ;; to indicate that it is
Requiring that the ternk,(jo/No)? remain relatively con- a partial transform, i.e. transformed over one indgyx,but
stant over a sub-interval allows us to approximate the DCThot the otherj,. Equation(15) illustrates an interesting fea-
as ture of the FCT, which is important in implementation con-
siderations. Although the number of points in an interval,
Np—-1 no(j1), may be small, the partial transforrﬁ;{koyjl}, re-

. .min, . 2.
‘20 g'2lkalio™ (1)/No’] quires evaluation at a large number of valuekgffor ex-
= ample atNg values ofk,. This is equivalent to calculating

Hikg kg™

oG+ 1) -1 the oversampled FFT of the individual intervals with an
% 2 h. ei2mko(io/No) (12) oversampling factor oNg/ng(j;). The problem of comput-
“ Jo . ) . .
Jo=iM ) ing theC{ko,Jl} thus reduces to the problem of estimating the

oversampled spectrum of each interval. The oversampled

and we note that the second summation can now be con$Pectrum may be calculated exactly using the fractional Fou-
puted as a fast Fourier transform. We further demand that thger transform(FRFT). Fast methods have been developed
termk, (j™"(j,)/No)? increment by a constant amount from for evaluating FRFT's[13] and it can be shown that the
one sub-interval to the next. The requirement that the increfalculation of the values of the individual oversampled
ment be less thaar for the maximum value ok, k'@, FFT's that enter intcCy ;. in Egs.(14) and (15) requires
specifiesN;=2k["®, with the “Nyquist” restriction that ©O(Nol0gzNo(j1)) operations to be computed exactly. The

kK™*<N,/4 for the case of a quadratic chirp. We can thencOmputation required to calculate the entire set of FRFT's
write can be shown to be @;Nylog,(Ng/N;)). The phase fac-
tors, expi2mky(jg""(j1)/No)] in Eq. (14) are easily com-
Ny—1 iminG1)-1 puted as part of the same formalism. _
_ 2 2k, (i1 /Ny) 2 h. ei2mkolio/No) Taking into account the evaluation of_the mner_and outer
H{ko,kl}”j = e - io® ' sums separately, the number of operations required for the
1 jo=ig (1) 13 evaluation of the FCT can be shown to be

. . Nops=O(N1N¢logaNo), (16)
where we have anticipated that we will evaluate the sum for

integral values ok; using a standard FFT. Finally, we ex- which is at least as efficient as the matched filter approach.
press the inner sum in standard FFT form by extracting arhe inequality indicates that the evaluation requires less
phase factor and we define the two-parameter RG{, « 1, computations if approximations are used in evaluating the
as oversampled FFT’s or if a coarser sampling of the FCT over
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ko values is used. We will discuss the issue of computationaiintervals. In order to implement a fast hierarchical search, we
efficiency further in Sec. Il D below. could simply take the magnitudes of eael{q(oyjl} and add

them as an incoherent sum ovjgr giving a measure of the

incoherent power as a function &f. Values ofk, with

significant incoherent power could then be examined in more
How accurately can the FCT approximate the discretaletail by performing the coherent summation oygr This

matched filter output? There are three types of approximaeould lead to a dramatic decrease in the required number of

tions to be considered1) Possible use of the stationary computations, depending on the threshold set for the inco-

phase approximation in deriving a form for the matched filterherent power summation step.

output;(2) The constant phase approximation used to derive

the discrete form of the FCT; an@) Possible use of ap- C. Implementation considerations

proximations in calculating the oversampled FFT’s that enter L ) )

into the FCT. We will consider each of these approximations AS @n initial trial, we have implemented the two-

in turn. parameter FCT and tested it on several types of waveforms,

(1) There may be some error due to the stationary phascuding the quadratic chirp discussed above and the "New-
approximation itself(Appendix if this is used to approxi- tonian chirp” discussed in Sec.V A below. We have used
mate the Fourier transform of the signal waveform. This istW© implementations, one which uses a fixed length over-
not inherently part of the FCT, and we will not discuss thisS@MPling of the inner FFT, and one which uses a pre-
approximation here since it depends on the specific wave?ackaged 2D FFT algorithm.

form being analyzed. However, we note that the stationary In this section we will describe in more detail the 2D FFT

phase approximation can be extremely accurate in practid@plementation in order to give further_insight into the de-
[14,15,. tails of the two-parameter FCT algorithm. The 2D FFT

(2) The error due to the constant phase approximatiorjlmplememation is extremely simple to code although it is not

[Eq. (12)] in the FCT itself is obviously dependent on the the most computationally efficient. It will be shown in the
value of the conjugate variables at which the FCT is evalyNext section that even so, it is nearly as efficient as the brute-

ated. If the value ok, is small, the value of the increase in 0rc@ matched filtering method. .
the quadratic phase term g goes toj,+1 is also small, The 2D FFT implementation of the FCT packs the initial

and the approximation will be very accurate. By analogy to®n€ dimensional data arrafy; , into a sparse two dimen-

the Fourier transform, we expect the “frequency response’sional arrayﬁjoyjl. The packing will be determined by the
of the output of the matched filter computed by the FCT tojmingj .y array which is ultimately defined by the phase func-
behave similarly to the frequency response of a power speg;,, #(jo). Once the data are packed appropriately, the FCT
trum computed with an FFT. Specifically, just as there is 3¢ ajculated using any pre-packaged 2D FFT routine. For
roll-off in power for some periodic signals near the Nyquist i, rest of this discussion, it is assumed tNatand N, are
frequency, there will be a roll-off in the accuracy of the FCT compatible with the 2D FFT routine being employed. This
approximation to the matched filter output for signals nearusually means that these lengths are a power of two.

the Nyquist limit of the conjugate variable, namely g0 Eq.(13), the two parameter FCT may be written as
k,(Nyquist)=N,/2. For values ok, well below Nyquist, we

expect the accuracy of the FCT approximation to the Ny—1 o Gy +1)-1
m.atch(.ad filter output _to be very good._Fur'ghermore, if we Cp, k1= 2 gi2mky (i1 /Ny) E h; ei27ko(io/No)
wish higher accuracy in the FCT approximation, we can em- ot ji=o 1= 1) 0
ploy the same techniques used in Fourier analysis, namely, (17)
we can “oversample” the FCT. This can be accomplished
by “zero-padding” of the outer j(;) FFT. By defining a two dimensionallyX N; array such that

(3) Finally, there may be errors due to the possible use of i i
approximations in calculating the oversampled FFT'’s. As in- - Nig §6M(GD)<Jo<ig "(1+1),
dicated in Eq(16), the exact calculation of the oversampled thvjl_ ;

- . ) 0 otherwise,
FFT’s requires O;Nglog,N;) calculations. However, this
assumes that each interval is oversampled by a factgrq. (17) becomes
Ng/No(j1), which can be quite large. Typically, oversam-
pling factors of Z— 22 are sufficient for an accurate approxi- . ot N TN
mation. If N, is large, the computational requirements may Clgkg= 2 2 hy j e2mtaii/NitkoioNol  (19)
- - I j1=0 jo=0

thus be reduced considerably by using such approximations
[i.e. O(Nolog,No) rather than Oll;Nolog;No)|. A quantita-  as promised Cy, ., is the 2D FFT of the sparsely packed
tive discussion of oversampling approximations is beyond N 0" ) ,
the scope of this paper. arrayh; ; . For the case of a monotonic phase function that

We also remark that the FCT formalism lends itself natu-satisfies¢(0)=0 and ¢(Ng) =N;, the array boundaries are
rally to a variety of hierarchical search approaches. For ingiven by
stance, consider Eq§l4) and (15). The outer sum is a co- i 1
herent addition of the contributions from the individual jo (J1)=¢ ~(jo). (20

B. Accuracy of the approximations

(18

N;—1 Ng—1
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Note that we have the freedom to rescdlgj) so thatN;  straightforward evaluation of the FCT contained in ELp),

may be chosen arbitrarily. the sums ovejf, are simply evaluated at a decimated set of
The number of operations needed by the FCT implemenkj,.

tation using a 2D FFT is the same as that needed by a two We remark that sampling the FCT at lower resolution can

dimensional FFT of ordelNgXx Ny: be used as part of a hierarchical algorithm, i.e. the FCT is
first calculated at lower resolution and valueskgfare iden-
Nict—20= O(NoN1l0g;NoN,). (21)  tified having excess signal strength. The FCT is then evalu-
ated on a finer grid ok, values near those values &f
D. Computational efficiency exhibiting the excess signal.

For a matched filter operation using individual filters,
there is one Fourier transform to perform for each filter, thus
the number of computationd|;, is of order We can select ranges &f, andk, to be evaluated by a

process analogous to a heterodyne operation on a periodic
Nim = O(N1Nolog;No), (22 gignal. Selection of the range ¢, is done by the usual
; process of down-conversion and low-pass filtering and we
will not consider it further here. For the parametgr the
whrocess is different in that no low-pass filtering is required,
and because the range lof can depend ok, i.e. the con-
jugate parameter ranges need not be independent. This pro-
vides considerable flexibility in determining the shape and
Nicro rrer=<O(N;Nolog,No). (23 volume of parameter space that can be efficiently searched.
Suppose we wish to compute the FCT for a rangd,of

Two approaches offer potential computational gaifi$:  centered o', Re-writing the two-parameter FCT includ-
Reducing the oversampling factor in computing the innefing thekTid term, we obtain
FFT (discussed in Sec. Ill A and (2) relaxing the require-
ment of full resolution in the, variable. Reducing the over- No—1 _ ) mid ) )
sampling factor can change the inner sum computation from  Hi k= 2 hj e/ kello/No) (koD (o No)T,
an Q(NgN;log,y(Ny/N;)) calculation to an Ofglog,N,) cal- 10=0 (24)
culation(see Sec. lll A. If N;>1 the total calculation of the
FCT will then be of order OgN1l0g;N;). This is poten-  where we have explicitly allowek]" to depend orko. As
tially a factor of O(logNo/log;Ny) more efficient than the pefore, assuming that + k"% is sufficiently small, we take

conventional matched filtering technique. We emphasize thghe gquadratic phase term out of the inner summation to ob-
the detailed coefficients in front of the scalings are not yetgip

known for computationally efficient implementations.

Significant computational gains are also potentially avail- H iy k)™ Ciig ky)
able by relaxing the requirement of full resolution in tkg
variable. Not all problems require the high resolution that . .
the previously discussed FCT implementations deliver. = 2 e'2malin/Ny)
While the power is very localized in tHe variable when the 1120
value ofk; is that of the actual signdhnd vice-versa the

E. Selection of the range for evaluation of the FCT

whereN; is the number of filter functions needed to cove
the space of possible waveforms, aNg is the number of
samples in the time series or frequency spectrum. As sho
in Sec. Il A using the fractional Fourier transforfRRFT),
the FCT computation can be of order

N;—1

power can be significant for values k§ andk; which si- x| ei2koli§" " )/No)+ KT Uko) i1 ND]
multaneously deviate from the actual signal values. The rea-

son for this is that the deviation ky can be compensated for No(j1)—1

by a deviation ink,, providing a reasonable correlation of X > hj 4 jming )eiZ’Tko(J’o/No)} (25)
the matched filter template with the actual signal. The deter- j0=0 0o T

mination of the optimum sampling resolution is closely re-
lated to the calculation of th@mbiguity functiorf3]. Discus-
sions of techniques for calculating the ambiguity function ¢ emin pmidy _p riming; 4 kmid -
have been given by Owefi6], Mohanty and Dhurandhar OkoJJo k™) =Kol jo (11)/No] ki (ko) (j1/N1)
[17], and Owen and Sathyaprakds8] for special cases of (26)
the types of chirp functions considered here. to obtain

The FCT may be evaluated at lower resolution by reduc-
ing the order of the 2D arraﬁjO’j1 (Sec. I D) from N
XN; to (eNg)XN; where e<1. As long as €éNg) X Ny
>Ny, we can still pack the originally data points into this .
smaller array. The resulting FCT will have a coarkgreso- No(ip)—1 S
lution but it will take O(eN;Nylog,N,) operations to perform X E hj g+ jming y€'°" olio/No) | (27)
(again neglecting terms of order lgddy). Alternatively, in the Jo=0

To further simplify the notation for the outer sum, we define

Ny-1

Clico ky} = 20 e'2malis/Ny)
11=

270 (kg o iy
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It is important to note thalN, can be chosen to be any inte- may generalize the definition of the FCT to the case of a sum
ger less than or equal to the “Nyquist limit,Kl,/2. This is  of non-linear phase evolution terms. In particular, consider
due to the fact that we can choose the boundaj{#s(j,), the DCT:

of the intervals arbitrarily as long as the phase change from

the quadratic term is kept sufficiently small. Thus, we are tko. -k -1}
free to choose any range bf aroundkrl“'d as long as the size No—1 i bo(jo)
of the range does not exceed the Nyquist limit. = Z h; LEX i27| kg— E Kp P
jo=0 No (;bp(NO)
IV. GENERALIZED DEFINITION OF THE FCT (28
Because the non-linearities of the phase evolution entewhere the{¢(jo):p=1,... M—1} are a set of parameter-

into the FCT only in the boundaries of the sub-intervals, weless, non-linear phase functions. The corresponding FCT is

| i mm(]z coiv-1)
C{ko ’’’’’ kg = 2 el2mkym-al(im-1)/(Nm-21 ex;{iZﬂ-kl( N ”

im-1=0 1

Ni(iz, s iMm-1-1 mm(j o )
< E ei2”k1(jllN1)ex+27rko( 1 M-l ”

i1=0 NO
No(ig, .- im-1-1
i2wko(jo/No) )

X J.OE:O e'“mrotoolh oMy, g (29

where thej ;""(jps1, - - - jm-1) andNp(j1, ... ,ju-1) are specified by the phase functigigy(jo):p=1,... M—1}, and
the {N,:p=1,... M—1} are determined by the maximum allowed values of tkg:p=1,... M—1}. As before, the
intervals specmed by thqem'”(]l, ...,Jm—1) are contiguous. Thus for each non-linear phase funchgyo) there is a
corresponding “conjugate variableKp, .

In analogy with Eqs(18) and(19), the M parameter FCT may be written in the form of an M-dimensional discrete Fourier

transform by defining the matriﬁjo _____ i1 such that

. ¢p(]0) p . _
h o I o(No) <jptlforalpe[1M—1], (30

0 otherwise.

Nm-1~1 No—1 kM M- 1, I<olo

Cig, o ky = 2 w0 2 €27 oty (31)
IM—1=0 jo=0

Note that the interval boundariefg)'", may be determined from E€30).

Finally, we consider how the range for evaluation of the generalized FCT can be specified, analagou@ip fegthe
two-parameter case. To specify the region for which the FCT is to be evaluated, we add a term to each of the exponential terms
in Eq. (29). As for the two-parameter case, E@6), we define

Op(Kp—1.Jp g KD =Ko 1(J g3/ Np 1) + K3 o /Np), (32

Wherejm'n is a function of{j,, ...,ju-1} and kmld can depend offiky, k;+ k"9, . - Kp—1t km' 1}- The parameter space

searched by the FCT will then btg“d+N /2. ThIS provides considerable erX|b|I|ty in determlnmg the shape and volume of
parameter space that can be efficiently searched. We can now write

Npm-1—1 minmid v-2(im-1)-1
C{ko = 2 ; e2mkm - 1l(im-1)/(Nm - )] gi27On —1(km -2, im -1/ i m -2 Km—1) _ 2 . ei27mkm —2[(im—2)/(Nm - 2)]
iM-1= Im-2=

(33
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X oo
o om(igee im-1)-1 -
 @12702(kg 2.0 K] S i 27k1(11/N) @i 270 1 (ko i 1,10 K"
j1=0
I CETR im-1-1
i2mko(lo/NOIR. | - min, .
X Z al2mko(jo OhJO+JE)mn(]l .... iv_1) "
jo=0
|
V. DISCUSSION: APPLICATION TO DETECTION phase waveforms for binary inspiral up to 2PN order are of
OF VARIABLE FREQUENCY SIGNALS the form[18]
A. Detection of gravitational waves from the binary inspiral 1/2 1/3
= ou Mot T 1By
of neutron stars and black holes hy(f)= 96M ry f 7T Yexdiw ()], (39
o T No

One of the primary goals of the new generation of laser
interferometric gravitational wave detectors is the detection _ 3 e 3715 55
of gravitational waves from the binary inspiral of compact © (1) =27fte=2¢.—m/4+ 128y | X 756 9"
objects, specifically neutron staf®NS) and black holes
(BH’s). There is a large literature written on the subject of 15293365+ 27145
matched filtering for detection of gravitational waves using 508032 504
laser interferometertsee e.g[19-21]). The matched filter- 3085

2

ing techniques are based on E4), whereh(f) is the Fou- =7 )X1’3
rier transform of the gravitational strain generated from the

differential output of the interferometer, tte(f) are the  where, for simplicity, we consider only one polarization. The
Fourier transforms of theoretically generated binary inspiralvariables have been defined as usuak(Md the mass of the
signal waveforms, an8(f) is the measured power spectral sun, T, is GMy/c® and has a value of approximately
density of the interferometer. 4.925< 10 %s, M, is the total mass of the binary system,
A significant amount of work has gone into the calcula- n=u/My;, u is the reduced mass of the binaty,is the
tion of binary inspiral waveformscalled “templates’), the  time of coalescencep, is the phase at coalescencand we
spacing of such templates to achieve near-optimal sensitikave defined
ity, and the cost of generating such templates in terms of
compute cycles and storage requiremdr,16,18,23,24 Y
Current matched filter techniques require thousands to tens Mo
of thousands of templates to cover the space of expected

waveforms depending on the mass range of the binary Sy‘cffequency dependent amplitudes and phase functions that are

tems considered. . ) expansions in powers of the frequenéyln particular,
The method of chirp transforms described here does away

with the requirement of generating thousands of individual W (f)=a+ 27t f+Nof 53+ N, f 14+ Ny sf ~ 23+ 0,13
templates and provides a natural way to cover the space of (36
allowed waveforms completely. To apply the chirp transform _ -
to the binary inspiral problem, we make use of the stationaryvherea is a phase constant and theare coefficients of the
phase formalism. Droet al. [14] have shown that the sta- frequency expansion which depend bk, Mo, To, and
tionary phase formalism can be used to provide an accuratg-
approximation to the Fourier transform of the time-domain In order to apply the FCT, we construct the discrete ver-
waveforms of inspiraling binaries as calculated in the “New-sion of the matched filter output, E¢¥), whereh(ky) is the
tonian” approximation. This is essentially an application of Fourier transform of the discretely sampled interferometer
the stationary phase approximatiéBPA) discussed in the strain output,hy(k,) are the stationary phase waveforms
Appendix to the case of gravitational waveforms. Damourgiven in Eq.(34) above, ands,(K,) is the noise power spec-
et al.[25,15 have shown that the binary inspiral waveforms | density of the interferometer.
can be accurately calculated using the SPA and an alternative The FCT is then used to evaluate the matched filter, with
formalism based on P-approximants.” They note that care 3 resulting output,
must be taken in the treatment of the termination of the
waveform at the time of the final plunge and merger. C{tc’%ovaMs'%z}' (37)

In order to illustrate the use of the FCT in gravitational
wave detection, we discuss the example of a ‘“post-In this expression, 2t is the conjugate variable of the lin-
Newtonian” (PN) expansion. The canonical PN stationary ear f term; A is the conjugate variable to the Newtonian

Xx t-16mx 2R+

Moi T
_TVwotlo (35)

It can be seen that the stationary phase waveforms have
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term, =53, \, is the conjugate variable to the 1PN term, for the FCT. The FCT may therefore be very useful in the
f~1, etc. Numerous considerations arise in selecting theearch for BH-BH coalescence where the waveforms are not
search ranges for the conjugate parameters. As discussed pigecisely known[26], or for sources to be detected by the
several authorg23,18, spinless low-mass binaries should be space-based gravitational detector, the Laser Interferometer
reasonably well detected by a three parameter search ov&Pace AntennaLISA), where the waveforms are also only
{t.,\No,\1}. The conjugate parameteks, and A, fulfill a approxmately known and phase perturbatlons are I|k_ely to
function similar to the parameters, and 7, that appear in pe present. Flnally,.th_e FCT fqrmal}sm can be usgd to inves-
the literature(e.g. [23,18) which represent the Newtonian tigate the charactenstlcs of.n0|se. sngnals in the neighborhood
and 1PN contributions to the time to coalescence, respe@f expected signals from binary inspiral.
tively. Thus, in the case of spin-less low-mass binaries,
A1s2 can be considered functions afiy;. Owen and B. Detection of rotating neutron stars
Sathyaprakashl8] point out thatr, ; 5 may be more con-
venient search parameters. Hencg,, become functions of ) o ) .
15 . In this case, the “heterodyne” approagkee the Pulsars are rotating neutron stars that spin with periods in
discussion following Eq(31)] can be used with the depen- the range of approximately 1 ms up to hundreds of seconds.
dent parameters to reduce the search space to that of spiRulsars are detected primarily at radio and-riy wave-
less 2PN waveforms. lengths. In the future, rotating neutron stars may also be de-
To search for binaries with spin, additional independentectable as sources of gravitational waves. Detection of pul-
parameters will be needed and thus it will be useful to searchars usually employs Fourier transform techniques to find the
in a range around the spin-less PN expangimnother ex- perl_odlc pulses. However, several effectfs compllcat_e the de-
pansion. This can also be accomplished using the methodection of pulsars and cause the pulsations to deviate from
described in the discussion following E1). The tech- bemg strictly perlqd|c. For instance, the emission from pul—
nique will be particularly useful for massive binaries for Sars in compact binary systems is Doppler shifted causing a
which spin interactions could be significant. An importantfrequency variation on the time scale of the orbital period.
step will be to estimate limits to the range of the conjugate-ikewise, the earth’s rotation and orbit can induce frequency
variables in the FCT analysis due to spin effects. The FCTaNd phase variations that are dependent on the position of the
then provides a formalism for searching the complete waveSource on the sky. Rotating neutron stars can also have non-
form space, even if the exact waveforms are not known. negligible spin down effects, especially if the neutron star is
It will also be quite useful to enlarge the search regionyoung. Any of these effects can be important at both radio
beyond the space physically accessible by astrophysical b@nd x/y-ray wavelengths depending on the length of the ob-
nary systems. While no binaries are expected outside theervation. They are also likely to be important in future
physically accessible regions, it is important to study thesearches for gravitational wave emission from rotating neu-
characteristics of noise signals in regions close to the physfron stars due te-modes, or from older rotating neutron stars
cally accessible regions. The FCT formalism provides decause of the earth’s orbit and rotation.
straightforward way to tailor the analysis to a range of search In the past, so-called “acceleration searches” have been
regions. This, of course, is also possible with conventionafMmployed to detect pulsars with slowly varying frequency
template-based techniques. [8]. Thesg are (_assentlally matched .f|lter technllques imple-
The FCT formalism may be useful for expansions othermented either with templates, or equivalently, with “stretch-
than post-Newtonian. In particular, we are very interested tdng” of the time or frequency variable. This requires indi-
see whether the FCT formalism can be applied to theidual m_atche_d filter operation, one for each dlscret_e
P-approximants discussed very recently by Dametial. acpeleratlon_ tna]. The FQT analogue is that of the qugdranc
[15]. Also, as we remarked earlier, the FCT lends itself natuchirp analysis discussed in Sec. Ill. The FCT also provides a
rally to hierarchical approaches for binary inspiral detectionnatural extension to searches beyond quadtaticeleration
We note in particular the recent paper by Tanaka and Ta€ffects.
goshi[24] which discusses efficient hierarchical search algo-
rithms which have several similarities to the general FCT
algorithm. Radio radiation emitted by pulsars travels through a dif-
In summary, the use of the FCT for detection of the chirpsfuse interstellar plasma known as the interstellar medium
from gravitational waves has several attractive features(ISM) before reaching detectors on Earth. The dispersive
First, no explicit calculation and storage of gravitational properties of the ISM cause individual radio pulses to
waveforms is required for the analysis. Only the order of thebroaden in time. This dispersion broadening will reduce the
PN expansion, the power-law exponents appearing in the exthances of detecting a given pulsar signal. The magnitude of
pansion, and the range of the search parameters is importatite dispersion effect is measured by a quantity called the
Second, waveforms with perturbations on the phase evolwdispersion measurédM). If the DM is known, the disper-
tion such as those due to spins can be detected even if tlsbon effect can be removed from the pulsar signal using stan-
exact waveforms are not known since the FCT can be used @ard digital signal processing techniques. When searching
search completely an arbitrary region of parameter spacdor new pulsars, the DM is rarely known and systematic
The only requirement is that the perturbation not involvesearches must be performed both in DM and in the pulsar
significant terms beyond those in the expansion considerepleriod.

1. Acceleration searches

2. Dispersion measure searches
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The effect of ISM dispersion may be removed from theFCT and its application to the above problems will be the
received signal by applying the following transformation subjects of future work.
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above equation shows th&D M ,t) is simply a chirp trans-

form of S,(f). The FCT provides an efficient way to gener- APPENDIX: THE STATIONARY PHASE
ate S(DM,t) for several values of DM. Each of these time APPROXIMATION AND MATCHED FILTERING
series can then be searched for periodic signals.

When searching for pulsar signals, one typically “de- . . )
tects” the total power in the Signa] by Ca]cu|ating We begln by ShOWIng how the Fourier transform of wave-

P(DM,t)=||S(DM,t)||> and then averages over a small forms such as those of E€l) can be approximatgd in a way
window of time. Each time series is then searched separateg‘ﬁlt allows them to be expressed naturally in frequency-
using various pulsar detection techniques. The structure ¢fomain matched filtering, Eq4). The stationary phase ap-
the FCT points to the possibility of a slightly different tech- Proximation (see e.g.[28]; see also Ref[19] and Refs.
nique. Rather than searching each time series separately, ol#%,19 for a description in the context of gravitational wave
first calculatesP(t) == pyP(DM,t) and then searches this dete(_:tlon, provides a prescription for approximating the
time series for possible pulsar signéee Sec. Il B. Using ~ Fourier transform of a function of the formhg(t)

the property that the sum of the squares is conserved underaA(t)co¢(t)) [whereA(t) and ¢(t) are real andp’(t) is
Fourier transform, the second set of FFT’s in the FCT doedositivel:

not need to be performed in order to calculRi@). Thus, a 17 o .

highly efficient intermediary chirp transform can be used in- _(f)= _[f dt At) eifw+(t)+f dt A(t) e~if¥-®
stead of the complete FCT. 2| )= —

S(DM,t)Ifx "Sr(f)eiZﬂ'fteiZﬂ'DMMf)df, (38)

1. Frequency-domain matched filtering

(A1)

VI. SUMMARY with - (t) = ¢(t)/f=2at. If t; exists such thaty’, (t;)=0

We have described an algorithm for the detection of sig>" y-(tr) =0, thenty is called a "stationary point.” Consid-

nals with variable frequency. Standard detection aIgorithmgrlng pasitivef anc_i posmveq§ (1), only the second '”teg“’%"
use matched filtering techniques which require both the com!! Eq. (A1) contains a. stationary point. Hence, to leading
putation of a large set of task specific filter functions and aorder, we can writ¢28]:
prescription for densely covering the set of possible signal ~ 1 (= _

waveforms. The fast chirp transform proposed in this paper hs(f)~5| dtA() g!l27ft=¢(b)] (A2)
automatically precludes the need to generate specific filter o

functions since standard FFT’s can be used in the implemen- s : :
tation and the FCT immediately provides the prescription forr}Or f>0. Note that we computés(~ f) usmg*the Fourier
densely covering the waveform parameter space. transform p_rop_erty of real functionb(—f) =hg ().

The FCT for a two parameter chirp was defined and then !f @ll derivatives of¢_(t) up to orderp are zero aty,
generalized tdN parameters with arbitrary phase functions. then the Fourier transform df; may be approximated by
A straightforward implementation of the FCT was discussed - .
and it was shown to be comparable in efficiency with the hs(f)~ A()exdiv(f)], (A3)
brute-force matched filtering approach. Several approachegith components given by somewhat complicated but
to achieving even better computational efficiency were alsgtraightforward expressions:
discussed. N

The efficient detection of variable frequency signals has a p! PT(1/p)
large number of practical applications. Of considerable inter- flyP(ty)] p
est to the authors is the detection of gravitational waves from
NS and BH binary systems and the detection of radio wave&"
from pullsars. Anothe_r obvious area of applicatio.n is radqr— U (f)=27ft;— $(t;) = 7/2p, (A5)
sonar signal processing where target or transmitter motion
can cause Doppler frequency shifts in the received signalvhere the sign ofr/2p is positive or negative depending on
Other potential areas of application include communicationsvhetheryP)(t;) is positive or negative, respectively. In par-
and image processing. A more detailed description of theicular, for p=2, the following approximation holds:

A(f)=A(ty) , (A4)
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No—1
~ T : 4 o " _ _
hs(f)= \ﬁA(tf)lcb”(tf)l1’26'[2”““”(”)*”’4]- (AB) S=—Re > H e % (A10)
2 No |kg=o ©
The stationary phase approximation is accurate as long as thée summation can be computed as a FCT.
amplitude ofhg does not vary too quickly compared to the
time derivgtiv_e of the phasep’(t), and the e_ffect of the 2. Time-domain matched filtering
higher derivatives of)(t) on the phase evolution are small )
compared to the effect ap’ (t). We note that for signal waveforms of the forrg(t)
Using the form given in EqA3), we can now rewrite Eq. = A(t)cod#(t)), the expressiofiEq. (2)] for time-domain
(4). Gathering all the amplitude terms together, matched filtering yields directly
~ ~ CA*(T) T _
H(f)=h(f) S (A7) S= Re“ dt h(t)A(t)e' M|, (A11)
0
we can express the matched filter output as Such signals are of considerable interest and include periodic

signals with frequency drift. The integral transform in Eq.

S(to)=4 RE{ fo dfr(fe O], (A8) (A11) can be represented in discrete form in the usual way as

No—1
where S= Re{ E Q,—Oe“”(jo) , (A12)

O(f)=w(f)—2nfty. (A9) i<

Hence, the matched filtering operation in the frequency doWhere

main is expressed as an integral transform, specifically a so- Gi,=h(i0)Alo), (AL13)
called generalized Fourier integral. In analogy with the dis-

crete Fourier transforntDFT), we can write this in discrete and whereh(jg), A(jo), and ¢(j,) are the discretely
form as sampled values of the continuous functions.
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