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Detection of variable frequency signals using a fast chirp transform
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~Received 1 February 2000; published 14 November 2000!

The detection of signals with varying frequency is important in many areas of physics and astrophysics. The
current work was motivated by a desire to detect gravitational waves from the binary inspiral of neutron stars
and black holes, a topic of significant interest for the new generation of interferometric gravitational wave
detectors such as LIGO. However, this work has significant generality beyond gravitational wave signal
detection. We define a fast chirp transform~FCT! analogous to the fast Fourier transform. Use of the FCT
provides a simple and powerful formalism for detection of signals with variable frequency just as Fourier
transform techniques provide a formalism for the detection of signals of constant frequency. In particular, use
of the FCT can alleviate the requirement of generating complicated families of filter functions typically
required in the conventional matched filtering process. We briefly discuss the application of the FCT to several
signal detection problems of current interest.

PACS number~s!: 04.80.Nn, 02.30.Nw, 84.40.Ua, 95.75.Pq
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I. INTRODUCTION

The detection of periodic signals is a well-developed a
In contrast, the detection of signals with variable frequen
is an active area of research in signal processing. Cons
able progress has been made in recent years using a va
of time-frequency techniques which include wavelets, bil
ear transforms, and short time Fourier transforms~STFT’s!
@1,2#.

In this paper, we consider the detection of determinis
signals with unknown parameters. The case of determin
signals with unknown amplitude, phase, frequency, and
rival time has been treated in the literature@3,4#. In this pa-
per, we generalize to an arbitrary number of parameters
consider signals with a deterministic, but parametrized,
quency evolution. We call these ‘‘variable frequency s
nals.’’ Specifically, we consider signals of the form

hs~ t !5H A~ t !cos„f~ t,l0 , . . . ,lM !…, 0,t,T,

0 otherwise,
~1!

wheref(t,l0 , . . . ,lM) is real and the$l0 , . . . ,lM% repre-
sent various parameters which describe the phase evolu
~e.g. frequency, frequency derivative, etc.!. In general,f( )
may depend non-linearly on time. For this paper, the ‘‘
stantaneous frequency’’ ofhs must be a well-defined quan
tity and the frequency evolution of the signal must be w
resolved in the data. Variable frequency signals include
class of signals usually known as chirps, i.e. signals wh
have a monotonically increasing or decreasing instantane
frequency. Such signals appear in many contexts, suc
almost-periodic signals with a small frequency drift or pe
odic signals emitted from accelerated systems. Chirps
discussed often in the literature of signal processing@5,4,2#.
We will concentrate on chirp signals in order to simplify th
description of the chirp transform algorithm.

A standard technique for the detection of signals in
presence of noise is the ‘‘matched filter’’ technique@3,6#.
0556-2821/2000/62~12!/122001~10!/$15.00 62 1220
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Detection of a signalhs(t) in the presence of white noise i
a data streamh(t) of lengthT is based on the matched filte
output:

S5E
0

T

dt hs~ t !h~ t !5E
0

T

dthf ilt ~t!h~T2t!, ~2!

where hf ilt (t) is an optimal filter function in the time do
main. For white noise, the optimum filter has an impu
response given byhf ilt (t)5hs(T2t), in the interval 0,t
,T. To detect a signal beginning at timet0 in a data stream
of arbitrary length we compute the quantity:

S~ t0!5E
2`

`

dt hf ilt ~t!h@~ t01T!2t#, ~3!

whereh(t) is zero outside a finite region of interest. Whe
colored noise is present, it is conventional to work in t
frequency domain. For matched filtering of real signals w
an unknown arrival time, one constructs a signal estimato
the form

S~ t0!54 ReF E
0

`

d f
h̃~ f !h̃s* ~ f !e2 i2p f t0

Sh~ f ! G , ~4!

whereh̃( f ) is the Fourier transform of the signal plus nois
h(t), defined as

h̃~ f !5E
2`

`

dt h~ t !ei2p f t, ~5!

h̃s( f ) is the Fourier transform of the signal waveform a
Sh( f ) is the one-sided noise power spectral density. An
timum filter output is calculated for each realization ofhs
from Eq. ~1! using different values of the parameters. T
approach of matched filtering thus requires the construc
of a ‘‘dense’’ set of signal waveforms which cover the p
rameter space of possible signals.
©2000 The American Physical Society01-1
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Other approaches to the variable frequency detec
problem include techniques based on either synthesizin
multichannel filterbank@7# or resampling the data at a var
able rate@8,9#. These techniques are used widely in the ra
pulsar community and, like the conventional matched filt
ing approach described above, differ significantly from t
algorithm presented here.

Just as the Fourier transform can be considered a form
matched filtering using a dense set of sine and cosine fu
tions appropriate for periodic signals of unknown amplitu
and phase, we wish to define a transform which perfor
matched filtering for a dense set of variable frequency s
nals with unknown parameters. By using the Fourier tra
form for periodic signals, we avoid the need of explicit
storing and computing the individual filter functions, i.e. t
sine and cosine functions in the time domain. Analogou
the appropriate transform for variable frequency signals w
avoid the need of generating a large set of filter functions
will provide a prescription for densely covering the set
possible signal waveforms. We will informally call the tran
form for variable frequency waveforms a ‘‘chirp transform

The term ‘‘chirp transform’’ has been used elsewhere
the literature. For instance, Oppenheimet al. @10# describe a
‘‘chirp transform algorithm’’ which is a special case of th
‘‘chirp-z transform.’’ The chirp-z transform is well-known
and can be used to evaluate quadratic chirps. The me
described in our paper is general and not constrained to
dratic chirp functions. We call the algorithm described in th
paper the ‘‘fast chirp transform’’~FCT!.

The techniques discussed in this paper appear to be
lated to filter bank design, to wavelet analysis, and
STFT’s. In fact, the chirp transform can be viewed as a p
scription for coherently adding the outputs of a bank
variable-length STFT’s with a particular time-domain re
tionship. Thus, the fast chirp transform may already exis
some other formalism in the signal processing literature,
we are currently unaware of it. The work of Schutz@11# and
of Williams and Schutz@12# describes an approach which
similar in several aspects, but differs in that constant len
STFT’s are used rather than variable-length transforms.

In Sec. II, we give the discrete forms of the matched fil
outputs and discuss how these may be expressed in the
of the discrete analog to generalized Fourier integrals
Sec. III we derive the two-parameter fast chirp transform t
can be used to evaluate the discrete matched filter exp
sions. In Sec. IV we generalize the definition of the FCT
an arbitrary number of parameters. In Sec. V we briefly d
cuss several applications of the fast chirp transform.

II. DISCRETE MATCHED FILTERING

The discrete forms of the time-domain and frequency
main matched filter outputs@Eqs.~2! and ~4!# are given by

S~l0 , . . . ,lM !

5 (
j 50

N021

hs~ j ,l0 , . . . ,lM !h~ j !, and ~6!
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S~ j 0 ,l0 , . . . ,lM !

5
4

N0
ReF (

k050

N021 h̃~k0!h̃s* ~k0 ,l0 , . . . ,lM !e2 i2p j 0k0 /N0

Sh~k0! G .

~7!

The Appendix shows that for variable frequency waveform
hs(t)5A(t)cos„f(t,l0 , . . . ,lM)…, the discrete matched fil
ter outputs can be expressed as generalized Fourier integ
and in discrete notation take on a particularly simple form

S~l0 , . . . ,lM !5ReF (
j 050

N021

Gj 0
e2 if( j 0 ,l0 , . . . ,lM)G , ~8!

S~ j 0 ,l0 , . . . ,lM !5
4

N0
ReF (

k050

N021

H̃k0
e2 iF(k0 , j 0 ,l0 , . . . ,lM)G ,

~9!

where Gj 0
and H̃k0

can be considered as the time or fr

quency series to be transformed, andF(k0 , j 0 ,l0 , . . . ,lM)
is a real phase function of the form given in Eq.~A9!.

In the next section we define the chirp transform a
show how it can be used to evaluate discrete transform
the type shown in Eqs.~8! and~9!. Appropriate forms of the
FCT will replace both the forward and inverse transform
contained in Eqs.~8! and ~9!. An inverse FCT is not appli-
cable to the detection problem and will not be considered
this paper. The above formulation of the matched filteri
process included the starting phase as a search paramete
alternative approach is to convolve the signal with both
in-phase, cos(f), and quadrature-phase, sin(f), filters and
then sum the squares of the results. This formulation is
dependent of the starting phase. In order to make the c
transform applicable to both formulations and to a wid
class of problems in general, the Re@ # operator will not be
included in the definition. If necessary, this operator can
applied after the transform.

III. THE TWO-PARAMETER FAST CHIRP TRANSFORM

A. Example: quadratic chirp „linear frequency drift …

As an initial example, we consider the problem of t
detection of a quadratic chirp, e.g. a signal of the fo
hs(t)5A(t)cos„2p( f t1 1

2 ḟ t2)…. We wish to detect this sig-
nal by matched filtering with a dense set of quadratic ch
waveforms. This requires evaluation of the sums of the fo
in Eq. ~6!. Note that if ḟ were zero, the signal waveform
would be periodic and we might discretely sample the in
signal and then compute a power spectral estimate using
fast Fourier transform~FFT!.

Here we define a FCT for the quadratic chirp analogous
the FFT. This definition will be generalized to an arbitra
parameter frequency waveform in the next section. For s
plicity we first define the discrete chirp transform~DCT! for
the quadratic chirp in analogy with the discrete Fourier tra
form ~DFT!:
1-2
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DETECTION OF VARIABLE FREQUENCY SIGNALS . . . PHYSICAL REVIEW D 62 122001
H $k0 ,k1%5 (
j 050

N021

hj 0
ei2p[k0( j 0 /N0)1k1( j 0 /N0)2] , ~10!

wherehj 0
is the discretely sampled data. The quadratic

ture of the chirp is specified by the term (j 0 /N0)2 in the
exponential. Ifk1 is zero, we have the usual DFT.

To derive the fast chirp transform, we begin by breaki
the interval$ j 050, . . . ,N021% into a set of contiguous sub
intervals

H $k0 ,k1%5 (
j 150

N121

(
j 05 j 0

min( j 1)

j 0
min( j 111)21

hj 0
ei2p[k0( j 0 /N0)1k1( j 0 /N0)2] ,

~11!

where j 0
min( j 1) is the lower boundary of each of the inte

vals. The requirement that the intervals be contiguous
plies j 0

min( j 111)5 j 0
min( j 1)1n0( j 1), where n0( j 1) is the

number of points in the interval.
The boundaries are chosen as follows: we demand tha

termk1( j 0 /N0)2 change by no more thanp for values ofk1
appropriate for the quadratic chirp signals being conside
If the termk1( j 0 /N0)2 changes by more thanp over a single
sample, then the signal is not considered to be finely eno
sampled to resolve the phase evolution. This limitation
analogous to the Nyquist sampling limit for periodic signa
Requiring that the termk1( j 0 /N0)2 remain relatively con-
stant over a sub-interval allows us to approximate the D
as

H $k0 ,k1%' (
j 150

N121

ei2p[k1„j 0
min( j 1)/N0…

2]

3 (
j 05 j 0

min( j 1)

j 0
min( j 111)21

hj 0
ei2pk0( j 0 /N0) ~12!

and we note that the second summation can now be c
puted as a fast Fourier transform. We further demand tha
term k1„j 0

min( j 1)/N0…
2 increment by a constant amount fro

one sub-interval to the next. The requirement that the inc
ment be less thanp for the maximum value ofk1 , k1

max,
specifiesN152k1

max, with the ‘‘Nyquist’’ restriction that
k1

max<N0/4 for the case of a quadratic chirp. We can th
write

H $k0 ,k1%' (
j 150

N121

ei2pk1( j 1 /N1) (
j 05 j 0

min( j 1)

j 0
min( j 111)21

hj 0
ei2pk0( j 0 /N0),

~13!

where we have anticipated that we will evaluate the sum
integral values ofk1 using a standard FFT. Finally, we ex
press the inner sum in standard FFT form by extractin
phase factor and we define the two-parameter FCT,C$k0 ,k1% ,
as
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H $k0 ,k1%'C$k0 ,k1%

[ (
j 150

N121

ei2pk1( j 1 /N1)Fei2pk0[ j 0
min( j 1)/N0]

3 (
j 050

N0( j 1)21

hj 01 j
0
min( j 1)e

i2pk0( j 0 /N0)G . ~14!

As before,n0( j 1) is the number of points in the interval. W
call k0 and k1 the ‘‘conjugate variables’’ of the linear an
quadratic terms, respectively, in the same sense that
quency and time are a conjugate variable pair. Note that b
summations can be implemented using FFT’s and thus
are justified in calling the transform afast chirp transform.
The non-linearity of the quadratic chirp is absorbed into
specification of the boundaries of the contiguous interva
This is the key concept of the FCT. Note that the definiti
of C$k0 ,k1% is general and does not depend explicitly on t
quadratic nature of the phase evolution. The same defini
will apply to other non-linear phase evolution functions.

We may also write

C$k0 ,k1%5 (
j 150

N121

ei2pk1( j 1 /N1)C$k0 , j 1% , ~15!

where we have used the notationC$k0 , j 1% to indicate that it is

a partial transform, i.e. transformed over one index,j 0, but
not the other,j 1. Equation~15! illustrates an interesting fea
ture of the FCT, which is important in implementation co
siderations. Although the number of points in an interv
n0( j 1), may be small, the partial transform,C$k0 , j 1% , re-

quires evaluation at a large number of values ofk0, for ex-
ample atN0 values ofk0. This is equivalent to calculating
the oversampled FFT of the individual intervals with a
oversampling factor ofN0 /n0( j 1). The problem of comput-
ing theC$k0 , j 1% thus reduces to the problem of estimating t
oversampled spectrum of each interval. The oversamp
spectrum may be calculated exactly using the fractional F
rier transform~FRFT!. Fast methods have been develop
for evaluating FRFT’s@13# and it can be shown that th
calculation of the values of the individual oversampl
FFT’s that enter intoC$k0 , j 1% in Eqs. ~14! and ~15! requires

O„N0log2n0( j 1)… operations to be computed exactly. Th
computation required to calculate the entire set of FRF
can be shown to be O„N1N0log2(N0 /N1)…. The phase fac-
tors, exp@i2pk0„j 0

min( j 1)/N0…# in Eq. ~14! are easily com-
puted as part of the same formalism.

Taking into account the evaluation of the inner and ou
sums separately, the number of operations required for
evaluation of the FCT can be shown to be

Nops<O~N1N0log2N0!, ~16!

which is at least as efficient as the matched filter approa
The inequality indicates that the evaluation requires l
computations if approximations are used in evaluating
oversampled FFT’s or if a coarser sampling of the FCT o
1-3
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k0 values is used. We will discuss the issue of computatio
efficiency further in Sec. III D below.

B. Accuracy of the approximations

How accurately can the FCT approximate the discr
matched filter output? There are three types of approxi
tions to be considered:~1! Possible use of the stationar
phase approximation in deriving a form for the matched fil
output;~2! The constant phase approximation used to de
the discrete form of the FCT; and~3! Possible use of ap
proximations in calculating the oversampled FFT’s that en
into the FCT. We will consider each of these approximatio
in turn.

~1! There may be some error due to the stationary ph
approximation itself~Appendix! if this is used to approxi-
mate the Fourier transform of the signal waveform. This
not inherently part of the FCT, and we will not discuss th
approximation here since it depends on the specific wa
form being analyzed. However, we note that the station
phase approximation can be extremely accurate in prac
@14,15#.

~2! The error due to the constant phase approxima
@Eq. ~12!# in the FCT itself is obviously dependent on th
value of the conjugate variables at which the FCT is eva
ated. If the value ofk1 is small, the value of the increase
the quadratic phase term asj 1 goes toj 111 is also small,
and the approximation will be very accurate. By analogy
the Fourier transform, we expect the ‘‘frequency respons
of the output of the matched filter computed by the FCT
behave similarly to the frequency response of a power sp
trum computed with an FFT. Specifically, just as there i
roll-off in power for some periodic signals near the Nyqu
frequency, there will be a roll-off in the accuracy of the FC
approximation to the matched filter output for signals n
the Nyquist limit of the conjugate variable, name
k1(Nyquist)5N1/2. For values ofk1 well below Nyquist, we
expect the accuracy of the FCT approximation to
matched filter output to be very good. Furthermore, if
wish higher accuracy in the FCT approximation, we can e
ploy the same techniques used in Fourier analysis, nam
we can ‘‘oversample’’ the FCT. This can be accomplish
by ‘‘zero-padding’’ of the outer (j 1) FFT.

~3! Finally, there may be errors due to the possible use
approximations in calculating the oversampled FFT’s. As
dicated in Eq.~16!, the exact calculation of the oversample
FFT’s requires O(N1N0log2N0) calculations. However, this
assumes that each interval is oversampled by a fa
N0 /N0( j 1), which can be quite large. Typically, oversam
pling factors of 22223 are sufficient for an accurate approx
mation. If N1 is large, the computational requirements m
thus be reduced considerably by using such approximat
@i.e. O(N0log2N0) rather than O(N1N0log2N0)#. A quantita-
tive discussion of oversampling approximations is beyo
the scope of this paper.

We also remark that the FCT formalism lends itself na
rally to a variety of hierarchical search approaches. For
stance, consider Eqs.~14! and ~15!. The outer sum is a co
herent addition of the contributions from the individu
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intervals. In order to implement a fast hierarchical search,
could simply take the magnitudes of eachC$k0 , j 1% and add

them as an incoherent sum overj 1, giving a measure of the
incoherent power as a function ofk0. Values of k0 with
significant incoherent power could then be examined in m
detail by performing the coherent summation overj 1. This
could lead to a dramatic decrease in the required numbe
computations, depending on the threshold set for the in
herent power summation step.

C. Implementation considerations

As an initial trial, we have implemented the two
parameter FCT and tested it on several types of wavefor
including the quadratic chirp discussed above and the ‘‘Ne
tonian chirp’’ discussed in Sec.V A below. We have us
two implementations, one which uses a fixed length ov
sampling of the inner FFT, and one which uses a p
packaged 2D FFT algorithm.

In this section we will describe in more detail the 2D FF
implementation in order to give further insight into the d
tails of the two-parameter FCT algorithm. The 2D FF
implementation is extremely simple to code although it is n
the most computationally efficient. It will be shown in th
next section that even so, it is nearly as efficient as the br
force matched filtering method.

The 2D FFT implementation of the FCT packs the init
one dimensional data array,hj 0

, into a sparse two dimen

sional arrayĥ j 0 , j 1
. The packing will be determined by th

j 0
min( j 1) array which is ultimately defined by the phase fun

tion f( j 0). Once the data are packed appropriately, the F
is calculated using any pre-packaged 2D FFT routine.
the rest of this discussion, it is assumed thatN0 andN1 are
compatible with the 2D FFT routine being employed. Th
usually means that these lengths are a power of two.

From Eq.~13!, the two parameter FCT may be written a

C$k0 ,k1%5 (
j 150

N121

ei2pk1( j 1 /N1) (
j 05 j 0

min( j 1)

j 0
min

~ j 111!21

hj 0
ei2pk0( j 0 /N0).

~17!

By defining a two dimensionalN03N1 array such that

ĥ j 0 , j 1
5H hj 0

, j 0
min~ j 1!< j 0, j 0

min~ j 111!,

0 otherwise,
~18!

Eq. ~17! becomes

C$k0 ,k1%5 (
j 150

N121

(
j 050

N021

ĥ j 0 , j 1
ei2p(k1 j 1 /N11k0 j 0 /N0). ~19!

As promised,C$k0 ,k1% is the 2D FFT of the sparsely packe

array ĥ j 0 , j 1
. For the case of a monotonic phase function th

satisfiesf(0)50 andf(N0)5N1, the array boundaries ar
given by

j 0
min~ j 1!5f21~ j 1!. ~20!
1-4
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Note that we have the freedom to rescalef( j ) so thatN1
may be chosen arbitrarily.

The number of operations needed by the FCT implem
tation using a 2D FFT is the same as that needed by a
dimensional FFT of orderN03N1:

Nf ct22D5O~N0N1log2N0N1!. ~21!

D. Computational efficiency

For a matched filter operation using individual filter
there is one Fourier transform to perform for each filter, th
the number of computations,Nm f , is of order

Nm f5O~N1N0log2N0!, ~22!

whereN1 is the number of filter functions needed to cov
the space of possible waveforms, andN0 is the number of
samples in the time series or frequency spectrum. As sh
in Sec. III A using the fractional Fourier transform~FRFT!,
the FCT computation can be of order

Nf ct2FRFT<O~N1N0log2N0!. ~23!

Two approaches offer potential computational gains:~1!
Reducing the oversampling factor in computing the inn
FFT ~discussed in Sec. III A!, and ~2! relaxing the require-
ment of full resolution in thek0 variable. Reducing the over
sampling factor can change the inner sum computation f
an O„N0N1log2(N0 /N1)… calculation to an O(N0log2N0) cal-
culation~see Sec. III A!. If N1@1 the total calculation of the
FCT will then be of order O(N0N1log2N1). This is poten-
tially a factor of O(log2N0 /log2N1) more efficient than the
conventional matched filtering technique. We emphasize
the detailed coefficients in front of the scalings are not
known for computationally efficient implementations.

Significant computational gains are also potentially av
able by relaxing the requirement of full resolution in thek0
variable. Not all problems require the highk0 resolution that
the previously discussed FCT implementations deliv
While the power is very localized in thek0 variable when the
value ofk1 is that of the actual signal~and vice-versa!, the
power can be significant for values ofk0 and k1 which si-
multaneously deviate from the actual signal values. The
son for this is that the deviation ink0 can be compensated fo
by a deviation ink1, providing a reasonable correlation o
the matched filter template with the actual signal. The de
mination of the optimum sampling resolution is closely r
lated to the calculation of theambiguity function@3#. Discus-
sions of techniques for calculating the ambiguity functi
have been given by Owen@16#, Mohanty and Dhurandha
@17#, and Owen and Sathyaprakash@18# for special cases o
the types of chirp functions considered here.

The FCT may be evaluated at lower resolution by red
ing the order of the 2D arrayĥ j 0 , j 1

~Sec. III D! from N0

3N1 to (eN0)3N1 where e,1. As long as (eN0)3N1
.N0, we can still pack the originalN0 data points into this
smaller array. The resulting FCT will have a coarserk0 reso-
lution but it will take O(eN1N0log2N0) operations to perform
~again neglecting terms of order log2N1). Alternatively, in the
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straightforward evaluation of the FCT contained in Eq.~15!,
the sums overj 1 are simply evaluated at a decimated set
k0.

We remark that sampling the FCT at lower resolution c
be used as part of a hierarchical algorithm, i.e. the FCT
first calculated at lower resolution and values ofk0 are iden-
tified having excess signal strength. The FCT is then eva
ated on a finer grid ofk0 values near those values ofk0
exhibiting the excess signal.

E. Selection of the range for evaluation of the FCT

We can select ranges ofk0 and k1 to be evaluated by a
process analogous to a heterodyne operation on a per
signal. Selection of the range ofk0 is done by the usua
process of down-conversion and low-pass filtering and
will not consider it further here. For the parameterk1 the
process is different in that no low-pass filtering is require
and because the range ofk1 can depend onk0, i.e. the con-
jugate parameter ranges need not be independent. This
vides considerable flexibility in determining the shape a
volume of parameter space that can be efficiently search

Suppose we wish to compute the FCT for a range ofk1

centered onk1
mid . Re-writing the two-parameter FCT includ

ing thek1
mid term, we obtain

H $k0 ,k1%5 (
j 050

N021

hj 0
ei2p[k0( j 0 /N0)1„k11k1

mid(k0)…( j 0 /N0)2] ,

~24!

where we have explicitly allowedk1
mid to depend onk0. As

before, assuming thatk11k1
mid is sufficiently small, we take

the quadratic phase term out of the inner summation to
tain

H $k0 ,k1%'C$k0 ,k1%

5 (
j 150

N121

ei2pk1( j 1 /N1)

3Fei2p[k0„j 0
min( j 1)/N0…1k1

mid(k0)( j 1 /N1)]

3 (
j 050

N0( j 1)21

hj 01 j
0
min( j 1)e

i2pk0( j 0 /N0)G . ~25!

To further simplify the notation for the outer sum, we defi

Q~k0 , j 1 , j 0
min,k1

mid!5k0@ j 0
min~ j 1!/N0#1k1

mid~k0!~ j 1 /N1!

~26!

to obtain

C$k0 ,k1%5 (
j 150

N121

ei2pk1( j 1 /N1)Fei2pQ(k0 , j 0
min ,k1

mid)

3 (
j 050

N0( j 1)21

hj 01 j
0
min( j 1)e

i2pk0( j 0 /N0)G . ~27!
1-5
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It is important to note thatN1 can be chosen to be any inte
ger less than or equal to the ‘‘Nyquist limit,’’N0/2. This is
due to the fact that we can choose the boundaries,j 0

min( j 1),
of the intervals arbitrarily as long as the phase change f
the quadratic term is kept sufficiently small. Thus, we a
free to choose any range ofk1 aroundk1

mid as long as the size
of the range does not exceed the Nyquist limit.

IV. GENERALIZED DEFINITION OF THE FCT

Because the non-linearities of the phase evolution e
into the FCT only in the boundaries of the sub-intervals,
12200
m
e

er
e

may generalize the definition of the FCT to the case of a s
of non-linear phase evolution terms. In particular, consi
the DCT:

H $k0 , . . . ,kM21%

5 (
j 050

N021

hj 0
expF i2pS k0

j 0

N0
1 (

p51

M21

kp

fp~ j 0!

fp~N0!D G ,

~28!

where the$fp( j 0):p51, . . . ,M21% are a set of parameter
less, non-linear phase functions. The corresponding FCT
urier

tial terms

e
e of
C$k0 , . . . ,kM21%5 (
j M2150

NM2121

ei2pkM21[( j M21)/(NM21)] . . . expF i2pk1S j 1
min~ j 2 , . . . ,j M21!

N1
D G

3 (
j 150

N1( j 2 , . . . ,j M21)21

ei2pk1( j 1 /N1)expF i2pk0S j 0
min~ j 1 , . . . ,j M21!

N0
D G

3 (
j 050

N0( j 1 , . . . ,j M21)21

ei2pk0( j 0 /N0)hj 01 j
0
min( j 1 , . . . ,j M21) , ~29!

where thej p
min( j p11 , . . . ,j M21) andNp( j 1 , . . . ,j M21) are specified by the phase functions$fp( j 0):p51, . . . ,M21%, and

the $Np :p51, . . . ,M21% are determined by the maximum allowed values of the$kp :p51, . . . ,M21%. As before, the
intervals specified by thej 0

min( j 1 , . . . ,j M21) are contiguous. Thus for each non-linear phase functionfp( j 0) there is a
corresponding ‘‘conjugate variable,’’kp .

In analogy with Eqs.~18! and~19!, the M parameter FCT may be written in the form of an M-dimensional discrete Fo
transform by defining the matrixĥ j 0 , . . . ,j M21

such that

ĥ j 0 , . . . ,j M21
5H hj 0 j p<

fp~ j 0!Np

fp~N0!
, j p11for all pP@1,M21#,

0 otherwise.

~30!

With this definition, Eq.~29! becomes

C$k0 , . . . ,kM21%5 (
j M2150

NM2121

••• (
j 050

N021

ei2p(
kM21 j M21

NM21
1•••1

k0 j 0

N0
)ĥ j 0 , . . . ,j M21

. ~31!

Note that the interval boundaries,j p
min , may be determined from Eq.~30!.

Finally, we consider how the range for evaluation of the generalized FCT can be specified, analagous to Eq.~27! for the
two-parameter case. To specify the region for which the FCT is to be evaluated, we add a term to each of the exponen
in Eq. ~29!. As for the two-parameter case, Eq.~26!, we define

Qp~kp21 , j p , j p21
min ,kp

mid!5kp21~ j p21
min /Np21!1kp

mid~ j p /Np!, ~32!

where j p21
min is a function of$ j p , . . . ,j M21% andkp

mid can depend on$k0 ,k11k1
mid , . . . ,kp211kp21

mid %. The parameter spac
searched by the FCT will then bekp

mid6Np/2. This provides considerable flexibility in determining the shape and volum
parameter space that can be efficiently searched. We can now write

C$k0 , . . . ,kM21%5 (
j M2150

NM2121

ei2pkM21[( j M21)/(NM21)]ei2pQM21(kM22 , j M21 , j M22
min ,kM21

mid ) (
j M2250

nM22( j M21)21

ei2pkM22[( j M22)/(NM22)]

~33!
1-6
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3•••

3ei2pQ2(k1 , j 2 , j 1
min ,k2

mid) (
j 150

n1( j 2 , . . . ,j M21)21

ei2pk1( j 1 /N1)ei2pQ1(k0 , j 1 , j 0
min ,k1

mid)

3 (
j 050

n0( j 1 , . . . ,j M21)21

ei2pk0( j 0 /N0)hj 01 j
0
min( j 1 , . . . ,j M21) .
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V. DISCUSSION: APPLICATION TO DETECTION
OF VARIABLE FREQUENCY SIGNALS

A. Detection of gravitational waves from the binary inspiral
of neutron stars and black holes

One of the primary goals of the new generation of la
interferometric gravitational wave detectors is the detect
of gravitational waves from the binary inspiral of compa
objects, specifically neutron stars~NS! and black holes
~BH’s!. There is a large literature written on the subject
matched filtering for detection of gravitational waves usi
laser interferometers~see e.g.@19–21#!. The matched filter-

ing techniques are based on Eq.~4!, whereh̃( f ) is the Fou-
rier transform of the gravitational strain generated from

differential output of the interferometer, theh̃s( f ) are the
Fourier transforms of theoretically generated binary insp
signal waveforms, andSh( f ) is the measured power spectr
density of the interferometer.

A significant amount of work has gone into the calcu
tion of binary inspiral waveforms~called ‘‘templates’’!, the
spacing of such templates to achieve near-optimal sens
ity, and the cost of generating such templates in terms
compute cycles and storage requirements@22,16,18,23,24#.
Current matched filter techniques require thousands to
of thousands of templates to cover the space of expe
waveforms depending on the mass range of the binary
tems considered.

The method of chirp transforms described here does a
with the requirement of generating thousands of individ
templates and provides a natural way to cover the spac
allowed waveforms completely. To apply the chirp transfo
to the binary inspiral problem, we make use of the station
phase formalism. Drozet al. @14# have shown that the sta
tionary phase formalism can be used to provide an accu
approximation to the Fourier transform of the time-doma
waveforms of inspiraling binaries as calculated in the ‘‘Ne
tonian’’ approximation. This is essentially an application
the stationary phase approximation~SPA! discussed in the
Appendix to the case of gravitational waveforms. Damo
et al. @25,15# have shown that the binary inspiral waveform
can be accurately calculated using the SPA and an altern
formalism based on ‘‘P-approximants.’’ They note that car
must be taken in the treatment of the termination of
waveform at the time of the final plunge and merger.

In order to illustrate the use of the FCT in gravitation
wave detection, we discuss the example of a ‘‘po
Newtonian’’ ~PN! expansion. The canonical PN stationa
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phase waveforms for binary inspiral up to 2PN order are
the form @18#

h̃s~ f !5S 5m

96M(
D 1/2S Mtot

p2M(
D 1/3

f 27/6T(
21/6exp@ iC~ f !#, ~34!

C~ f !52p f tc22fc2p/41
3

128h Fx25/31S 3715

756
1

55

9
h D

3x21216px22/31S 15293365

508032
1

27145

504
h

1
3085

72
h2Dx21/3G ,

where, for simplicity, we consider only one polarization. T
variables have been defined as usual (M( is the mass of the
sun, T( is GM( /c3 and has a value of approximate
4.92531026s, Mtot is the total mass of the binary system
h5m/Mtot , m is the reduced mass of the binary,tc is the
time of coalescence,fc is the phase at coalescence!, and we
have defined

x5
pMtotT(

M(

f . ~35!

It can be seen that the stationary phase waveforms h
frequency dependent amplitudes and phase functions tha
expansions in powers of the frequency,f. In particular,

C~ f !5a12ptcf 1l0f 25/31l1f 211l1.5f
22/31l2f 21/3,

~36!

wherea is a phase constant and thelx are coefficients of the
frequency expansion which depend onMtot , M( , T( , and
h.

In order to apply the FCT, we construct the discrete v
sion of the matched filter output, Eq.~7!, whereh̃(k0) is the
Fourier transform of the discretely sampled interferome
strain output,h̃s(k0) are the stationary phase waveform
given in Eq.~34! above, andSh(k0) is the noise power spec
tral density of the interferometer.

The FCT is then used to evaluate the matched filter, w
a resulting output,

C$tc ,l0 ,l1 ,l1.5,l2% . ~37!

In this expression, 2ptc is the conjugate variable of the lin
ear f term; l0 is the conjugate variable to the Newtonia
1-7
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term, f 25/3, l1 is the conjugate variable to the 1PN term
f 21, etc. Numerous considerations arise in selecting
search ranges for the conjugate parameters. As discusse
several authors@23,18#, spinless low-mass binaries should
reasonably well detected by a three parameter search
$tc ,l0 ,l1%. The conjugate parametersl0 and l1 fulfill a
function similar to the parameterst0 and t1 that appear in
the literature~e.g. @23,18#! which represent the Newtonia
and 1PN contributions to the time to coalescence, resp
tively. Thus, in the case of spin-less low-mass binari
l$1.5,2% can be considered functions ofl$0,1% . Owen and
Sathyaprakash@18# point out thatt$0,1.5% may be more con-
venient search parameters. Hence,l$1,2% become functions of
l$0,1.5% . In this case, the ‘‘heterodyne’’ approach@see the
discussion following Eq.~31!# can be used with the depen
dent parameters to reduce the search space to that of
less 2PN waveforms.

To search for binaries with spin, additional independ
parameters will be needed and thus it will be useful to sea
in a range around the spin-less PN expansion~or other ex-
pansion!. This can also be accomplished using the meth
described in the discussion following Eq.~31!. The tech-
nique will be particularly useful for massive binaries f
which spin interactions could be significant. An importa
step will be to estimate limits to the range of the conjug
variables in the FCT analysis due to spin effects. The F
then provides a formalism for searching the complete wa
form space, even if the exact waveforms are not known.

It will also be quite useful to enlarge the search reg
beyond the space physically accessible by astrophysica
nary systems. While no binaries are expected outside
physically accessible regions, it is important to study
characteristics of noise signals in regions close to the ph
cally accessible regions. The FCT formalism provides
straightforward way to tailor the analysis to a range of sea
regions. This, of course, is also possible with conventio
template-based techniques.

The FCT formalism may be useful for expansions oth
than post-Newtonian. In particular, we are very interested
see whether the FCT formalism can be applied to
P-approximants discussed very recently by Damouret al.
@15#. Also, as we remarked earlier, the FCT lends itself na
rally to hierarchical approaches for binary inspiral detecti
We note in particular the recent paper by Tanaka and
goshi@24# which discusses efficient hierarchical search al
rithms which have several similarities to the general F
algorithm.

In summary, the use of the FCT for detection of the chi
from gravitational waves has several attractive featu
First, no explicit calculation and storage of gravitation
waveforms is required for the analysis. Only the order of
PN expansion, the power-law exponents appearing in the
pansion, and the range of the search parameters is impo
Second, waveforms with perturbations on the phase ev
tion such as those due to spins can be detected even i
exact waveforms are not known since the FCT can be use
search completely an arbitrary region of parameter sp
The only requirement is that the perturbation not invo
significant terms beyond those in the expansion conside
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for the FCT. The FCT may therefore be very useful in t
search for BH-BH coalescence where the waveforms are
precisely known@26#, or for sources to be detected by th
space-based gravitational detector, the Laser Interferom
Space Antenna~LISA!, where the waveforms are also on
approximately known and phase perturbations are likely
be present. Finally, the FCT formalism can be used to inv
tigate the characteristics of noise signals in the neighborh
of expected signals from binary inspiral.

B. Detection of rotating neutron stars

1. Acceleration searches

Pulsars are rotating neutron stars that spin with period
the range of approximately 1 ms up to hundreds of secon
Pulsars are detected primarily at radio and x/g-ray wave-
lengths. In the future, rotating neutron stars may also be
tectable as sources of gravitational waves. Detection of p
sars usually employs Fourier transform techniques to find
periodic pulses. However, several effects complicate the
tection of pulsars and cause the pulsations to deviate f
being strictly periodic. For instance, the emission from p
sars in compact binary systems is Doppler shifted causin
frequency variation on the time scale of the orbital perio
Likewise, the earth’s rotation and orbit can induce frequen
and phase variations that are dependent on the position o
source on the sky. Rotating neutron stars can also have
negligible spin down effects, especially if the neutron sta
young. Any of these effects can be important at both ra
and x/g-ray wavelengths depending on the length of the o
servation. They are also likely to be important in futu
searches for gravitational wave emission from rotating n
tron stars due tor-modes, or from older rotating neutron sta
because of the earth’s orbit and rotation.

In the past, so-called ‘‘acceleration searches’’ have b
employed to detect pulsars with slowly varying frequen
@8#. These are essentially matched filter techniques imp
mented either with templates, or equivalently, with ‘‘stretc
ing’’ of the time or frequency variable. This requires ind
vidual matched filter operation, one for each discre
acceleration trial. The FCT analogue is that of the quadr
chirp analysis discussed in Sec. III. The FCT also provide
natural extension to searches beyond quadratic~acceleration!
effects.

2. Dispersion measure searches

Radio radiation emitted by pulsars travels through a d
fuse interstellar plasma known as the interstellar medi
~ISM! before reaching detectors on Earth. The dispers
properties of the ISM cause individual radio pulses
broaden in time. This dispersion broadening will reduce
chances of detecting a given pulsar signal. The magnitud
the dispersion effect is measured by a quantity called
dispersion measure~DM!. If the DM is known, the disper-
sion effect can be removed from the pulsar signal using s
dard digital signal processing techniques. When search
for new pulsars, the DM is rarely known and systema
searches must be performed both in DM and in the pu
period.
1-8
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The effect of ISM dispersion may be removed from t
received signal by applying the following transformatio
@27,7#:

S~DM ,t !5E
2`

`

Ŝr~ f !ei2p f tei2pDMf( f )d f , ~38!

whereŜr( f ) is the Fourier transform of the received sign
and S(DM ,t) is known as the dedispersed signal. Wh
searching for new pulsars, one must generate several
series corresponding to different values of the DM. T
above equation shows thatS(DM ,t) is simply a chirp trans-
form of Ŝr( f ). The FCT provides an efficient way to gene
ate S(DM ,t) for several values of DM. Each of these tim
series can then be searched for periodic signals.

When searching for pulsar signals, one typically ‘‘d
tects’’ the total power in the signal by calculatin
P(DM ,t)5iS(DM ,t)i2 and then averages over a sm
window of time. Each time series is then searched separa
using various pulsar detection techniques. The structur
the FCT points to the possibility of a slightly different tec
nique. Rather than searching each time series separately
first calculatesP(t)5(DMP(DM ,t) and then searches th
time series for possible pulsar signals~see Sec. III B!. Using
the property that the sum of the squares is conserved und
Fourier transform, the second set of FFT’s in the FCT d
not need to be performed in order to calculateP(t). Thus, a
highly efficient intermediary chirp transform can be used
stead of the complete FCT.

VI. SUMMARY

We have described an algorithm for the detection of s
nals with variable frequency. Standard detection algorith
use matched filtering techniques which require both the c
putation of a large set of task specific filter functions and
prescription for densely covering the set of possible sig
waveforms. The fast chirp transform proposed in this pa
automatically precludes the need to generate specific fi
functions since standard FFT’s can be used in the implem
tation and the FCT immediately provides the prescription
densely covering the waveform parameter space.

The FCT for a two parameter chirp was defined and th
generalized toN parameters with arbitrary phase function
A straightforward implementation of the FCT was discuss
and it was shown to be comparable in efficiency with t
brute-force matched filtering approach. Several approac
to achieving even better computational efficiency were a
discussed.

The efficient detection of variable frequency signals ha
large number of practical applications. Of considerable in
est to the authors is the detection of gravitational waves fr
NS and BH binary systems and the detection of radio wa
from pulsars. Another obvious area of application is rad
sonar signal processing where target or transmitter mo
can cause Doppler frequency shifts in the received sig
Other potential areas of application include communicati
and image processing. A more detailed description of
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FCT and its application to the above problems will be t
subjects of future work.
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APPENDIX: THE STATIONARY PHASE
APPROXIMATION AND MATCHED FILTERING

1. Frequency-domain matched filtering

We begin by showing how the Fourier transform of wav
forms such as those of Eq.~1! can be approximated in a wa
that allows them to be expressed naturally in frequen
domain matched filtering, Eq.~4!. The stationary phase ap
proximation ~see e.g.@28#; see also Ref.@19# and Refs.
@29,15# for a description in the context of gravitational wav
detection!, provides a prescription for approximating th
Fourier transform of a function of the formhs(t)
5A(t)cos„f(t)… @whereA(t) andf(t) are real andf8(t) is
positive#:

h̃s~ f !5
1

2 F E
2`

`

dt A~ t ! ei f c1(t)1E
2`

`

dt A~ t ! e2 i f c2(t)G
~A1!

with c6(t)5f(t)/ f 62pt. If t f exists such thatc18 (t f)50
or c28 (t f)50, thent f is called a ‘‘stationary point.’’ Consid-
ering positivef and positivef8(t), only the second integra
in Eq. ~A1! contains a stationary point. Hence, to leadi
order, we can write@28#:

h̃s~ f !;
1

2E2`

`

dt A~ t ! ei [2p f t2f(t)] ~A2!

for f .0. Note that we computeh̃s(2 f ) using the Fourier
transform property of real functions:h̃s(2 f )5h̃s* ( f ).

If all derivatives ofc2(t) up to orderp are zero att f ,
then the Fourier transform ofhs may be approximated by

h̃s~ f !;A~ f !exp@ iC~ f !#, ~A3!

with components given by somewhat complicated b
straightforward expressions:

A~ f !5A~ t f !F p!

f uc (p)~ t f !u
G1/p G~1/p!

p
, ~A4!

and

C~ f !52p f t f2f~ t f !6p/2p, ~A5!

where the sign ofp/2p is positive or negative depending o
whetherc2

(p)(t f) is positive or negative, respectively. In pa
ticular, for p52, the following approximation holds:
1-9
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h̃s~ f !5Ap

2
A~ t f !uf9~ t f !u21/2ei [2p f t f2f(t f )6p/4]. ~A6!

The stationary phase approximation is accurate as long a
amplitude ofhs does not vary too quickly compared to th
time derivative of the phase,f8(t), and the effect of the
higher derivatives off(t) on the phase evolution are sma
compared to the effect off8(t).

Using the form given in Eq.~A3!, we can now rewrite Eq
~4!. Gathering all the amplitude terms together,

H̃~ f !5h̃~ f !
A* ~ f !

Sh~ f !
, ~A7!

we can express the matched filter output as

S~ t0!54 ReF E
0

`

d fH̃~ f !e2 iF( f )G , ~A8!

where
F~ f !5C~ f !22p f t0 . ~A9!

Hence, the matched filtering operation in the frequency
main is expressed as an integral transform, specifically a
called generalized Fourier integral. In analogy with the d
crete Fourier transform~DFT!, we can write this in discrete
form as
g
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S5
4

N0
ReF (

k050

N021

H̃k0
e2 iFk0G . ~A10!

The summation can be computed as a FCT.

2. Time-domain matched filtering

We note that for signal waveforms of the form,hs(t)
5A(t)cos„f(t)…, the expression@Eq. ~2!# for time-domain
matched filtering yields directly

S5ReF E
0

T

dt h~ t !A~ t !eif(t)G . ~A11!

Such signals are of considerable interest and include peri
signals with frequency drift. The integral transform in E
~A11! can be represented in discrete form in the usual way

S5ReF (
j 050

N021

Gj 0
eif( j 0)G , ~A12!

where
Gj 0

5h~ j 0!A~ j 0!, ~A13!

and where h( j 0), A( j 0), and f( j 0) are the discretely
sampled values of the continuous functions.
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