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Remarks on a proposed Super-Kamiokande test for quantum gravity induced decoherence effec
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Lisi, Marrone, and Montanino have recently proposed a test for quantum gravity induced decoherence
effects in neutrino oscillations observed at Super-Kamiokande. We comment here that their equations have the
same qualitative form as the energy conserving objective state vector reduction equations discussed by a
number of authors. However, using the Planckian parameter value proposed to explain state vector reduction
leads to a neutrino oscillation effect many orders of magnitude smaller than would be detectable at Super-
Kamiokande. Similar estimates hold for the Ghirardi, Rimini, and Weber spontaneous localization approach to
state vector reduction, and our remarks are relevant as well to proposedK meson andB meson tests of gravity
induced decoherence.

PACS number~s!: 03.65.Bz, 04.60.2m, 11.10.Lm, 14.60.Pq
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There has recently been considerable interest in testing
possible modifications in conventional quantum mechan
induced by Planck mass scale quantum fluctuations in
structure of spacetime. In an effective field theory approa
these are plausibly argued@1# to have the form of an extra
‘‘decoherence term’’D@r# in the standard density matri
evolution equation, which becomes

dr

dt
52 i @H,r#2D@r#, ~1!

wherer is the density matrix,H is the Hamiltonian, and the
decoherence termD has the dimensions of energy.

In many phenomenological applications, Eq.~1! is spe-
cialized by making several additional assumptions about
structure ofD. First of all, the theory of open quantum sy
tems suggests that Eq.~1! should correspond to the infini
tesimal generator form of acompletely positivemap @2# on
r, which requires thatD should have the Lindblad form@3#

D@r#5(
n

@$r,Dn
†Dn%22DnrDn

†#. ~2!

If one further requires the monotone increase of the von N
mann entropyS52Trr logr, and the conservation of energ
one adds the respective conditions that the ‘‘Lindblads’’Dn

should be self-adjoint,Dn5Dn
† , and that they should com

mute with the Hamiltonian,@Dn ,H#50. One then arrives a
the form

D@r#5(
n

†Dn ,@Dn ,r#‡, @Dn ,H#50, all n. ~3!

Equation ~3! is the starting point of an analysis recent
given by Lisi, Marrone, and Montanino@4# of decoherence
effects in the super-Kamiokande experiment, interpreted
terms ofnm2nt oscillations.

When specialized to a two-level quantum system, the o
choices ofDn that commute withH are eitherDn5kn1,
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with 1 the unit operator, orDn5lnH. The first choice is
evidently trivial, since it makes no contribution to Eq.~3!,
and so can be ignored. Hence all terms in the sum overn in
Eq. ~3! have the same structure, corresponding to the sec
choice; definingl25(nln

2 , it is no restriction to replace the
sum onn in Eq. ~3! with a single LindbladD5lH. In their
analysis of the Super-Kamiokande data, Lisiet al. define a
parameterg by

g52Tr(
n

Dn
252l2TrH2, ~4!

and deduce the bound

g,3.5310223 GeV. ~5!

Since in the two-level neutrino system we have TrH2

5 1
2 k2, with k5Dm2/(2E), where Dm25m2

22m1
2 is the

neutrino squared mass difference andE is the neutrino en-
ergy, the parametersl andg are related by

l5
g1/2

k
5

2Eg1/2

Dm2
. ~6!

Thus, using the Super-Kamiokande@5# value Dm253
31023 eV2, and their maximum neutrino energy ofE
;103 GeV, the bound of Eq.~5! on g corresponds to a
bound onl of

l,431012 GeV21/2. ~7!

The possibility that there may be decohering modific
tions to the Schro¨dinger equation, or to the correspondin
density matrix evolution equation, has been extensively d
cussed over the past twenty years in the context of mo
for objective state vector reduction. As surveyed by Ad
and Horwitz @6#, the form of the density matrix evolution
assumed in these discussions is the Itoˆ stochastic differential
equation
©2000 The American Physical Society01-1
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dr52 i @H,r#dt2l2
†D,@D,r#‡dt1A2l†r,@r,D#‡dWt ,

~8!

with D a Hermitian Lindblad operator driving the decohe
ence, and withdWt an Itô stochastic differential obeying

dWt
25dt, dtdWt50. ~9!

@The parameterl used here is related to the parameters of
Ref. @6# by l5s/(2A2); the relationship between the coe
ficients of the stochasticdWt term and the ‘‘drift’’ dt term in
Eq. ~8! is uniquely fixed@6# by the requirement that Eq.~8!
should evolve pure state density matrices into pure state
other words, that (r1dr)25r1dr when r25r. One can
readily generalize Eq.~8! to contain a sum over multiple
LindbladsDn , but this will not be needed in our analysis#
Two differing choices of the LindbladD have been widely
discussed in the literature. The first@7#, due to Ghirardi, Ri-
mini, and Weber, as extended by Dio´si and by Ghirardi,
Pearle, and Rimini, takesD to be a localizing operator in
coordinate space; we will discuss this case later on. The
ond @8#, emphasized recently by Percival and Hughst
takesD to be the HamiltonianH, and this is the case o
which we shall focus. As shown by Adler and Horwitz, wh
D is taken to be the Hamiltonian, Eq.~8! can be proved, with
no approximations, to lead to state vector reduction to ene
eigenstates with the correct probabilities as given by
quantum mechanical Born rule. To account for the obser
absence of macroscopic spatial superpositions, one ha
invoke energy shifts associated with environmental inter
tions which differ for macroscopic objects at different spat
locations; whether this leads to an empirically viable mo
for state vector reduction is presently an open question.

Making the choiceD5H in Eq. ~8!, and taking the sto-
chastic expectation, leads to an evolution equation for
stochastic expectation of the density matrix identical in fo
with Eqs. ~1!–~3! used by Lisi et al. in their Super-
Kamiokande analysis. If one assumes a quantum grav
tional origin for the stochastic terms in Eq.~7!, then in the
absence of guidance from experiment, the naturala priori
estimate@9# for the parameterl is

l;MPlanck
21/2 ;6310210 GeV21/2, ~10!

more than twenty orders of magnitude smaller than
Super-Kamiokande bound onl. The difference in magni-
tudes is so great that there is clearly no prospect of confr
ing the prediction of Eq.~10! in the Super-Kamiokande ex
periment. The discrepancy between this conclusion, and
much more optimistic one reached by Lisiet al., arises as
follows. Lisi et al. assume, on the basis of the general fo
for the decoherence term given in Eq.~1!, the estimate

D;H2/MPlanck, ~11!

with H a characteristic energy~such as the neutrino energy!
of the system. However, once the decoherence term is
stricted to have the self-adjoint Lindblad form of Eq.~3!,
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which is explicitly assumed in the analysis of Lisiet al., the
double commutator structure implies that the estimate
changed to

D;~DH !2/MPlanck, ~12!

with DH5uE12E2u the energydifferencebetween the levels
for a two-level system.@Note that the estimate of Eq.~12! is
manifestly independent of the zero point with respect
which energiesH are measured, whereas the estimate of
~11! is not.# If the energy difference arises from the ma
difference between the two beam components, we evide
haveDH.Dm2/(2E)5k. This gives the estimate

D;
~Dm2!2

4E2MPlanck

, ~13!

which because of the small neutrino mass difference is m
more pessimistic than that of Eq.~11!. Analogous remarks
apply to tests for gravitation induced decoherence effect
the K and B meson systems, withDm2 replaced by the ap-
propriate squared mass difference.

Although we have focused our discussion on the case
energy driven dissipation, because this corresponds to
analysis of Lisiet al., if we assume instead the spontaneo
localization model the estimates for the Super-Kamiokan
experiment are equally pessimistic. In the spontaneous lo
ization model,D in Eq. ~8! is taken~in the small separation
approximation for single particle dynamics! as the coordinate
operatorq, and the parameterl2 is given by l251/4l̄a,
with l̄510216 sec21 the localization frequency, and with
a21/251025 cm the localization distance. Thus in a two
level system, an estimate of the dissipative termD is

D;0.331026 sec21cm22~Dq!2; ~14!

estimatingDq5uq12q2u as the separation between cente
of the nm and nt wave packets resulting from their mas
difference, we get

Dq; 1
2 Dm2LE22, ~15!

with L the neutrino flight path. To get an upper bound, w
use the smallest Super-Kamiokande neutrino energyE
;1021 GeV and the largest flight pathL;104 km, giving

Dq,10210 cm. ~16!

When substituted into Eq.~14! this gives the estimate

D,10226 sec21;10250 GeV, ~17!

again much smaller than the limit;10223GeV placed on the
decoherence term by the Super-Kamiokande experiment

To conclude, we see that in the spontaneous localiza
model for the decoherence term, as well as in the ene
conserving model, the predicted effect for the Sup
Kamiokande experiment is proportional to the square of
1-2



g
e

ffi
a

be
here.

of

BRIEF REPORTS PHYSICAL REVIEW D 62 117901
neutrino mass squared differenceDm2, and hence on the
basis of these models is unobservably small. One could
an observable Super-Kamiokande effect within the fram
work of these models only by positing a much larger coe
cient for the decoherence term than has generally been
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tt.

,’’

-

w

11790
et
-

-
s-

sumed in the state vector reduction context; it would
interesting to see if this has testable consequences elsew

This work was supported in part by the Department
Energy under Grant No. DE-FG02-90ER40542.
sity

.

d,
h-

ef.
@1# J. Ellis, J. S. Hagelin, D. V. Nanopoulos, and M. Srednic
Nucl. Phys.B241, 381 ~1984!; J. Ellis, N. E. Mavromatis, and
D. V. Nanopoulos, Mod. Phys. Lett. A12, 1759~1997!.

@2# K. Kraus, Ann. Phys.~N.Y.! 64, 311 ~1971!.
@3# G. Lindblad, Commun. Math. Phys.48, 119~1976!; V. Gorini,

A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys.17,
821 ~1976!; for a recent derivation, see S. L. Adler, Phys. Le
A 265, 58 ~2000!.

@4# E. Lisi, A. Marrone, and D. Montanino, ‘‘Probing quantum
gravity effects in atmospheric neutrino oscillations
hep-ph/0002053.

@5# Super-Kamiokande Collaboration, Y. Fukudaet al., Phys.
Rev. Lett.81, 1562~1998!; Y. Totsuka, to appear in the Pro
ceedings ofPANIC’99 ~Uppsala, Sweden, 1999!, 15th Par-
ticles and Nuclei International Conference; available at ww
sk.icrr.u-tokyo.ac.jp/doc/sk/pub
,

-

@6# S. L. Adler and L. P. Horwitz, J. Math. Phys.41, 2485~2000!.
For early references to the norm-preserving stochastic den
matrix evolution, see N. Gisin, Phys. Rev. Lett.52, 1657
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