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Remarks on a proposed Super-Kamiokande test for quantum gravity induced decoherence effects
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Lisi, Marrone, and Montanino have recently proposed a test for quantum gravity induced decoherence
effects in neutrino oscillations observed at Super-Kamiokande. We comment here that their equations have the
same qualitative form as the energy conserving objective state vector reduction equations discussed by a
number of authors. However, using the Planckian parameter value proposed to explain state vector reduction
leads to a neutrino oscillation effect many orders of magnitude smaller than would be detectable at Super-
Kamiokande. Similar estimates hold for the Ghirardi, Rimini, and Weber spontaneous localization approach to
state vector reduction, and our remarks are relevant as well to progosedon and meson tests of gravity
induced decoherence.

PACS numbg(s): 03.65.Bz, 04.606-m, 11.10.Lm, 14.60.Pq

There has recently been considerable interest in testing fawith 1 the unit operator, oD,=\,H. The first choice is
possible modifications in conventional quantum mechanicgvidently trivial, since it makes no contribution to E®),
induced by Planck mass scale quantum fluctuations in thand so can be ignored. Hence all terms in the sum over
structure of spacetime. In an effective field theory approachiq. (3) have the same structure, corresponding to the second
these are plausibly argudd] to have the form of an extra choice; defining\?=3=,\2, it is no restriction to replace the
“decoherence term”D[p] in the standard density matrix sum onn in Eqg. (3) with a single LindbladD =\H. In their
evolution equation, which becomes analysis of the Super-Kamiokande data, lésial. define a

q parametery by
p .
qi - [H.p1=Dlp], (1)
y=2Tr>, Di=2\2TrH?, 4
wherep is the density matrixH is the Hamiltonian, and the n
decoherence terr® has the dimensions of energy.

In many phenomenological applications, Ed) is spe- and deduce the bound
cialized by making several additional assumptions about the
structure ofD. First of all, the theory of open quantum sys- y<3.5x10 % GeV. (5)
tems suggests that E¢l) should correspond to the infini-
tesimal generator form of aompletely positivanap[2] on

p. which requires thaD should have the Lindblad forg] Since in the two-level neutrino system we haveH¥r

=1k?, with k=Am?/(2E), where Am?=m3—m3 is the
neutrino squared mass difference dads the neutrino en-

Dlp]=2 [{p,D}Dy}—2D,pD/]. (2)  ergy, the parameters and y are related by
n
If one further requires the monotone increase of the von Neu- Y2 2E4Y?
mann entropys= — Trplogp, and the conservation of energy, A= Am2 ©®

one adds the respective conditions that the “Lindblads’
should be self—adjoinan:Dl, and that they should com-
mute with the Hamiltonian,D,,,H]=0. One then arrives at
the form

Thus, using the Super-Kamiokand®] value Am?=3
x10 % eV?, and their maximum neutrino energy d&
~10° GeV, the bound of Eq(5) on y corresponds to a
bound on\ of
D[p]=2 [Dn.[Dn.pll, [Dn,HI=0, all n. (3

n
A<4Xx10' GeVv Y2 )

Equation (3) is the starting point of an analysis recently

given by Lisi, Marrone, and Montaninfg!] of decoherence The possibility that there may be decohering modifica-

effects in the super-Kamiokande experiment, interpreted inions to the Schidinger equation, or to the corresponding

terms ofv,— v, oscillations. density matrix evolution equation, has been extensively dis-

When specialized to a two-level quantum system, the onlyussed over the past twenty years in the context of models

choices ofD, that commute withH are eitherD,=k,1, for objective state vector reduction. As surveyed by Adler
and Horwitz[6], the form of the density matrix evolution
assumed in these discussions is thesttachastic differential
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dp=—i[H,p]dt—\?[D,[D,p]ldt+ V2\[p,[p,D]1dW, which is explicitly assumed in the analysis of Ledi al., the
double commutator structure implies that the estimate is

changed to

with D a Hermitian Lindblad operator driving the decoher-

- 2
ence, and wittdW, an 1to stochastic differential obeying D~(AH)"/ Mpianci (12

with AH=|E;— E,| the energydifferencebetween the levels
dWf=dt, dtdw=0. (9 for a two-level systemNote that the estimate of E¢L2) is
manifestly independent of the zero point with respect to
[The parametek used here is related to the parameteof  which energies are measured, whereas the estimate of Eq.
Ref.[6] by A =0/(24/2); the relationship between the coef- (11) is not] If the energy difference arises from the mass
ficients of the stochastidW, term and the “drift” dt termin  difference between the two beam components, we evidently
Eq. (8) is uniquely fixed[6] by the requirement that E¢8)  haveAH=Am?/(2E)=k. This gives the estimate
should evolve pure state density matrices into pure states, in
other words, that g+ dp)2=p+dp when p?=p. One can D (Am?)? 13)
readily generalize Eq(8) to contain a sum over multiple AEM piancek
LindbladsD,,, but this will not be needed in our analygis.
Two differing choices of the Lindbla® have been widely which because of the small neutrino mass difference is much
discussed in the literature. The fifst], due to Ghirardi, Ri- more pessimistic than that of E¢L1). Analogous remarks
mini, and Weber, as extended by ‘Bicand by Ghirardi, apply to tests for gravitation induced decoherence effects in
Pearle, and Rimini, takeB to be a localizing operator in the K and B meson systems, withm? replaced by the ap-
coordinate space; we will discuss this case later on. The segropriate squared mass difference.
ond [8], emphasized recently by Percival and Hughston, Although we have focused our discussion on the case of
takesD to be the HamiltoniarH, and this is the case on energy driven dissipation, because this corresponds to the
which we shall focus. As shown by Adler and Horwitz, when analysis of Lisiet al, if we assume instead the spontaneous
D is taken to be the Hamiltonian, E@) can be proved, with  localization model the estimates for the Super-Kamiokande
no approximations, to lead to state vector reduction to energgxperiment are equally pessimistic. In the spontaneous local-
eigenstates with the correct probabilities as given by thézation model D in Eq. (8) is taken(in the small separation
qguantum mechanical Born rule. To account for the observedpproximation for single particle dynamjess the coordinate
absence of macroscopic spatial superpositions, one has ¥eratorg, and the parametex? is given by \2=1/4\«,
invoke energy shifts associated with environmental interacg i, 5= 14-16 sec-1 the [ocalization frequency, and with
tions which differ for macroscopic objects at different spatial 1, 05 the localization distance. Thus in a two-
locations; whether this leads to an empirically viable modella 1 cm . o .
for state vector reduction is presently an open question. evel system, an estimate of the dissipative tdmis
Making the choiceD=H in Eq. (8), and taking the sto-
chastic expectation, leads to an evolution equation for the D~0.3x10°° sec ‘cm *(Aq)%; (14)
stochastic expectation of the density matrix identical in form
with Eqgs. (1)—(3) used by Lisietal. in their Super- estimatingAq=|q;—q,| as the separation between centers
Kamiokande analysis. If one assumes a quantum gravitaf the v, and v, wave packets resulting from their mass
tional origin for the stochastic terms in Ef), then in the  difference, we get
absence of guidance from experiment, the natargriori
estimate[9] for the parametek is Ag~ 1 Am2LE "2, (15)

A~MpY2 ~6x1071° Gev 12, (100 with L the neutrino flight path. To get an upper bound, we
use the smallest Super-Kamiokande neutrino enefgy

more than twenty orders of magnitude smaller than the-10 ' GeV and the largest flight path~10* km, giving
Super-Kamiokande bound ax. The difference in magni- 10
tudes is so great that there is clearly no prospect of confront- Agq<10 cm. (16)
ing the prediction of Eq(10) in the Super-Kamiokande ex-
periment. The discrepancy between this conclusion, and t
much more optimistic one reached by Lifi al, arises as
follows. Lisi et al. assume, on the basis of the general form D<10 ¢ sec1~10 *° Gev, 17
for the decoherence term given in E@), the estimate

h\Q/hen substituted into Eq14) this gives the estimate

again much smaller than the limit 10~ 2%GeV placed on the

D~H?/M piancio (1) decoherence term by the Super-Kamiokande experiment.
To conclude, we see that in the spontaneous localization
with H a characteristic energisuch as the neutrino enengy model for the decoherence term, as well as in the energy
of the system. However, once the decoherence term is re&onserving model, the predicted effect for the Super-
stricted to have the self-adjoint Lindblad form of E@®), Kamiokande experiment is proportional to the square of the
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neutrino mass squared differendem?, and hence on the sumed in the state vector reduction context; it would be
basis of these models is unobservably small. One could génteresting to see if this has testable consequences elsewhere.

an observable Super-Kamiokande effect within the frame-
work of these models only by positing a much larger coeffi-
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