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Variational study of bound states in the Higgs model
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The possible existence of Higgs-boson—Higgs-boson bound states in the Higgs sector of the standard model
is explored using thgnh)+|hhh) variational ansatz of Di Leo and Darewych. The resulting integral equations
can be decoupled exactly, yielding a one-dimensional integral equation, solved numerically. We thereby avoid
the extra approximations employed by Di Leo and Darewych, and we find a qualitatively different mass
renormalization. Within the conventional scenario, where a not-too-large cutoff is invoked to avoid “trivial-
ity,” we find, as usual, an upper bound on the Higgs boson mass. Bound-state solutions are only found in the
very strong coupling regime, but at the same time a relatively small physical mass is required as a consequence
of renormalization.

PACS numbgs): 11.10.St, 11.10.Gh, 11.80.Fv, 14.80.Bn

I. INTRODUCTION II. VARIATIONAL METHOD

The possible existence of bound states for the Higgs bo- Following DLD, our starting point is the Lagrangian

son has been studied by several authdrs7] with both
perturbative and non-perturbative calculations. At present,
there is little agreement between the quantitative predictions
of such calculations.

A variational method, within the Hamiltonian formalism for a neutral, scalar Higgs fieldl For the present we regard
[8], has been used by Di Leo and DarewydLD) [5].  m,, v, and\ as three independent bare parameters; only in
However, because of the apparent complexity of the resultsec. |V shall we need to impose the constraitg=\v?
ing integral equations, they resorted to additional approximathat arises when this model is obtained from a spontaneously
tions that are unsatisfactory when the coupling is strong. Irhroken\ ®* theory.
this paper we show that an exact decoupling of DLD’s inte- | the Schidinger representation, dt=0, the field is

gral equations is possible by use of some symmetry propegyyantized in terms of creation and annihilation operators
ties. This allows a considerable simplification of the prob-

lem. For ans-wave solution we show in detail that the 3
: : : ; : . d°k

method gives rise to a one-dimensional integral equation that h(x) = f
can be tackled numerically. /(277)32wk

Mass renormalizatioribeyond normal orderingplays a (2)
crucial role, although it is finite(The infinite mass renormal-
ization of DLD turns out to be an artifact of their other ap- satisfying the usual commutation relations
proximations) The physical mass is significantly reduced
from its classical value in the strong-coupling regime. Be- T 1= _
cause of this mass-reduction effect, we find that the occur- [a.as] 8%(k=p). @
rence of boun'd sta}e(ske., solutions in the 2-particle secf[or The energy of the single particle states is
with E<2m) is shifted towards the very strong coupling
regime, well beyond the reach of any perturbative approxi-
mation. However, a relatively small physical mass ( o(k)= o= Vk*+m?
~0.1-0.5 TeV is required as a consequence of the same
renormalization effect. wherem is the physical mass which may differ from the

Our paper is organized as follows: the variational methocFlassical massn,. The HamiltonianH is obtained from Eq.
is described in Sec. Il. A general prescription for the masdl) as
renormalization is then provided and discussed. Section llI
deals with the delicate aspect of mass renormalization Sm?
through a variational one-particle trial state calculation Hzf d3k( wg— 2—) alak

1 1
L=—%d,hs*h—3m3h?— gmﬁ— th“, (N

[acexpik-x)+a) exp(—ik-x)]

4

analogous to the two-particle trial state used in Sec. Il. The @k

existence of Higgs-boson—Higgs-boson bound states is dis- Sm2

cussed in Sec. IV and the results are compared with those of — f d3k—(a|IaT_k+ aa_y)
other authors. 4wy

Our discussion here uses the conventional framework that
the Higgs theory is an effective theory with a large, finite "

\v A
—f d3xh3+—J d3xh?|:
cutoff A [10]. 31 41

®)
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dered with respect to the physical mass

The preceding discussion follows the conventions of Ref.
[5], except that ouk is a factor of 6 larger than theirs, since
we usen/4! rather tham\/4.

The trial two-boson bound state considered by OEDis

where sm?=m?—m3. The Hamiltonian has been normal or- Sm?2
( Wi~ _) —E|G(ky,kz,ks)
i=1 2w,

+ 2 B(ki)
(4')773/2\/0)10)2(03 =1

N
N
643\ wwowgz i=1

1/2
G(kl 1p=q):01 (11)

d®p | d*qé®(ki+p+0q)
o) = fd?‘loB(IO)ap a’|0) f

w;

+f d*pd®qd®*kG(p,a.k)alalal|0) *(p+q+k), X

6

WpWq

where w;= Wy - These equations are equivalent to Egs.
(8),(9) of Ref. [5], but their structure appears considerably

with |0) the vacuum annihilated bg. We observe that the simpler because we have taken advantage of the symmetry
function B(p) may be taken to be symmetric without any properties mentioned above. We can achieve an exact decou-

loss of generality; a gener@8(p) could always be decom-

pling of these equations by the following algebraic manipu-

posed into an even and an odd part and the odd part wouldtions. First, we introduce the auxiliary function
give no contribution to Eq(6). This reflects the fact that a

bound state of two identical bosons must be even under spa- (k,p,q)

G
tial inversion. Similarly, we must hav&(p,q,k)=G(—p, A(k):wkf d3pf d*qéd(k+p+a)——= (12
—q,—k). Furthermore, there is no loss of generality in as- Voywpog
suming thatG(p,k,q) is invariant under any permutation of ) .
the three momentap, k, andq. (Of course, because of the so that the first equation becomes
momentum-conserving delta function, the functi@rreally 5
involves only twoindependentmomentum arguments. 3\v . 5 om .
The B and G functions are determined from the varia- 87320 A( )=| E— 2w+ w_k B(k)
tional principle
A f d3p 13
- —B(p). 13
3
&WolH—E[W,)=0 (7 B wp

which provides two coupled eigenvalue equations

&Wo|H—E[V5)
—_ = (8)
oB* (k)
&Wo|H—E[W)
v TE— ©)
6G*(p,q,k)

Explicitly, these equations are

A
64w,

( "
2wk———E B(k)+

5 B(p) 3\v 5 5
d p—+ py—r d®p [ d3qé®(k+p+q)

><— G(k,p,a)=0, (10

Vogwpoq

Similarly, re-writing its last term in terms d&(k;), Eq.(11)
becomes
-\ 1

Q \/w1w2w3
3
> [Ak)+(87¥3)vB(k;)]
i=1
X 3 . (14
> (w;— m?2w;) —E
i=1

G(ky,ky k)=

Note that the resulting form ofs manifestly respects the
symmetry properties invoked earlier. Inserting this equation
back into Eq.(12), the second eigenvalue equation Etfl)

is equivalent to

Zwk
1+J(k)

A(k)+(87%?3) vB(k)+

1+J(k)

XJ dspf d3q53(k+p+ K (k,p.[A(p)

+(87%%3)vB(p)]=0 (15)
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where the kerneK(k,p,q) is wholly symmetric: J(K)

om?+ \v? (19
1+J(k)
1
K(ky,kz,ks)= 643 3 should vanish. Sincen? should not bek dependent, we de-
w1w2w3[ 2 (w;— 6m?[2w;) — E fine

(16) J(0)
sm?= —>\021+J 0 (20)

and (

For an infinite cutoffJ—c and we would get

I(k)=wy f d*pK(k,p,~k=p) (17 2= M2 A2 21

which is afinite mass renormalizatioriln the DLD model,
because of their other approximations, the J(0) denomi-
nator is absent in Eq20), so that they found an infinite mass
renormalization.

In the next section, we will show that the above mass
renormalization is justified by considering a variational cal-
culation of a one-particle state.

is a logarithmically divergent integral. We shall regularize it
with an energy cutoffy/p?+ m?<A.

The eigenvalue equationd3), (15 may now be easily
decoupled by replacing from Eq.(13) into Eq.(15). In this
way, we obtain the following integral equation fBr

(k)
SM2+\p? B(k) IIl. SINGLE-PARTICLE MASS RENORMALIZATION

1+J(k)
1+33(k The mass renormalization prescripti(®0) may be recov-
A +3J(k) p B(p) ered in an analogous self-consistent variational procedure. In
" 6473 wx 1+J(K) this case, the trial stafe, ) for a single boson with masa
and momentunk is taken to be

1
E_Z‘Uk"' —

Wy

3
1+J(k)Jd oK(k,p, —k—p)B(p)

[wo=Caljo)+ | Fppikpial.al o) (22
X[ Sm?+ v+ wp(E—20,)]. (18)

whereD (k,p) =D (k,—p—Kk). The variational principle now

For ans-wave B function, the angular integration can be requires that
performed analytically, yielding a one-dimensional integral
equation forB which can be solved by numerical methods.
There are two main conceptual problems that must first be
dealt with:(i) the mass renormalization paramesen® needs
to be determined, andi) the integralJ is logarithmically
divergent and requires regularization, say with an energy cut-
off A. This last point has to do with the physical interpreta- sm?
tion of the whole theory. The current orthodox viewpoint is (k)| @x— z_ E(k) |+
that the originah ®* theory is only an effective theory, valid

W |H—E(K)|P)=0 (23

which leads to the coupled eigenvalue equations

d*pD(k,p)
o

V wkwpwk+p

up to some finite energy scale that acts as a cutoffA is (24)

then another parameter of the theory, in additiomtpand

\. We shall adopt this viewpoint in this papéFor a hetero- om?( 1 1

dox viewpoint, see Ref10].) D(k,g)| wgt @gsq=—(| —+ ) —E(k)}
Mass renormalization is crucial since the existence of “®a Pk+q

bound states hinges on the comparison between the eBergy

and the energy of two free bosons at resh. Zny attractive A d®pD(k,p)

self-interaction that tends to bind two patrticles will also give + 64 gf

rise to a reduction of the physical free-particle mass com- T N0k q@p@p ik

pared to the classical masg,. Thus it would not be legiti-

mate to ignore mass renormalization and just impose v C(Kk)

=M. + 3/2 =0. (25)
The form of the left-hand side of Eq18) suggestd5] 1677\ oy w i+ q

that the desirable mass renormalization is such that the com-

bination Eliminating the integral we obtain
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Substituting back in Eq.24) then forC+#0 we find

D(k,q) 1 [ @
C(k) 8m% YV wqwyiq
sm?  \v? 1 Jo(k)
wg— ——— ——E(K) E(k) = w5 —| om’+ho?——— @7
y 2w 2wy Wy 1+ Jo(k)
sm? [ 1 1
wq+wk+q —+ _E(k)
wq (,l)k+q
(26)  where
|
N A , 1
Jo(K) = fd : 28
wpwk+p (,L)p wk+p wp wk+p ( )

This has a similar structure and the same ultraviolet behavior It is instructive examining the same result from the point
as the integral(k) of Eq. (17). In principle, the presence of of view of standard perturbation theory. If there were some
the single particle energf (k) in the denominator requires ‘“rule” forbidding the existence of states with more than two

us to solve Eq(27) and Eq.(28) self-consistently. However,
whenA>m (as it should be

N adik
Jo(k)~J(k)~ —
~ 5 IN(A/m) +finite terms. (29
21

In such a limit, we self-consistently obtal(k)= w, pro-
vided we take

Jo
1+J,

2_

—\v?

sm (30

to be compared to E¢20). Once more for\ >m we recover
the mass renormalization prescripti¢®l). We stress that,
for a finite energy cutoffA, Eq. (30) is analogous but not
equivalent to Eq(20) sinceJy# J. Thus a consistent solution
of the full integral equatioril8) requires the use of the mass
condition (20) as discussed in the next section.

Full consistency would also require that whE(K) = wy
the functionD should vanish. In fact, since, is the energy
of a single particle statgk)=a/|0) with massm, the state
|¥,) can have a mas®s and a Lorentz-covariant dispersion
relation only when|W,)=|k). This requirement is not en-
tirely trivial: the mass renormalization prescripti¢B0) is

particles in the Fock space, then the variational trial state
(22) would lead to an exact result. The same result should be
achievable by perturbation theory provided that we sum all
Feynman diagrams whose intermediate states do not contain
more than two particles. However, in the self-consistent
variational procedure the mass of the single particle $kjte

is supposed to be the true physical massmg. In the lan-
guage of perturbation theory this is equivalent to associate a
renormalized propagator with each internal line of Feynman
diagrams. The easiest way to do that is by re-writing the
Lagrangian(1) as

L=Ly+ L1+ L, (3D
where L, is the zeroth-order non-interacting part:
Lo=—33,hgd*hg—3m?n%. (32)

L, is an interaction part contributing at the tree level,

Ly=—3(Z—1)d,hgd*hg—3(Z—1)m*hi+3Z5m?h3,

(33
and £, is the interaction,
1 3/2},3 1 2 4
£2=—a>\uz hg— ZZ Ahg. (34

Here hg is a renormalized fieldhg=h/\/Z. Imposing that

just what we need in order to guarantee that the single pathe renormalized propagator has a polepat —m? with

ticle state|k) effectively is the lower energy one-particle
state for the full interacting Hamiltonia(b). Inserting Eq.
(27) and (30) into Eq. (26), we find that the ratid/C—0

unit residue gives two conditiof4d.1]

Zsm?=—11j,o,(—m?) (35)

for A —o0 as we expected. In other words that means we find

a quantum-field renormalization constaht 1.

and
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d

Z:1+d_p2HI*00p(p2)|7m2 (36)

wherep?=p?—w?, andi(27)Il},,,(p?) is the sum of all

one-particle-irreducible diagrams containing loops. Such dia-

grams can only arise from the Lagrangian pést In our

PHYSICAL REVIEW D 62 116009

d
d_pQHI*oop( p2)| -m27 € (43
and from Eq.(36) then
Z=1+0(€?) (44)

reduced Fock space the only diagrams contributing are th§nile from Eq. (35 the mass renormalization parameter
bubble-chain diagrams reported in Fig. 1. These are all nap5qs

ively divergent but, if a regularization prescription allows
their resummation, their infinite sum yields a finite contribu-

tion

1
Hl*OOp(pz) = l_[I-Ioop_|' l_[I—Ioop( pz) : { - EZZAI (pz)}

2

1
+113 100p(P?) - [ - EZZ)\I (p?)

+ ...
(37)
where the one-loop term is
* 2 1 3y 2,2 2
1—Il-loop(p ):E(Z A v9)1(p?) (38
andl(p?) is the divergent integral:
, d*q 1
I(p ):f : 424 2 2 21
i(2m)" (Q°+tm —ie)[(p+g) +m-—ie€]
(39
The infinite serieg37) can be exactly summed up:
. | ENZA(p?)
1_[Ioop(p )=(Z\v9) — |- (40
1+ 3 \Z%(p?)

In order to maintain Lorentz covariance, the inted&%) can

be evaluated by dimensional regularization. By use of th

Feynman formula and Wick rotation, indadimensional Eu-
clidean space the integral reads

77_d/2

(2m)*

F(2—d/2)f1[m2+ p2x(1—x)]92~2dx.
0
(41)

I(p?)=

Ford=4+ ¢ ande—0 we obtain

1 1

8m2e 1672

I(p?)=~—

1
x| y+ Inq-r+j dxIn[m?+p2x(1—x)]|+ O(e).
0

(42

Insertion into Eq(40) gives

Sm?=—\v (45)

N (1672%€)
N (167%€)— 1|

Thus, in physicatl=4 space, we recover fa— 0 the mass
renormalization prescription of Eq21) andZ=1.

IV. SEARCH FOR HIGGS-BOSON-HIGGS-BOSON
BOUND STATES

In the previous sections we described the variational
method and discussed its internal consistency from a general
point of view. So far the three parameten§, v and\ have
been viewed as independent and we have not specialized to
any particular physical problem. We now wish to use the
method described in Sec. Il to search for Higgs-boson—
Higgs-boson bound states in the Higgs sector of the elec-
troweak theory.

The scalar sector of the electroweak theory has the form

A
L=—39,DD~ Z(c1>2— v?)2+const.  (46)

Defining the “Higgs” field h by ®=v+h, we obtain the
original Lagrangian(1) with the parameters related by

(47)

ngE)\vz.

It can be shown that the same relation holdsifdreing the
eminimum of the Gaussian effective potentifl. In the stan-
dard interpretation, we also have a large but finite cutoff
The theory is approximately Lorentz invariant for energies
small compared to a finite energy cutoff. The vacuum
valuewv is fixed empirically in terms of the Fermi constant

Gg:

V2

2v2=—o.
Ge

(48)

Thus the bare mags, is proportional to the square root of
the couplingh. The physical model is entirely described by

O+ OO -
OO+

FIG. 1. Bubble-chain diagrams contributinqufOop in EqQ.(37).
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two independent energy scales: the energy cutofind the 2 T T — T

bare massn, which also fixes the coupling strength through ;

Eq. (47). 8r ]
For a large cutoffA, according to Eq(21), we expect a / "\

mass correctiodm?~ — \v? which overcomes the tree-level 16 / \ i

mass (47). Since m? is positive definite, we expect that 1al ' o8 T |

.8 TeV

something should prevent it from becoming negative. In facti 3.05 TeV

the general discussion of Sec. Il must be modified when the; 5 | |

physical massn approaches zero. At the poim—0, A § - |

— the integralJ(0) is not analytical, and some extra care g 1 L ]

is required in handling the two limits. As previously dis- £

cussed](0) diverges logarithmically according to E(9) 0.8 35Tev | ]

for any finitem, while it vanishes linearly fom—0 at any : i

fixed cutoff A. Thus for any large but finite\ the coupled 06 1

equations(17) and (20) must be solved together yielding a

real cutoff dependent mass(A). Of course at any finite 04 r ]

cutoff such equations maintain la dependence since the

theory is not Lorentz invariant. We defima as thek=0 02 7076V

value corresponding to the energy required to create a boso 0 . ’ ° . .

at rest. Folk=0 a generic scattering solution of the integral 0 1 2 3 4 5

equation(18) hasE=2m wherem is determined from Eq. Bare mass (TeV)

(20), by insertion of Eq(47), FIG. 2. The physical Higgs boson massversus the bare mass

my (which fixes the coupling strengthfor several choices of the
(49) energy cutoffA=2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0, 6.4, 6.8

and 7.2 TeV. Data are also reported for the crossover point from

monotonic to hon-monotonic behavior occurringhat=3.05 TeV.
while J(0) is the integral17) of the kernel(16) evaluated at  The dashed line represents the=m, approximation which only

J[1-23(0)
% 1+300) |’

2_

k,=0 and atE=2m: holds in the weak-coupling regimmeg<0.3 TeV.
30) = Norg x*—1 q 50 quite hugeA. That is equivalent to neglecting(0) alto-
(0)= 32724 x2— ax—f3 X (50) gether in Eq(49). For larger couplings the solution deviates
from the perturbative regime and the physical masss
whereg=A/m, a=(3— mg/mZ)/4 andp=(1— mg/mZ)/z_ heavily reduced and strongly dependent on the cutoff choice.

The two coupled equatior{d9) and(50) give the physical Notably in the range 1 Te¥my<2 TeV, where several
massm. The integral in Eq(50) can be evaluated analyti- authors find Higgs-boson—Higgs-boson bound states, the
cally: physical mass is spread over a large energy range going from

m=mg for A =mg to m~my/100 for A =35 TeV. However,
3m2 the upper boundn=m; is only reached for an unphysical
3272 252219, (51 cutoff equal to the mass, which makes the intedrahnish.
A crossover is observed at a criticAl,=3.05 TeV from a
where monotonic increasing behavior ofi versusmg, to a non-
monotonic behavior withm rising to a maximum and then
f(g)=In(g++g2—1) decreasing for largemy. The maximum value om never
exceeds the critical value,=1.1 TeV (which is reached at
a couplingmy=4 TeV) for any choice of coupling and cut-
+ \/— In(l gy-+Vg* = 1V»2 - 1) off. Thus, for anyA >3.05 TeV and anyn,, we always find
- a physical massn<<1.1 TeV.

1 g VA1 \/—1 Moreover, in the strong coupling regime the physical

2=

[2— 1/2 mass becomes very small: in such strong-coupling limit a
+ \/_ n(1=-gry-—g % b, simple analytical solution may be found by requiring that

m<m, and expanding both equatiof¥9) and (50) in pow-
(52 ers ofm?/ m(z). By use of the analytical expressi@82), the
integral (50) may be written as

J(0)=

2

and y. = (a=*JA)/2 andA = a?+ 4.

A numerical solution form as a function of the coupling
parametemy is reported in Fig. 2 for several cutoff values.
In the weak-coupling limit, formy smaller than 0.3 TeV, we J(0)=
recover the perturbative solutian~mg, which holds up to a

3mA

o +O(m?Im2) (53
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which to first order irm does not depend on the coupling.
Equation(49) may be inverted and to the same ordemif

PHYSICAL REVIEW D 62 116009

For completeness we should mention that whenengr
> A a second larger solution for the physical massomes

reads out from the coupled equatiori49), (50), but such solutions
probably have no physical meaning. We remark that the
rangemy> A could be of physical interest since the cutff
should be compared to the physical massvhich is gener-
ally significantly smaller than the coupling parameteay.
Returning to the bound-state problem, let us insert the

numerical solution of the coupled equatio@9), (51) into
the integral equatior{18). Neglecting the slighk depen-

4 2 dence ofJ(k)~J(0) (which is the only approximation we
me~ _772”_ (55) are making apart from the choice of the trial sjate obtain

3 A the following integral equation:

1
J(0)= EJrco(mz/mg). (54)

Eliminating J(0) yields

which is consistent with our assumption thatkmg pro-
vided thatmy>42v2/(3A) or explicitly myA>0.8 Te\2.
When such condition is satisfied the physical mass does not
depend on the coupling and tends to a finite limit propor-
tional to A 1. This behavior is evident in Fig. 2. where the kernek is defined as

(20— E)B(K)=— f d°pKi(k.p.—k—pP)B(p), (56

1 [2mi+m? 5m3—2m?\| 1 2 m?+2mj+ w,(E—2w,)
IC k1 1 = -
(k:p.a) 643w, v? 2m§+m2 wp  Wpog mg—mz 1 1 1
ot oyt ogt —+—+—|—E
Wi wp  Wq

(57)

We notice that the second term inside the brackets containghich is Eq.(16) of Ref.[5]. This approximation requires
an attractive part plus an energy dependent part proportionah~ my, which is valid only in the regiom;<0.3 TeV, ac-

to (E—2wy) which is always repulsive iE<2m, and thus  cording to our numerical results in Fig. 2. DLD found
weakens the bonding of any bound state. It is instructive tdound-state solutions with the kerrigb), but only for larger
see how the approximate integral equation of D[3) can  couplingsmy>0.9 TeV; this is well beyond the perturbative
be recovered from our almost exact treatment of the variaregime[5,12,13 and well beyond the region of validity of
tional method. That can be done by taking the perturbativeheir approximations.

limit [J(0)=0, m=my] and by neglecting the energy de-  To address the problem of the existence of bound state
pendent repulsive part proportional tB{ 2w)) in the sec-  beyond the perturbative regime, we must use the full integral
ond term of the kernel according to its approximatiBn equation(56). The most interesting case is awave solu-
~2w,. Moreover, since they also takE~w,+wy~w, tion, and in that case the integration over angles may be
+ wy, the denominator of the second term is approximatedarried out exactly, yielding a one-dimensional integral

as equation. We change the integration variables according to
1 1 1 1/1 1 2 " N
%—%—%—_4'_, 58 3 B — ’ ct
otwptog—E o, o7 2\le, oq 58 J d”p \/mjm wpdwpfw wqdwg: - -,
2 -
(60)
yielding the approximation
where
ANo3m?l 1 1 1
KKkpa~——————5— 59
(k.p.a) 64m° 0wy 3m? wé 0o, 59

o= N+ w222\ (wf—m) (- m). (61
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Then integrating ovew, gives

Q+ w+_Q+
X In
Q,-0_

A
(2018 = | Aoy.o)B)day, (62 0 =0,
m
with (O w,—Q_
- In 63
. : 2mg+m? [ (5mg—2m?| g~ 0.-0 Me o (63
Wik, W)= — w,—
ko™ 16720 2wy 2m§+ m? P
2mj+mP+ w,(E—2w,)
- where() . are the poles of the kernél in the variablew:
wi—m?
E-w—w, Mp—-m?(1 1 1 m—m?( 1 1\]?
Q.= - —+—] *==\/|E-wx—w,— —+—| —2md+2m?. (64)
2 4 wg 2 0y
|
The one-dimensional integral equati¢®2) may be solved (iii) A>A;, mg>2 TeV (very strong coupling For very

numerically by standard matrix techniqu¢€ne must first large m, the renormalized Higgs boson masssaturates at
choose the parameteng, and A, and find the corresponding the finite value given by Eq55) (see also Fig. R A further
physical massn from the coupled equatior(@9), (51).] We increase of the coupling strength allows the occurrence of
can describe three different scenarios: bound-state solutions whose precise onset depends on the

(i) A<A;=3.05 TeV(small cutoff. Sincemis a mono-  chosen energy cutoff. In Fig. 3 we show the binding en-
tonic increasing function of the coupling strengtlg, bothm  grqy (E—2m), in units of 2m, for a typical cutoff A =4
andmy must be small compared tb. In this weak-coupling  Tey just aboveA.. An eigenvalueE smaller than B ap-
limit there are no bound-state solutions and the lower eige”pears atm,=2.35 TeV, and the binding energy reaches the
value of Eq.(62) is the free particle energlg=2m. bootstrap point E—2m)/(2m)=—0.5 atm,=3.5 TeV.

(i) A>Ac, me<<2 TeV (large cutoff and moderately  pegpite the huge couplings required for binding, the cor-
strong coupling Beyond the critical value\ =3.05 TeV  responding physical mass is relatively small compared to
the Higgs boson masa is not a monotonic increasing func- that found in previous work§1—5]. Figure 4 reports the
tion of the coupling strengtim, (see Fig. 2 This strength binding energy versus (physical massfor A=4 TeV. The
can be large sincenis bounded and never comparableo  gnset of the bound-state solution israt=519 GeV, while
Beyond the weak-coupling limit, where there are no boundihe mass bootstrap point is reachednat 386 GeV. We
state solutions, an intermediate range can be described f@gice that the binding energy nancreaseswith decreasing

mo~1—2 TeV. In this range nonperturbative effects are evi-m Moreover, according to Eq55), an even smaller mass is
dent sincanis adecreasindunction of the bare mass, (as  yequired for larger choices of the energy cut-aff

shown in Fig. 2. In this range bound state solutions have At the light of our study a Higgs-boson—Higgs-boson
been found by several authdrs2,4,5. However, the strong  pound state would be conceivable for~100—500 GeV
reduction of the physical mass, in comparison with the rgvided that the coupling is very strongy~2 TeV. Of
bare massn,, rules out the existence of bound states with¢oyrse the present toy model neglects the interactions with

E<2m in this regime. the longitudinal components &% and Z fields, and the nu-
£ 0 T T . 0
Q 3]
T 01t . = 91 k- i
N? E 0.1
W g0l _ i)
g 0.2 N 02t i
> o
% 03 1 g 03 | 1
2 2
5 04r ' £ 04} ]
= £
m _0.5 1 1 1 1 1 1 m _05 1 1 1
2 22525275 3 32535375 4 0.35 0.4 0.45 0.5 0.55
FIG. 3. Binding energfe —2m in units of 2m versus bare mass FIG. 4. Binding energ\E—2m in units of 2n versus physical
mg (coupling strengthfor a cutoff A=4 TeV. Higgs boson masm for a cutoff A=4 TeV.
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merical results might not apply to real bound states of thecorrectly addressed. We just mention RuppX Bethe-
standard model. We stress the role played by mass renormédbalpeter approach where the chosen subtraction point gives
ization in determining both the shift of bound states towardgn=mp at any coupling.

higher coupling strengths and the corresponding reduction of
the physical mass required for bonding. Most of the previous ACKNOWLEDGMENTS

calculations should be revised at the light of the present re- | thank Maurizio Consoli and Paul Stevenson for their
sult in order to establish if mass renormalization has beegenerous assistance in this research.
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