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Variational study of bound states in the Higgs model
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~Received 3 August 2000; published 10 November 2000!

The possible existence of Higgs-boson–Higgs-boson bound states in the Higgs sector of the standard model
is explored using theuhh&1uhhh& variational ansatz of Di Leo and Darewych. The resulting integral equations
can be decoupled exactly, yielding a one-dimensional integral equation, solved numerically. We thereby avoid
the extra approximations employed by Di Leo and Darewych, and we find a qualitatively different mass
renormalization. Within the conventional scenario, where a not-too-large cutoff is invoked to avoid ‘‘trivial-
ity,’’ we find, as usual, an upper bound on the Higgs boson mass. Bound-state solutions are only found in the
very strong coupling regime, but at the same time a relatively small physical mass is required as a consequence
of renormalization.

PACS number~s!: 11.10.St, 11.10.Gh, 11.80.Fv, 14.80.Bn
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I. INTRODUCTION

The possible existence of bound states for the Higgs
son has been studied by several authors@1–7# with both
perturbative and non-perturbative calculations. At pres
there is little agreement between the quantitative predicti
of such calculations.

A variational method, within the Hamiltonian formalism
@8#, has been used by Di Leo and Darewych~DLD! @5#.
However, because of the apparent complexity of the res
ing integral equations, they resorted to additional approxim
tions that are unsatisfactory when the coupling is strong
this paper we show that an exact decoupling of DLD’s in
gral equations is possible by use of some symmetry pro
ties. This allows a considerable simplification of the pro
lem. For ans-wave solution we show in detail that th
method gives rise to a one-dimensional integral equation
can be tackled numerically.

Mass renormalization~beyond normal ordering! plays a
crucial role, although it is finite.~The infinite mass renormal
ization of DLD turns out to be an artifact of their other a
proximations.! The physical mass is significantly reduce
from its classical value in the strong-coupling regime. B
cause of this mass-reduction effect, we find that the occ
rence of bound states~i.e., solutions in the 2-particle secto
with E,2m) is shifted towards the very strong couplin
regime, well beyond the reach of any perturbative appro
mation. However, a relatively small physical massm
'0.1– 0.5 TeV! is required as a consequence of the sa
renormalization effect.

Our paper is organized as follows: the variational meth
is described in Sec. II. A general prescription for the m
renormalization is then provided and discussed. Section
deals with the delicate aspect of mass renormaliza
through a variational one-particle trial state calculati
analogous to the two-particle trial state used in Sec. II. T
existence of Higgs-boson–Higgs-boson bound states is
cussed in Sec. IV and the results are compared with thos
other authors.

Our discussion here uses the conventional framework
the Higgs theory is an effective theory with a large, butfinite
cutoff L @10#.
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II. VARIATIONAL METHOD

Following DLD, our starting point is the Lagrangian

L52 1
2 ]mh]mh2 1

2 m0
2h22

1

3!
lvh32

1

4!
lh4, ~1!

for a neutral, scalar Higgs fieldh. For the present we regar
m0 , v, andl as three independent bare parameters; only
Sec. IV shall we need to impose the constraintm0

25 1
3 lv2

that arises when this model is obtained from a spontaneo
brokenlF4 theory.

In the Schro¨dinger representation, att50, the field is
quantized in terms of creation and annihilation operators

h~x!5E d3k

A~2p!32vk

@ak exp~ ik•x!1ak
† exp~2 ik•x!#

~2!

satisfying the usual commutation relations

@ak ,a†
p#5d3~k2p!. ~3!

The energy of the single particle states is

v~k!5vk5Ak21m2 ~4!

where m is the physical mass which may differ from th
classical massm0. The HamiltonianH is obtained from Eq.
~1! as

H5E d3kS vk2
dm2

2vk
D ak

†ak

2E d3k
dm2

4vk

~ak
†a2k

† 1aka2k!

1:Flv

3!
E d3xh31

l

4!
E d3xh4G : ~5!
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FABIO SIRINGO PHYSICAL REVIEW D 62 116009
wheredm25m22m0
2. The Hamiltonian has been normal o

dered with respect to the physical massm.
The preceding discussion follows the conventions of R

@5#, except that ourl is a factor of 6 larger than theirs, sinc
we usel/4! rather thanl/4.

The trial two-boson bound state considered by DLD@5# is

uC2&5E d3pB~p!ap
†a2p

† u0&

1E d3pd3qd3kG~p,q,k!ap
†aq

†ak
†u0&d3~p1q1k!,

~6!

with u0& the vacuum annihilated bya. We observe that the
function B(p) may be taken to be symmetric without an
loss of generality; a generalB(p) could always be decom
posed into an even and an odd part and the odd part w
give no contribution to Eq.~6!. This reflects the fact that a
bound state of two identical bosons must be even under
tial inversion. Similarly, we must haveG(p,q,k)5G(2p,
2q,2k). Furthermore, there is no loss of generality in a
suming thatG(p,k,q) is invariant under any permutation o
the three momentap, k, andq. ~Of course, because of th
momentum-conserving delta function, the functionG really
involves only twoindependentmomentum arguments.!

The B and G functions are determined from the vari
tional principle

d^C2uH2EuC2&50 ~7!

which provides two coupled eigenvalue equations

d^C2uH2EuC2&

dB!~k!
50 ~8!

d^C2uH2EuC2&

dG!~p,q,k!
50. ~9!

Explicitly, these equations are

S 2vk2
dm2

vk

2EDB~k!1
l

64p3vk

3E d3p
B~p!

vp

1
3lv

8p3/2E d3pE d3qd3~k1p1q!

3
1

Avkvpvq

G~k,p,q!50, ~10!
11600
f.

ld

a-

-

F(
i 51

3 S v i2
dm2

2v i
D 2EGG~k1 ,k2 ,k3!

1
lv

~4! !p3/2Av1v2v3

(
i 51

3

B~k i !

1
l

64p3Av1v2v3

(
i 51

3

E d3pE d3qd3~k i1p1q!

3S v i

vpvq
D 1/2

G~k i ,p,q!50, ~11!

where v i[vki
. These equations are equivalent to Eq

~8!,~9! of Ref. @5#, but their structure appears considerab
simpler because we have taken advantage of the symm
properties mentioned above. We can achieve an exact de
pling of these equations by the following algebraic manip
lations. First, we introduce the auxiliary function

A~k!5vkE d3pE d3qd3~k1p1q!
G~k,p,q!

Avkvpvq

~12!

so that the first equation becomes

3lv

8p3/2vk

A~k!5S E22vk1
dm2

vk
DB~k!

2
l

64p3vk
E d3p

vp

B~p!. ~13!

Similarly, re-writing its last term in terms ofA(k i), Eq. ~11!
becomes

G~k1 ,k2 ,k3!5
2l

64p3

1

Av1v2v3

3

(
i 51

3

@A~k i !1~8p3/2/3!vB~k i !#

F(
i 51

3

~v i2dm2/2v i !2EG . ~14!

Note that the resulting form ofG manifestly respects the
symmetry properties invoked earlier. Inserting this equat
back into Eq.~12!, the second eigenvalue equation Eq.~11!
is equivalent to

A~k!1~8p3/2/3!
J~k!

11J~k!
vB~k!1

2vk

11J~k!

3E d3pE d3qd3~k1p1q!K~k,p,q!@A~p!

1~8p3/2/3!vB~p!#50 ~15!
9-2
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where the kernelK(k,p,q) is wholly symmetric:

K~k1 ,k2 ,k3!5
l

64p3

1

v1v2v3F(
i 51

3

~v i2dm2/2v i !2EG
~16!

and

J~k!5vkE d3pK~k,p,2k2p! ~17!

is a logarithmically divergent integral. We shall regularize

with an energy cutoff,Ap21m2,L.
The eigenvalue equations~13!, ~15! may now be easily

decoupled by replacingA from Eq.~13! into Eq.~15!. In this
way, we obtain the following integral equation forB:

FE22vk1
1

vk
S dm21lv2

J~k!

11J~k!
D GB~k!

5
l

64p3vk

113J~k!

11J~k!
E d3p

vp

B~p!

2
2

11J~k!
E d3pK~k,p,2k2p!B~p!

3@dm21lv21vp~E22vp!#. ~18!

For ans-waveB function, the angular integration can b
performed analytically, yielding a one-dimensional integ
equation forB which can be solved by numerical method
There are two main conceptual problems that must first
dealt with:~i! the mass renormalization parameterdm2 needs
to be determined, and~ii ! the integralJ is logarithmically
divergent and requires regularization, say with an energy
off L. This last point has to do with the physical interpre
tion of the whole theory. The current orthodox viewpoint
that the originallF4 theory is only an effective theory, valid
up to some finite energy scaleL that acts as a cutoff.L is
then another parameter of the theory, in addition tom0 and
l. We shall adopt this viewpoint in this paper.~For a hetero-
dox viewpoint, see Ref.@10#.!

Mass renormalization is crucial since the existence
bound states hinges on the comparison between the eneE
and the energy of two free bosons at rest, 2m. Any attractive
self-interaction that tends to bind two particles will also gi
rise to a reduction of the physical free-particle mass co
pared to the classical massm0. Thus it would not be legiti-
mate to ignore mass renormalization and just imposem
5m0.

The form of the left-hand side of Eq.~18! suggests@5#
that the desirable mass renormalization is such that the c
bination
11600
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S dm21lv2
J~k!

11J~k!
D ~19!

should vanish. Sincem2 should not bek dependent, we de
fine

dm252lv2
J~0!

11J~0!
. ~20!

For an infinite cutoff,J→` and we would get

m25m0
22lv2 ~21!

which is afinite mass renormalization.@In the DLD model,
because of their other approximations, the 11J(0) denomi-
nator is absent in Eq.~20!, so that they found an infinite mas
renormalization.#

In the next section, we will show that the above ma
renormalization is justified by considering a variational c
culation of a one-particle state.

III. SINGLE-PARTICLE MASS RENORMALIZATION

The mass renormalization prescription~20! may be recov-
ered in an analogous self-consistent variational procedure
this case, the trial stateuCk& for a single boson with massm
and momentumk is taken to be

uCk&5C~k!ak
†u0&1E d3pD~k,p!ap1k

† a2p
† u0& ~22!

whereD(k,p)5D(k,2p2k). The variational principle now
requires that

d^CkuH2E~k!uCk&50 ~23!

which leads to the coupled eigenvalue equations

C~k!S vk2
dm2

2vk
2E~k!D 1

lv

8p3/2E d3pD~k,p!

Avkvpvk1p

50

~24!

D~k,q!Fvq1vk1q2
dm2

2
S 1

vq
1

1

vk1q
D 2E~k!G

1
l

64p3E d3pD~k,p!

Avqvk1qvpvp1k

1
lv

16p3/2

C~k!

Avkvqvk1q

50. ~25!

Eliminating the integral we obtain
9-3
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D~k,q!

C~k!
5

1

8p3/2v
A vk

vqvk1q

3F vk2
dm2

2vk
2

lv2

2vk
2E~k!

vq1vk1q2
dm2

2
S 1

vq
1

1

vk1q
D 2E~k!

G .

~26!
vi
f
s
,

,
t
n
s

n
-

pa
le

n
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Substituting back in Eq.~24! then forCÞ0 we find

E~k!5vk2
1

2vk
Fdm21lv2

J0~k!

11J0~k!
G ~27!

where
J0~k!5
l

64p3EL

d3p
1

vpvk1pFvp1vk1p2
dm2

2
S 1

vp
1

1

vk1p
D 2E~k!G . ~28!
int
me
o
ate
be
all
tain

ent

te a
an

the
This has a similar structure and the same ultraviolet beha
as the integralJ(k) of Eq. ~17!. In principle, the presence o
the single particle energyE(k) in the denominator require
us to solve Eq.~27! and Eq.~28! self-consistently. However
whenL@m ~as it should be!

J0~k!'J~k!'
l

128p3ELd3k

uku3

'
l

32p2 ln~L/m!1finite terms. ~29!

In such a limit, we self-consistently obtainE(k)5vk pro-
vided we take

dm252lv2
J0

11J0

~30!

to be compared to Eq.~20!. Once more forL@m we recover
the mass renormalization prescription~21!. We stress that
for a finite energy cutoffL, Eq. ~30! is analogous but no
equivalent to Eq.~20! sinceJ0ÞJ. Thus a consistent solutio
of the full integral equation~18! requires the use of the mas
condition ~20! as discussed in the next section.

Full consistency would also require that whenE(k)5vk
the functionD should vanish. In fact, sincevk is the energy
of a single particle stateuk&5ak

†u0& with massm, the state
uCk& can have a massm and a Lorentz-covariant dispersio
relation only whenuCk&5uk&. This requirement is not en
tirely trivial: the mass renormalization prescription~30! is
just what we need in order to guarantee that the single
ticle state uk& effectively is the lower energy one-partic
state for the full interacting Hamiltonian~5!. Inserting Eq.
~27! and ~30! into Eq. ~26!, we find that the ratioD/C→0
for L→` as we expected. In other words that means we fi
a quantum-field renormalization constantZ51.
or

r-

d

It is instructive examining the same result from the po
of view of standard perturbation theory. If there were so
‘‘rule’’ forbidding the existence of states with more than tw
particles in the Fock space, then the variational trial st
~22! would lead to an exact result. The same result should
achievable by perturbation theory provided that we sum
Feynman diagrams whose intermediate states do not con
more than two particles. However, in the self-consist
variational procedure the mass of the single particle stateuk&
is supposed to be the true physical massmÞm0. In the lan-
guage of perturbation theory this is equivalent to associa
renormalized propagator with each internal line of Feynm
diagrams. The easiest way to do that is by re-writing
Lagrangian~1! as

L5L01L11L2 ~31!

whereL0 is the zeroth-order non-interacting part:

L052 1
2 ]mhR]mhR2 1

2 m2hR
2 . ~32!

L1 is an interaction part contributing at the tree level,

L152 1
2 ~Z21!]mhR]mhR2 1

2 ~Z21!m2hR
21 1

2 Zdm2hR
2 ,
~33!

andL2 is the interaction,

L252
1

3!
lvZ3/2hR

32
1

4!
Z2lhR

4 . ~34!

Here hR is a renormalized field,hR5h/AZ. Imposing that
the renormalized propagator has a pole atp252m2 with
unit residue gives two conditions@11#

Zdm252P loop
! ~2m2! ~35!

and
9-4
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Z511
d

dp2 P loop
! ~p2!u2m2 ~36!

wherep25p22vp
2 , and i (2p)4P loop

! (p2) is the sum of all
one-particle-irreducible diagrams containing loops. Such d
grams can only arise from the Lagrangian partL2. In our
reduced Fock space the only diagrams contributing are
bubble-chain diagrams reported in Fig. 1. These are all
ively divergent but, if a regularization prescription allow
their resummation, their infinite sum yields a finite contrib
tion

P loop
! ~p2!5P1-loop

! 1P1-loop
! ~p2!•F2

1

2
Z2lI ~p2!G

1P1-loop
! ~p2!•F2

1

2
Z2lI ~p2!G2

1•••

~37!

where the one-loop term is

P1-loop
! ~p2!5

1

2
~Z3l2v2!I ~p2! ~38!

and I (p2) is the divergent integral:

I ~p2!5E d4q

i ~2p!4

1

~q21m22 i e!@~p1q!21m22 i e#
.

~39!

The infinite series~37! can be exactly summed up:

P loop
! ~p2!5~Zlv2!F 1

2 lZ2I ~p2!

11 1
2 lZ2I ~p2!

G . ~40!

In order to maintain Lorentz covariance, the integral~39! can
be evaluated by dimensional regularization. By use of
Feynman formula and Wick rotation, in ad-dimensional Eu-
clidean space the integral reads

I ~p2!5
pd/2

~2p!4 G~22d/2!E
0

1

@m21p2x~12x!#d/222dx.

~41!

For d541e ande→0 we obtain

I ~p2!52
1

8p2e
2

1

16p2

3Fg1 ln p1E
0

1

dx ln@m21p2x~12x!#G1O~e!.

~42!

Insertion into Eq.~40! gives
11600
-

e
a-

-

e

d

dp2 P loop
! ~p2!u2m2;e2 ~43!

and from Eq.~36! then

Z511O~e2! ~44!

while from Eq. ~35! the mass renormalization paramet
reads

dm252lv2F l/~16p2e!

l/~16p2e!21
G . ~45!

Thus, in physicald54 space, we recover fore→0 the mass
renormalization prescription of Eq.~21! andZ51.

IV. SEARCH FOR HIGGS-BOSON –HIGGS-BOSON
BOUND STATES

In the previous sections we described the variatio
method and discussed its internal consistency from a gen
point of view. So far the three parametersm0

2, v andl have
been viewed as independent and we have not specialize
any particular physical problem. We now wish to use t
method described in Sec. II to search for Higgs-boso
Higgs-boson bound states in the Higgs sector of the e
troweak theory.

The scalar sector of the electroweak theory has the fo

L52 1
2 ]mF]mF2

l

4!
~F22v2!21const. ~46!

Defining the ‘‘Higgs’’ field h by F5v1h, we obtain the
original Lagrangian~1! with the parameters related by

m0
25

1

3
lv2. ~47!

It can be shown that the same relation holds forv being the
minimum of the Gaussian effective potential@9#. In the stan-
dard interpretation, we also have a large but finite cutoffL.
The theory is approximately Lorentz invariant for energ
small compared to a finite energy cutoffL. The vacuum
value v is fixed empirically in terms of the Fermi consta
GF:

2v25
A2

GF

. ~48!

Thus the bare massm0 is proportional to the square root o
the couplingl. The physical model is entirely described b

FIG. 1. Bubble-chain diagrams contributing toP loop
! in Eq.~37!.
9-5
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FABIO SIRINGO PHYSICAL REVIEW D 62 116009
two independent energy scales: the energy cutoffL and the
bare massm0 which also fixes the coupling strength throug
Eq. ~47!.

For a large cutoffL, according to Eq.~21!, we expect a
mass correctiondm2'2lv2 which overcomes the tree-leve
mass ~47!. Since m2 is positive definite, we expect tha
something should prevent it from becoming negative. In f
the general discussion of Sec. II must be modified when
physical massm approaches zero. At the pointm→0, L
→` the integralJ(0) is not analytical, and some extra ca
is required in handling the two limits. As previously di
cussedJ(0) diverges logarithmically according to Eq.~29!
for any finitem, while it vanishes linearly form→0 at any
fixed cutoff L. Thus for any large but finiteL the coupled
equations~17! and ~20! must be solved together yielding
real cutoff dependent massm(L). Of course at any finite
cutoff such equations maintain ak dependence since th
theory is not Lorentz invariant. We definem as thek50
value corresponding to the energy required to create a bo
at rest. Fork50 a generic scattering solution of the integr
equation~18! hasE52m wherem is determined from Eq.
~20!, by insertion of Eq.~47!,

m25m0
2F122J~0!

11J~0!
G , ~49!

while J(0) is the integral~17! of the kernel~16! evaluated at
k150 and atE52m:

J~0!5
l

32p2E
1

gA x221

x22ax2b
dx ~50!

whereg5L/m, a5(32m0
2/m2)/4 andb5(12m0

2/m2)/2.
The two coupled equations~49! and~50! give the physical

massm. The integral in Eq.~50! can be evaluated analyt
cally:

J~0!5
3m0

2

32p2v2 f ~g!, ~51!

where

f ~g!5 ln~g1Ag221!

1
1

2
(
6

Ag6
2 21

6AD
ln~12gg61Ag221Ag6

2 21!

2
1

2
(
6

Ag6
2 21

6AD
ln~12gg62Ag221Ag6

2 21!,

~52!

andg65(a6AD)/2 andD5a214b.
A numerical solution form as a function of the coupling

parameterm0 is reported in Fig. 2 for several cutoff value
In the weak-coupling limit, form0 smaller than 0.3 TeV, we
recover the perturbative solutionm'm0 which holds up to a
11600
t
e

on
l

quite hugeL. That is equivalent to neglectingJ(0) alto-
gether in Eq.~49!. For larger couplings the solution deviate
from the perturbative regime and the physical massm is
heavily reduced and strongly dependent on the cutoff cho
Notably in the range 1 TeV,m0,2 TeV, where severa
authors find Higgs-boson–Higgs-boson bound states,
physical mass is spread over a large energy range going
m5m0 for L5m0 to m'm0/100 forL535 TeV. However,
the upper boundm5m0 is only reached for an unphysica
cutoff equal to the mass, which makes the integralJ vanish.
A crossover is observed at a criticalLc53.05 TeV from a
monotonic increasing behavior ofm versusm0, to a non-
monotonic behavior withm rising to a maximum and then
decreasing for largerm0. The maximum value ofm never
exceeds the critical valuemc51.1 TeV ~which is reached at
a couplingm054 TeV! for any choice of coupling and cut
off. Thus, for anyL.3.05 TeV and anym0, we always find
a physical massm,1.1 TeV.

Moreover, in the strong coupling regime the physic
mass becomes very small: in such strong-coupling limi
simple analytical solution may be found by requiring th
m!m0 and expanding both equations~49! and~50! in pow-
ers of m2/m0

2. By use of the analytical expression~52!, the
integral ~50! may be written as

J~0!5
3mL

8p2v2 1O~m2/m0
2! ~53!

FIG. 2. The physical Higgs boson massm versus the bare mas
m0 ~which fixes the coupling strength!, for several choices of the
energy cutoffL52.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0, 6.4, 6
and 7.2 TeV. Data are also reported for the crossover point f
monotonic to non-monotonic behavior occurring atLc53.05 TeV.
The dashed line represents them5m0 approximation which only
holds in the weak-coupling regimem0,0.3 TeV.
9-6
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which to first order inm does not depend on the couplingm0.
Equation~49! may be inverted and to the same order inm2

reads

J~0!5
1

2
1O~m2/m0

2!. ~54!

Eliminating J(0) yields

m'
4

3
p2

v2

L
~55!

which is consistent with our assumption thatm!m0 pro-
vided thatm0@4p2v2/(3L) or explicitly m0L@0.8 TeV2.
When such condition is satisfied the physical mass does
depend on the coupling and tends to a finite limit prop
tional to L21. This behavior is evident in Fig. 2.
ai
on

t

ria
tiv
-

te

11600
ot
-

For completeness we should mention that wheneverm0
.L a second larger solution for the physical massm comes
out from the coupled equations~49!, ~50!, but such solutions
probably have no physical meaning. We remark that
rangem0.L could be of physical interest since the cutoffL
should be compared to the physical massm which is gener-
ally significantly smaller than the coupling parameterm0.

Returning to the bound-state problem, let us insert
numerical solution of the coupled equations~49!, ~51! into
the integral equation~18!. Neglecting the slightk depen-
dence ofJ(k)'J(0) ~which is the only approximation we
are making apart from the choice of the trial state! we obtain
the following integral equation:

~2vk2E!B~k!52E d3pK~k,p,2k2p!B~p!, ~56!

where the kernelK is defined as
K~k,p,q!5
1

64p3vk
S 2m0

21m2

v2 D H S 5m0
222m2

2m0
21m2 D 1

vp

2
2

vpvq

m212m0
21vp~E22vp!

Fvk1vp1vq1
m0

22m2

2
S 1

vk

1
1

vp

1
1

vq
D 2EG J .

~57!
d

e
f

tate
ral

be
ral
to
We notice that the second term inside the brackets cont
an attractive part plus an energy dependent part proporti
to (E22vp) which is always repulsive ifE,2m, and thus
weakens the bonding of any bound state. It is instructive
see how the approximate integral equation of DLD@5# can
be recovered from our almost exact treatment of the va
tional method. That can be done by taking the perturba
limit @J(0)50, m5m0] and by neglecting the energy de
pendent repulsive part proportional to (E22vp) in the sec-
ond term of the kernel according to its approximationE
'2vp . Moreover, since they also takeE'vp1vk'vq
1vk , the denominator of the second term is approxima
as

1

vk1vp1vq2E
'

1

vp

'
1

vq

'
1

2
S 1

vp

1
1

vq
D , ~58!

yielding the approximation

K~k,p,q!'
l

64p3

3m2

vkvp
F 1

3m2 2
1

vq
2 2

1

vqvp
G ~59!
ns
al

o

-
e

d

which is Eq. ~16! of Ref. @5#. This approximation requires
m'm0, which is valid only in the regionm0,0.3 TeV, ac-
cording to our numerical results in Fig. 2. DLD foun
bound-state solutions with the kernel~59!, but only for larger
couplingsm0.0.9 TeV; this is well beyond the perturbativ
regime @5,12,13# and well beyond the region of validity o
their approximations.

To address the problem of the existence of bound s
beyond the perturbative regime, we must use the full integ
equation~56!. The most interesting case is ans-wave solu-
tion, and in that case the integration over angles may
carried out exactly, yielding a one-dimensional integ
equation. We change the integration variables according

E d3p•••5
2p

Avk
22m2

E
m

`

vpdvpE
v2

v1

vqdvq•••,

~60!

where

v65Avk
21vp

22m262A~vk
22m2!~vp

22m2!. ~61!
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Then integrating overvq gives

~2vk2E!B~k!5E
m

L

F~vk ,vp!B~p!dvp , ~62!

with

F~vk ,vp!52
2m0

21m2

16p2v2vk
H S 5m0

222m2

2m0
21m2 DAvp

22m2

2
2m0

21m21vp~E22vp!

Avk
22m2
g

e

-

nd

v

ve

ith

s

11600
3F V1

V12V2

lnS v12V1

v22V1
D

2
V2

V12V2

lnS v12V2

v22V2
D G J ~63!

whereV6 are the poles of the kernelK in the variablevq :
V65
E2vk2vp

2
2

m0
22m2

4
S 1

vk

1
1

vp
D 6

1

2
AFE2vk2vp2

m0
22m2

2
S 1

vk

1
1

vp
D G 2

22m0
212m2. ~64!
of
the

-

he

or-
to

s

n

with
The one-dimensional integral equation~62! may be solved
numerically by standard matrix techniques.@One must first
choose the parametersm0 andL, and find the correspondin
physical massm from the coupled equations~49!, ~51!.# We
can describe three different scenarios:

~i! L,Lc53.05 TeV~small cutoff!. Sincem is a mono-
tonic increasing function of the coupling strengthm0, bothm
andm0 must be small compared toL. In this weak-coupling
limit there are no bound-state solutions and the lower eig
value of Eq.~62! is the free particle energyE52m.

~ii ! L.Lc , m0,2 TeV ~large cutoff and moderately
strong coupling!. Beyond the critical valueLc53.05 TeV
the Higgs boson massm is not a monotonic increasing func
tion of the coupling strengthm0 ~see Fig. 2!. This strength
can be large sincem is bounded and never comparable toL.
Beyond the weak-coupling limit, where there are no bou
state solutions, an intermediate range can be described
m0'1 – 2 TeV. In this range nonperturbative effects are e
dent sincem is adecreasingfunction of the bare massm0 ~as
shown in Fig. 2!. In this range bound state solutions ha
been found by several authors@1,2,4,5#. However, the strong
reduction of the physical massm, in comparison with the
bare massm0, rules out the existence of bound states w
E,2m in this regime.

FIG. 3. Binding energyE22m in units of 2m versus bare mas
m0 ~coupling strength! for a cutoff L54 TeV.
n-

-
for
i-

~iii ! L.Lc , m0.2 TeV ~very strong coupling!. For very
largem0 the renormalized Higgs boson massm saturates at
the finite value given by Eq.~55! ~see also Fig. 2!. A further
increase of the coupling strength allows the occurrence
bound-state solutions whose precise onset depends on
chosen energy cutoffL. In Fig. 3 we show the binding en
ergy (E22m), in units of 2m, for a typical cutoff L54
TeV, just aboveLc . An eigenvalueE smaller than 2m ap-
pears atm052.35 TeV, and the binding energy reaches t
bootstrap point (E22m)/(2m)520.5 atm053.5 TeV.

Despite the huge couplings required for binding, the c
responding physical mass is relatively small compared
that found in previous works@1–5#. Figure 4 reports the
binding energy versusm ~physical mass! for L54 TeV. The
onset of the bound-state solution is atm5519 GeV, while
the mass bootstrap point is reached atm5386 GeV. We
notice that the binding energy nowincreaseswith decreasing
m. Moreover, according to Eq.~55!, an even smaller mass i
required for larger choices of the energy cut-offL.

At the light of our study a Higgs-boson–Higgs-boso
bound state would be conceivable form'100– 500 GeV
provided that the coupling is very strong,m0'2 TeV. Of
course the present toy model neglects the interactions
the longitudinal components ofW andZ fields, and the nu-

FIG. 4. Binding energyE22m in units of 2m versus physical
Higgs boson massm for a cutoff L54 TeV.
9-8
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merical results might not apply to real bound states of
standard model. We stress the role played by mass renor
ization in determining both the shift of bound states towa
higher coupling strengths and the corresponding reductio
the physical mass required for bonding. Most of the previo
calculations should be revised at the light of the present
sult in order to establish if mass renormalization has b
a,

s.
.

11600
e
al-
s
of
s
e-
n

correctly addressed. We just mention Rupp’s@4# Bethe-
Salpeter approach where the chosen subtraction point g
m5m0 at any coupling.
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