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In the presence o€ P violation, the effective Hamiltonian matrix describing a neutral meson-antimeson
system does not commute with its Hermitian conjugate. As a result, this matrix cannot be diagonalized by a
unitary transformation and one needs to introduce a reciprocal basis. Although known, this fact is seldom
discussed and almost never used. Here, we use this concept to highlight a parametrization of the Hamiltonian
matrix in terms of physical observables, and we show that using it reduces a number of long and tedious
derivations into simple matrix multiplications. These results have a straightforward application for propagation
in matter. We also comment on tlieathematical relation with neutrino oscillations.

PACS numbes): 11.30.Er, 12.15.Ff, 14.46n

I. INTRODUCTION evolution and its solution would look if we had chosen a
different reference frame. We present our conclusions in Sec.
We are interested in the effectivex2 Hamiltonian ma- X. For completeness, Appendix A contains some elementary
trix describing the mixing in theP®-P° systems, wher@  hotions of collision theory, which are needed to describe the
stands forK, D, By, or Bs. We denote this X2 matrix by ~ €volution in the presence of interactions with matter. Appen-
H=M—i/2T" where dix B contains two other parametrizations of the physical
observables commonly found in the literature, the first of

M=(H+H"/2 and —il/2=(H-H")/2, (1) Wwhichis most convenient for the comparison with the neu-

trino sector.

describe the Hermitian and anti-Hermitian partstof re-

spectively. BothM andI' are Hermitian. Matrices satisfying Il. THE RECIPROCAL BASIS
Ty « 1 : H
'Erl;'a{tH 1=0 are called “normal” matrices. It is easy to show A. Definition

Why do we change basis at all? One reason is that the
[H,H"]=0&e[M,I'=0. (2)  time evolution of the statdy(t)) describing theP?-P°
mixed state, which is given by
Moreover, a matrix is normal if and only if it can be diago-
nalized by a unitary transformation. It is often stated that .d _
non-unitary transformations arise whenetis not hermit- 'Ew’(t))_ Hly(1), 3
ian. This is not the case. What is relevant is whetHeis
normal or not. Indeed, il"#0 thenH is not Hermitian, becomes trivial in the basis in whicth is diagonal. Equation
however,H can still be diagonalized by a unitary matrix as (3) andH have been written in thE?-pPO° rest frame and is

long as[M,I']=0. the proper time.
In Sec. Il we introduce the concept of “reciprocal basis”  \We denote thgcompleX eigenvalues oH by u,=m,
and we show that the presence of T violation in ffeP°® —i/2I' g andup=my—i/2l'y,, corresponding to the eigenvec-

system forces us to use such a basis. The physical obserigrs
ables are defined in Sec. lll and they are used in Sec. IV to
parametrizeH exclusively in terms of measurable quantities. |Pa) Pa Qa |P%) T |P%)
The time evolution of thé*°-P° system is discussed in Sec. |Pb) P~y | [PO) - ERYA )
V. Section VI explains why th&°-P° should be considered

as intermediate states, and Sec. VII shows an error whichAS a result, the matri is diagonalized through

arises when one does not use the reciprocal basis. Matter

effects are then considered in Sec. VIII. This differs from all X_lHX:(Ma 0 ) ®)

previous analyses of matter effects in that no use is made of 0 up’

the Good equations; here the time evolution is obtained in a

trivial way. In Sec. IX we compare the mixing in ti®?-p®  where

system with the mixing in the neutrino sector. To this end,

we start by showing how the equation describing the time 1 1 (Qb Pob ) ®
Palb* Poda\da —Pa’

*Permanent address: Instituto Superior de Engenharia de LisboAsS stated above is normal if and only ifX is unitary. This
Rua Conselheiro Erdio Navarro, 1900 Lisboa, Portugal. is what one learns in algebra.
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So, why do(mosb people worry about performing non- If H is not normal, theiX is not unitary, and{P,|,{Py|} in
unitary transformations? The reason is that one would likezq. (11) do not coincide with{(P,|,(P,|} in Eq. (12). An-
the mass basi§|P,),|Py)} to retain a number of the nice other way to state this fact is to note thatis normal X is
(orthogonality features of the{|P°),|P%} flavor basis. unitary) if and only if its right eigenvectors coincide with its

Among these: the orthogonality conditions left eigenvectors.
OIS0 =01 M0 That these features have an impact onKReK® system,
(PPIP?)=(P°[P%) =0, was pointed out long ago by SacHs2], by Enz and Lewis
olmon =050 [3], and by Wolfensteiri4]. More recently, they have been
(PPIP?)=(P7[P%)=1; (7)  stressed by Beuthe, pez-Castro and Pestie(5], by

o0 ——— o Alvarez-Gaumeet al.[6], and by Branco, Lavoura and Silva
the fact thaP°)(P°| and|P®)(P°| are projection operators; in their book “CP violation” [7]. Still, we have found that

the completeness relation they are not common knowledge. This is unfortunate since
om0l L 1S, /0 there are a number of results that usually require consider-
[PEXPY[+[PO)(P?=1; (8 able algebra which become trivial once the matrix formula-

tion discussed here is implemented. Moreover, one can ex-

press the matrix elements Bif written in theP°-P° basis, in
H=|POYH,(PY|+ |POYH, P°| +|PP) terms of observable quantities. This is what we show here.

and the decomposition of the effective Hamiltonian as

X H21<PO| + |EO>H22<EO| B. The relation to CP violation

po We will now show that the reciprocal basis is required by

. (9)  the observation off and CP violation in the mixing in the
neutral meson systems. The discrete symmetries have the

following effects on the matrix elements bf:

0 PO <
=P, [P >>H(<30|

All these relations involve the basis of flavor eigenkets

{IP%,|P%} and the basis of the corresponding bras CPT conservatiossHy,=Has,
{(P°|,(P°|}. The problem is that, wheH is not normal, we

cannot find similar relations involving the basis of mass T conservatioss|H 1, =|Hy,
eigenkets{|P,),|P,)} and the basis of the corresponding

bras,{(Pa|,(Pp|}. In particular, it is easy to see from the CP conservatiorsH;=H,, and |Hyy)

diagonalization in Eq(5) that the analog of Eq9) is
~ _ =[Hy. (15
H=|Pa>l’«a< Pa| +|Pb>ﬂb<Pb|
The 1964 discovery that 15| # [Hyy| in the kaon systerf8]

— (P, |Pu)) Ha O )((P,J) means that there i and CP violation in K°-K° mixing.
a/ 0 .

My <ﬁ>b| (10 Moreover, since the (1,1) entry in the matfid,H'] is
given by |H;,/?—|H,,/?, this experimental result also im-
This does not involve the brg®,| and(Py|, plies that the matripH is not normal and, thus, that we are
0 forced to deal with non-unitary matrices in the neutral kaon
(Pl __.[(P | system.
(Py| - (P )’ (12) For the other neutral meson systeris$;,| # |H,4| has not
been established experimentally. Nevertheless, the standard
but rather the so-called “reciprocal basis” model predicts that, albeit the difference is smaHi ;|
#|H,,| does indeed hold. As before, this impli€$ viola-
(|5a| (PY| tion in the mixing and forces the use of the reciprocal basis
- =X ] (12 in all the neutral meson systems.
(Pyl (PY|
The reciprocal basis may also be defined by the orthogonal- lll. OBSERVABLES IN THE P°-P° MIXING

ity conditions . . . .
y Let us start by introducing some notation. We define

P.Py)=(Py|P.) =0,
< a| b> < b| a> ,U«=m—iT/25(,ua+,ub)/2,

PP =(Py|P,)=1. 13
< a| a> < b| b> (13 AMIAm—iAF/ZE,u,a—/.Lb. (16)
Moreover, |P,)(P,| and|P,)(P,| are projection operators,
and the partition of unity becomes Sometimes it is convenient to trade the eigenvalue difference
3 5 for x—iy=Au/T". We may write the mixing matrixX in
|P){(Pal+|Pp){(Ppl=1. (14  terms of new parameters
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da_
o= Z gb, (17)
%a_ 9
pa pb
and
9: /QaQb. (18)
p PaPp

Notice that we have not defined the quantitipandp sepa-
rately; we only define the ratig/p. With this notation the
mixing matrix may be re-written as

1 1
pa O
X=|lq [1+6 q [1-0 0 . (19
pVics “pVite Po
1-6 pJ1-6?
Pt 0\ 2 g 2
Xil: -1 > |- (20)
0 pyt/l1+6 p1-0
2 q 2

We point out that these transformation matrices involve the

normalization constanis, andp, . Finally, it will also prove
convenient to define

(21)

meaning thatq/p|= (1—-8)/(1+ ).

The fact that the trace and determinant are invariant unde(?

the general similarity transformation in E¢p) implies that

m=(Hpt+H)/2,

Ap=4HH1+ (Hpp—Hip?

(22
Moreover, from
(Hll le)(pa)_ (pa>
Ho Hao/\da Ha Oa)’
(Hll le)( Po Pb) 23
=1 ,
Ho1 Ho/\ —0p b —0p
we find that
%: Ma™ H11: Hj,
Pa Hq, ma—Hoo'
%: Hq1— up _ Hyq (24)
Pu His Hoo— up’

PHYSICAL REVIEW D 62 116008

leading to

- H22_H111
Ma™ Mp
_ [Hig = [Hy

= — 25
[H o +[Ho @9

andg/p= yH,1/H1,. We see that R@ and Im# areCP and
CPT violating, while § is CP andT violating.

Although H contains eight real numbers, only seven are
physically meaningful. Indeed, one is free to change the

phase of the ketsP?), |P°), |P,), and|P.), as
|P)—e”IPY),
[P)—€'7[PY),

| Pa>_)ei 7a| Pa>a

|Pp)—€'7[Py). (26)
Under these transformations
Hyo— €0 MHy,,
Hay— €' 0" PHy,
a/p—€ O Maip, 27)

while Hy1, Hy,, u, Au, 6, andé do not change. Therefore,
the relative phase betweéh,, andH,, is physically mean-
ingless andH contains only seven observables. Similathe
phase of gp is also unphysicalAs a result, we have four
bservables in the eigenvalugs,and A u, and three in the
mixing matrix, & and & (or, alternatively,q/p|).

IV. PARAMETRIZING H WITH MEASURABLE
QUANTITIES

Equations(22) and (25) give the measurable mixing and
eigenvalue parameters in terms of tHg matrix elements
which one can calculate in a given model. Given the current
and upcoming experimental probes of the various neutral
meson systems, it seems much more appropriate to do pre-
cisely the opposite; that is, to give thg; matrix elements in
terms of the experimentally accessible quantities. Such ex-
pressions would giveM;; and I';; in a completely model
independent way, with absolutely no assumptions. One could
then calculate these quantities in any given model; if they fit
in the allowed ranges the model would be viable.

Surprisingly, this is not is done in most expositions of the
PY% PY mixing. The reason is simple. Equatiof32) and
(25) are non-linear in théd;; matrix elements. Thus, invert-
ing them by brute force would entail a tedious calculation.
With the matrix manipulation discussed here this inversion is
straightforward. Indeed, Ed5) can be trivially transformed
into [9]
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Ap p V1-6° AT
- — — 'y=-Ref——+ImeoAm,
H X(“a 0\, 2 q 2 °H " 2
a 0 up a qVJ1-6° Ap '
— Auw m+ 7 0 AT
p 2 [2=T+Ref——ImoAm,
(28)
where we have used Eqggl9) and (20). This equation ex- q
presses in a very compact form the relation between the —T= Re(\1— 07)(—+|5Am)
guantities which are experimentally accessible and those p 1+6
which are easily calculated in a given theory. Expanding it, AT
we find —|m(\/1—92)(Am—i57> . (30
3 Am AT
My=m-Ref—-—Im6—=, We would argue that this is the best way to quote the experi-
mental results. The impact of any assumption made about the
Am AT physical observables, such &PT or T conservation, is
Ma=m+Red —=+Imo—-, transparent in Eq$29) and (30).

A few remarks are in order. First we note that E(GkO)
AT and (20) involved the overall normalization factors, and
BMH 2(1+5) Re(\1— 92)(Am—|5—) py, but that these cancel in the multiplication on the right
hand side of Eq(28). Secondly, althoug ;,, I'1, andq/p
AT are not rephasing invariant, we can see from E}g) that
+Im(\1-6?) - Tt 5Am) } (29 g/pMy,, q/pT i, andM,T%, are indeed physically mean-
ingful. Thirdly, the equations involvingf are needed also for
and the unitarity condition$10]

q

> |Ag?=T ;=T (1—yRef+xIm6),
g

> |Ag2=T5,=T(1+yRed—xIm6),
¢]

(y+|5x)Re(\/1 6%)— (x—idy)Im(y1— 02)

1+6

q .~ 49
2 EAaAg:B 12— (31)

whereA,=(g|T|P%, A,=(g|T|P%, and the sums run over all the available decay mages

V. TIME EVOLUTION

The time evolution of the neutral meson system is easily obtained using E¥snd(14), and the fact thalP,)(P,| and
|P,)(Py| are projection operators. We find

exp( —iHt) =e Hal|P)(P,| +e Mot Py)(Py|

. et 0 |((B
=0P) 1P| " | 5 | 32
b

It is now trivial to write the evolution operator back in the flavor basis. Indeed, using(Bgand (12), we find
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e*i,u,at

exp(~iHY) = (|PY), |F°>>><( 0

g+()—09-(1)

=(|P%, [P%)

gﬂ—ezg_(t)

where

Aut
Cco T ,
—T't/2

. .(AM
—1 SIN| T .

(34)

1 , |
g-(tH)= E(ef'/‘ati e innt) =g imtg

PHYSICAL REVIEW D 62 116008

ol )
e i1t X <EO|

gﬂ— Pg_(1)

(P

) 49

9+()+6g_(t)

this problem. Still, as we show in Sec. VII, one will be lead
into incorrect results if the reciprocal basis is not used as the
“out” bra.

Recently, Amorim, Santos, and SilMd2] have high-
lighted a very important point about the transition chain in
Eq. (36). They showed that this evolution can be fully pa-
rametrized by the usual quantitizg and\7, describing the

decays{P° P% —f,f, supplemented by two new quantities
& and &, describing the production mechanisini

This corresponds to the usual expressions for the time evo="{P°%P°}. (Although they applied these results only to the

lution of a state which starts out & or P°,

|PO(t))=exp(—iHt)|P°)
=[g.()—0g_()]|P%

+ V1= () [P),

|PO(t)) =exp(—iHt)|P%)

= V19 (0]P)

+[g. (1) +0g-(1)]|PY), (35

case in which,i —{P° P° represents a decay, their formal-
ism is valid in all generality. The new quantitieg; and &
may entail new sources @ P violation, just likeh; and\t
do. They are absent from the decays-J/yK—J/y[f]x
studied previously13] because, in those cases, the iniBal
meson can only decay to one of the kaon’s flavor eigenstates.
However, they are crucial for the decag™ —D+X™*
—[f]p+X™ [14], and, in general, whenever the initial state
i can producgor, in particular, decay injoboth flavor ei-
genstates of the intermediate neutral meson sysRhand
PO.

Let us consider the decay chair: X{P,,P,}—Xf. The
complete amplitude for this process involves the amplitude
for the initial decay intoXP, or XP,, the time-evolution
amplitude for this state, given by E¢32), and finally the
amplitude for the decay intXf. Suppressing the reference
to X, we find

respectively. At this point it is important to emphasize the
fact that, in deriving this result, no assumptions were made
about the form of the original matriid. This observation
will become important once we consider the evolution in
matter.

A(i_’Pa,b_’f):<f|T|Pa> e’ Mat<ﬁa|T|i>

+(f|T|Pp) e ¥t (Py| T[i). (37
This is an exact expression. However, sometimes it is pos-
sible to choose a final stateand to set the experimental
conditions in such a way as to maximize the importance of
i — XP,— Xf relative toi—XP,— Xf. In that case we may
make the approximation

VI. NEUTRAL MESONS AS INTERMEDIATE STATES

Because there i€ P violation in P°— P° mixing, there is
no selection rule allowing us to choose a final stht®
which P, (or P,) can decay whilePy, (P,) cannot. That is,

all calculations must involve the full transition chdihi] _ )
A(l—=Pyp—T=A(l—P,—f)

i—X{P,,Pp}—Xf, (36) =(f|T|Py) e #at (P, T]i)

=(f[T|Pa) &' #a! [(Pa| PO)(POITIi) +(Po|P)
with both neutral meson eigenstates as intermediate states, in
order to beformally correct Obviously, one could ignore

X(PO[TIi)], (39)
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where we have used the partition of unityp®)(P°|  —Jy(mm)k both due to the huge ratid(Kgs— m7)/A(K,
+|P%(P% =1 to derive the last line. When one uses the— m) and to the time interval probed. This leads us to Eq.

approximation in Eq.(38), one talks about “the decay (38 and, ignoring the normalizations, andpy,, allows us
—XP,," ! and writes to talk about the decaBy— J//Kg as in Eq.(39).

Having established under which circumstances we may
A(i—XP,)=(P,|P% A(i—XP°) +(P,| P%) A(i—XP°) (to good approximationtalk about the decay— J/¢¥Ks,
we are now in position to describe the upcoming measure-

1 . . — ment of CP violation in this decay. These experiments will
— -1 0 -1 0
- E[p All—XP)+q Al —>XPT], (39 determine the imaginary part of
where, in the last line, we have assumed @RT-invariant B, 3K = 9ed w (41)
case: d S Ped A(Bg— I/ yKy)
(P,|= %(pﬂ( p0|+q—1<30|), We wish to calculateA(Bq— J/¢Kg) and A(By— I/ K g).

We recall that the decayBy— J/¢K® and B4— J/yK° are
forbidden to leading order in the SM, and, to simplify the

~ 1 — . . . .
(Py|= E(p71< PO —q~%PY)). (40) problem, we consider th€ P T-conserving case, in which
_ 0\ |K0
Therefore, the ratio of the two component amplitudes in Eq. |Ks)=px|K®) —ax[K),
(39) is given by q Yp t=p/q, and not byqg*/p*—as R
would have been the case if we had ug&y| instead of (K¢l = pi (K" = ag (K,
(Py|. The difference betweeq */p~* andg*/p* only dis-
a . - _ ) . ~ 1 -
ppears in the limitg/p| = 1. We will now show that this has (Rel= =[P MK - arc HKO|]. (42)
a formal impact in the study of the dec8y— J/yKs. S2MK K
VII. ON THE NEED FOR THE RECIPROCAL BASIS The question is whether one should &g or (K| in the
IN By—J/ K final state. That is, we wish to know whether to use

This decay is so important that it is surprising how many ~ o o
times it is calculated without even mentioning that the use of A(Bg— /YK s)=(KgK") A(Bg— I/ yK®)
the reciprocal basis irequiredin order to obtain theexact ~ 170 0
result. We repeat, in this decay the use of the reciprocal basis +(Ko[K?) A(Bg— I/ yK®)
is not a convenient calculational tool. It is unavoidable when 1 _
one wishes to obtain the result without approximations. = E[p.ZlA(BdﬁJ/l/fKo)—QElA(BdHJ/wKO)]

The first observation we should make is that what one
looks for experimentally is the decay chaB®y—J/y¢K 1, 0
—JIy(mm)k, and that both intermediatég and K, con- = 5Pk ABg— IYKD), (43
tribute to this decay. The following argument should make it
clear why the intermediati€, must contribute. Consider the
decay chainBy— J/yK—J/y(mm), but where we have and
chosen to look only for kaons which live a proper time
>r7g before they decay. Clearly, for these kaons, ke A(gd—>J/¢Ks)=—Eq,zlA(gdHlep@) (44)
component will have disappeared before the decay, and all 2
7 final states must have come from an intermediéte

. . ; or, alternatively, use
This explains why, in general, one must use EBY). How- y

ever, in the experiments searching B5—J//Kg one is A(Bg— I/ K9 = (Ko K® A(By— I/ yK°)
looking at kaon proper times<10rg. Therefore, in these d S s d
experiments the decay paiy— J/ K| — I/ () is very + <KS|K0> A(By— I/ yKO)

suppressed with respect to the decay p8h—J/yKg o
=prA(Byg— I/ KO — g A(By— I/ yKP)

— n* 0
INevertheless, strictly speaking, it is E7) which expresses the PiA(Ba— YK, 49
correct way to think about decays into neutral-meson eigenstatesnd
[3,11]. As we stressed above, the point is that, si@d¢is violated,
there is no final statéthat can be obtained only frofa, and not A(By— Il yKg) = — g A(By— I/ yKO). (46)
from P, . There will always be a non-zero amplitude for the decay
pathi— XP,— Xf. In the first case we obtain
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Jaq A(Ed—n]/lﬂio) P matter by primed quantities. For example, when kaons trans-
=0~ d 77 /K (47  verse matter, they are subject to strong interactions which

conserve strangeness but which treat & and K°
differently? This effect may be parametrized by a new effec-
tive Hamiltonian

— K 0
NBy—alyk = (48) )(; —, (49
X

Hnue=

From the previous section, we kn_O\_/v th_at the first EXPIeSSION hich must be added to the Hamiltonian in vacuum. Notice
is the correct on¢l11]. And, in deriving it, we had to know

what the reciprocal basis was and that it had to be useé.hat this parametrization 1S c_omplete_ly gerr:eral. I delsc_:rlb?s
Nevertheless, sincl/py| only differs from one at order dny strangeness-conserving interaction whatsoever. It is also

3 ! KIFK . : important to notice that our original evolution equation, Eq.
10" ° and we are looking for a large effect N oK g this

) JYK, ) (3), and vacuum Hamiltoniatd have been written in the
detail, although needed for agxact formalderivation, is

numerically insignificant. This explains why it has gone P°-P® rest frame. Before we addy to H we must ensure
y Insig ' P y 9 that H,, is also expressed in the rest frame. This point is
largely unnoticed 15].

discussed in Appendix A.

_ The full Hamiltonian in matter becomes
VIIl. MATTER EFFECTS IN THE P%-P% EVOLUTION

We now wish to study how the time evolution of the H'=H+Hqy. (50)

PO- PY changes in the presence of matter. It should be clear

that the matter effects will change the specific fornHobut,  Now, we have already studied the most general effective

since we have considered the most general such matrix, alamiltonian, and Eq(28) relates such an Hamiltonian writ-

the derivations presented above should still apply. It remaingen in the flavor basis with the corresponding eigenvalues

to relate the parameters in matter and in vacuum. and mixing parameters. Therefore, relating the observables
We will denote the matrices, matrix elements and eigenin vacuum and in matter becomes another simple exercise.

values in vacuum by unprimed quantities and their analog irequations(28), (49) and (50) yield

L p_'_Vl_a'zAM, du pN1I-F
2 q 2 K72 a 2 M| [x o)
- D (51)
CNIZO7 i AE, ayi-et Miladp) O x
o 2 oH R p 2 M HT2

A few features are worth mentioning. Fird,;,=H, and  whereAy=y—y, and we have introduced the “regenera-
H5,=H,;. As a result,q’/p’=q/p. In particular, theCP-  tion parameter’r=Ay/(2Au). It will also prove conve-
and T-violating parameters, which depends oriq’/p’|  nient to find

=|qg/p|, is the same in vacuum and in the presence of matter.

Therefore, the parameters in vacuum and in matter are re-

lated through e Au~1— 62
Yy VAp)*+20 A Ax+(Ax)?

w'=pt o,
2 1-— 62
, 5 5 = _ (53
Ap'=V(Apr)*+20 A Ax+(Ax) 1+4r 0+4r?

=Ap1+4r 0+4r2
A A 2 Secondly, it is clear from Eq51), and also from Eqs52)
_ mO+Ax _ o+2r and (53), that the flavor-diagonal matter effects considered
VAR)Z+20AnAx+(Ax)2 J1+4r 6+4r2"  here act just like violations oE PT. Thirdly, we expect the
(52 matter effects to be much larger than angcessarily small

!
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CPT-violation that there might be already present in ~d
vacuum. Therefore, we may take=0 to get T t| Pltresd) =H[d(tresd)- (56)
res
w'=pt X+_X The advantage of doing this is that in the rest frame the
2 is i i = i -
energy is given simply bf=m. As a result, the time pa

rameter which appears in the solutions presented in 3§5.

A’ =V(Aw)2+ (x—y)2=Au 1+ 4r2, or (B7), through the time dependent functiogs(t) defined
H (Am)™ (x=x) H in Eq. (34), is reallytq:.

Now imagine that we wished to have E&6) given in a

, XX 2r boosted framd&named the lab frame from now pnn that
o' =  — 2 = \/ 5! (54) case we would start by noticing that both the energy and the
\/(AM) +(x—x) 1+4r time are altered in the boosted frame. They become
and \1—6'?=1/\J/1+4r? We stress that Eq51) is com- Sap=M .
pletely general, as will be the time evolution based on it. Ejap
The time evolution in matter is now trivial to find. It is tiap= ytresFFtrest. (57

given in Eqgs.(33) [or, alternatively, in Eqs(35)] and (34),

with the unprimed quantities substituted by the primed quan-

tities. This solution had been found for the kaon system bylgnoring the matrix structure for the time being, E&6)
Good [16], building on earlier work by Casgl7]. Recent Wwould change schematically into

re-derivations may be found in Refgl8] and[19]. In all q

these articles, the authors write a new evolution equation S _ _

obtained by combining the diagonalized formtfwith the Idhabwulab)> M 14(tan)) = Erar ¢ ti)), (59
new termH,,. written in the {K, ,Kg} basis. Thus, they

would seem to be solving a new complicated set of equaas it had to. Now, if the boost is much larger that the mass,
tions: the so-called “Good equations.” In the method pre-p>m, we may use

sented here, we have made no reference to “new” differen-

tial equations. We had already solved the most general m? m?

evolution equation once and for all, Eq85); and we had Ejab= VP°+m*~p+ $+ I TR (59
seen howH could be written in terms of observables, Eq.

(28). All we had to do was to refer back to those results. However, we do not need to do this. We have a|ready

It should also be pointed out that this matrix formulation found the solution to E(:K56) in the rest frame. In order to
is very useful whenever we have non-uniform materials. Foghange it into the lab frame all we have to do is to substitute
example, one might wish to study an experiment in which &, in the time evolution functions of EQ(34) by tye
kaon beam traverses vacuum, matter, and then vacuum agaity,, /. We notice that Iy=m/E. Therefore, when written

before it decays. Or a beam that traverses copper, carbon aflterms oft,,, the time evolution functions of Eq34) be-
then tungsten. In the matrix formulation, all we have to do iscome

multiply three evolution matrices

mAu
eXF[_|H(t3_t2)] eX[{—I'H(tz—tl)] eXF[_thl], Fmt/(2E) CO{E Ttlab)!
- lab

—im2
(59 g+ (tes) =€ M a/E g mAu

—i Sin(g Ttlab> .
(60)

And, usingAm=m,—m, and m=(m,+my)/2, we realize
that the argument of the trigopnometric functions is given by

each given by Eq(33).

IX. ON THE (MATHEMATICAL ) RELATION WITH
NEUTRINO OSCILLATIONS

A. Boosted frames m A,ut mg— mﬁ i AT mt 61)
. . = 5 b= ltlav— 7 — = tiab-
As we have mentioned before, the evolution equat®n E 2" 48 ™ 4 E 7
in which our study is based has been written in the rest frame
of the P%-PY system. We denote this explicitly by B. A neutrino-like oscillation

For the comparison with neutrinos, it is most convenient

to use the parametrization of ti&P-violating quantities dis-
2The total cross section fat® interacting with a nucleus is larger cussed in the first subsection of Appendix B. To obtain rela-
than that fork® on the same nucleus. For examplép— A=+  tions that mimic those in the neutrino system, we compute

takes place but there is no corresponding reactiorkfor the probability thatP® becomesP® using Eqgs.(B7), (60),
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(61), setting Im¢g=Im 6z=0, and lettingl =AT'~0 (an- _ _ _(m2—mZ

other way of thinking about this limit is to suppose that we [(POIPO(t ) )|*=sir? O sir? —2E Ua| (62

are performing an experiment in a time scale much smaller

than the mesons’ decay timéNe find If, instead, the experiment is performed in matter, we obtain

_ m.2—m,?
[(PO|PO(ta))|?=|sin? 0| Siﬁ(%tlab)v

B sif o . (mé’f— mk’)zt )
|1—4r cosfp+4r?| 4 P

_ SIT O "in2< mem ) (63
|(cosbr—2r)%+sirf Oy 4E  RP)

where we have used E(B8) in getting to the second line, po_po system, the deviation of ca from zero measures
and violations of CPT. Assuming CPT conservation in the
PO-P® system, sifr=1 and the vacuum transition in Eq.
r= Ax = Ax = Axly = E ﬂ (64)  (62) already reaches unitat select times® Said otherwise,
20p 2Am 2Am/y m2-m2 v the small mixing angle discussed in neutrino oscillations in
vacuum, ig(in the connection presented hetiee mathemati-

Equation(63) exhibjt; aresonance structgre beqause the timga| analog of large violations &€ PT in the pO_po system.
independent coefficient reaches its maximumrEZos6g.
For the final step in the connection to neutrinos, we look at
this case further by assuming that the imaginary part of X. CONCLUSIONS
(Ax), which is proportional tary, in Appendix A, is negli-
gible. ThenAy is real and we may parametrize We have shown that the presenceTofiolation in the
neutral meson systems implies that the corresponding effec-
ReA y tive HamiltonianH does not commute with itself. Therefore,
= T (65) H cannot be diagonalized by an unitary transformation and
we must introduce the reciprocal basis. This basis must be
As a result, used in order to obtain the correct form for some physical
observables, such as the parameterin the decaysBy
EV —J/yKg. But, working with the reciprocal basis is a bless-
r= 22 (66) ing rather than a nuisance. We show that using the reciprocal
a b

basis has the following advantages:

the relation between the effective Hamiltonian matrix
when written in the mass and flavor basis is simply obtained
and easily inverted, thus providing a parametrizatiofah

is real and the resonance condition, which becomes

2EV

— terms of measurable quantities;
> = COSfR, (67) . . > .
m;—mg one obtains a one line derivation of the evolution of the
states;

can be satisfied fof real. Equation63) and the resonance propagation in matter is reduced to the case of propaga-

condition in Eq.(67) are in exactly the same form as the tion in vacuum, with the vacuum and matter parameters re-

usual discussions of neutrino oscillations in maf&]. lated in a trivial fashion, without any recourse to the Good
Although there is this mathematical connection betweerequations;

neutrino oscillations and?®-P° oscillations, the situations ~ the propagation in non-uniform media is reduced to a

are physically very different. Indeed, it is important to notice Multiplication of evolution matrices.

that there are n€PT relations between the two neutrino |t is true that some of these results can be obtained with-

species involved in neutrino oscillation, and the vacuum

mixing angle Az in Eq. (62) may be small. Equatioii63)

shows that, even ifg is small, the effective mixing angle in  3Rrecall that we have assumé&d=0 and Im¢gr=0 (T conserva-

matter will be large when one hits the resonance condition irtion). WhenI #0, the right hand side of E462) appears multiplied

Eqg. (67). In contrast, as we show in Appendix B, in the by exp(Tt,.s).
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out using the reciprocal basis. But, as we have tried to illus- d 27N

trate in the article, this concept is not only needed but, when T —v(k'—k)p=— Wf(O) b, (A5)
used, greatly simplifies the various derivations. In addition, 1ab

we can use this formalism to highlight the similarity between, oo o is the beam velocity in the lab frame and

the matter effects in the®-P° systems and the matter effects = t,, . To change into the rest frame of the beam we notice

in neutrino oscillations. thatt,,,= y t,estandk=myv, wherey=1/\k?+m?, leading
to
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APPENDIX A: MATTER EFFECTS IN THE REST where[19]
AND LABORATORY FRAMES . o
In this appendix we show hoWl . is related to physical x=——f and y=-—Hof, (A8)

cross sections and what is the form of this relation in the rest

and laboratory frames. This is relevant for E49) and for  leading to Eq(49).

those wishing to expand on the analogy with the neutrino

oscillations discussed at the end of Sec. IX. We follow here

the notation of Refg.24] and[19]. APPENDIX B: OTHER PARAMETRIZATIONS
Let us consider the evolution of a coherent wave pagket FOR T AND CPT VIOLATION

with wave numbek in the laboratory frame: The way we parametriZE andCPT violation in the mix-

d ing of neutral mesons is different from the parametrizations
4z d=ik ¢. (A1) used by some other authors. For ease of reference, we collect
z here formulas summarizing the relationships among different

In the presence of a block of material at rest in the laboratorf?@rametrizations.
frame, the wave number suffers a shift given approximately

by 1. The parameters¢g and 6

, 27N 2  Oiot Some authorgfor instance[21]) introduce two complex
k'—k~ K f(0)=N TRef(O)+|7 , (A2) anglesfg and ¢g by writing

whereN is the density of scattering centers in the medium
andf(0) is the elastic forward scattering amplitude. On the
last equality, we have used the fact that the imaginary part of

0 . 6
Pa= Nacos?R, q.=N,€e' ¢Rsin?R,

f(0) is related to the total cross section, by the optical _Or i O
theorem, Po=NpSin>",  dp=Npe “Rcos-. (BY)
k Then

|mf(0)=EUt0t (A3) '

We also recall that g: el?r,
) 1 do
[f(6)| =57 dcoso” (A4) s=tanHIm ¢g),

In this equation(and only herg 6 refers to the scattering 0= —cosbR, (B2)

angle in the laboratory frame.
We conclude that the presence of matter changes the evand \1— 6°=sinég. CPT is violated if and only if cog
lution in vacuum by an amount #0. T is violated if and only if Im$g# 0. Some authors use

116008-10



USE OF THE RECIPROCAL BASIS IN NEUTRA. .. PHYSICAL REVIEW D 62 116008

a particular phase convention and claim thatgges 0 also corresponds fbviolation. Clearly this statement is false since the
phase ofg/p has no physical meaning; we know that there is one and onlyTem@d C P-violating quantity inH.
With this notation, Eqs(19), (20), (28), (33), and(35) become

Or . Or
y cosy” iy (Na 0 ) .
ek 0 0 —N)’
e'Yrsin,  el¥Reos °
2 2
cosb’—R e‘i"}Rsin%
i N,t 0 2 2 ®
0 —Np*! Or i, OR '
sin—- e”'"reos-
A . A
,u-i—COSHRTM e"‘f’RsinaRTM
€ PRSINGg s — COSOg o
R 2 M R 2
B —iHt) P9, (g+(t)+cosﬂRg_(t) e "rsindr g (1) ) <P°|) (B6)
exp—iHt)=| — A — 1,
|P%) /| e'?rsinfrg_(t)  g.(t)—cosfrg_(t)/ | (PO
and
|PO(1))=[g+ (1) +cosfr g (1)]|P%) +€'%Rsin hr g (1) |PO),
PO(t)=e~"’rsindr g ()| P)+[g. (t) — cosbr g (1)][P°), (B7)
respectively.
Finally, the relation between the matter and vacuum parameters described ifbBemd (53) become
, Xtx
M=t S
Ap'=\(Awp)?>—2 cosOg Au Ax+(Ax)?>=Au 1—4r cosOg+4r?,
o= ApcosOg—Ayx B COSHr—2r
cosf,= — 5= >
V(A)?—2cosg A Ax+(Ax)?  1—4r cosg+4r
gl Apsindg B sin Ay B8
sin 0g= = 5= = 1 (B8)
V(A)?—2cosOg A Ax+(Ax)? 1—4r cosg+4r
and o= dR-
2. The parameterses and dg
Other authorgfor instancg22,23) use two complex parameters; and g, and write
qa_ l_ Es+ 65
p_a— 1+ €g— 55,
1—€es— 6
b s~ Os (BY)

E: 1+ Es+ 63.
Obviously then,
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q  [(1-e9)?— 5%
PV (1+eg?-6%
5 8R4 €& (1+ €5~ 59)]
(|(1+ e9)?— 83 +|(1— e5)?— 63)%

__ 2% (B10)
1+ 62— €2

CPT invariance corresponds = 0. T invariance corresponds to Re (1+ eé— 5@)] =0. The authors who use this param-
etrization, however, always do so in conjunction with the assumptiondhand e5 are small. Then,

o=2 Refs,
f~25s. (B11)

Moreover,1— §?~1—253.
It should be kept in mind that thB-parametrization is exact and general, while Sygarametrization is interesting only
when using a phase conventiéR®|P% = =+|PY), which implies thatC P conservation corresponds to vanishifigand es.
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