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O(a®In @) corrections to positronium decay rates
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We computeO(a®In a) corrections to the decay rates of para- and orthopositronium into two and three
photons, respectively. For this calculation we employ the nonrelativistic QED regularized dimensionally and
we explain how in this framework the logarithms of the fine-structure constant can be extracted.

PACS numbe(s): 11.10.St, 12.20.Ds

I. INTRODUCTION 2
A,=——-5, A,=-10.28660610). (3)
Positronium decays into two and three photons provide an

interesting test of bound state quantum electrodynamic
(QED). While the parapositroniunfp-P9 decay rate is well 0
described by QED, it is known that the decay of or- evaluate3 to 7'(70)9]‘93/77 In ol for p-Ps and 1o
thopositronium(o-P$ into three photons is still a controver- — 2-91%°/mInal’y” for o-Ps. These .correctéonszare there-
sial issug 1]. However, on the theoretical side there has beeriOre quite comparable with the “leadingO(a*log”«) cor-
a major breakthrough recently and both decay rates are nolfctions computed if4].
known with O(az) accuracy[2,3]. The next level of preci- The paper is organlzeq as follows. In Sep. Il we set up the
sion, i.e.,0(a%) correction, is currently beyond reach, al- framework of the calculation. We then continue with detailed

though parts of the(a?) correction that are enhanced by discussion of how various contributions to Ps decays at

the logarithms of the fine-structure constant, can be com@(e° In @) are computed. In the last section we present our

Rlumerically, theO(a®In a) corrections, Eqgs(1) and (2),

puted. conclusions.
Knowledge of these corrections is not of significant phe-
nomenological importance at present since they are much Il. FRAMEWORK OF THE CALCULATION

smaller than the experimental accuracy for both p-Ps and ] . ]
0-Ps decays. Nevertheless, from a theoretical viewpoint, it is L€t us first discuss the framework of our calculation. We
an interesting problem because at ordérthere are both WOrk in nonrelativistic QED regularized dimensionallg;
leading O(a®In’a) and subleadingd(a®In @) corrections. =3~ 2¢€ is the number of spatial dimensions aeds the
The calculation of the leadin@(a?In%e) corrections is a regularization parameter. Gengral feature_s of this technique
fairly simple enterprise; it has been done quite some tim1ave been described at length in our previous pEfleHere
ago [4]. Here we are interested in subleading logarithmice would like to discuss a new issue which was not consid-
corrections. In order to compute them, we utilize the nonrel€red in [9]: how logarithmic I corrections can be ex-
ativistic QED in dimensional regularization and we explaintracted. _ _
how in this framework the logarithmic corrections can be In order to extract logarithms of the fine-structure con-
computed using a limited amount of information. stant in a self-consistent way, we use the fact that the matrix
Before diving into a description of the calculation, let us €lément of any operator in dimensional regularization is a
summarize our results. For th®(a®Ina) corrections to uniform function of the fme-struc_ture constant. This implies
para- and orthopositronium decay rates we find that all the dependence on the fine-structure constant can be
scaled out of any dimensionally regularized matrix elentent.
o3 67 The scaling, however, should be donedinimensions.
AT p,=—1In a{ — 5o T10In2- ZAP]FS’), 1) In order to establish the scaling rules, we need to know
m how different quantities involved in bound-state calculations
scale with . To do that, we rewrite thel-dimensional

@ 229 A “ ”
AT=Lnal - =4 8In2+ Pol 10) @) Schralinger equation in “atomic units 'fam|I|ar fr.om th.e
T 30 3|°° standard treatment of hydrogen atom in three-dimensional
guantum mechanics.
The coefficientsA,, describeO(a/) corrections to the  Consider the Schrbnger equation for positronium id
lowest order decay widthE(?). They are[5,6] dimensions:
*Email address: melnikov@slac.stanford.edu Iwe stress that this is the feature of dimensional regularization
TEmail address: yelkhovsky@inp.nsk.su and it is not valid in other regularization schemes.
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wherec(d)=T(d/2—1)/7%>"! (see[9]). Let us rescal®  The operatoiO is a function of the coordinate and momen-

—py andr—r/y and choose/=(ma/2)Y**29) Then both  tum operators that act on the positronium wave function.

the Coulomb Hamiltoniakl =p?/m—c(d)a/r? 2 and its ei-  After rescaling of all the quantities on the right-hand side of

genvalueE scale asy’/m. The wave function of a bound Eg. (8) as described above, we end up with the following

state, being normalized to unity, scales)d€. Hence, when equation:

expressed in atomic units, the energy of a bound state and its

properly normalized wave function depend dronly. The y3nte  (w|o|W)

scaling rules above provide sufficient information to write Ap=a" 3 ke |7:11
. R L . m <\I,|VBom|\I,>

the matrix element of any operator in atomic units and there-

fore scale out all the dependence on the fine-structure co

stant.

9

Wheren=1,2is a power ofr that explicitly enter© andl ,k

. . . ._are some integer numbers. If the matrix element is finite, we
There is another important point that makes the extraction. - safely sek=0 and then the relative correction to the

of the Ina corrections possible using limited information. In decay width ise® times thea-independent ratio and hence

order to explain it, we remind the reader that in bound—stat(?]O logarithms ofe appear. Therefore, after the rescaling, the

c_alqulan_ons different _contrlbutlons to the final result can beonly place where lnv can come from is the expansion of the
distinguished. In particular, there are so-called hard contriz 3 ntle T .
in powers ofe; this implies that in order to

. . factor y
3
butions. TheD(a") hard corrections to the Ps decay rates arerg_enerate the I corrections, the nonrelativistic matrix ele-
ments should diverge and only divergent pieces of the matrix

described by the three-loop Feynman diagrams for the pr
e .
ol oo pave [ be SompULEd oty L gements have been known o determine logathmi
rection ' y: 9 9 Lorrections to the decay rate. Note also, that because of the
relation betweeny and «,

3

o tl t2

=+ =+t
e € 3

ma| Y(1+2€)

2

VBorn ) (5) y=

Vhard= (

m

(t;-3 are some constantso the annihilation kerneVg,,  even the operators that scale iateger powers of y can
that is responsible for the lowest order decay rate: generate I corrections.

Let us note that the extraction of the dncorrections in
dimensional regularization can lead to some counterintuitive
results; for example, logarithms of the fine-structure constant
are generated by the operators, which in more “physical”
regularization schemes, such as, e.g., the schemes that use
either the photon mass or the momentum cuigftan only
lead to the logarithms ofn/\ but not to Ina. Therefore, it
\PS. ) appears that individual contributions to the final result are

scheme dependent. Nevertheless, we would like to stress that
once dimensional regularization and clear rules for extracting
If we rewrite ¥, in atomic units, Eq.(7) generates loga- Inqa are adopted, there is no other way as to consider all
rithms of the fine-structure constant. These logarithms ar@ossible contributions; none of them can be disregarded by
artificial, since we anticipate that other, soft scale contribuinvoking the fact that in a different regularization scheme a
tions also generate divergences which exactly match angarticular operator cannot generate ®@n «) correction.
cancel all the divergences My, This implies that the The calculation of the nonrelativistic contributions that
logarithms associated with the rescaling of the wave functiorare relevant at ordéd(a2 In ) is described in the following
at the origin get cancelled as well. Therefore, the easiest wagections. Some useful integrals that we need in the calcula-
to avoid considerind/y,,q (Which is not available at present tion, are summarized in Appendix. We give intermediate for-
is to work with relative, rather than absolute, corrections tomulas for the relative logarithmic corrections to the positro-
the decay width. This automatically discourages E.as  nium decay rate expressed in units ofa®(m)I'(1
the source of logarithms of the fine-structure constant since- ¢)3(41)3¢.
in this case there is simply nothing to rescale.

T =(W| Vo ¥)x W2, (6)

Here W, stands for the positronium wave function at the
origin. The effective potential), in turn, generates the cor-
rection to the decay rate,

ty
Ohard’ :<\I,|Vhr=1rdqf>°c )

t>
S+ St
6 6

In order to |Il.ustrate how thege arguments help to compute Il IRREDUCIBLE CONTRIBUTION
the Ina corrections, let us consider the matrix element of a
nonrelativistic operato® that delivers thed(a®) correction This particular contribution arises as the average value of

to the lowest order annihilation kern€},,,. In accordance a local operator that comes from the Taylor expansion of the
with the above comment we consider a relative correction t@ne-loop corrections to the annihilation kernel in spatial mo-
the decay rate: mentap of electron and positron. For our purpose we need
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the O(ap?) correction toVg,,. Since this operator is con- The correspondin@(a® In a) correction to the decay rate is
structed by Taylor expanding in external momentum, thehen easily related to th®(a?In a) correction computed in
non-analytic dependence @t cannot appear. Then, from [10,11. We find

the rescaling argument we know that only the divergent

piece of the Wilspn cpefficient Qf this operator is required. It Ay o= (ZSZ—Z)A Jna. (13)
turns out that this divergent piece can easily be computed Po 16 P

using rather general arguments. According to the rules of o

nonrelativistic QED, we extract Wilson coefficients of vari- 1he second “hard |0g>p” contribution corresponds to the
ous effective operators from the corresponding on-shell scathard” piece in O(ma”) effective potential. It readsl2]
tering amplitudes. The key observation is that the divergence

in the Wilson coefficient of th@©(ap?) operator causes the Ve — a® T(1+e) 1+ 39 12102+ S 3—2+6 In2
divergence in theon-shell annihilation processe™e” hi 3m? (47)"€l€ 5 3

—nvy, n=2,3, and that it is in fact a “true” infrared di-

vergence that should be compensated by the real emission of

an additional soft photon in the same process. —21Inm)&(r), (14)

In order to avoid confusion we stress that the mechanism
of canceling this divergence by real radiation does not applyhereS is the operator of the total spin. There is no problem
to the bound state because@arity conservation. There is with defining the total spin operator here, since it multiplies
no contradiction, however. The real infrared divergences irexplicitly finite quantity.
the bound-state calculations are absent because electron andThe O(«?®) correction to the decay rate generated by the
positron in positronium are off-shell. The divergence appearpotential from Eq.(14) then reads
only when we put them on mass shell in order to extract the
Wilson coefficient of the relevant operator. The crucial ob- Sl =2(¥|Vgorm G V| ¥), (15
servation is that considering the process in a different kine-
matic regime(on-shell annihilatiop we easily find a diver- and is proportional to the Green function at the origin,
gent piece of the appropriate Wilson coefficient from theG(0,0). All necessary results for this Green function can be
known amplitude of the real soft photon emission. found in[9]. Finally, we obtain

Requiring that virtual and real corrections to the on-shell

annihilation procesge*e”—n+y add up to a finite quantity, A :In2a+ _ i+2 In2— 5_9
we get the following correction to the annihilation kernel =3 6e 30
\% :
Born 16
- §+In2 +Inmlin a. (16)
2a p?+p'?
irr:3_ —ZVBorn- (10 . . . . .
TE m Let us note that since there is an explicitly divergent term in

Eqg. (16), one may wonder whether or not the difference in
Applying the rescaling arguments, we end up with thethe energyE of the bound state inl and three dimensions
following correction induced by the irreducible operator should be taken into account. We have checked that the can-

(10): cellation of all divergent terms in the final result for the
O(a®In a) correction to the decay rate occurs for arbitrry
4 and for this reason we use the three-dimensional expression
Airr=§ Ina. (11)  for this (rescalediquantity to present individual contributions
as well.
IV. “HARD LOOP” CONTRIBUTIONS V. SEAGULL CONTRIBUTION

These contributions arise in the second order of the non- The correction to the decay rate,
relativistic perturbation theory. This means that the corre-
sponding nonrelativistic operato€ are of the formvVGV’, S =2(V|VgomGV{ W), (17
where G is the reduced Green function of the Coulomb
Hamiltonian from Eq(4) andV,V’ are some local operators is induced by the double seagull effective potentig)
with one of the two originating from a hard one-loop correc-

tion. 4m?a? [ d% Py(K)P;(K)
There are two sources of the “hard loop” contributions. Vya)=— 7 f (27 KK'(ktk) | (18)
The first one is the one-loop renormalization of the annihila-

tion kernel: wherek’ =q—k and P, (k) = &, — kik; /k2.
To facilitate the calculation of this potential, we introduce
@ auxiliary integration variablé, and rewriteV as fol-
Vp,o:;Ap,oVBorn . (12) lows: y g 0 9
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d% interactions’ In three dimensionsG,~r %, G;~ Inr, and
Vya)=~— —f (2m )dT”(k)T,J(q K), (19  G,,i~r°asr—0. Therefore, the first term from the expan-
sion EqQ.(26) is sufficient to extract the singularities caused
with by the contributions o5, and G- For G, We derive
47P;;i (k f ddrr 374G (1,0
Tij(k): T IJ( ) (20) multl( )

k2+k5

~1 3
_ —1+2¢ - — _
It is convenient to consider the Fourier transform\i(a): _47TJ0 drr Grmui( 0,00+ 0(1) = € +0(2).

(27)

In order to analyzeG,; contributions, it is convenient to
switch to the momentum space. We obtain

a? (=dkg
VS(r):_ﬁfo 5 Ti(DTii(r), (21

whereT;;(r) stands for

dy, —3+4e
ddk AT fdrr G4(r,0)
T”(r):‘s”f(zw)de K2+ k3

4573 T(e) [ dp Gy(p)

B : 28
! L T(32-2¢) | (2m)8 pee (28)
+ 2‘7I‘9Jf €N S (22
Ko (2m) k2 K24k} i
f ddrr3+4eGo(r,0)(l —)
To computeT;;(r) we use T49e
J d9 aikr 4 _ ( ko )d/Z—lK ) :2_77 d9p Go(p) e )
2md K2k 27 dr2-1(Kol), N i e
9 +0(1). (29)

whereK,(x) is the modified Bessel function of the second ) _
kind. The integrals in Eqs28),(29) can be expressed through the

Inserting Eq(23) into Eq.(22), and integrating ovek, in  integrals listed in Appendix:
Eqg. (21), we obtain

f 4% Gup) _ — 1671 (14 €,1,1)+14(1,1,)
e Q%34 P (1—¢)? 17-81In2 o 2)} (zw)d pze 2 1
(nN=-— .
2am?  (4m) "% 3 ~141,1,1)]+0 30
(24 2(1,1,1)]+0O(e), (30
We then rescale the relative correction to the decay rate an ddp Go(p) _
. ——=-2ly12) (3D
obtain (2m? p*
AN a?yt 4 T(1—e)? 17-81In2 ) Substituting all the relevant expressions into E25) and
m: T 2am (47)~2¢ - 3 +0(€%) expanding ine, we arrive at the final result for the seagull
p.0 contribution:
W(r
XJddrr , qf). (25) A_3|n2a 1 4In2 5 ainmli -
0 3—2—Z+3+§—nmna.()
As we explained previously, we need only a divergent part of
the integral in Eq(25). Since in three dimensions the Green VI. RETARDATION
functionG(r,0) behaves a®(r ~1) for small values of, we . ) ] .
may expand the wave function in series around0 and In this section we discuss the retardation effect, caused by
order of the inverse Bohr radids~ma between electron
W(r c(d)r4d
( )—1 () +0(r8-29), (26)

v, ~ 4-d
. . . 2G, is the free Green functiorG, is the single Coulomb correc-
The Green functioi® can be written as a sum of three piecestion to Go, and G, accounts for two and more Coulomb interac-
G=Gy+G;+ G according to the number of Coulomb tions.
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and positron in the bound state. The corresponding formula The analysis of the spin-independent contributiorVtg

reads is only slightly more cumbersome. We again pull ddt
—E both to the right and to the left by commuting it with
di Ama Py(k) either electron or positron current and obtain the following
Sl =2{ ¥|VgonG celkre —— 17 ; i i
reth = Born (zw)djie 2k KFH—E expression for the retardation potential:
b —ik. d%  Pi(k) .
ijpe ik-rp \]f>—<\II|VBom|\P> Vv z_ﬂf i H—E.ekp.
ret m2 (27T)d k3 ({ plp]}
d iK-
<] [ jegrntre Pl +[pi [H plle" ) +He,
(2m)¢ 2k (k+H-E)? .
Where{H—E,e'k"pipj} denotes the anticommutator of the
pa—iker two operators. Using this expression for the retardation po-
xlje ° q’> +H.c, (33 tential in EqQ.(34) and applying equations of motion, we

arrive at the following correction to the decay rate:

where j*=p®/m—[ ok,o]/(4m) and jP=p’/m+[o'k, o]/
(4m) are electron and positron currents, respectively. Ao

The appearance of two matrix elements in E33) is 5retF:__2<q,|VBornG[Uij[Cipi]ypj]|\1’>1 (37
related to the fact that we need thecondorder correction to m
the wave function of a bound state. In contrast to the first
order, at second order of perturbation theory one should bgpere c= —¢(d)e/r4=2 is the Coulomb potential, and
careful to maintain the normalization of the wave function.U,,(r) is defined as
This is the reason why the second term in E2) appears. .
The general formula for the second-order correction to the

wave function can be found if3]. Un ()= d% Pk ., T(—er? 5
When writing Eq.(33), we have assumed that a magnetic i(N= 2md K3 e = 62 € (8 —enin;).
photon with the momenturk is emitted by the electron at (39)

the pointr, and absorbed by the positron at the paipt
Using the fact thaH — E~ma? andk~ma for the retarda-
tion effects, we expand the right-hand side of E3@3) in
powers of H—E)/k and obtain:

Performing rescaling and computing the double commutator
in Eq. (37), we get the result for the relative correction to the
decay rate,

Ored = 2<\P|VBornGVrelJ\P> - <\P|VBorn|\P><\I}|Vr,eIJ\P>1 (34)

i - Ored’ 8ay? 2¢T(2— €)' (3/2—¢)
where the “retardation potentialV . reads =—

Fg)g o 3m2 m3i2-e
d% 4maPy(k) _ .
— '.e'k're d,, —3+4e \I’(I’)
ret f(zw)d e de re st G(r,O)q,—O, (39
X(H-E)jPe ™™ +H.c,, (35

which is very similar to the correction induced by the seagull
andV,.=dV,e/ JE. Let us illustrate how one deals with such potential, Eq.(25). We can, therefore, borrow much of the
expressions using the spin-dependent parts of the currents agalysis from the previous section. We finally obtain
an example. The corresponding contribution \fg,; then
reads

2 4In2

Ae=2 |n2a—(§— —3—T4-4Inm|ina. (40)

spin__
ret

waf di% [ok,oi][o'k,a]]
16m?J (2m)8 K3

_ _ VIl. ULTRASOFT CONTRIBUTION
X{(H—E)e*"+e*"(H—E)}+H.c, (36

By definition, the ultrasoft contribution is due to the pho-
where the relative coordinate=r,—r, has been introduced. tons with energy and momentum of ordew?. Such soft
It is now easy to see that if we insert this result into Bf)  photons cannot resolve the structure of the bound state and
and use the Schdinger equation both for the wave function for this reason they interact directly with the positronium as
V¥ and for the reduced Green functi@) we obtain a finite a whole. Since the positronium is chargeless, the interaction
correction to the decay rate. As we explained in the Introis necessarily of the dipole nature.
duction, finite contributions cannot generate logarithms of A general formula for the correction to the decay rate

the fine-structure constant. caused by ultrasoft contributions is
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2p [ d% 4ma Py(k) 2p; p[H,p]=[p.[H,p]]+[H,plp=4m5(r)+[H,p]p, (46)
Sud =2{ ¥ VeonG f d 2k EFH—K m
(2) we represenM, as the sum of two terms,
_<\I,|VBOI'I'1|\I’> M0:M5+Ml//, (47)
d
e 2p,f dk 4ma  Py(k) 2pJ o) where
2md 2k (E-H-k)Z2 m
4 )
(41) M5:Z<O|G(H0—E) 0), (48)
After integration over directions ok and performing the 1
rescaling we get My=5_(0lG(Ho—E) *TH,plpl¥). (49
Sud’ A% may?™ e Q4 d-1
0 - > e d d We now analyze the two terms in EG47) separately. In
I'bo m (2m) order to computéM 5 we use the fact that only two first terms

. 2e in the expansion of the Green function in the number of
0 GpJ _[H,p]‘q, Coulomb exchangesi, and G,, diverge at zero spatial
o ktH-E separation. Sinc&,,,,i(0,0) is finite, we can compute it for
= dkkl~2¢
—(W¥p f —p|¥ ; . . .
0 (k+H—E)? easily be computed. Using expressions for integrals summa-
rized in Appendix, we arrive at the following expression for

d=3. On the other hand, both, andG, are known explic-
Both matrix elements in Eq(42) must be computed in Mj:

> ) (42) itly [see, e.g.[9]] and hence the corresponding integrals can

atomic units; alsoV =W/ W, and Qq=272"¢/T'(3/2— €) 02+ 2e 5ie o
is the d-dimensional angular volume. . M = — lo(1+2€,0)— 7 1,(1+2€,1,1) — §
The second matrix element in Ed42) is easy to €
compute® (50)
dkkL—2e Consider the second matrix elemént, . In this case, itis
p| ¥ sufficient to separat&=Gy+ (G—Gy). Since there is an
2 . .. .
(k+H—-E) overall factore ! in Eq. (49), the finite matrix element that
<\P|p(H_E)—25p|\P> 1 containsG— G can be calculated in three dimensions. Us-
=— 3 =5 (43)  ing the expression fo& — G, from [9], we derive
€ €
Then, consider the first matrix element from E42). It is ML:£<O|(G—GO)[H,p]p|qf>:§_ (51

convenient to write it as a sum:

The matrix element containinG, can be rewritten in mo-
pr k+H E[H pl| ¥ )=Mo+M;, (449  mentum space as

where the two terms correspond to the number of COU|0mbMi¢=i<O|GO(HO—E)‘ZE[H,p]p|fI?>
interactions between the moments of emission and absorp- 2e
tion of the ultrasoft photof.

dprqd 2e "
Let us consideM,. In this case, integrating oveér we _ = d%p’d"p 2 4m(p’—p)p \If(p)’
obtain 2¢) (2m)2 \p'?2+1 p-p? Yo
(52)

Mo=>- (OG- E) 2pH,plT), (49 | , o
whereW (p) is the Fourier transform o¥ (r). SII’]CGM:,, has
an overall divergence and hence we need the integral up to a

— 2 . . . . . . _
whereHo=p®/2 is the free Hamiltonian in atomic units. Us constant only, we can use the three-dimensional expression

g for the wave functionV (p):
» dpap( 2 |\ -pp[ 2 |°
SRecall that only the terms that are singular ér0 are needed. M ',p= - 2d P ; 2| 2
4If two or more Coulomb photons are exchanged, the resulting € (27) pe+1l (p'=p\p°+1
matrix element becomes finite and, in accordance with the argument
given in Sec. ll, it cannot generate tl¥In «) correction. (53
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We now rewrite the scalar product in the numerator as a
linear combination of denominators and obtain our final ex-

pression foM ,=M{,+ M,

42+eﬂ_2
Ml,/l:_

—[11(26,1,2)~ 11(1+2¢,1,1)

—|1(1+2e,o,2)]+§. (54)

Consider next the matrix elemeht;. We start with the
following expression:

o 1 1 -
- _ —2€
M, <O’prodkk k+H0—ECk+H0—E[H’p]’q,>'

(59

Simple power counting shows that we can safely tikat

the origin, ¥ — 1, and also replace the Green functiGrby
its high-momentum asymptotic$G(p)— —2/p?. We then
obtain symmetric and uniform expression

= dp’ad“ 2
M1=—8wf dkk’sz Pep
0 (27?4 p'?(p'?+1+2k)

Ad7p'p 2
(p'—p)? pA(p?+1+2k)

(56)

If we now rescale botlp andp’ asp— v2k+1 p, the inte-
gration overk factorizes and we obtain

8m?
Ml: — T[2|2(1’1,1)_2| 1(111!1)_|0(111)2]' (57)

PHYSICAL REVIEW b2 116003

Ao 3 ring] - 22 gimas A0
Fgo) = ? E N“«a nao % n ?
a® 3
=—/| - =Ina—5.517 Ina |. (60)
T 2

Numerically, these corrections cause a negligible change in
the theoretical prediction for p-Ps and o-Ps lifetimes at the
current level of precision. It is interesting to note, however,
that the magnitude of the leadir@(«®In’«) and the sub-
leadingO(a® In a) corrections is comparable; in the case of
0-Ps they almost cancel each other.

Our results Eqs(59) and (60) are in agreement with two
recent calculations 0O(a®In @) corrections[7,8]. In Ref.

[7] the result for theD(«* In @) correction to the o-Ps decay
rate has been obtained numerically, where as in [B¢fna-
lytical methods similar to ours have been employed. We be-
lieve that the achieved agreement between three independent
calculations ensures that the results, E§9) and (60), are
correct.

As we mentioned, th®©(a?In a) correction to Ps decay
rates at present is not very interesting phenomenologically. A
more important question, which we think we fully addressed
in this paper, is how the logarithms of the fine-structure con-
stant can be efficiently extracted in the bound-state calcula-
tion when the dimensional regularization is used to regulate
the nonrelativistic dynamics. It is true that dimensional regu-
larization offers many technical advantages in the calcula-
tion. This does not go without a price, however, since one
has to be extremely careful in defining basic objects of the
nonrelativistic theory, e.g., the wave functions and energies.
If this is not done, one is left guessing whether or not the
calculation is correct.

Our key observation, which we think cures such problems
and makes our calculation unambiguous, is the fact that the
matrix elements ird dimensions are the uniform functions of
the fine-structure constant, and that the corresponding power
of @ can be determined by expressing the matrix elements in

Finally, using explicit expressions for the integrals from the« §_dimensional” atomic units. We think that these argu-
Appendix, we arrive at our final result for the ultrasoft cor- ments have not been spelled out before in the literature on

rection to the decay rate:

16Ine?® [ 4 20
A= — 3 + §+8In2+3—8lnm In a.
(59

VIIl. CONCLUSIONS

The sum of all the contributions from Eqgéll), (13),
(16), (32, (40), and (58 gives the final result for the
O(a®In a) corrections to the Ps decay rate:

AT, a®

TO
re m

3|2 +1
——=In n
2 o o

3 02— 2A
90 : P

: (59

a® 3 )
=—| —=In“a+7.919 Ina
T 2

one hand, and that they are necessary to make a convincing
case, on the other.

Finally, let us note that the technique discussed in this
paper can obviously be used in other bound-state QED prob-
lems, as well as for the heavy quarkonium states in QCD.
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APPENDIX

We give the definitions of the integrals that were used in
the derivation.
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dd

a

1
p2+1

b
1
_2) :(477)7d/2
ddp/ddp

p
(o5 1
(2m)% (p'—p?/ \p*+1
I'(a+b+c—d)['(a+b—d/2)T'(b+c—d/2)T(d/2—b)
T(a)[(c)T(d/2)T(a+2b+c—d) ’
ddp’ddp(l

_a( 1 )b 1 )c

(2m?@ \p'2] \(p'=p)?/ | p*+1

I(a+b+c—d)I(a+b—d/2)T(d/2—a)l'(d/2—b)
(@)l (o) (c)T(d/2) '

T'(a+b—d/i2)T(d/2—b)
T(a)T(di2) '

(A1)

c

1
p'2+1

Il(a,b,c)=J

:(477)—(1 (AZ)

Iz(a,b,c)zf

=(4m)~¢

(A3)
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