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O„a3 ln a… corrections to positronium decay rates

Kirill Melnikov *
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

Alexander Yelkhovsky†

Budker Institute for Nuclear Physics, Novosibirsk 630090, Russia
~Received 24 August 2000; published 30 October 2000!

We computeO(a3 ln a) corrections to the decay rates of para- and orthopositronium into two and three
photons, respectively. For this calculation we employ the nonrelativistic QED regularized dimensionally and
we explain how in this framework the logarithms of the fine-structure constant can be extracted.

PACS number~s!: 11.10.St, 12.20.Ds
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I. INTRODUCTION

Positronium decays into two and three photons provide
interesting test of bound state quantum electrodynam
~QED!. While the parapositronium~p-Ps! decay rate is well
described by QED, it is known that the decay of o
thopositronium~o-Ps! into three photons is still a controve
sial issue@1#. However, on the theoretical side there has be
a major breakthrough recently and both decay rates are
known with O(a2) accuracy@2,3#. The next level of preci-
sion, i.e.,O(a3) correction, is currently beyond reach, a
though parts of theO(a3) correction that are enhanced b
the logarithms of the fine-structure constant, can be co
puted.

Knowledge of these corrections is not of significant ph
nomenological importance at present since they are m
smaller than the experimental accuracy for both p-Ps
o-Ps decays. Nevertheless, from a theoretical viewpoint,
an interesting problem because at ordera3 there are both
leading O(a3 ln2a) and subleadingO(a3 ln a) corrections.
The calculation of the leadingO(a3 ln2a) corrections is a
fairly simple enterprise; it has been done quite some t
ago @4#. Here we are interested in subleading logarithm
corrections. In order to compute them, we utilize the non
ativistic QED in dimensional regularization and we expla
how in this framework the logarithmic corrections can
computed using a limited amount of information.

Before diving into a description of the calculation, let
summarize our results. For theO(a3 ln a) corrections to
para- and orthopositronium decay rates we find

DGp5
a3

p
ln aH 2

367

90
110 ln 222ApJ Gp

(0) , ~1!

DGo5
a3

p
ln aH 2

229

30
18 ln 21

Ao

3 J Go
(0) . ~2!

The coefficientsAp,o describeO(a/p) corrections to the
lowest order decay widthsGp,o

(0) . They are@5,6#
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Numerically, theO(a3 ln a) corrections, Eqs.~1! and ~2!,
evaluate to 7.7919a3/p ln aGp

(0) for p-Ps and to
25.517a3/p ln aGo

(0) for o-Ps. These corrections are ther
fore quite comparable with the ‘‘leading’’O(a3 log2a) cor-
rections computed in@4#.

The paper is organized as follows. In Sec. II we set up
framework of the calculation. We then continue with detail
discussion of how various contributions to Ps decays
O(a3 ln a) are computed. In the last section we present
conclusions.

II. FRAMEWORK OF THE CALCULATION

Let us first discuss the framework of our calculation. W
work in nonrelativistic QED regularized dimensionally;d
5322e is the number of spatial dimensions ande is the
regularization parameter. General features of this techni
have been described at length in our previous paper@9#. Here
we would like to discuss a new issue which was not cons
ered in @9#: how logarithmic lna corrections can be ex
tracted.

In order to extract logarithms of the fine-structure co
stant in a self-consistent way, we use the fact that the ma
element of any operator in dimensional regularization is
uniform function of the fine-structure constant. This implie
that all the dependence on the fine-structure constant ca
scaled out of any dimensionally regularized matrix eleme1

The scaling, however, should be done ind dimensions.
In order to establish the scaling rules, we need to kn

how different quantities involved in bound-state calculatio
scale with a. To do that, we rewrite thed-dimensional
Schrödinger equation in ‘‘atomic units’’ familiar from the
standard treatment of hydrogen atom in three-dimensio
quantum mechanics.

Consider the Schro¨dinger equation for positronium ind
dimensions:

1We stress that this is the feature of dimensional regulariza
and it is not valid in other regularization schemes.
©2000 The American Physical Society03-1
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S p2

m
2

c~d!a

r d22 D C5EC, ~4!

wherec(d)5G(d/221)/pd/221 ~see@9#!. Let us rescalep
→pg andr→r /g and chooseg5(ma/2)1/(112e). Then both
the Coulomb HamiltonianH5p2/m2c(d)a/r d22 and its ei-
genvalueE scale asg2/m. The wave function of a bound
state, being normalized to unity, scales asgd/2. Hence, when
expressed in atomic units, the energy of a bound state an
properly normalized wave function depend ond only. The
scaling rules above provide sufficient information to wr
the matrix element of any operator in atomic units and the
fore scale out all the dependence on the fine-structure
stant.

There is another important point that makes the extrac
of the lna corrections possible using limited information.
order to explain it, we remind the reader that in bound-st
calculations different contributions to the final result can
distinguished. In particular, there are so-called hard con
butions. TheO(a3) hard corrections to the Ps decay rates
described by the three-loop Feynman diagrams for the
cesse1e2→2(3)g, which have to be computed exactly
the threshold. Schematically, such diagrams generate the
rection

Vhard5S a

p D 3F t1

e2
1

t2

e
1t3GVBorn, ~5!

(t123 are some constants! to the annihilation kernelVBorn
that is responsible for the lowest order decay rate:

Gp,o
(0)5^CuVBornuC&}C0

2 . ~6!

Here C0 stands for the positronium wave function at t
origin. The effective potential~5!, in turn, generates the cor
rection to the decay rate,

dhardG5^CuVharduC&}F t1

e2
1

t2

e
1t3GC0

2 . ~7!

If we rewrite C0 in atomic units, Eq.~7! generates loga
rithms of the fine-structure constant. These logarithms
artificial, since we anticipate that other, soft scale contri
tions also generate divergences which exactly match
cancel all the divergences inVhard. This implies that the
logarithms associated with the rescaling of the wave func
at the origin get cancelled as well. Therefore, the easiest
to avoid consideringVhard ~which is not available at presen!
is to work with relative, rather than absolute, corrections
the decay width. This automatically discourages Eq.~7! as
the source of logarithms of the fine-structure constant si
in this case there is simply nothing to rescale.

In order to illustrate how these arguments help to comp
the lna corrections, let us consider the matrix element o
nonrelativistic operatorO that delivers theO(a3) correction
to the lowest order annihilation kernelVBorn. In accordance
with the above comment we consider a relative correction
the decay rate:
11600
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DO5
dOG

Gp,o
(0)

5
^CuOuC&

^CuVBornuC&
. ~8!

The operatorO is a function of the coordinate and mome
tum operators that act on the positronium wave functi
After rescaling of all the quantities on the right-hand side
Eq. ~8! as described above, we end up with the followi
equation:

DO5an
g32n1 l e

m32n1ke
•

^CuOuC&

^CuVBornuC&
ug51 , ~9!

wheren51,2 is a power ofa that explicitly entersO andl ,k
are some integer numbers. If the matrix element is finite,
can safely sete50 and then the relative correction to th
decay width isa3 times thea-independent ratio and henc
no logarithms ofa appear. Therefore, after the rescaling, t
only place where lna can come from is the expansion of th
factor g32n1 l e in powers ofe; this implies that in order to
generate the lna corrections, the nonrelativistic matrix ele
ments should diverge and only divergent pieces of the ma
elements have been known to determine logarithmic ina
corrections to the decay rate. Note also, that because o
relation betweeng anda,

g5S ma

2 D 1/(112e)

,

even the operators that scale asinteger powers of g can
generate lna corrections.

Let us note that the extraction of the lna corrections in
dimensional regularization can lead to some counterintui
results; for example, logarithms of the fine-structure const
are generated by the operators, which in more ‘‘physica
regularization schemes, such as, e.g., the schemes tha
either the photon mass or the momentum cutoffl, can only
lead to the logarithms ofm/l but not to lna. Therefore, it
appears that individual contributions to the final result a
scheme dependent. Nevertheless, we would like to stress
once dimensional regularization and clear rules for extrac
ln a are adopted, there is no other way as to consider
possible contributions; none of them can be disregarded
invoking the fact that in a different regularization scheme
particular operator cannot generate theO(ln a) correction.

The calculation of the nonrelativistic contributions th
are relevant at orderO(a3 ln a) is described in the following
sections. Some useful integrals that we need in the calc
tion, are summarized in Appendix. We give intermediate f
mulas for the relative logarithmic corrections to the posit
nium decay rate expressed in units of (a3/p)G(1
1e)3(4p)3e.

III. IRREDUCIBLE CONTRIBUTION

This particular contribution arises as the average value
a local operator that comes from the Taylor expansion of
one-loop corrections to the annihilation kernel in spatial m
mentap of electron and positron. For our purpose we ne
3-2
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the O(ap2) correction toVBorn. Since this operator is con
structed by Taylor expanding in external momentum,
non-analytic dependence onp2 cannot appear. Then, from
the rescaling argument we know that only the diverg
piece of the Wilson coefficient of this operator is required
turns out that this divergent piece can easily be compu
using rather general arguments. According to the rules
nonrelativistic QED, we extract Wilson coefficients of va
ous effective operators from the corresponding on-shell s
tering amplitudes. The key observation is that the diverge
in the Wilson coefficient of theO(ap2) operator causes th
divergence in the on-shell annihilation processe1e2

→ng, n52,3, and that it is in fact a ‘‘true’’ infrared di-
vergence that should be compensated by the real emissio
an additional soft photon in the same process.

In order to avoid confusion we stress that the mechan
of canceling this divergence by real radiation does not ap
to the bound state because ofC-parity conservation. There i
no contradiction, however. The real infrared divergences
the bound-state calculations are absent because electro
positron in positronium are off-shell. The divergence appe
only when we put them on mass shell in order to extract
Wilson coefficient of the relevant operator. The crucial o
servation is that considering the process in a different ki
matic regime~on-shell annihilation!, we easily find a diver-
gent piece of the appropriate Wilson coefficient from t
known amplitude of the real soft photon emission.

Requiring that virtual and real corrections to the on-sh
annihilation processe1e2→ng add up to a finite quantity
we get the following correction to the annihilation kern
VBorn :

Virr5
2a

3pe

p21p82

m2
VBorn . ~10!

Applying the rescaling arguments, we end up with t
following correction induced by the irreducible operat
~10!:

D irr5
4

3
ln a. ~11!

IV. ‘‘HARD LOOP’’ CONTRIBUTIONS

These contributions arise in the second order of the n
relativistic perturbation theory. This means that the cor
sponding nonrelativistic operatorsO are of the formVGV8,
where G is the reduced Green function of the Coulom
Hamiltonian from Eq.~4! andV,V8 are some local operator
with one of the two originating from a hard one-loop corre
tion.

There are two sources of the ‘‘hard loop’’ contribution
The first one is the one-loop renormalization of the annih
tion kernel:

Vp,o5
a

p
Ap,oVBorn . ~12!
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The correspondingO(a3 ln a) correction to the decay rate i
then easily related to theO(a2 ln a) correction computed in
@10,11#. We find

Dp,o5S 7

6
S222DAp,oln a. ~13!

The second ‘‘hard loop’’ contribution corresponds to t
‘‘hard’’ piece in O(ma5) effective potential. It reads@12#

Vhl52
a2

3m2

G~11e!

~4p!2e F1

e
1

39

5
212 ln 21S2S 32

3
16 ln 2D

22 lnmGd~r!, ~14!

whereS is the operator of the total spin. There is no proble
with defining the total spin operator here, since it multipli
explicitly finite quantity.

The O(a3) correction to the decay rate generated by
potential from Eq.~14! then reads

dhlG52^CuVBornGVhluC&, ~15!

and is proportional to the Green function at the orig
G(0,0). All necessary results for this Green function can
found in @9#. Finally, we obtain

Dhl5
ln2a

3
1F2

1

6e
12 ln 22

59

30

2S2S 16

9
1 ln 2D1 ln mG ln a. ~16!

Let us note that since there is an explicitly divergent term
Eq. ~16!, one may wonder whether or not the difference
the energyE of the bound state ind and three dimensions
should be taken into account. We have checked that the
cellation of all divergent terms in the final result for th
O(a3 ln a) correction to the decay rate occurs for arbitraryE
and for this reason we use the three-dimensional expres
for this ~rescaled! quantity to present individual contribution
as well.

V. SEAGULL CONTRIBUTION

The correction to the decay rate,

dsG52^CuVBornGVsuC&, ~17!

is induced by the double seagull effective potentialVs,

Vs~q!52
4p2a2

m2 E ddk

~2p!d

Pi j ~k!Pi j ~k8!

kk8~k1k8!
, ~18!

wherek85q2k andPi j (k)5d i j 2kikj /k2.
To facilitate the calculation of this potential, we introduc

auxiliary integration variablek0 and rewriteVs(q) as fol-
lows:
3-3
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Vs~q!52
a2

m2E0

`dk0

2p E ddk

~2p!d
Ti j ~k!Ti j ~q2k!, ~19!

with

Ti j ~k!5
4pPi j ~k!

k21k0
2

. ~20!

It is convenient to consider the Fourier transform ofVs(q):

Vs~r!52
a2

m2E0

`dk0

2p
Ti j ~r!Ti j ~r!, ~21!

whereTi j (r) stands for

Ti j ~r!5d i j E ddk

~2p!d
eik•r

4p

k21k0
2

1
1

k0
2
] i] jE ddk

~2p!d
eik•rS 4p

k2
2

4p

k21k0
2D . ~22!

To computeTi j (r) we use

E ddk

~2p!d
eik•r

4p

k21k0
2

52S k0

2pr D
d/221

Kd/221~k0r !,

~23!

whereKn(x) is the modified Bessel function of the seco
kind.

Inserting Eq.~23! into Eq.~22!, and integrating overk0 in
Eq. ~21!, we obtain

Vs~r!52
a2r 2314e

2pm2

G~12e!2

~4p!22e F12e
1728 ln 2

3
1O~e2!G .

~24!

We then rescale the relative correction to the decay rate
obtain

dsG

Gp,o
(0)

52
a2g124e

2pm

G~12e!2

~4p!22e F12e
1728 ln 2

3
1O~e2!G

3E ddrr 2314eG~r,0!
C~r!

C0
. ~25!

As we explained previously, we need only a divergent par
the integral in Eq.~25!. Since in three dimensions the Gree
functionG(r,0) behaves asO(r 21) for small values ofr, we
may expand the wave function in series aroundr 50 and
keep only two first terms in such an expansion:

C~r!

C0
512

c~d!r 42d

42d
1O~r 822d!. ~26!

The Green functionG can be written as a sum of three piec
G5G01G11Gmulti according to the number of Coulom
11600
nd

f

interactions.2 In three dimensions,G0;r 21, G1; ln r, and
Gmulti;r 0 asr→0. Therefore, the first term from the expa
sion Eq.~26! is sufficient to extract the singularities caus
by the contributions ofG1 andGmulti . For Gmulti we derive

E ddrr 2314eGmulti~r,0!

54pE
0

;1

drr 2112eGmulti~0,0!1O~1!52
3

e
1O~1!.

~27!

In order to analyzeG0,1 contributions, it is convenient to
switch to the momentum space. We obtain

E ddrr 2314eG1~r,0!

5
4ep3/22eG~e!

G~3/222e!
E ddp

~2p!d

G1~p!

p2e
, ~28!

E ddrr 2314eG0~r,0!S 12
c~d!r 112e

112e D
5

2p

e E ddp

~2p!d

G0~p!

p2e S 12
pe

p112eD
1O~1!. ~29!

The integrals in Eqs.~28!,~29! can be expressed through th
integrals listed in Appendix:

E ddp

~2p!d

G1~p!

p2e
5216p@ I 2~11e,1,1!1I 1~1,1,1!

2I 2~1,1,1!#1O~e!, ~30!

E ddp

~2p!d

G0~p!

p2z
522I 0~1,z!. ~31!

Substituting all the relevant expressions into Eq.~25! and
expanding ine, we arrive at the final result for the seagu
contribution:

Ds5
3 ln2a

2
2S 1

2e
1

4 ln 2

3
1

5

3
23 lnmD ln a. ~32!

VI. RETARDATION

In this section we discuss the retardation effect, caused
the exchange of a photon with a typical momentum of
order of the inverse Bohr radiusk;ma between electron

2G0 is the free Green function,G1 is the single Coulomb correc
tion to G0, andGmulti accounts for two and more Coulomb intera
tions.
3-4
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and positron in the bound state. The corresponding form
reads

d retG52K CUVBornGE ddk

~2p!d
j i
eeik•re

4pa

2k

Pi j ~k!

k1H2E

3 j j
pe2 ik•rpUCL 2^CuVBornuC&

3K CU E ddk

~2p!d
j i
eeik•re

4pa

2k

Pi j ~k!

~k1H2E!2

3 j j
pe2 ik•rpUCL 1H.c., ~33!

where je5pe/m2@sk,s#/(4m) and jp5pp/m1@s8k,s8#/
(4m) are electron and positron currents, respectively.

The appearance of two matrix elements in Eq.~33! is
related to the fact that we need thesecond-order correction to
the wave function of a bound state. In contrast to the fi
order, at second order of perturbation theory one should
careful to maintain the normalization of the wave functio
This is the reason why the second term in Eq.~33! appears.
The general formula for the second-order correction to
wave function can be found in@13#.

When writing Eq.~33!, we have assumed that a magne
photon with the momentumk is emitted by the electron a
the point re and absorbed by the positron at the pointrp .
Using the fact thatH2E;ma2 andk;ma for the retarda-
tion effects, we expand the right-hand side of Eq.~33! in
powers of (H2E)/k and obtain:

d retG52^CuVBornGVretuC&2^CuVBornuC&^CuVret8 uC&, ~34!

where the ‘‘retardation potential’’Vret reads

Vret52E ddk

~2p!d

4paPi j ~k!

2k3
j i
eeik•re

3~H2E! j j
pe2 ik•rp1H.c., ~35!

andVret8 5]Vret/]E. Let us illustrate how one deals with suc
expressions using the spin-dependent parts of the curren
an example. The corresponding contribution toVret then
reads

Vret
spin5

pa

16m2E ddk

~2p!d

@sk,s i #@s8k,s i8#

k3

3$~H2E!eik•r1eik•r~H2E!%1H.c., ~36!

where the relative coordinater5re2rp has been introduced
It is now easy to see that if we insert this result into Eq.~34!
and use the Schro¨dinger equation both for the wave functio
C and for the reduced Green functionG, we obtain a finite
correction to the decay rate. As we explained in the Int
duction, finite contributions cannot generate logarithms
the fine-structure constant.
11600
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The analysis of the spin-independent contribution toVret
is only slightly more cumbersome. We again pull outH
2E both to the right and to the left by commuting it wit
either electron or positron current and obtain the followi
expression for the retardation potential:

Vret52
pa

m2 E ddk

~2p!d

Pi j ~k!

k3
~$H2E,eik•rpipj%

1@pi ,@H,pj ##eik•r!1H.c.,

where $H2E,eik•rpipj% denotes the anticommutator of th
two operators. Using this expression for the retardation
tential in Eq. ~34! and applying equations of motion, w
arrive at the following correction to the decay rate:

d retG52
4pa

m2
^CuVBornG@Ui j @C,pi #,pj #uC&, ~37!

where C52c(d)a/r d22 is the Coulomb potential, and
Ui j (r) is defined as

Ui j ~r!5E ddk

~2p!d

Pi j ~k!

k3
eik•r5

G~2e!r 2e

6p22e
~d i j 2eninj !.

~38!

Performing rescaling and computing the double commuta
in Eq. ~37!, we get the result for the relative correction to th
decay rate,

d retG

Gp,o
(0)

52
8ag222e

3m2

G~22e!G~3/22e!

p3/22e

3E ddrr 2314eG~r,0!
C~r!

C0
, ~39!

which is very similar to the correction induced by the seag
potential, Eq.~25!. We can, therefore, borrow much of th
analysis from the previous section. We finally obtain

D ret52 ln2a2S 2

3e
2

4 ln 2

3
1424 lnmD ln a. ~40!

VII. ULTRASOFT CONTRIBUTION

By definition, the ultrasoft contribution is due to the ph
tons with energy and momentum of orderma2. Such soft
photons cannot resolve the structure of the bound state
for this reason they interact directly with the positronium
a whole. Since the positronium is chargeless, the interac
is necessarily of the dipole nature.

A general formula for the correction to the decay ra
caused by ultrasoft contributions is
3-5
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dusG52K CUVBornG
2pi

m E ddk

~2p!d

4pa

2k

Pi j ~k!

E2H2k

2pj

m UCL
2^CuVBornuC&

3K CU2pi

m E ddk

~2p!d

4pa

2k

Pi j ~k!

~E2H2k!2

2pj

m UCL .

~41!

After integration over directions ofk and performing the
rescaling we get

dusG

Gp,o
(0)

5
422epag224e

m222e

Vd

~2p!d

d21

d

3S K 0UGpE
0

` dkk22e

k1H2E
@H,p#UC̃L

2K CUpE
0

` dkk122e

~k1H2E!2
pUCL D . ~42!

Both matrix elements in Eq.~42! must be computed in
atomic units; alsoC̃5C/C0, andVd52p3/22e/G(3/22e)
is thed-dimensional angular volume.

The second matrix element in Eq.~42! is easy to
compute:3

2K CUpE
0

` dkk122e

~k1H2E!2
pUCL

52
^Cup~H2E!22epuC&

2e
52

1

2e
. ~43!

Then, consider the first matrix element from Eq.~42!. It is
convenient to write it as a sum:

K 0UGpE
0

` dkk22e

k1H2E
@H,p#UC̃L 5M01M1 , ~44!

where the two terms correspond to the number of Coulo
interactions between the moments of emission and abs
tion of the ultrasoft photon.4

Let us considerM0. In this case, integrating overk we
obtain

M05
1

2e
^0uG~H02E!22ep@H,p#uC̃&, ~45!

whereH05p2/2 is the free Hamiltonian in atomic units. Us
ing

3Recall that only the terms that are singular fore→0 are needed.
4If two or more Coulomb photons are exchanged, the resul

matrix element becomes finite and, in accordance with the argum
given in Sec. II, it cannot generate theO(ln a) correction.
11600
b
p-

p@H,p#5@p,@H,p##1@H,p#p54pd~r!1@H,p#p, ~46!

we representM0 as the sum of two terms,

M05M d1Mc , ~47!

where

M d5
4p

2e
^0uG~H02E!22eu0&, ~48!

Mc5
1

2e
^0uG~H02E!22e@H,p#puC̃&. ~49!

We now analyze the two terms in Eq.~47! separately. In
order to computeM d we use the fact that only two first term
in the expansion of the Green function in the number
Coulomb exchanges,G0 and G1, diverge at zero spatia
separation. SinceGmulti(0,0) is finite, we can compute it fo
d53. On the other hand, bothG0 andG1 are known explic-
itly @see, e.g.,@9## and hence the corresponding integrals c
easily be computed. Using expressions for integrals sum
rized in Appendix, we arrive at the following expression f
M d :

M d52
2212ep

e
I 0~112e,0!2

2512ep2

e
I 1~112e,1,1!2

3

e
.

~50!

Consider the second matrix elementMc . In this case, it is
sufficient to separateG5G01(G2G0). Since there is an
overall factore21 in Eq. ~49!, the finite matrix element tha
containsG2G0 can be calculated in three dimensions. U
ing the expression forG2G0 from @9#, we derive

Mc
f 5

1

2e
^0u~G2G0!@H,p#puC̃&5

2

e
. ~51!

The matrix element containingG0 can be rewritten in mo-
mentum space as

Mc
i 5

1

2e
^0uG0~H02E!22e@H,p#puC̃&

52
1

2eE ddp8ddp

~2p!2d S 2

p8211
D 112e

4p~p82p!p

~p82p!2

C~p!

C0
,

~52!

whereC(p) is the Fourier transform ofC(r). SinceMc
i has

an overall divergence and hence we need the integral up
constant only, we can use the three-dimensional expres
for the wave functionC(p):

Mc
i 52

4p2

e E ddp8ddp

~2p!2d S 2

p8211
D 112e

~p82p!p

~p82p!2 S 2

p211
D 2

.

~53!

g
nt
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We now rewrite the scalar product in the numerator a
linear combination of denominators and obtain our final
pression forMc5Mc

f 1Mc
i :

Mc52
421ep2

e
@ I 1~2e,1,2!2I 1~112e,1,1!

2I 1~112e,0,2!#1
2

e
. ~54!

Consider next the matrix elementM1. We start with the
following expression:

M152K0UGpE
0

`

dkk22e
1

k1H02E
C

1

k1H02E
@H,p#UC̃L .

~55!

Simple power counting shows that we can safely takeC̃ at
the origin,C̃→1, and also replace the Green functionG by
its high-momentum asymptotics,G(p)→22/p2. We then
obtain symmetric and uniform expression

M1528pE
0

`

dkk22eE ddp8ddp

~2p!2d

2

p82~p821112k!

3
4pp8p

~p82p!2

2

p2~p21112k!
. ~56!

If we now rescale bothp andp8 asp→A2k11 p, the inte-
gration overk factorizes and we obtain

M152
8p2

e
@2I 2~1,1,1!22I 1~1,1,1!2I 0~1,1!2#. ~57!

Finally, using explicit expressions for the integrals from t
Appendix, we arrive at our final result for the ultrasoft co
rection to the decay rate:

Dus52
16 lna2

3
1S 4

3e
18 ln 21

20

9
28 lnmD ln a.

~58!

VIII. CONCLUSIONS

The sum of all the contributions from Eqs.~11!, ~13!,
~16!, ~32!, ~40!, and ~58! gives the final result for the
O(a3 ln a) corrections to the Ps decay rate:

DGp

Gp
(0)

5
a3

p F2
3

2
ln2a1 ln aH 2

367

90
110 ln 222ApJ G

5
a3

p F2
3

2
ln2a17.919 lnaG , ~59!
11600
a
-

DGo

Go
(0)

5
a3

p F2
3

2
ln2a1 ln aH 2

229

30
18 ln 21

Ao

3 J G
5

a3

p F2
3

2
ln2a25.517 lnaG . ~60!

Numerically, these corrections cause a negligible chang
the theoretical prediction for p-Ps and o-Ps lifetimes at
current level of precision. It is interesting to note, howev
that the magnitude of the leadingO(a3 ln2a) and the sub-
leadingO(a3 ln a) corrections is comparable; in the case
o-Ps they almost cancel each other.

Our results Eqs.~59! and ~60! are in agreement with two
recent calculations ofO(a3 ln a) corrections@7,8#. In Ref.
@7# the result for theO(a3 ln a) correction to the o-Ps deca
rate has been obtained numerically, where as in Ref.@8# ana-
lytical methods similar to ours have been employed. We
lieve that the achieved agreement between three indepen
calculations ensures that the results, Eqs.~59! and ~60!, are
correct.

As we mentioned, theO(a3 ln a) correction to Ps decay
rates at present is not very interesting phenomenologically
more important question, which we think we fully address
in this paper, is how the logarithms of the fine-structure co
stant can be efficiently extracted in the bound-state calc
tion when the dimensional regularization is used to regu
the nonrelativistic dynamics. It is true that dimensional reg
larization offers many technical advantages in the calcu
tion. This does not go without a price, however, since o
has to be extremely careful in defining basic objects of
nonrelativistic theory, e.g., the wave functions and energ
If this is not done, one is left guessing whether or not t
calculation is correct.

Our key observation, which we think cures such proble
and makes our calculation unambiguous, is the fact that
matrix elements ind dimensions are the uniform functions o
the fine-structure constant, and that the corresponding po
of a can be determined by expressing the matrix element
‘‘ d-dimensional’’ atomic units. We think that these arg
ments have not been spelled out before in the literature
one hand, and that they are necessary to make a convin
case, on the other.

Finally, let us note that the technique discussed in t
paper can obviously be used in other bound-state QED p
lems, as well as for the heavy quarkonium states in QCD
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APPENDIX

We give the definitions of the integrals that were used
the derivation.
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I 0~a,b!5E ddp

~2p!d S 1

p211
D aS 1

p2D b

5~4p!2d/2
G~a1b2d/2!G~d/22b!

G~a!G~d/2!
, ~A1!

I 1~a,b,c!5E ddp8ddp

~2p!2d S 1

p8211
D aS 1

~p82p!2D bS 1

p211
D c

5~4p!2d
G~a1b1c2d!G~a1b2d/2!G~b1c2d/2!G~d/22b!

G~a!G~c!G~d/2!G~a12b1c2d!
, ~A2!

I 2~a,b,c!5E ddp8ddp

~2p!2d S 1

p82D aS 1

~p82p!2D bS 1

p211
D c

5~4p!2d
G~a1b1c2d!G~a1b2d/2!G~d/22a!G~d/22b!

G~a!G~b!G~c!G~d/2!
. ~A3!
nt
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