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Next-to-leading order corrections to heavy flavor production in longitudinally polarized
photon-nucleon collisions
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A complete next-to-leading order calculation of longitudinally polarized heavy quark photoproduction is
presented. All results of the perturbative calculation are given in detail. For reactions and energies of interest
cross sections differential in the transverse momentum and rapidity of the heavy quark, total cross sections, and
the corresponding asymmetries are given. Errors in the asymmetries are estimated and the possibility to
distinguish between various scenarios of the polarized gluon distribution is discussed. Our results are compared
with other related publications.

PACS numbd(s): 13.60.Hb, 13.88te

I. INTRODUCTION culation of [5], as well as certain differences in our view
regarding certain questions, will be also reported.

Deep inelastic scattering of longitudinally polarized par- At NLO, apart from the loop and gluon bremsstrahlung
ticles has provided important information on the spin struc{brems contributions to subproces&.2), the subprocesses
ture of the nucleon. However, the size and shape of the po- N
larized gluon distributionAg in the proton remains an y+a(q)—Q+Q+q(q), (1.3
essential problem. Significant progress requires experiments
on reactions with longitudinally polarized particles domi- where g denotes a light quark, should also be taken into
nated by subprocesses with initial gluons. Such a reaction igccount.

L . We note that the Abelian part of NLOCs for subprocess
y+p—Q(Q)+X, (1.2 (1.2) provides corrections to

where Q (Q) denotes a heavy quartantiquark; this is y+y—Q+Q. (1.4
dominated by
This part has already been determifé¢/]. NLOCs to sub-
;'+9*—>Q+6- (1.2) procesdq1.4) are of interest in themselves in connection with
Higgs boson searches when the Higgs boson mass is in the
An experiment closely related to reacti@) is soon going range of 90—160 GeV.
to take placd1] and there is more than one propog2l. The loop and 2-3 parton graphs involved in NLOCs
At the Born level, reaction(1.1) was studied long ago introduce ultraviolet(UV), infrared (IR), and collinear sin-
[3,4]. However, the importance of knowing the next-to- gularities, which are eliminated by working in=4—2¢
leading order correctionéNLOCs) cannot be overempha- dimensions. For polarized reactions this requires an exten-
sized. This work presents detailed results on a NLOC calcusion of the Dirac matrixys in n#4 dimensions. Unless oth-
lation. erwise stated, we work in the scheme of dimensional reduc-
It should be noted that NLOCs for reactigh.1l) have tion (DR), which simplifies the calculation of the traces.
already been publishefb]. We believe, however, that in Certain subtleties of DR have been discussefbirand are
view of the importance of reactiofi.1), an independent de- mentioned below. Furthermore, we use parton distributions
termination of NLOCs in a different regularization approachwhose evolution, via two-loop anomalous dimensions, is de-
(see belowis in order. Extensive comparisons with the cal- termined in a scheme different from DR. This necessitates
the addition to our perturbative results of certain conversion
terms.
*Present address: High Energy Physics Institute, Thilisi State Uni- In all the above contributions the photon interacts in a
versity, University St. 9, 380086 Thilisi, Republic of Georgia. direct way. In addition, there are also resolved contributions,

Email address: mereb@sun20.hepi.edu.ge in which it interacts through its partonic constituents; in fact,
"Email address: apcont@physics.mcgill.ca, acontog@cc.uoa.gr strictly speaking, at NLO, scheme independent cross sections
*Email address: ggrispos@cc.uoa.gr arise only by adding them. At this moment a complete cal-
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n P3 Let M;(\1,\,) be the amplitude of any of the contributing
"7"’\ Q graphs, whera 1 ,\, are the helicities of the initial partons;
our polarized cross sections correspond to the quantities
D2 —D4
Qo999 . I, 1 * *
g @ SEIMi(+H)M(++)=Mi(+=M(+ )], (2.2
e Va Vo DI LN e T U where2 denotes summation over the helicities and colors of
_@_ the final particles and average over the colors of the initial.
For the determination of the asymmetries we need also the
000099l 0090¢9l w&m_@_ unpolarized cross sections, which correspond to the average
of Mi(+ +)M*j(+ +) andMi(+ _)M*j(+ _).
(a) (b) © We also introduce
v=1+t/s, w=-—u/(s+t). (2.3
Bl Bty 3 Bty To reduce the length of the subsequent expressions we will
make use of the results presented &i. Thus our leading-
order(LO) polarized and unpolarized cross sections are
f 3 (LO) p p
dold doo
f = .
e e o wherex= a5/8aeé and[A]do o/dv dw the corresponding
9_5 (polarized unpolarized cross sections fery—QQ [Eq. (9)
of [6]]. For later use we note tha |do o/dv dw are pro-
%7 2.99.0% 57 1@&7 portional to
1[ t?+u? s (s?
(s) (b) ) =—| - — | ——
AB(s,tu) s{ tu 2 tu (tu H
FIG. 1. LO and loop graphs. In the loop graghs— p, crossed
ones are not shown. Note that grafh representing gluon, quark, and (see alsd8])
and ghost loops, does not contribute here.
C1[tP4u? sn? sn?
culation of the resolved contributions is not possible, and we B(s,t,u)= sl tu + tu 1- tu I (2.9

will be limited to giving an estimate.

The paper is organized as follows. Section Il contains our In determining the loop contributions, the renormaliza-
general procedures, Sec. lll discusses the loop contributiortfons of the heavy quark mass and wave function were car-
to the photon-gluon fusion subprocess, and Sec. IV the comred on shell, as if6]; i.e., the renormalized heavy quark
responding brems ones. Section V presents analytic resulself-energy>,(p) was taken to satisfy, gi?=m?,
on the subprocesd.3). In Sec. VI we derive the necessary
formulas for calculating various physical observables. Sec- d
tion VIl presents our numerical results and discusses the pos- ——2:(p)=0. (2.6)
sibility to distinguish between three sets differing essentially
in the polarized gluon distribution functiahg. Section VIII  This determines the mass and wave function renormalization
deals with our comparison witlb], as well as witH8]. Sec- constant¥Z,, andZ, [6].
tion IX presents our conclusions. Finally, in three Appen- Dimensional reduction does not automatically satisfy the
dixes we present results completing our determination ofVard identity
NLOCs.

212221
Il. GENERAL PROCEDURES whereZ, is the renormalization constant for the vertex of the
graph in Fig. 1e). This requires the introduction of a proper
finite counterterm, of which the form is given [8].

In the present case charge renormalization is also re-

quired. Defining

The Born and the loop contributions 1;0+g—>Q+6 are
shown in Fig. 1. With the four-momenta ,i=1, ... ,4, as
indicated and withm the heavy quark mass we define

s=(p1+p2)? t=T—m?=(py—ps)>—m?,

€

2
A7 , 2.7

¢ =T 4

u=U-—m?=(p,—ps)*—m?. (2.1 (4m)?

m
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let go(g) be the bardrenormalizedl coupling,Z,=g,/g the
charge renormalization constant, aba (11INc—2N;)/6,
whereN; is the number of light flavors. We take

9
Zg=1——1{ C,(M)b=3C,(m), (2.9

whereM is a regularization mass. In this scheme the contri-
bution of a heavy quark loop in the gluon self-energy is

subtracted out; i.e., the heavy quark is decoup88]. This
is consistent with parton distributiontsFa,p(x,Qz) of which

the evolution is determined from split functions involving

only light quarks, as is the case Af,, used below.

Finally, the renormalization of thgQQ vertex was car-
ried using the Slavnov-Taylor identiti¢&0].

III. LOOP CONTRIBUTIONS

The loop graphs contributing to E@L.2) are depicted in
Fig. 1. The integrals for the Abelian type of grapta—(e)
were calculated if6]. The non-Abelian graph&g) and (h)
introduce tensor integrals of the form

f d"q q“,qq”
(2m)" gX(q—p2)2[(d+ ps—Po)®—m?]

and
f d"q a“,99",9"q"q”

(2m)" 0?(a—p2)°[(+Pps—P2)*—m?][(q—p3)>—m’]
As in [6], using Passarino-Veltman technigqydd], we re-

duce them to scalar ones; those can be found 2j.
The contributions presented below include the>u

crossing symmetric of Fig. 1 plus UV counterterms; thus dv

they contain no UV singularities.
The graphga)—(e) give

da';/ge doyse NC dog-e
dwaw “CFaraw 2 d@ 4w, @D
wheredos/dv dw is given in Eq.(16) of [6] and
do, e ~ T m?
:KL 2A1 §(2) L|2 1+3_
dl) m
—t 2 ~ —t
—|n(—2 1+ —=|+2} +A,In —2)
m m
~| [T ~
+A, le(—z —4(2) +A4+(t<—>u)) (3.2)
m
with
1
K = gaageé.

PHYSICAL REVIEW [B2 114509

Here and subsequently the polarized cross sections are given

by Egs. (3.1 and (3.2 with Ado/dv dw, Ado/dv, and

AA;, i=1,..., 4,replacing the corresponding unpolarized

quantities. Thé AJA; are given in Appendix A.
Graph(f) contributes

dO'f . NC dUbox
dvdw ( F__) dvdw’ @3
with dope/dvdw in Eq. (22) of [6].
Turning to the non-Abelian graph&g) gives
da';;yg dofd (1 4
dodw 2masC(MNeg gl 275
N¢(doyg dO'g
—7(dv 5| o1—w), (3.9
where
% o Amin| L)+ a2 in[ —
o R AN A T e M
+(t<—>u)], (3.5
with
Arp\ 2T (1+¢) su? \°
F(e)=K 28( ) 3.6
=K ) Tao s &0
and
dag T —t [T
=K | 2Ay| Lip| — | +In?| — | —2|+Af| 4Liy| —
m? m m
+4 12| — +ASIn| — — +A3+(t<—>u)} (3.7

In Egs. (3.5 and(3.7), [A]A; are given in Appendix B of
[6] and[ATA/, i=1,2,3, in Appendix A of this paper.
The contribution of graplth) is

d("ﬁg Nc do Zg
dodw 2 | ATasCs (m) 22 dv dw
d;’h dO’h 5 1 38
o Tde (1-w) ¢, (3.9
where
do _ ) P
e I R P R P
+A; —8—+8+gln +(t<—>u)] (3.9
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and f
doy, 35 T -t -u
E:KL Al —Zg(Z)—LIZ ﬁ +41In E In F IEREEEEE
090900 099999
B ! H T ! ! k
_|n2 F +Bl le(ﬁ) +(BZ+A1)§(2) (a) ;; (b) (©)
B e o Y et & I Bt A T
+Bgln ﬁ +B4In ﬁ +len F In F
+Bé+(t<—>u)]. (3.10 5\
(d)
A)
The coefficient§ A1B/, i=1,...,6, argiven in Appendix
A. \
Finally, after cancellation of the UV singularities, graph -

(i) does not contribute.

We remark that regarding the termss4/ the contribu-
tions of graphgg) and (h) taken separately are not propor-
tional to the Born contributiomlo}g/dv dw; only their sum
is proportional to the Born contribution. The same holds re-
garding the terms %/

A

(b)

IV. GLUON BREMS CONTRIBUTIONS

In this section we present complete analytic results for the
NLOC:s arising from brems. To the best of our knowledge, in p)

(a)
(©)
relation to heavy quark production, such results have not so

far been presented. FIG. 2. (A) Gluon brems graphg,«< p, crossed ones are not

With k the four-momentum of the emitted gluon we intro- shown.(B) Graphs of the subprocesg—QQqg.
duce also

(d)

~ ps-k  Ts fe f7
(4.0 +7 + + +
“Park P2k propaprk p,.K2

s,=(k+pg)2—m’=s+t+u=sv(1l—w).

The brems graphs contributing to the NLOCs of Elg2) are

shown in Fig. 2A. The squared sum of the corresponding

amplitudes(plus those obtained vip; < p,) after summing

over final spins and colors and averaging over initial colors

?8 n ?9 ?10
P1-PaP2- K P2-kps-k P1-P4” P2-k

+

is given by T 4.3
P1-P4” P2k
4m?|M 39 5|2=Kg(e) &GW—&GW (4.2
23 ® 2 16 ' ' and
whereG?” is the quantity in the square brackets of E2¢) KB(s)=(47-r)3aa2eé,uGS (4.4)
< . .

of [6] (plus p;+p,), andG?? has the expansion

As in Sec. lll, A[M}? .| is given by Egs.(4.2) and (4.3
with AG?Y”, AG"9, Ae;, andAf,, i=1,2,...,13, replac-
ing the corresponding unpolarized quantities. The coeffi-
cients[A]e;, [A]f; of Eq. (4.3 are given in Appendix B.
The brems contribution tpA]do/dv dviis obtained by
working in the Gottfried-Jackson frame @f(Q) and gluon
(c.m. system op, andk). Details are given ifi6]. The terms
with coefficients[ATe;, [A]f; in Eq. (4.3 give contribu-
tions singular ats,=0 (w=1) and must be integrated in

e, €3 €4 s €6

G"=e;+ + + + +
YU p2Ps pyop Pi-Pa P3k o pioPaps-k

€7 p2-K 69 P2 K
+ +e +e
P1-P4P2-Pa 8P1'D4 P2 P4 P3-K 10p3~k

e -k N k2
n ;1 . P3 2p3 N 3p3
P1-P4s° P3-K P2- P4 P2- P4 p,-k
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n#4 dimensions. In view of the fact that the-23 particle  interest not given iri6] are determined in Appendix C.
phase space is proportional @_28 [Eqg. (26) of [6]], the Corresponding to the second term in E4.2), with y
remaining terms can be integrated in four dimensions. The= \/(t+u)?—4m?s, S,=s,+m?, and x=(1—B)/(1+p),
arising integrals are given ifl12]. Certain terms of special where8=1—4m?/s, the final result is

dod?  Kg(0) Ng_ vs, 2S, 4s, 2% ettt o
dodw ™ (47)° 167875, | 1 sy(s+u) mz(s+t)ze s+ " e oa T ErleT CelioT Cadlis
+ eyl io(tes )+ F1F,+ foF, 1 = NCF(O) %=, —& gl 14(tsu) + &gl

11' 13! 171 2 (1 W)+ SZ 16 52y T+U y 5 6! 11 911

vS S 2\ . ~ ~ ~
——SZ—F(O) TaF S T AR+ TP+ TS+ T 1 St T1aF S — | 21— +Ino | (FaFS+T4F S+ ToF 3+ T10F S,
S, 16 m? S
~ s 1 2 NC c_ Sv 2 ~ S%
+fuFi) | — a-w. s, 16F(O) TeFS+ToF5— 2Inﬁ+ln§ (FsFe+TeFe+ToF) +2L+SZ CF(0)
T Fe+ T+ T A 2 2 | Inin >
x{fsFe+fgFe+foFg}+8masNcC,(m)[ ]d dw 2 m—— n (x)+— n? u +2 n? nﬁ
+Liy[ 1 1u) L(l - ) 24(2) i | Pyt 10O | In(x) ~ Lig| —2 4.5
| - == | - = = - nNn—; —IN(X n(x)—Li . .
2 X t 2 ﬁ m2 2 (1_ﬂ)2

In Eqg. (4.5), the integrald; are given in Appendix C of6]
and the integral$; in Appendix C of this paper. Alsd, ,
=[In(1—w)/(1-w)], , which enters through the relation

1
(1—w)*1*2€:—55(1—w)+ —2el,,

(4.9

1
(1-w),

where the so-called “plus” distributions are defined in the

usual way:

[fa [
zZ———= z
o (1=w), Jo

For the second term of E(4.2), we give the terms- 1/g2
and 1£, as well:

f(w)—f(1)
W. (4n

doZ?® N¢ dofd Nc
dv dw _§8wascS(m)[A]dv dw T omasCem)
'yg —u —t
[A]d d 3In|l — = —In 2
Nc8 c A UZ(% 2m?— |
+—8maC (Al aw s n(x)
1 ZSU f
~ - Toow F(E[ATPg () [ATB(xzS,t,xoU),

4.9

Where[A]ng(x) is the four-dimensionaj— gg split func-
tion without the 8(1—w) part, F(g), [A]B(s,t,u) are
given by Eqgs(3.6) and(2.5), and

1-v
1-vw’

Xo= (49)

Addition of loop and brems contributions cancels the sin-
gularities 1£2 and part of the ¥. The remaining ¥ are
canceled by a factorization counterterm corresponding to the
final gluon emitted collinearly with the initial onfg=ig. 2A,
graph(d)]. In the modified minimal subtractioMS scheme
this counterterm gives

dO'ct . l ZSU F A P A B
(Al g gw™ = Toow T (E)[ATPgg(x2) [ATB(x;S.t,x5U)
m2\°
X|—1, (4.10
M

with [A]P44(x) theg—gg split function andM ¢ the factor-
ization scale.

Our cross sections will be convoluted with parton distri-
butions evolved via two-loop split functions. indimensions
the split functions have the form

[ATPa(X,&) =[A]Pba(X) +[ATPE(X).  (4.1D)

114509-5
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The polarized split functions have been determifi#8,14  As before,A|MJ9 ;|2 is given by Egs(5.1) and (5.3) with
in the 't Hooft—Veltman schemd15] modified so that AQ,, r=1,2,3, Ae;, and Af; replacingQ,, €, andf;.
Aqu(x,s)= qu(x,s). In this scheme, The coefficientg A Je; and[ A]f; are given in the last part of
Appendix B.

The contribution td A]do/dv dw is obtained by working
as in Sec. IV[c.m. frame ofQ(Q) and final light quark
Again the terms with coefficientsA Je; and[A]f must be
integrated inn dimensions.

After phase space integrations, we get the following re-
APE (x)= P2 (x)=0. (4.13 sults for the set®q, Q,, andQs:

Ang(x)=4Nc(1—x)+%Nﬁé(l—x). (4.12

However, our calculations were carried in dimensional re-
duction(Sec. ), where

Thus, a conversion terido,,,/dv dw should be added to d"é?’Ql_ 2 4S, 2S5,
our Ado?9/dv dw. Conversion terms are determined from dov dw =Leg) et
the difference of AJP;,(X) in the two schemeEL6]: In the
present case,

ex+ In—e
m2(s+1)2 ° So(stt) m2 *

+eglygt TaF§+TeFS+TaFs+ T1oF Sot F1aF Sy |

Aocon 20 L o0iape (x,)AB
doaw 1—ow ' (Q)APg(X2) AB(X58,t,x5U), (5.4)
(4.19

do_Yquz

)
dvdw

with APg.(x) given by Eq.(4.1D.

The unpolarized parton distributions we use were evolved
?n the MS gcheme, wher®;,(x) =0. Thus conversion term + T RS+ T0FSo) (5.5
is not required.

= Leé{ eyt fooF 1o fiaF gt F1aF 1a+ TgF S

74.Q
— dUBr ° SZ SZ
V. SUBPROCESS‘}/Q—)QQQ dl) dW LeQeq e1+ m e4+ e8| 10+ f4F4
The graphs contributing to this subprocess are shown in _ _
Fig. 2B. The squared sum of the corresponding amplitudes, +1eFgt fioF ot fiF it TrgFTet fagFas
after summing over spins and colors and averaging over ini-

tial colors, is given by +719F§9+720F§0+?21F§1] ' (5.6
2
Ame M3 of?= - (4m)*aal(€qQut Qo 8aleQa) i
(5.9
2 1 v 52
where g, the charge of the light quark. Here |M2_,3|2 L:aasN—ng-
corresponding to/qHQQq is given by the same expression
with an opposite sign of the last term. The quantQy is We do not write down expressions containing Joles
given by an expansion similar to E¢4.3). Next we intro-  coming from set€); andQ, as they are equal with opposite
duce sign to the corresponding counterterms Wifkgzrhzlsg)s in-
stead of (M?/M2)® (see below.
S3a= Pz Pat M2 (5.2 The singularities arise when the final light quark is collin-

ear with the initial oné k- p,=0, Fig. 2B, graphsa), (b)] as
well as when the photon is collinear with the light quékk
-p1=0, Fig. 2B, graphsc), (d)]. To eliminate them we in-

ThenQ, and Q5 are of the form

_ €4 Po-k . pgk fs troduce two counterterms. In the second case the counterterm
Qoa=€rt j—~+eg——+14 ~k+ .k . . S
P1-Pa  "P1-Pa P2k P2 involves the Born cross section faqg— QQ, which is pro-
= ~ ortional to[17
fo p1-k pi-k  fiq  fis P [17]
P1-P4P2-K S34 s3, Saa Pk 1[t?+u? m?
~ _ ~ ABqa(S,t,U)Z_BqE(S,t,U):—— 2 ?
flG fl7 f18 f19 S

(5.7

Moreover, inn dimensions, in the 't Hooft—Veltman scheme,

+ -
S34P1-K  s3,p;-k  S3aP1-Ps P1-kpy-k
7 P3-K T

Flo0p K Sapa 63 AP (x,6) =Ce{2—x+26(1-X)},
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Pgq(x,8)=Ce physical cross sections for both components of the reaction,
i.e., pointlike and resolved, the latter to leading order. Note
and we always observe a heavy quark in the final state. Capital
letters in this section refer to the kinematic variables of the

N 1 physical process and small letters to those of the subprocess.

APgy(X,8)=X— 5 —&(1=X), Starting with the pointlike component, the total cross section

for the reaction(1.1) can be written

1+(1—x)? ] physical processyp— Q-+ X. This includes derivation of
—eX

X2+ (1—x)2

> —eX(1—Xx).

n — 1 R
Tl [(310(9)= [ aMATMupx.QI[ATn(5); 61

Thus, in theMS scheme, the first counterterm gives b denotes the corresponding partdg,, its probability dis-

de® 1 2 tribution, and

[A]dv SIWZ e 1—vwF(S)[A]qu(xz)[A]B(Xzs,t,qu)

S=XS,  Xpin=4m?/S. (6.2

2 &

m (5.9 The total partonic cross secti@ﬁ]&yb(s) can be calculated
MZ/) ' straightforwardly by

whereF(g), X,, and[A]B given by Eqgs.(3.6), (4.8), and -  [vmax, (1 A p(S,0,W)

(2.5, and the second gives [Alo,u(s)= - dv WmindW[A]W'

(6.3
do® 1 16s e2

Al aw™ = ?F(S)%[A]qu(w)[A]BﬂWSaWt:U) where
2\ ¢ . _3(14- ) W —m—2 (64)
X % (5.9) Umax/mm_z —:8 ' mm_SU(l—u)' .
F

To derive the transverse momentum differential cross sec-

Although not necessary, it is now customary and evertion we note that the transverse momentpmof a heavy
advantageou$8] to average the unpolarized cross sectionquark is invariant under boosts along the beam axis and,
over n—2 spin degrees of freedom for every incoming bo-also, that our heavy quark rapidities are defined with respect
son. This convention is employed when fitting the unpolar-to the photon Consequently we have
ized structure functions. As a result, for the unpolarized case,
the right-hand sidéRHS) of Eq. (5.8) should be multiplied [ A]dﬂyp(s, Pr) _ f ! X ATFoo(%,07)
by (1+¢) and of Eq.(5.9) by (1—¢). dpr Yein(PT) b/t

We note that, upon integration, the singular terms in

[A]Q; cancel out, as they should since there is no counter- d&yb(s,pT)
term proportional te,eg . X[A]d—pT’ (6.9
Conversion terms are also needed in the present case.
Along the lines of the previous section, with
gdeon 20 e Xmin(P1) = 4(pi+m?)/S, 6.6
[ Jdv dW_ 1—ow ( )[ ] gq(XZ)[ ] (XZSv ;XZU) R .
(51@ [A]da-'yb(si pT) _ fymaxdyﬁ[A]dUYb(S’U’W)
dpr Ymin  SU dv dw
and 6.7
dU‘(:%?w 16s eé The integration limits on the c.m. rapidityare
[ATgy dw =~ o F(O)  [AIPG,(WIA [Bgglws wi,u).

2
: (5.11 Ymax= ~ Ymin=IN( \/W,.;l—i- \/Wr;l—j_),

Finally, we have carried our analytical calculations usingWith Wn=4(p7+m?)/s. Integration over rapidities in Eq.
REDUCE[18] and to some exterstorM [19]. (6.7) is not well defined for “plus” distributionggiven in
Eqg. (4.7)] in the partonic cross section. The problem is

solved with a change of variables. One needs to consider an
integration contour for a heavy quark rapidityand split it

Here we present the necessary formulas needed for thato two parts such that no overlappiitige., double count-
calculation of the differential and total cross sections for theng) occurs. Formally one would have

VI. PHYSICAL CROSS SECTIONS

114509-7
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c-quark

Ymax Ymax Ymax
f dy f(y)=f dy f(y—>—y)+f dy f(y). V5 =10 Gev
~Ymax —Yo Yo 20
(6.9

F — Set A
15 [ ---- Set B
N SetC _
[ gq —>QQq
R, --+ Resolved

In particular, the splitting poinyy must be the point where
functionw=f(y) has a minimum. We find

yo=In[2+/(pF+m?)/s],

and the general relation between the “new” variableand
the old variabley is

B 1 [ api+m)
81’2:—22 1+ l—T . (69)
2

The correct sign in Eq6.9) is different in different integra-
tion regions; e.g., in the regionyy,Ymaxl the function ¥

decreases when one goes frgpto y,,ax and thus the minus
sign in Eq.(6.9). Similarly, we find that for the first term of \

Eq. (6.8) the sign for €Y in Eq. (6.9) should be positive. The 0 e
resulting expression for the differential cross section [
reads -1 [

Ado/dp; (nb/GeV)

01 |

Au(pr)

[A]d?ryb(s,pT) _fl dw  2p;

do
dpr  Jw, W s\/l—wm/W{[A]dUdW(v:h)

do
+[A]m(v=v_)], (6.10

[ b)
where P ST R P FUTEE P ETT TR P P R
0.2 0.25 03 035 04 045 05 055 06 065 0.7
X1

vi=%(1i\/1—wm/x). (6.11

FIG. 3. Quantities related with thp; distributions versus;
=2p;//S: Parts(a): polarized differential cross sections; the LO
However, even the expressio.10 is not well suited for  (Born) ones are indicated by *. Pars): asymmetries for sets A, B,
numerical integration. One notices that there is a numericallyand C.(1) Q=c, YS=10 GeV.(ll) Q=c, S=100 GeV.(ll)
divergent(though analytically integrablesquare root in the Q=b, JS=100 GeV.
denominator. The singularity comes from the lower limit
Xmin(P1) Of the x integration. To avoid this minor problem Fop(x,Q 2) is a momentum distribution and
one more change of variables is necessary. Instead of the old

variablesx,w we introduce the new variablesw’ through Xmin(PT) w
the relations Zn=V1—Xnin(PT), w,’nzﬁ, X=-
-z
X (6.149
z=1\/1- M w'=w. (6.12
WX

For the rapidityY fixed one gets the following expression:

To correctly define integration limits for the new variables

o : : - do (SY) [t do.u(sy)
one has to perform a nontrivial mapping. Finally we obtain [A]*/(F;—Y: me(y)dx[ﬁ]fb/p(X,Qz)[A]ydb—y,
doy(Spr) _ 4p (6.15
T Sxmn(pT)f dzf LA, Q
with
do do
xf[A]dvﬁvwnﬂA]dv jww_)]. Xmin(Y) =€ /(S/m—e") (6.16
(6.13 and
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c-quark
V8 =100 GeV

< o
[ ]
o
~N
O
£ -o0s — Set A
2 i e _
s - 74— QQq
3 - Resolved

-1.5

-2

-2.5

T P M| M| M| L
0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.2

0.3 0.4 0.5 0.6
X1
FIG. 3 (Continued.
dop(sy) (1 2wdw do
[A]ydi:f (Al
y Wiin(€¥+we™Y) v aw
e 1
Wpin=—=—""—, UV=—""1,
msim—eY 1+we %
1
y=Y+ > Inx. (6.17

Finally we turn to the resolved LO photon contributions.
We define the doubly differential cross sectida/dY dpr
for the 2—2 subprocess:

dayp
[A%Ydm
1 [ATF (X1, Q2 [ ATFpp(x3,Q%)
=2pt dx; v
X1 min Xi1—€ A

X[AJoan(S,X1,X3),

(6.18

PHYSICAL REVIEW [B2 114509

b-quark
V5 =100 GeV
— 10
>
[0
o ,
g P
& 3 — SetA
2 - Set B
S o Az SetC _
< == y9—>QQq
- Resolved
a)
_g0 1 1 | T RS L
0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.3 0.4 0.5 0.6 0.7
X1
FIG. 3 (Continued.
where
_ 2 2\ 1/2
o_ Xi€ YA _[prtm S
X2_ 7Y y = S ’ S—X1X2 .
X;—€e'A
(6.19

The expression$6.1)—(6.19 give all the formulas we
have used.

VII. NUMERICAL RESULTS

We present results foQ=c quark (m;=1.5 GeV) at
VS,,=\/S=10 GeV, relevant to the experiments] and
[2(a)] and S=100 GeV, as well as foQ=b quark (m,
=4.5 GeV) aty/S=100 GeV; the latter energy is relevant
to the DESYep collider HERA. Higher HERA energies are
not considered as the cross sections become too small. The
effect of changingm,. is also considered.

We use the NLO sets of polarized parton distributions of
[20], which can be characterized in terms of the polarized
gluon distributionAg(x) as follows:

Set A:Ag(x)>0 and relatively large.
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c-quark c-quark
VS =10 GeV VS =100 GeV

—~ 30 —_ 1
O B O
£ L £
5 25F — SetA %
R s

o e
2 20 [ ot Yq - QQq 2

C esolved

— Set A
| ---- Set B
-2 _- ------- Set C _
sl - yq—>QQq
i -+ Resolved
=3
-3.5
L a)
. ‘ | ‘ | . ! . ! . ! .
L ~ o5 0 0.5 1 1.5
Y
i —~ 0.01
C \>__/ """"""""""""""
:' > .
: <€0.005 [

-0.005

-0.01

-0.015

-0.02

-0.025

-0.03

FIG. 4 (Continued.

FIG. 4. Quantities related with the rapidi¥ydistributions: Parts

(&) and(b), as well agq(l), (I1), and(lll), as in Fig. 3.
saturation one slightly in excess; the results presented below

Set B:Ag(x)>0 and small. correspond to this set. The largest resolved contributions

Set C:Ag(x) changing signAg(x)<0 for x>0.1. come from[22].

Notice that in the presented results also the LO contribu- In Figs. 31, 3ll, and 3llI, at\S=10 and 100 GeV we
tion is convoluted with NLO distributions; in this way we present quantities related to the differential cross sections
believe that, e.g., the magnitude Kffactors more properly Ado/dp;, where pr=psr (Fig. 1), versusxy=2p1/+/S.
reflects the NLO subprocess terms. Also, we use throughowleasurement of such cross sections/8t=10 GeV may be
the NLO expression ofrs(u) with the values for the QCD carried in(a) of [2]. Here we use the renormalization and
scale A, flavor thresholds, and number of active flavors,factorization scalg.= M= (p?+m?)2.

Niy=N-—1, that match the definitions corresponding to In parts(a) of Figs. 3I, 3ll, and 3lIl we present the NLO
heavy quark decoupling. We note tha{] the above values and LO (denoted by a *) contributions to the physical dif-
were taken to match the definitions for the respective partoferential cross section for sets A, B, and C[260]. For set B
distributions. However, we have explicitly verified that this we also present the contribution of subprocék$) and of
amounts to a negligible change in the final numerical resultshe resolved photon.

Note that in Eq(2.8) we takeM =m. In parts(b) of the same figures we present the asymme-

At this moment there is no experimental information ontries
the polarized photon structure functioas-,, andAFg,,,
which determine the resolvegl contributions. To estimate
them we have used the LO maximal and minimal saturation
sets of[21], as well as the sets ¢22], which belong to the
class of the so-called asymptotic solutions. The two sets ofhe unpolarized distributions are the most recent set CTEQS5
[21] give contributions differing little, with the maximal [23]. In A | the resolvedy contributions have been left out

Adoldp;

AL (pr)= “doldp; (7.1

114509-10



NEXT-TO-LEADING ORDER CORRECTIONS TO HEAVY ...

PHYSICAL REVIEW [B2 114509

b-quark c-quark
V8 =100 GeV V5 =7-14GeV
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O o) L
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- N
x 25 5
®
ko] 0 F
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-25 F
-50 F
=75 | .
.- Eesolved
—-100 -
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ra)
1 C . 1 1 . 1 . 1 . 1
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8 0.2 =
< Z
0.15 <
o1 [
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C -0.05
L b) £
_0_1_- 1 1 1 1 1 1 1 1 1 Lo v v b v v b v b b b by
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FIG. 4 (Continued.

FIG. 5. Quantities related with the integrated cross sections for
yp—Q+X: (a) polarized total cross sections; the LO ones are in-

since they are small and what is presently known does ndiicated by*. (b) asymmetries.
permit a completely scheme independent calculation. The er-

rors have been estimated using
(7.2

At S=10 GeV we use the conditions ofl] (Pg

B, C. Figures 3lb) and 3Ili(b) show that at /S
=100 GeV the best range is 6X;=<0.3, and forQ=c
one may distinguish all A, B, C, but f@p=b only A and C.

In Figs. 41, 4ll, and 4lIl we present rapidity distributions.
Here we useu=M;:=2m. The presented differential cross
sections are analogous to those of Figs. 3l, 3lI, and 3lll and

=80%, Pr=25%, L=2 fb~!, c-quark detection effi-
ciencye.=0.014) and unpolarized cross sectwintegrated
over a bin ofx; corresponding ta\p;=0.5 GeV. At /S
=100 GeV we usePg=P;=70%, L=100 pb?, e,
=0.15, forb quark ¢,=0.05 ando integrated over a bin
corresponding tdApr=5 GeV.

Figures 3(a) and 3l(a) show that betweer/S=10 and
100 GeV the shape of the L@Q doo/dpy and NLO
A do/dpy varies dramatically; this also holds for tiefac-  <Y=<1.5 is the best to distinguish set C from A or B. Figure
tor, K=Ado/dpy/Ado o/dpy. 411(b) shows that at/S=100 GeV forc quarks,A_ (Y) has

Most important is the possibility to distinguish between become too small. A¥~ —1 it seems one can distinguish
sets A, B, and C. Figure @) shows that at/S=10 GeV all A, B, C, butA do/dY is small for all setFig. 411(a)].
nearx:=0.3 one can distinguish A and C and perhaps all A,Perhaps more promising is the range9<1, where one

Ada/dY

do/dY 7.3

AL(Y)=

The errors have been estimated using &J2 where now
the unpolarized cross sectiows are integrated over a bin
AY=1.

Figure 4[b) shows that at/S=10 GeV the region 1.25
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c-quark b-quark
VS =80 — 200 GeV VS =80 — 200 GeV

4 F — SetA
- ---- Set B

Ao (nb)
Ao (nb)

o]
P ¥ ILALEL A B B

a)
_02 T R B R A L
100 120 140 160 180 200
VS
0 0.016
© ’%? F
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g EN:
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< -01 | C
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FIG. 5 (Continued. FIG. 5 (Continued.

can distinguish C from A or B. Finally Fig. 4ll)) shows ot very large, so set C can be distinguished from A or B.
that detection ob quarks is not useful due to large erroeg (o p quarks, due to a combination of smay and rather

sma'lb. ) . small o, the error is very large and precludes any useful
Figures 51, 511, and 511l present integrated cross sectiongysormation onAg.

Ao and the corresponding asymmetrigs =Ao/o versus Finally, Fig. 6, for the integrated NLO cross sectiahs

the c.m. er]ergy\/é. The scale is agaip=M=2m. ando and for the asymmetries, | = Ao/ o, shows the effect

. Comparison of Figs. 51 and 5-II shows that at th.e two of changing thec-quark massm, [part ()] and the scales
different ranges of/S the changes in the shapes and signs ofy, M; [part (b)]. The results refer to set B d20]. E.g.,
Ao andA, are again dramatic; clearly the same holds forregardingA o, in Fig. 6@ we define

the corresponding( factors,K=Aoy /AT o .

In Fig. 5I(b) the error(at \/§= 10 GeV) is estimated us- _Aa(mc)—Aa(l.S GeVj

ing again in Eq.(7.2 the conditions of[1]. Under these 7.4
m ’ ( )
conditions we conclude that sets A and C can be distin- Ao(15 GeV
guished, but not sets A and B or B and C. The proposed
SLAC experiment 2], which amounts to better conditions and in Fig. Gb), keepingu=M;, we define
and will give results at somewhat lowgs, may distinguish
also B .and C. Ao-(,u)—A(r(ch)
In Figs. 5li(b) and 5IlIi(b) the errors(at JS=100 GeV) Rsc= Ao(2 , (7.5
have been estimated using again the values of o(2m)

Pg, Pr, L, &., ande, stated after Eq.7.2). Forc quarks,
|ALL| are very small due to relatively large unpolarized crossand similarly fore andA,, . Figure &a) shows that at the
sectionso. For the same reason, however, the eday, is  lower J/S the effect of changingn, is more pronounced.
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c-quark hard gluon parts via a cut parameter The formal relation
V5§ =10 and 100 GeV with our approach is
¢ 08
o
0.6 - go sv .
o A, E—A, (8.1

the necessary framework to relate these two methods is de-

veloped in[25]. Now, concerning terms involving and u,

we easily see that they are exactly the same, except &meat

u are interchangefcf. our definition, Eq.(2.1), with that of

[8], Eqg.(2.13]. The only difference seems to arise from the

coefficient of{(2), which is —2 in our case versus 3/2 in

[8]. Note, however, that our coefficieft(e) in Eqg. (3.6)

containsI'(1+¢), which upon expansion in powers ef

gives a term £2/2)¢(2); this accounts for the difference.

SinceF (&) appears both in our loop contributig®.6) and in

our brems contributioit4.7), the overall result is unaffected.

To verify our calculation we have evaluated numerically the

RN NLO MS scaling functions for the partonigy cross section,

03 b\ taking into account an additional “mass” factorization term
E h given in Eq.(6.31) of [12], and compared it to the corre-

sponding curves of Fig. 5 ¢B]. We found exact agreement.

We have also explicitly verified that the sum of our non-

Abelian loop contributions and the brems ones, which are

proportional to the Born contribution, equals analytically the

corresponding “virtual soft” expression presented [i5].

02 F

e IX. CONCLUSIONS

, , , , , , In this paper we have presented complete analytic results
35 4 45 5 55 6 for the heavy flavor photoproduction for both longitudinally
p (GeV) polarized and unpolarized initial particles in a closed form.

FIG. 6. At c.m. energies/S=10 and 100 GeV, for integrated These include the NLQ contributions of the hard brems due

cross sections and with solid lines farr, dashed lines forr, and to the relevant partonlc.subprocgsﬂﬂ) and (1.3, which

dotted lines for the asymmeti,, : (a) the ratioR,, (see end of &€ presented for the flrst_tlme in analytic .form. We have
Sec. V) with m=m,; (b) the fractional variatioR with the scale com_puted numerically various total and differential cross
w=M; and with respect tau.=M;=3 GeV. For both(a) and (b) sections for_ the energy ranges _o_f_CERN,_SLAC,_ and HERA.

the lines specified by+ refer to the corresponding quantities for We have discussed the possibilities to differentiate between

JS=100 GeV. various scenarios for the polarized gluon distributiom and
have once more emphasized a way to enhance the asymme-
VIll. COMPARISON WITH OTHER PUBLICATIONS tries for HERA energies by measuring the differential cross

sections with the help of certain acceptance fsé® also our

Figures 3l(b) and 3lli(b) show that at small carlier paper of24](a) on this subjedt

X1, AL (p7) is small; the same holds fok  (Y) of Fig.
411(b). This may lead one to conclude that HERA is rather
useless_ln speplfylngg [5]. However, it may not be so. On ACKNOWLEDGMENTS
the basis of Figs. 3(b) and 3lli(b), reconstruct events and
select only those with, say;>0.2, i.e., carry integrations of We thank I. Bojak for his kind collaboration in doing
A do/dp; over some cut phase space. This may well encomparisons. Thanks are also due to G. Bunce, D. de Flo-
hance the resulting\ , [24]. Of course, an estimate of the rian, B. Kamal, and J. Kmer for discussions, to W. Vogel-
corresponding errors is required to reach a definite conclusang for discussions and for providing us the setsléf, to
sion. P. Bosted for several communications, to A. Despande for
Finally, since we present analytic results for the unpolar-useful information and remarks, and to V. Spanos and G.
ized cross section as well, we will compare with similar re-Veropoulos for participating in part of the calculations. Z.M.
sults of[8] [“soft” part, Eq. (2.24 of [8]]; here the relevant would like to thank the Particle Theory group of the Institut
part is the last three lines of E¢.5). Referencg8] uses the  fur Physik, UniversitaMainz, for hospitality, where the cal-
phase space slicing method, which separates the soft amdllations of the final parts of this paper were carried out.

114509-13



Z. MEREBASHUVILI, A. P. CONTOGOURIS, AND G. GRISPOS

APPENDIX A

Here we present the coefficients of the loop contributions.

In the following[A]A;, i=1,3, are given in Appendix B of
[6]. For[A]ldo,_./dv given in Eq.(3.2):

AFA:L: AA]_,

AA,=—4[2(7s%/t?+8s/t+6)m?/u+ 11s%/tu
+24s/u+26t/u+12t%/su+st/uT
—2t%/sTIm?/T,

AAz=AA/2,

AA,=4[(2u/t—s/u)ym?/t—2s/t+ 2u/s]m?/T,

(A1)

hAl:Al,

A, =4[ (24s/t— 28/t T+2s/T+12t/T)m*/tu
+(s/t+6t/s+t/T+11)m?s/uT—2t%/T?],

FA‘3:A3/2,

A,=—4[4m*s/ut?
—(28?/t?—s/t+t/T—2)m?/u—t/T].

For[A]d?Eg/dv and[A]doy/dv given in Egs.(3.5 and
(3.7):

AA;=m?s/t?,

AA,=4[2m*s?/Tut?— (8sU/t?+9u/T—8—t/T—8t%/sT
—st/T?+ 2t2u/sT?)m?/u],

AAz=4[m*s/Tut—2(s/t—1—t?/sT)ym?/t],

(A2)
A;=—m?s?/t?u—1,

Ab=—4[ (165 T/t2+28%/t2+8—u/T+t/T)m*/uT

+2(slu—2s/T)ym?/t],
AL=4[ (4sT/t?+s/t+2)m*uT+2m?s?/ut®+ 3].

For[A]doy,/dv and[A]doy,/dv given in Egs.(3.9) and
(3.10:
AB]=2[4(5u+ 1t)m*t+ (5u+ 7/ + 4u/t?)m?

+ (4lu+3ht) (t2+u?)/s],

AB)=—(158%/tu—62)m?s/tu— 4(s?/tu+8)m*/tu
+13/4s?/tu—2),

PHYSICAL REVIEW 62 114509

AB4=2[(3/u+4/t)(u—t)m?/t+ (L/s— 1it)(t>

+u?)/u],

AB,=4[2(2/u+ 3+ u/t?>)m?— (t>/u—t+9u+3u?/t
—6tu/T—tYT2u+t3T?)/s],

AB.=8(s%/tu—3)m?s/tu,

AB{=2[2(1/T+1MU)m?/s
+2(t?/u?+ u?/t?+ 2t/u+2u/t)/s—t/uU

—u/tT—(t3/u—2tu+u®/t)/sTUIM?,
(A3)

B;=2[4(1/it—3)m*t—(1—u/t)(1lu+2k)m?
+4t/u+2+3ult],

B,=[4(29Mu>— 6/tu-+2942)m*
—2(1u?—12ku+ 1£>)m?s
—13t/u+4-—13u/t]/4,

B5=2[4(1/t—3u)ym*t+ (2u/t?— 1k —5/u)m?

—2s/u+u/t],
B,=—4[2(4/u+ 1/t)m?s/t+4t/u—3s/t—2t%/Tu
—t/T—2t%/T?u],
BL=—16(1/t2+ 1u?)m*,
Bg=—4[(t/Uu?+u/Tt?)m*— (5s/tu— /U — 1T

—t?/TUu—u?/TUt)m?+ 2tu/TU].

APPENDIX B

In this appendix we list the coefficients of the brems con-
tributions. ForAG”? given in Eq.(4.3) and A dogf/dv dw
given in Eq.(4.5), the coefficients\e; andAf; are

Ae;=164(s/su— 1u+ 1)m?/t+ 3s/s,u— 2/lu—s/st
—S,/tu—u/s,t]

Ae,=8{8(—s/u—1+s/t)m*/s,t+2[2s/u—2+4s/t
—3ss,/t(s+u)m?/s,— 4s?/s,u+4s/u—2s/s,
—u/s,+ult+2ss,/tu+3u/(s+u)},

Ae3=0,

Ae,=8[4(s/u+sls,—t/s,)m?/t+ss,/tu+su/s,t
—2u/s,— 2],
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Aeg=8[8(t/u+1)m*/s,t— 2(s?/s,u+s/u+4t/s,

—2s,/u)m?/t+st/s,u+4s/s,— 2+ su/s,t + 2u/t],

Aeg=4[8(s/u—s,/t+ult)m?*s,+2(2st/s,u+sls,
—s,/u+2+2ss,/tu—2s?/s,t)m?
+5(s2+ u?)/s,t],
Ae;=4[8(s,/u—1)m*t+2(2s/lu+3—s,/s
— 2s5/tu+2s/t)m?s/(s+u)

—s5,(s2+83)/t(s+u)u],
Aegz 16(32/U_U/52)/t,

Aeg=4{8(t/u+s/t)ym*/s,— 2[ 2s%/s,u— 2s/u+2s,/u
— 2+ (st/s,+2su/s,—S,)/(s+u) |m?
—st{2s/s,u—2/u+ (s, /u+uls,)/(s+u)]},
Ae;p=16(t/u—u/t)/s,, Ae;;=—16m?*s/u, (B1)
Af =16 4(s/u—1)m?/s,t+ (3/s,+ 1/t)s/u],

Af,=32(s+u)/ts,u,

ATz=Af,, Af,=—32(2/s,+2/t—s/s,u)m?/t+ 1k

+1/s,],

Afs=8{2[s/s,u+s/tu—2u/t?+ s/t(s+u)
—4ss,/t?(s+u)]m?—s?/s,u
+2s/u—2s/s,+2—2uls,

+ss/tu+s,/t+ (u+2s,u/t)/(s+u)},

Afg=4(2{2s?/s,u+slu+s,/u+3s/s,+[s+2su's,
—3s,—4s(s5+ u?)/tu]/(s+u)ym?+ s?/s,
+2su/s,+ 2u?/s, — 28%/t— 4sult + 255/t — 2u/t
+(s5+ud)/(s+u)),

AT,=0, ATg=0,

Afq=4{2[2s/u—2s5/tu+s,/t
—(sS,/u+2su/t—s,u/t)/(s+u)]m?

+5,— 2t—sa/t—u?/t+(s5+ud)/(s+u)},

Anfloz _8(23+t)m2, Anf‘n:O.

PHYSICAL REVIEW [B2 114509

e,=164(1/su+ 1/s,t — 12)m?— 3s/s,u+ 2/u—1/s,
—s,/tu—14],

e,=8{— 16(1/t+ 1/u)m®/s,t — 8[ 3t/s,u+ 2/u+ 2/s,
—1/(s+u)]m*/t+2(s?/s,u—8s/u+4s/s,— 1
+2u/s,— 3s,/t+ult)m?/(s+u)+u/s,— 4st/s,u
—25/s,+(2s,— 2u+ 2sS5/tu+s,u/t)/(s+u)},

e;=—16m?,

e,=—8[8m*(1u+1/s,)
—2m?(s/u—s/s,—2s,/u—2uls,)

+(S,+U) (24 2u/s,+ 2s/s,—slu+s/s,) |/t,

‘es=8[8(s/s,—1)m*/tu
—2m?(s/s,u-+2/u—>5/s,+ 3/t — u/ts,)
+s%/s,u—s/u—s/s,+4+sults,

- 252 /t+ 252/t52],

‘eg=4{16m°(1/su— 1/s,u—1/ts,) + 8[su—(s—s,)?
—(s,—u)2Im*/ts,u+ 2mA(t/u+s/s,— 1+s/t)
—s(s%+u?)/s,t},

e;=4{16(s,/u—1)m®/st
+8(s?+ss,+s5)m*/tu(s+u)
+2m?[3s/t+(ss,/u—s,— 2ss,/t)/(s+u)]
—s5,(82+85)/tu(s+u)},

eg=16(s,+u)?/ts,u,

eg=4{16(s/s,— 2+5s,/s—u/s)m°/tu
+8(s,/u—3st/s,u—2+uls,)m*/(s+u)
+2m2[(s—s,)(1lu+1/s,) — 1+ 2(s,—s)/(s+Uu)]

+ (s, /u—2+u/s,—2st/s,u)st/(s+u)},
(B2

e10=—16(1t—1u)(s/s,—1), e;;=32m°u,

f,=—168m*ts,u+2(2/u+s/tuym?/s,

+s/u(1t+3/s,) —2ss,/t(s+u)u],
f,=32(1t+1/s,)/u, Ts=f,,

T,=—3244m*/ts,u+2(1/s,+ 1it)m?/u

For G given in Eq.(4.9 and dog/dv dw given in Eq.

(4.5), the coefficiente; andf; are —1/s,+s,/t(s+u)],
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o= —8{8m*[1/s,u+ 1fu+ (1t —2s,/t?)/(s+u)] e,=16k, f,=8/s, fi;=8m?s,
—Am?[ 1/t + 28, /t?— (st/s,+ 5SS, /t)/(s+u)u]—t/u f14=8(2m?+u)/s,

2 2 _ ~
+2t/s,— s5/tu+ (s7t/s,u+2u—2s,u/t)/(s+u)}, o= 8(2m2+ u)/s,

Fo_ Ar o2 _ _ ~
fo=4{8m [s"/ts,u—1/s,— 4f f16= — 2(4m?s— 485+ 65,5+ 4s,t — 35’ — 4st—2t?)/s,
— (slt—s,s/ut—s,u)/(s+u)]+4[s%/s,+su/s, ~ ~
) fi;=2m?s, T,,=—16k.
—2S,+S—U—S,(s+5S,)/(s+u)]m/t
And, finally, for Qg,
—[1— (24 UD)/(s+ Ut](s+Sp+U)2sy), inally, for Qs
5 5 Ae;=8(s,—2s+t)/st, Ae,=—8, Aeg=0,
f,=—32(s+u)’m?/t?, Tg=32s+u)m?ult, _
5 Af,=—8(s,—t)/st,
fo=4[8m*(s?/tu+s,/u+s,/t)+4m?(ss,/t+s,—25)
Afs=4[2(s,—t)m?+s5—s,t—ut]/st,
+(Sp/t—2) (824 Uu2—st—ut) J/(s+u), 5=42(S,~ M+ 8, — st —utl/s
~ - Afg=—2[2(2s+t)m?—2s,t +t2]u/(s+1)s,
f10216mz(2m2+u), f11:_8m2U2. 6 [ ( s )m 32 ]U (S )S
Now we shall write down the coefficienfsA]e; and Af1=8(sp—s)/st,
[A]f; for the subprocesyq—QQq. ForQ; we have Af14=4[2(s;—3s)M?— 2SU+ 25U+ S, ]/st,
- 2_4)\/t2 = - ~
Ae; 8(2m*—1t)/t°, Aez=0, Ae, 8slt, AT =8,
AeSZO, ~
Afg=—2[2(s+2t)s,— 2m?s

AT,=8(2m?+1)/t?,  ATs=4[2(sp+s)m?—ut]/t?, _ 2 4st—2t]ul(s+ D)L,

Afg=—2(2m?+2s,-1), AT,=0, ATg=0, Afyg= — 2{2[(25+1)s,+ 252+ 25t]m?
AFp=2(2s+t)m?,  AT;=0, —(2u+ DSt} (s+1)s,
e,=8(2m?+1)/t?, e;=4m?, e,=8(2u+s)/t, Afig= —2[2(s+1)s,— 2m?s
eg= — 164, —s?+2ut]s, /(s+1)t,
(B3)

AFFZO: 0, A?21=0,

f,=8lt, Ts=—4(4m*+4mPs,+ut)/t?,
e;=—8(s,—2s—t)/st,

Fo_ 2 4_ 212 n2
fe=2[4(s,+u)ym=+2(2s+3t)s,+8m*—4s5—2s €= 8[2mP+ 5,4+ U+ tul(s+1)]/s,

—4st—3t?]/t,
e8: - 16/5,

T,=8(s,—1)2m?/t?, Tg=—8u(s,—t)m?t, (B5)

- - T,=—8(s,—t)/st,
f10:_4(m2+ U)mz, fll: 2U2m2. 4 ( 2 )

For Q,, Fs=4[2(s,—t)m?+s2—s,t — ut]/st,

Ae,=—16/k, Af;,=—8/s, Af;g=—8m?s, To=—2{2[4s/t+t/(s+1)]m?+2s,+2u

+ —4s2—12)/(s+
Afyy= —8(2m2+u)/s, (2s,t—4s5—t%)/(s+t)}uls,

~ ~ fi,=—8(s,—s)/st,
AF,=8t/s, AFye=2[2u(s+1t)—4mPs+s2+2ts,]/s, 12-~8(s;

- - f14=—4[2(s,— 3s)Mm?+ 2s,u+ S,t — 2su]/st,
Af17:2m25, Afzo: O,

(B4) fie=8[2m?+u+ss,/(s+1)]/t,
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T16=2(2m?s— 455+ 65,5+ 4s,t
—3s?—4st—2t%)u/(s+ 1),
f1g= — 2(2[ 45U/t + 25— S,t/(s+1) ImP+Sy{s,+U

—[(s—2s,)2+2s,s]/(s+1)})s,

Tro=2[2(s+2t)s,— 2m?s—4s)

—s?—2st—2t?]s,/(s+1)t,

To0=—16k, Ty=—16m?s/t.
APPENDIX C
We give here the brems integrals,, i=1,...,11, ap-

pearing in Eq(4.5 and also in Eqs(5.4)—(5.6). Define

P;=us,—s(t+2m?),

P,=s[(t+m?)(us,— m?s)—m?(s+u)?]. (cy
We may now write down the integrals
1 S
=— P+ —Sz(t+2m2)ln% :
(s+u)? Sz m?
e 1 (52(s+u)(t+u+2m2)
2 (stul| t 4S,
+s(t+2m?) |+ P o 2m”
s(t+2m°) 2738,
S, [ s%(t+2m?)? m? | S,
s\ 225
Es_ stzu
3 2(s+u)3
s t+u)? t+u+2m?
F3= : (trw —m?’s— —_———P;
2S,(s+u) 4 s+u
_3_Pi
4 (s+u)?
FS— Su c_ Py
4 27 4 21
(s+u) (s+u)
25,
s_ _ c_
Fs Sy(s+u)’ Fs=0,
4 4 ut
e=- 2% Fg= 2% In%+2In :
szut szut ss,tut
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8S;
Fi=- - (1-8), (C2
s3(s+u)
16S2 S, S+
Fa=— (s+u)(ut 2m?s),
® Sut(s+u) 2S, y%2
1682 Sz s+t S,
Fé= ——(s+u)(ut—2m?s)| In—
saut(s+u) 2S, 22 m?
fo2mn— s 2P; 1+
nssz+ut S5 u?t? el
4 2
F3 TSZ A Ini2 In
ssu ssul m (s+u)
. 882(s+u)
10
s,ut?
8S,(st+u)| S, ut
Cc
_— +2In——
Fio™ S,u°t? nm2 2| sst+ut
s, ut—2m?s
m? SSt+ut
328% S [,
S _
Fi=- 2t2 Szuztz (ssz+ut)(ut 2m?s) |,
325} | s S, )
C=———| ——| P+ —(s+ut)(ut—2m?s
11 S§u2t2|:sgu2t2 2 SZ( SZ )( )
ut s 8P
X In%+2|n 22
m SSz"r‘Ut SZ 2t2
2
S2
Emz —1+¢g].

Note that parts of$, Fg, andF§; proportional to ¢
cancel out exactly in Eq4.5). The singular and finite parts
of these integrals can be found in Appendix d b2]; below
we give the derivation 0©(¢) terms.

We use the momentum parametrizations of Appendix A

of [6] and, as i12], we denote

FlkD= J dQ,(a+bcosh,) “(A+B cosb,
+Csin 6, cosb,) ', (C3

where

J dQnEf d01 Sinl_zs 01\[ d02 Sin_z8 02. (C4)
0 0
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All the above integrals are proportional toat~ 1/wiws
~1/s§~1/(1—w)2; since the 2»3 particle phase space is
proportional to (:w)*"2¢, in view of Eq.(4.6), the terms
of O(¢&) give finite contributions proportional t6(1—w).

1. Integral F,=[dQ,/(py-k)?

PHYSICAL REVIEW 62 114509

3. Integral F1;=/dQ,/(p2'k)*(p1-Pa)?

Proceeding as before, the term®@(e) is provided by

o
Fo=— &, C10
" a2(A+B)2 (

. £(2,0) . Finally, we give the brems integrals;, i=12,...,21,
This is of the type ;" of [12]. The result is appearing in Eqs(5.4) and (5.6). With
T 1 T 5
Fr== 217, gt etoeEnl (€Y Py=2m’s+u(s—s;), Z=4m’s(s+t)-sjt,
(C1)
2. Integral Fg=/dQ,/(p2"k)*(P1°Pa) we have
This is of the typd ¥ of [12], and determination of the 1 s
O(&) term proceeds as follows. First, defining Fi= —?{ Pi(teu)+ §P3F14},
H=A+B cos#,+ C sin 6, cosf,, (Co)
F ! 282P +P(t—u)F
. . =—=|— —u ,
one can show the identity 13 y2| sm? 3th1 14
1 _ 1 1 +E+ Csin 01 00302] - 252 (Sz(s_ 32)+2m25+ Szy)
_ + — — = ——==INn =,
(1—cosf#;)H A+B|1—cosfd; H (1 00591)HC 14 Sy L sy(s—s,)+2mPs—syy
and, by repeated application of it s — i -0
’ ’ 57 gy(s+t)’ 1T
sing 1 sing B siné
xv TATB ’ 2 "A+B (1—00510) T S S ] . S u
(1—coséy)“H (1—cosby) 1 16~ 5 su’ 16 ssul 2 (s+1)2|’
Bsing, C(1+cosf;)cosh, (C12
H H
s 8S,(s+t)
Ccosb, | (1+cosb,) . B(1+cosé,) Flrm———5
A+B |(1—cosfy) H S2S5°U
. C? |[sin®6,cog 6, . 8Ssty| s | i ,Ps
(A+B)2| (1-cosf,)? Vs | m o (s+0)2 mPs(s+t)]
B sin 6,(1+ cos#,)cos 6
+ ! o ! 2 . 4S, I Z—2m?s(s+1t)+s,\/—tz
= n ,
¥s,J—tz | Z—2m?s(s+t)—s,\—tz
C(1+cos#h,)%cos 6, } 8
Yo2st Y sls sstut’
Note that the fifth term vanishes due to the integration
over 6,. Also, terms with onlyH in the denominators are
- Sot Pi(t—u)
finite and consequently have no poles and cannot produce  F3,= —— 50:—2'
finite contributions from thei)(e) terms. Thus, we are left (s+t) (s+t)
with the terms 1, 2, and 7. After integrating them rirdi-
mensions, summing and keeping the relevant osdarms, s A4S
we arrive at the following result: 217 g st
2
™ 4s,| S, 2
Feg=——¢. C9 F5i=———|In— .
¥ a2(A+B) ©9 2osstl m2 (stu)?
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