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We study the effects of two dynamical sea quarks on the spectrum of heavy quarkonia. Within the non-
relativistic approach to lattice QCD we find sizable changes to the hyperfine splitting, but we do not observe
any changes for the fine structure. We also investigate the scaling behavior of our results for several different
lattice spacings.
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[. INTRODUCTION the Fermilab groug7]. Both provide effective descriptions
to deal with large scale differences, which are difficult to

Experimental efforts to pin down the parameters of theaccommodate on conventional lattices. NRQCD has been
standard model have been paralleled by intense theoreticgHite successful in reproducing the spin-independent spec-
attempts to provide experimentalists with non-perturbativerum of heavy quarkonig8] owing to the fact that the quarks
constraints from quantum Chromodynami(‘@CD)_ It is within such mesons move with small velocitiessuch that
hoped that lattice QCD will ultimately provide such impor- V <c?. ) . o
tant information. To this end it is crucial to understand and AS an effective field theory the predictive power of

control the systematic errors in numerical calculations NRQCD relies on the control of higher dimensional opera-

which rely on extrapolations and interpolations to the physi-tors' which have to be matched to the non-relativistic expan-

cal point. This important task is particularly demanding forSion of QCD. This has been the subject of many previous

; tudied9—-11]. As a result of these works it seemed plausible
heavy quark phenpmenology, where one_has to describe at at bottomonium states could be accurately described in the
curately both the light and heavy quarks in the system.

In particular the inclusion of light dynamical fermions in NRQCD approach, whereas the spin structure of charmo-

L . . nium is very sensitive to the higher order relativistic correc-
the gluon background is still a daunting task and requires thﬁons [12 133/ 9

largest fraction of computational resources. In the past these \yiihin the NRQCD framework sea quark effects on the
restrictions led to the so-calleglienchedapproximation, in heayy quarkonium spectra have previously been studied at a
which only valence quarksare allowed to propagate in @ |agice spacing o~0.1 fm using the Kogut-Susskir[d4]
purely gluonic background, whereas the virtual creation ofy; the \Wilson[15] action for sea quarks. Here we present
sea quarkds ignored. We have shown in a recent Wol  reqits for three lattice spacings in the ramge0.2—0.1 fm,

that this results in systematic deviations in the lattice pred'c'paying particular attention to the dependence on the sea
tion of the light hadron spectrum from the observed experiqyark mass and scaling properties. Our gauge configurations
mentql data. More rec_ently it has also been.foy.nd that thg,e generated with a renormalization-grotRG-) improved
|nclu5|o_n of two dynamical sea quarks has a&gmﬁcqnt_effec@mon action[16] and a tadpole-improved clover quark ac-
on the light hadron spectrum and quark mas@e8). Thisis (o [17] for two dynamical flavor§2]. Some measurements

of course analogous to QED, where the inclusion of allyre g150 made on quenched configurations generated with the

higher order effects, which could be made through perturbagame gluon action for making direct comparisons of dynami-
tion theory, resulted in an impressive agreement with expefiza| and quenched resullts.

mental observations. A distinctive aspect of QCD is that a |4 gsec. I we introduce the actions which we use in our
proper non-perturbative treatment is in order so as to providgs|cylation. In Sec. Il we give the details of our simulation,

high-precision tests of this theory. Here we take this as OUpeson operators and fitting methods. Our results are dis-
motivation to study heavy quarkonia in the presefi@ed  ¢,ssed in Sec. IV, and Sec. V concludes this paper.
absencgof dynamical sea quarks.

Heavy quark systems have long been considered an ideal
testing ground for QCD and they have triggered the devel- Il. ACTIONS
opment of static potential moddl4] and heavy quark effec-
tive field theoried5]. On the lattice, heavy quarks have fre-
guently been studied using a non-relativistic approach to Since there is no unique discretization of the continuum
QCD (NRQCD[6]) or a relativistic formulation promoted by gluon action, one can employ a set of operators to cancel

A. Glue: RG-improved action
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some of the discretization errors in the lattice action. Themomentum (ngv) and kinetic energyrﬁsz). In this work

most common choice is to simply add a rectangular2l

plaquette, TR, , to the standard Wilson action, Ff;,, :

1
Sy(9?) = §{co TrP,,+c;TrR,,} (1)

where Tr denotes the trace over all indices apét 8c;=1.

we implement the NRQCD formulation to propagate the
heavy quarks in a given gluon background. This approach
has met with considerable success lioquarks[9,11]. Also
charm quarks have previously been studied in this frame-
work [12,13].

Whereas the relativistic boundary value problem requires
several iterations to determine the quark propagator, the

All such choices have the same continuum limit, but differ-NRQCD approach has the numerical advantage to solve the
ent discretization errors. Here we adopt a prescription whicfiWo-spinor theory as a much simpler initial value problem.
is motivated by an RG analysis of the pure gauge theoryhe forward propagation of the source vect§(x), is de-
(c,= —0.331[16]). This has proved to be a suitable choice Scribed by

compared to, say, the Symanzik-improved actian =<

n
—1/12), for reducing scaling violation on coarse lattices. In-  G(x,t+1)=|1— EgH ) ( 1— a_HO)
stead of the coupling constant squargd, we often quote 2 2n
the value of3=6/g>. . aHy| " a
X U{(x) 1_W 1—§5H G(x,t),
B. Light quarks: Clover action
The standard discretization of the fermion action removes t=1,
the doublers at the expense ©fa) discretization errors. It
is possible to remove these errors by adding a single operator a aHy\"
(the clover termas first suggested ifL7]: GxD={1-5H || 1- 5~
Sq(g%.mg)=0 Qq aHo\"(  a
e B xU(x) 1—2—n° 1- 5 8H |S(x),
=q (A+mgqg+ar q A?q
o 19— t=0, ()
_CSW(g )ar _q O-IU,VF/.LV q (2)
4
where
Here the second term removes the doublers in the manner of A2
Wilson and the last is to reduce the resulti®ja) errors. Ho=— —,
We choose =1 andcg,=(1—0.1402)%) ~ % For the latter 2mq
we follow the tadpole prescription ¢fL8], which has been
shown to improve the convergence of lattice perturbation A4 ~ i o~ -~ -~
theory significantly. Our choice is based upon the perturba@™=—Co o-gB+ Cog 7 (A-gE—gE-A)

tive plaquette values as determined I6]. To one-loop or-
der our choice differs from the correct val{i€9d] only by
0.008)2. Hence we expect only smald(«a) scaling viola-
tions due to radiative corrections from the clover action and
O(a?) errors from the gluon action.

In our simulations we work with two flavors of degener-
ate quarks of a common massy,=m,=my. For further
reference, it is customary to replace the bare quark mass by
the hopping parametex=1/2(m;a+4). Since the direct
simulation of realistic light Wilson quarks is not feasible on

_—C —
3 1 m
8my  2Mq Q

1 -~ e~ o~ 1 ~
—C3—— 0 (AXgE—-gEXA)—c,——={A% 0 gB}
8mg 8mg

e e - i -
;1A% 0 (AXgE—gEXA)}—ce——o-gE
Q 8mgq

aA® a?A®

—C
°6

4

X E C C .
9= e 24mq
present-day computers, we study the spectrum at a sequence o

of different «. ) ) - o~ ~ ) )
The improved lattice operators;, E andB are defined as in

[9]. Other discretizations of NRQCD have been suggested in
the past but they differ only at higher order in the lattice
With the above actions we generated full QCD dynamicalspacing. Here we folloWy11,15 and employ a formulation

configurations on lattices of about 2.5 fm in spatial extentwhich includes all spin terms up t®@(mv®) in the non-
and lattice spacings ranging from approximately 0.1 to 0.Zelativistic expansion of QCD. On the coarsest lattice we
fm. Such lattices are particularly suited to study light quarkchecked explicitly that our equatiai3) gives the same hy-
physics which is determined by a single scalg;cp~200 perfine splitting as from the asymmetric version employed in
MeV. However, for systems containing slow-moving and[11]. The parameten was introduced to stabilize the evolu-
heavy quarks we have to adjust the theoretical description tbon equation against high momentum modes. This is stan-
take into account all the nonrelativistic scales: masg) dard in such diffusive problems, but one should keep in mind

C. Heavy quarks: NRQCD
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TABLE I. Simulation parameters for this study. The last column gives the number of configurations employed for this work. The
quenched runs are made@t2.187 and 2.281 so that the string tension matches with that df the?2 runs at 3,x)=(1.95,0.1390) and
at (1.95k,) on a 16 32 lattice.

Dynamical simulationN;=2

B (L3X T) CSW K mQ Uop uOL traj/CfgS
1.8 (12x24) 1.60 0.1409 2.20, 4.00, 5.30, 6.00, 6.10, 7.00 0.83@35 0.7716412) 6250/640
0.1430 2.10, 5.20, 5.50, 5.85 0.838807) 0.7758415) 5000/512
0.1445 2.06, 5.61, 5.80 0.840629) 0.7799416) 7000/360
0.1464 1.77, 1.90, 2.00, 5.00, 5.18, 5.50 0.843200 0.7877Q@18) 5250/408
1.95 (1é>< 32) 1.53 0.1375 1.20, 1.38, 1.50, 2.00, 4.00, 4.29 0.8624838 0.81708641) 7000/120
0.1390 1.22, 1.40, 3.80, 4.00 0.86377@B 0.82096246) 7000/256
0.1400 1.19, 1.25, 3.40, 3.60, 3.70 0.86478ax% 0.82414028) 7000/400
0.1410 1.06, 1.15, 3.30, 3.40 0.8657B8 0.82749831) 5000/400
2.10 (24x 48) 1.47 0.1357 2.45,2.72 0.87938%0 0.85017025) 2000/192
0.1382 1.95, 2.24, 2.65 0.8805@429) 0.85460420) 2000/192
2.20 (24x 48) 1.44 0.1368 1.95, 2.21 0.8878839) 0.86635723) 2000/128
Quenched simulatiori\{=0
B, (L3XT) Mo Ugp UgL updates/cfgs
2.187, (16x32) 3.70, 4.00 0.87723622) 0.83178955) 20000/200
2.281, (1é>< 32) 3.20, 3.40 0.88555818) 0.84782%¢41) 20000/200
that a change im will have to be accompanied by a change U, (x)—U,()/ug, UoL=3(Tr Udie. (6)

in Mg to simulate the same physical system. Alternatively
one could decrease the temporal lattice spacing to prevemn alternative and gauge-invariant implementation of the

the high momentum modes from blowing [@0].
For a single quark source at poigt we have S(x)

=53)(x,y), but we also propagate extended objects with the

same evolution equatiof8). The operatoH, is the leading

kinetic term anddSH contains the relativistic corrections. The

last two terms insH are present to correct for lattice spacing |y some selected cases we have also implemented this
errors in temporal and spatial derivatives. For the derivativegnethod to estimate the effect of unknown radiative correc-

we use the improved operators defined[®) and we also
replace the standard discretized gauge field by

FL=3F,,—§[U(0F,,(x+ Ul (x)
+U_ L, (OF ,,(x= UL (0= (neon)]. (5)

With this prescription we aimed at achieving an accuracy

of O(a*) for the heavy quark sector. Of course we also ex-
pect terms ofO(aa?) due to radiative corrections to this
leading order result. In principle, we have to determine all

Ill. SIMULATION

mean-field improvement that has frequently been used in the
past forces the average plaquef,,, to unity:

U, (x)—U ,(X)/Ugp, Ugp=5(TrP, )" @)

tions to the renormalization coefficients,. In all applica-
tions of Eqgs.(4) we set them to their tree-level value 1. We
denote ag)(mv®,a?) the evolution equation which includes
all spin-dependent operators up @(mv®) and where all
operators have been improved to reduce@{a?) errors.

A. Updates, trajectories and autocorrelations

The gauge field configurations with two dynamical sea

coefficients in Eqs(4) by (perturbative or non-perturbative quarks used for the present study were generated on the CP-
matching to relativistic continuum QCD. Just as for the lightPACS supercomputer at the Center for Computational Phys-
quark sector we rely on a mean-field treatment of all gaugécs, University of Tsukuba. They can be classified by two
links to account for the leading radiative corrections. How-parameters 8, «), which determine the lattice spacing and
ever, there is no unique prescription for such an improvethe sea quark mass. A standard hybrid Monte Carlo algo-
ment and several different schemes have been employed iithm is used to incorporate the effects of the fermion deter-
the past. More recently it has been suggested that the averagenant. For the matrix inversion we implemented the
link variable in the Landau gauge should be less sensitive tBICGSTAB algorithm. To reduce the autocorrelations between
radiative corrections since the gauge fields in Landau gauggeparate measurements we only used every fifth or tenth tra-
have less UV fluctuationj21]. Here we adopt this view and jectory and binned the remaining data until the statistical
divide all links by the appropriate tadpole coefficient at eacherror was independent of the bin size. In Table | we list the
number of trajectories we generated for each set of couplings

value of (8,«):
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along with the other simulation parameters and the actua ' '
number of configurations we used in this study; for more 12 T

details se¢2]. The subsequent determination of the quarko- » A
nium spectrum is the subject of this work. 10 L 0 S-—state
Since there has been no previous study of heavy quarko I A P-state

nia using the RG action for the gluon sector, we also supple- | aatzxdg % % i
mented our calculation by a comparative quenched calculag 08

tion. The coupling constantB of these quenched £ A
configurations were chosen so that the string tension of the% 0.6 | l .
static quark-antiquark potential matches that of one of theg

dynamical runs. The parameters of these runs are also give 4 | e i
in Table 1.
(-]
02 | eeegééoeeeeeeeeeeeeeﬁ
B. Meson operators o ®
r e
To extract meson masses we calculate two-point functions 0.0 e , . . ,
of operators with appropriate quantum numbers. In a non- "~ 0 5 10 15 20
relativistic setting gauge-invariant meson operators can be time

constructed from the two-spinojs (x), ¥ (y) and a Wilson
line, W(x,y): xT(x)W(x,y)¥(y). The construction of me-
son states with definiteJ°¢ from those fundamental
operators is standard22] [on the lattice J labels the
irreducible representations of the octahedral group (
:Al,Az,Tl,Tz,E)].

Since here we are only interested$rand P states, it is
sufficient to consideg ' (x) ¥ (x) and yT(x)A; ¥ (x), respec-
tively. The corresponding spin triplets can be constructed by
inserting the Pauli matrices into those bilinears. We also sum
over different polarizations to increase the statistics. In the trivial case of zero momentum this amounts to simply

The overlap of those simplistic operators with the state Ogumming over all spatiat.
interest can be further improved upon. One way is to employ
wave functions, which try to model the ground state more
accurately. This requires assumptions about the underlying C. Fitting
potential and gauge-fixed configurations. We decided to use
a gauge-invariant smearing technique, which regulates the Since there is no backward propagation of the heavy
extent of the lattice operator, with a single parameter quark in our framework, we can fit the meson propagators to

the exponential form

FIG. 1. A representative effective mass plot ®andP states at
(B,x,mg)=(1.80,0.1409,6.00). One can clearly observe a plateau
for long enough times. For thg states we employed 3 different
smearings, which result in different overlaps with the ground state.

Ce,t<p>=§ Cox,Hexp—ipx). (10)

x'(x) O w(x)—xT(x) O (1-eA®)PW(x). (8)

Mfit
Yer(ai EN=2, ai(a,p,e) e H*IL (1]
For computational ease we limited this procedure to 10 i=1

smearing iterations and implemented it only at the source.

From such operators we obtain the meson correlators as a

Monte Carlo average over all configurations This is the theoretical prediction for a multi-exponential de-

cay of a state with momentump and quantum numbers

along Euclidean time. Different choices for the smearing

parametefe will result in different overlaps with the ground

state and higher excited states of the same quantum number.

where tr denotes contraction over all internal degrees ofin practice it is difficult to project directly onto a given state,

freedom. so we chose to extract the ground state from multi-
For the smeared propagator we solve H) with  exponential correlated fits. In some cases we were also able

S(x,y) = 8(x,y) (1—€eA?)™° OT. We fix the origin at some to extract the first excited states reliably from our data. The

(arbitrary) lattice pointy=(y,0). This creates a meson state simplest way to visualize our data is by means of effective

with all possible momenta. In practice we employed up to 8mass plots, which are expected to display a plateau for long

spatial sources on every configuration. This is permissibl&uclidean times. In Fig. 1 we show a representative plot for

since heavy quarkonia are small compared to the lattice exene set of simulation parameters.

tent of about 2.5 fm. We explicitly checked the independence Correlations between different times, and different

of such measurements by binning. At the sirk; (x,t), we  smearing radiig, of the meson propagat@r, ; are taken into

perform a Fourier transformation to project the correlatoraccount by employing the full covariance matrix for theé

onto a given momentum eigenstate: minimization

Cx,y)=(tr[GT(x,y) O G(x,y)(1— €A% O™]), (9)

114508-4
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3.0 . . . Our statistical ensembles are large enough to determine
the covariance matri¥;,;*, with sufficient accuracy. There-
o5 | i ] fore the inversion of this matrix did not present a problem.
T on,=1 For the spin splittings we applied E@.1) also to the ratio of
f mn,=2 two propagatorsC(«;)/C(ay). In this way we utilized cor-
20 [ Ang=3 ] relations between states of different quantum numbers to ob-
tain improved estimates for their energy difference.
} Statistical fluctuations in the data cause fluctuations in the
" ] fit results determined by Ed12). We estimate the covari-
ance matrixA,,, of the fitted parametersr,, from the in-
ol I 1 verse of ¢°x°)/(amadm). We have checked these errors
i ®a % against bootstrap errors which gave consistent results. We
also require consistent results as we change the fit ranges
(tmin.tmax Or the number of exponentials to be fitted. This is
illustrated in Fig. 2, where we show thg,;, plot for the S
[ state of Fig. 1. The goodness of each fit is quantified b@its
0.0, 5 10 15 20 Vvalue[23] and we demand an acceptable fit to hgve 0.1.
t Finally we subjected those results to a binning analysis,
which takes into account autocorrelations of the same mea-
FIG. 2. Here we show consistent fit results for etate of Fig.  surement at different times in the update process.
1 when plotted against the start of the fit rangg,,. We fixed
tmax= 24 throughout. Different symbols denote different values for IV. RESULTS
ng; in the multi-exponential fit of Eq(11).

15 ¢

fitted mass
[ 3

(0]
1

05 f

e L
H RS 880 8D EO OO OO 6 90 6 @

min

We now present our new results for elements of the spec-
trum of heavy quarkonia. Our data from two quenched lat-
. 1 tices is given in Table Il and the dynamical data are collected
Xz(”):rél [Co=yr(m] T [Cs=ys(m], in Tables 1l1-VI. For notational ease we use dimensionless
lattice quantities throughout the remainder of this paper, un-
less stated otherwise. To convert the lattice predictions into

(m)=0. (12) dimensionful quantities we take the experimentd&®-1S

splitting to set the scale.

&XZ
(9’7Tk
Here, in order to ease the notation, we introduced muilti- A. Heavy mass dependence and kinetic mass

indices ¢ =[¢,t]) for the data points and=|[a, ,E;] for the For a given value of the gauge couplifigttice spacinyg
parameters. and the mass of the two degenerate sea quarks there is only

TABLE II. Bottomonium spectrum from quenched run @& 2.187 andB=2.281. These results should be compared directly to the
N;=2 data at the similar lattice spacing3,(x)=(1.95,0.1390) and (1.9k,), respectively. We also illustrate the effects of little changes in
the quark mass on the spectrum. The difference for the hyperfine spliti®gS,, is most noticeable. For the other splittings we see
indications of such a suppression as the mass is increased, but it is much less pronounced within the errors. Scaling violations can be
observed in*P,e-3P,r, as discussed in the main text. All the other splittings are suppressed on the coarser lattice. On the finer lattice, the
ratio Rys= (3P,-3P,)/(3P;-3P) is closer to its experimental value: 085

B 2.187 2.187 2.281 2.281
My, 3.70 4.00 3.20 3.40
Min [GeV] 9.0423 9.9527) 9.11094) 9.7710)
a(1P-1S) [fm] 0.165323) 0.163715) 0.142312) 0.140412)
Ros 1.50(25) 1.6559) 1.29999) 1.2611)
35,-15, [MeV] 23.1234) 21.6822) 24.8§25) 23.91(26)
3p-1p; [MeV] 4.0361) 3.7961) 4.9735) 4.8736)
3p-3pP, [MeV] 20.41.3 19.51.4 29.91.0) 28.1(1.2)
3p-3p, [MeV] 6.7365) 6.4674) 9.0758) 8.9359)
3p,-3P [MeV] 6.8356) 6.44(65) 9.2654) 9.2351)
3P-2E-3P,1 [MeV] 1.67(45) 1.4328) 0.91(36) 0.87(35)
3p,-3P, [MeV] 13.61.2 12.91.9 18.91.1) 18.21.1)
3P,-3Py [MeV] 13.2376) 12.7382) 20.5362) 19.3965)
Ry¢s 1.0311) 1.01(13) 0.91758) 0.93764)
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TABLE IIl. Bottomonium results fromB=1.80. An error in the quark mass parameter indicates that we have interpolated to this value
in order to reproduce the bottomonium at any givgn«). Where this error is not given we accepted the value of the tuned quark mass. For
the hyperfine splitting we could fit the data to a linear-plus-quadratic dependence on the quark mass, but for the fine structure the quadratic
part was ill determined and we resorted to linear or constant fits if @eialue was acceptable.

K 0.1409 0.1430 0.1445 0.1464 Ke
m,/m, 0.8059975) 0.753113) 0.695920) 0.548@45)

My, 5.875) 5.85 5.61 5.1(5)

Min [GeV] 9.4612) 9.4310) 9.53080) 9.4611)

a(1P-1S) [fm] 0.278725) 0.276526) 0.261119) 0.230621) 0.198732)
a(ppg) [fm] 0.262211) 0.256(16) 0.246213) 0.224619) 0.204@40)
Ros 1.15725) 1.14352)

35,-15, [MeV] 20.8033) 19.7529) 21.11(24) 23.5035) 26.81(76)
3p-1p, [MeV] 3.7524) 3.91(18) 3.6454) 3.4056) 2.821.03
3p-3p, [MeV] 11.8059) 12.2665) 13.0933) 11.891.2) 13.6175)
3p-3p, [MeV] 5.71(33) 5.2030) 5.79115) 4.5764) 5.6412)
3p,-3P [MeV] 6.0931) 5.9733) 6.2316) 5.51(64) 6.1239)
3P,e-3P,r [MeV] 1.8423) 1.56(26) 1.67(13) 1.5847) 1.47(31)
3p,-3P; [MeV] 11.8163) 11.1860) 12.0230) 10.1(1.3 11.6977)
3p,-%Py [MeV] 6.0231) 7.1942) 7.3323 6.91(63) 8.1346)
Ry¢s 1.9614) 1.5512) 1.64066) 1.4623) 1.4413)

one remaining parameter to choose—the mass of the heavy For each heavy quark masag, we project the'S, state
valence quark. On the lattice we are free to simulate everand the ®S; state onto 5 different momentum eigenstates:
arbitrary value, but in order to obtain physical results we(n;,n,,n3)=(0,0,0),(1,0,0, (1,1,0, (1,1,2 and(2,0,0. We
tune the ratidM ,/(1P-1S) of the kinetic mass of a quarko- obtainE(p)—E(0) from ratio fits and determine the kinetic
nium state and the R-1S mass splitting to its experimental mass by fitting the data to the dispersion relation. To this end
value. The determination ofS and 1P masses has already we have also included higher terms in the expansion of Egs.
been described in Sec. Il C. The kinetic malk,,, is de-  (13) and find consistent results fod;,. However, such fits
fined through the dispersion relation of the quarkonium statetend to have larger errors and the coefficienpbfs not well

5 determined. For better accuracy we normally restrict our-

E(p)—E(0)= P~ _ Z—W(n nng) selves to a linear fit ip? for the lowest four momenta. An
P 2Myi, P= " (NN2.N3). example of this procedure is given in Fig. 3. We have plotted
(13)  the fitted values oM, against the heavy quark mass in Fig.

TABLE IV. Bottomonium results from3=1.95.

K 0.1375 0.1390 0.1400 0.1410 K¢

m,/m, 0.8048489) 0.751414) 0.688415) 0.586233)

My 4.00 3.80 3.70 3.40

Min [GeV] 9.40(16) 9.4322 9.4310) 9.4917)

a(1P-1S) [fm] 0.176713 0.166235) 0.158615) 0.147317) 0.134148)

a(ppo) [fm] 0.197411) 0.186@12) 0.179110) 0.162513) 0.145133)

Ros - 1.24272) 1.4617) 1.4731)

35,-15, [MeV] 25.11(49) 25.7281) 26.0739) 27.8560) 30.071.58

3p-1p; [MeV] 2.41(66) 2.2663) 2.5064) 2.6732) 2.5524)

3p-3P, [MeV] 18.41.9 20.01.8 21.51.7) 23.1(1.7) 24.95.5)

3p-3p, [MeV] 6.0999) 5.9793 6.3982) 5.8386) 5.52.2)

3p,-3P [MeV] 8.7(1.0 9.01(93 8.9985) 9.1089) 9.02.3

3P,e-3P,yr [MeV] 2.0515) 1.5013) 1.41(20) 1.2274) 1.3329

3p,-3P, [MeV] 14.82.0) 15.1(1.8) 15.51.6) 14.91.7) 14.24.4

3p,-%Py [MeV] 12.41.1) 13.21.0 14.91.1) 17.41.0 20.92.5

Ry¢s 1.1919) 1.1416) 1.0413) 0.8511) 0.6823
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TABLE V. Bottomonium results from3=2.10 and 2.20.

(B.k) (2.10,0.1357 (2.10,0.1382 (2.20,0.1369) Expt.
m,/m, 0.806616) 0.573549) 0.632370) 0.18
M, 2.45 2.24 1.95 -
Min [GeV] 9.3416) 9.5917) 9.4620) 9.4603721)
a(1P-1S) [fm] 0.111216) 0.098417) 0.084@18) -
a(ppo) [fm] 0.136115) 0.116917) 0.094616) -

Ros 1.47439) 1.41(14) 1.25069) 1.280215)
35,-13, [MeV] 30.8671) 32.5481) 33.21.0 -
3p-1p, [MeV] 2.0963) 1.5847) 2.2420) -
3p-3p, [MeV] 27.71.7) 25.602.1) 24.91.8 40.31.4)
3p-3p; [MeV] 6.6448) 5.4287) 4.7592) 8.2(8)
3p,-3P [MeV] 8.4650) 7.7286) 7.0094) 13.17)
3P,e-2P,r [MeV] 0.31(25) 0.4919) 0.7910) -
3p,-3P; [MeV] 15.2097) 13.41.7) 12.01.9 21.39)
3p,-3Py [MeV] 19.0789) 18.91.3 19.71.2 32.1(1.5
Ry¢s 0.79763) 0.71399) 0.60999) 0.664)

4. Large discretization errors can be seen for almost alfery sensitive to the quark mass parameter. However, with
masses, but once we include &l(a?) correction terms in  our newly achieved accuracy we could also resolve a slight
Egs.(3), the discrepancy due to higher order relativistic cor-mass dependence oP11S in the range from charmonium to
rections is small. Comparing the relative changes in Fig. 3he bottomonium system as shown in Fig. 5. The experimen-
due toO(a?) improvement at different momentum scales, tal values for the P-1S splitting show a 4% decrease when
we can also estimate the size of higher order corrections angbing from charmonium458 MeV\) to bottomonium(440
we expect them to be small. MeV), which should be compared to a reduction of about
In this paper we tuned the bare quark mass on all ounp% from our simulation aN;=2 and an unphysical sea
lattices (8,«), so as to reproduce the experimental value ofquark mass. This larger change is related to the running of
the mass oY (M,,=9.46 GeV. In some selected cases We the strong coupling between the two scales, which still does

interpolated the spectrum to this physical point. not fully match the running coupling in nature. It is expected
I - that the modified short-range potential will result in a ratio
B. Scale determination and P-1S splitting (1P-1S) </(1P-1S),¢ bigger than in experiment.
It has been noticed in the past that the tuningrgf can While the heavy quark mass can be tuned to its physical

be done efficiently since the spin-averaged splitting is nowalue as described in the previous section, this is not possible

TABLE VI. Charmonium results.

(B.K) (1.80,0.1409 (1.80,0.143p (1.80,0.1445% (1.80,0.146% (1.95,0.1375 Expt.
m,/m, 0.8059975) 0.753113) 0.695920) 0.548@45) 0.8048489) 0.18
M, 2.20 2.10 2.06 1.77 1.39)

Min [GeV] 3.01987) 3.32334) 3.58946) 3.40185) 3.01(12 3.096884)
a(1P-1S) [fm] 0.287411) 0.275814) 0.257126) 0.238853) 0.198343)

a(ppo) [fm] 0.262211) 0.256(16) 0.246213) 0.224618) 0.197411)

Ros 1.37860) 1.2910) 1.55795) 2.0234) - 1.300931)
35,-1S, [MeV] 49.6(35) 53.17138) 54.0467) 56.0470) 55.52.8) 117(2)
3p-1p, [MeV] 3.6623 2.86(86) 3.2541) 1.71(55) 4.02.0 —0.8625)
3p-3P, [MeV] 26.4854) 31.5274) 26.63.2) 31.42.1) 38.94.1) 110.21.0)
3p-3p, [MeV] 5.1432) 7.1747) 2.6(1.7) 4.2775) 0.901.0 14.7518)
3p,-3P [MeV] 8.8679) 10.8549) 7.91.6) 10.5464) 7.2(1.0 30.8919)
3P,e-3P,yr [MeV] 2.4518) 3.0046) 2.0630) 2.1866) 1.5079) -
3p,-3P, [MeV] 13.1249) 18.1576) 10.43.2 14.91.3 9.34.0) 45.6418)
3p,-3P, [MeV] 21.17133) 24.4049) 24.2399) 29.2584) 34.95.0) 95.41.0)
Rys 0.62025) 0.74434) 0.4313) 0.50747) 0.2712) 0.478354)
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FIG. 4. Quark mass dependenceNdf;,. Here we can see siz-
able discretization errors for almost the whole range of quark
masses between charm and bottom @t«)=(1.80,0.1409). The
implementation of(a?) improvement in the NRQCD approach is
clearly important on our lattices. In contrast, the sensitivityvigf,,
to the relativistic correction terms is much smaller.

corporating two light dynamical flavors. To examine this
point we compare in Fig. 7 our results foP11S splitting
with the data form, as a representative example from the
light quark sector. If it were not for quenching effects and
lattice spacing artifacts, one would expect the ratig/ (1P-
1S) to equal its experimental value.

It is encouraging to see that the dynamical calculations
are always and significantly closer to the experimental value
of 1.75 than the corresponding quenched simulations. This
demonstrates the importance of dynamical over quenched

FIG. 3. These figures illustrate the tuning of the quark mass as

described in the main text. On the top we showtthg plots for the
ratio fits of different momentum states with respect®® at rest.
We can perform two consistent fits upé (dashed lingand up to
p* (solid line) in the dispersion relation, E¢13).

for the light quark mass and one has to rely on extrapolations

to realistic quark masses, where the ratip/m, equals the

s e ||
%} ot | |

0.45 r

experimental value. Here we are mainly interested in thew
behavior of physical quantities as we approach the chirald
limit. We takemfr as a measure of the light quark mass and ~
extrapolate quadratically in this parameter. This is a common
procedure but we will demonstrate below that the physical
dependence on the sea quark mass may indeed be difficult t
disentangle from unphysical scaling violations. In taking the
naive chiral limit we hope to account for at least a fraction of
the spectral changes towards smaller sea quark masses. ,
B=2.10 we only have results from two valuessofind take

a linear estimate for the chiral limit. The chiral behavior of
the 1P-1S splitting is shown in Fig. 6 for all values @8 in
our study.

043 -

0.41

0.39

0.37

X -

1.0

1.5

2.0

25

m,

Q

3.0

3.5

4.0

4.5

FIG. 5. Heavy quark mass dependence of tie1lS splitting.
We plot the (IP-1S) splitting against the heavy quark mass at

In quenched simulations there exist uncertainties wheng, «)=(1.95,0.1375) and with two values of the stability param-
setting the scale from different physical quantities. We ex-eter,n=1,2. The vertical lines denote the regions of the charmo-
pect these uncertainties to be reduced in our simulations imium and bottomonium system.
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FIG. 6. Light quark mass dependence dP-1S splitting in FIG. 8. Asymptotic scaling. In this plot we take the chirally

bottomonium. We use quadratic fits i’ to extrapolate our data  exirapolated values forB-1S and compare their scaling behavior

from four different sea quark masses to the chiral limit. For the twoith respect toA ocp. The latter is taken from 2-loop perturbation
sea quark masses At=2.10 we show an estimate of the chiral limit {heqry,

by drawing straight lines. The single point atg,k)

=(2:20,0.1368) is shown for completeness. where theMS coupling constant= ays(7/a) is estimated

simulations. The scaling violations in this ratio do not fully with a tadpole-corrected one-loop relation defined by
cancel, however; we observe a 10% shiftrm/(1P-19)

overa~0.2-0.1 fm. Keeping in mind that we are working 1 (3.648° - 2.64&R)
on rather coarse lattices widr=0.1 fm, the remaining scal- avs(7la) = o +4m(0.0589+0.0218\y).
ing violations are perhaps not too surprising. (15)

Looking at the ratio (P—1S)/Aqcp it is clear that our
data do not satisfy the strict criterion of asymptotic Scaling?HereaO:gzmw denotes the bare coupling, aRcandR are,
see Fig. 8. In this plot we determinéld,cp from the 2-l00p  rggpectively, k1 and 1x2 Wilson loops normalized to
formula in the modified minimal subtractioMS) scheme,  ynity for U,(x)=1.
(—by/2b?) ) Within the effective approach of NRQCD, we cannot ex-
Ao Lb() 1o B Zl b1—b,bg trapolate such scaling violations away and it is crucial to find
Qeo™ T\ g, ex boa 8mbd |’ other ratios in which the scaling violations cancel each other
0 (14) already at finite lattice spacing. In Fig. 9 we show a test of
this nature for the string tension, which shows a better scal-

26 . :

25 O PB=1.80 1.50 . . . . |

24 L O B=1.95 5 ﬁ=1.80

© B=2.10

NS -

oo | * AB=2.20 1.40 | op=1.95 |]
z <N=0[RG o B=2.10
PN 3 * =0 .] B
CI ¥ N=0 [Wilson, 25] & 130 A B=220 |-
E“ % i % i kexperiment -

o < E <«Ns=0

V¥ ¥ ] 2 120 | i E} 1

1.7+ @ ] ﬁ @@

i

16 | & | % [

15 s ‘ ‘ . . 1.10 | 1

"0.00 005 010 015 020 025 030 5

ayp_4s [fm] - g

FIG. 7. Here we show the ratim,/(1P-1S), where scaling 100 e 010 oue om0 o

violations can be seen. In each case we use open symbols to deno a0, [fm]

data from dynamical calculations with different sea quark mass and
solid symbols to mark chirally extrapolated values. Representative FIG. 9. In contrast to Figs. 7 and 8, we observe a better scaling
quenched results are also shown as solid symbols. for the ratio/a/(1P-1S) on our finer lattices.
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FIG. 10. Mass dependence of hyperfine splitting. Here we show

; i 1
the strong mass dependence of the hyperfine splitti®y; 'Sy, the the3®S;-1S, splitting in bottomonium from all values ofd ).

lotted inst the i kineti =(1.95,0.1375). .
plotted against e Inverse KINEtc mass AL =( 2 ) A clear dependence on the sea quark mass can be seen. The linear-
The vertical lines denote the regions of the bottomonium and char-

monium system. This splitting is clearly very sensitive to the pa_plus-quad_ra_tic fit curves are shown as solid !ines. Here we used the
rameters of NRQCD. All data points are from updates WithlP'1S splitting to determine the lattice spacing.
O(mv®,a2) andn=1,2 denotes different values of the stability pa-
rameter. makes the hyperfine splitting an ideal quantity to study
quenching effects. Here we also observe a clear rise of the
ing. Here we plot as open symbols the data obtained from fyperfine splitting as we decrease the sea quark mass; see
different sea quark masses. A=2.20(2.10 we only mea- Fig. 11.
sured the lightestand heaviestsea-quark mass, correspond-  In Fig. 12 we collected all our dynamical results for the
ing tom,/m,~0.60(0.80. This figure also suggests that the hyperfine splitting over the range of 0.1-0.2 fm. Here we
string tension, in units of the A-1S mass splitting, is plotted the data from each sea-quark mass as open symbols
smaller for 2-flavor QCD when compared to the quenchedind used the experimentaP11S splitting to convert lattice
(N¢=0) theory. data into MeV. One should keep in mind that these points
correspond to unphysical bottomonium in a world of differ-
ent sea quark masses. We also plot as solid symbols the

FIG. 11. Hyperfine splitting vsnf,. Here we collect the data for

C. Hyperfine splitting
Quenching effects are also expected to show up in short-

range quantities, since they are particularly sensitive to the 40.0 . . — O B=1.80
shape of the QCD potential. 1[8,24] this difference has o B=1.95
been demonstrated explicitly by observing a change in the © B=2.10
Coulomb coefficient of the static potential. In the context of  385.0 | A B=2.20
heavy quarkonia, the hyperfine splitting is such a UV- 3 v N=2 [Wilson, 15]
sensitive quantity which should be particularly susceptible to 3 v N=0 [Wilson, 15]
changes in the number of flavors and the sea quark masg; 300 f E <«N=0[RG]
The prediction from potential models is 2 ® s f
£ By
25.0 @ 1
o5,-i5=ores Dy g 2 (16 s ®
mg, # o

200 | 3 ]
In our study this is the most accurately measured quantity
and it is clearly very sensitive to the value of the heavy quark
mass; see Fig. 10. As has been noticed previously, highe 1sg

0.05 0.10 0.15 0.20 0.25 0.30 0.35

order relativistic and radiative corrections are equally impor- o [fm]
1P-18

tant for precision measurements of the hyperfine splitting in
bottomonium[11,15 and even more so for charmonium  EG, 12, Scaling violations for hyperfine splitting. Open sym-
[13]. Here we employO(mv®,a%) as the standard accuracy pols correspond to runs with different sea quark mass. Solid sym-
throughout this paper. bols denote the dynamical data after chiral extrapolation and results

Equation(16) involves a direct dependence on both thewith N;=0. We used P-1S spliting to determine the lattice
strong coupling and the wave function at the origin, whichspacing.
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N, FIG. 14. Fine structure in bottomonium. Here we pltip to

FIG. 13. DI , f the b , , bottom) 3P,,3P; and P, relative to the spin averaged triplet state:
- 13. Direct comparison of the bottomonium spin structuresp_q53p, 1 33p, + 13p,). The corresponding experimental

for quenched and full QCD at the same I_attic_e §pacingfe0.14 values are 13 MeV—8 MeV and—40 MeV.
fm. TheN;=2 data are taken from the chiral limit of our measure-

ments at3=1.95. . . . .
an earlier observatiofil3] that the velocity expansion is not

. . . ] ) well controlled for charmonium where2~0.3.
results of our naive chiral extrapolation as described in the

previous section.

At around 0.10 fm we notice a very good agreement with
the only previous calculatiofil5]. These authors have per-  In the continuum, the fine structure in quarkonia is due to
formed a dynamical simulation at a single lattice spacinghe different ways in which the spin can couple to the orbital
using Wilson glue and unimproved sea quarks. For the botangular momentum of the bound state. In our approach, the
tom quarks they used an NRQCD formulation with the samespin-orbit term and the tensor term of potential models can
accuracyO(muv®,a?), as in this study. be traced back to the; term in Eqs.(4). A correct descrip-

An unpleasant feature with our results in Fig. 12 is lack oftion of the fine structure will therefore require a proper de-
scaling; for both the full and quenched case we find scalingermination ofc; and the corrections to this term.
violations of about 100 MeV/fm for the hyperfine splitting.  On the lattice we have also additional splittings with no
Nonetheless, we do find several indications for sea quarkontinuum analogue. For example, tAB,c-3P,1 splitting
effects in our results. First we notice that, if it were not foris known to be a pure discretization error since the lattice
sea quark effects, then all points in Fig. 12 would lie on abreaks the rotational invariance of the continuum and causes
universal curve which is not the case. This is a strong indithe J=2 tensor to split into two irreducible representations
cation that for this quantity we have to expect effects of theof the orthogonal groupt, andE. Indeed, for both dynami-
order of 3—5 MeV when going from zero to two flavor QCD. cal calculations as well as the quenched data, we observe a

To substantiate this observation we make a direct comsignificant reduction of this splitting when the lattice spacing
parison of quenched and dynamical calculations atsdree is decreased; the splitting diminishes from about 1.5 MeV at
lattice spacing of 0.14 fm in Fig. 13. For th&,-1S; split-  a~0.2 fm to 0.5 MeV ata~0.1 fm for the dynamical case.
ting replotted from Fig. 12, a clear increase of around 5 MeV In Fig. 14 we show our results for the fine structure. For
(20%) represents more than arSeffect, which reflects the P, and 3P, we observe no clear dependence on the sea
accuracy in our determination of this quantity. On the othemuark mass. This is not totally unexpected siRestate wave
hand, the hyperfine splitting i® states is reduced as we functions vanish at the origin and should not be as strongly
approach a more realistic description of QCD. Within poten-dependent on changes in the UV physics. In any case such
tial models, states with #0 are not sensitive to the contact small changes would be difficult to resolve within our statis-
term of the spin-spin interaction. However, the perturbativetical errors.
expression for a higher order radiative correctif2@] gives From Fig. 14 we can also see a better scaling behavior of
a °P-1P; splitting opposite in sign to our values. Experi- the P states, apart perhaps from tRB,, where scaling vio-
mentally, the spin-triplet states are well established,#84t lations still obscure the chiral behavior. The latter das0
and P, have yet to be confirmed for bottomonium. and therefore we may expect that for this state restoration of

We comment that our data for charmoniufable VI)  rotational invariance is particularly important.
also indicate a rise in the hyperfine splitting towards the On our finer lattices we observe an increase of tRg-
chiral limit. It is, however, apparent that such a rise cannot®P splitting, closer towards the experimental value-640
explain the discrepancy between the NRQCD predictiondeV. We take this as an indication that a better control of
and the experimentally observed spin structure. We confirnthe lattice spacing errors and radiative corrections is neces-

D. Fine structure
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0.00 0.05 0.10 0.15 0.20 0.25
a,p_s [fm] FIG. 16. Here we show a scaling plot of the raRgs=(2S-
1S)/(1P-1S). It is apparent that one needs much smaller statistical
FIG. 15. Fine structure ratio in bottomonium. Here the lattice errors to resolve any systematic effects. We show our results from
data should be compared to the experimental value of(4).68 is different sea quark masses along with representative results from
apparent that there are still large underlying scaling violations, bubther collaborations.
no clear sea quark dependence.

sary to reproduce this quantity in NRQCD lattice calcula-contrast to the previous determinations of this quantity which
tions. The other splittings:P,-*P and *P,-3P, deviate only ~ claim to see deviations due to missing sea quitks29.
by a few MeV from their experimental values of 12 MeV ~ Observing such deviations is certainly plausible as this
and —8 MeV, which could be due to missing dynamical ratio is thought to be sensitive to differences in the underly-
flavors (N;=3), higher order relativistic effects and radia- ing short-range potential. However, for the same reason we
tive corrections. should also expect large scaling violations. Interestingly, on
We take the fine structure rati®¢s= (°P,-3P,)/(®P;- our coarsest dynamical lattices we even observe smaller val-
3P,), as a particularly sensitive quantity to measure the inues 0fR;s, which we take as an indication of large discreti-
ternal consistency of th@-triplet structure. This quantity zation errors. Apart from this very coarse lattice data, we
should be less sensitive to radiative corrections of thecannot resolve either scaling violations or quenching effects.
NRQCD coefficients away from their tree-level values. Pre-We feel that it requires a much better resolution of the higher
vious NRQCD calculations had measured this quantity to b&Xcited states, which is hard to achieve on isotropic lattices.
much larger than 1, compared to the experimental value ofuture lattice studies will need optimized meson operators or
0.664). We believe that this discrepancy is due to latticefiner temporal discretizations to observe these effects.
spacing artifacts as it is very sensitive to the implementation
of O(a?) improvement in the NRQCD formalism. It is en- V. CONCLUSION
couraging to see that this value is further reduced on our
finer lattices; see Fig. 15. Notably, we do not observe any .
difference between our dynamical results and the quenche
data.

We have demonstrated that dynamical sea quarks have a
gnificant effect on the spectrum of heavy quarkonia.
amely the hyperfine splittingS,-1S, is raised by almost
20% when going from zero to two dynamical flavors. The
efficiency of the NRQCD approach has played an important
role in establishing such effects, but the numerical simplicity

Another spectroscopic quantity which has attracted muctof this approach is offset by additional systematic errors,
attention is 5-1S splitting, since it should also be sensitive which have to be controlled. The sensitivity of the spin struc-
to the short-range potential. On conventional lattices suchure to relativistic(mv®), and radiative((«), corrections
higher excitations are difficult to resolve and require delicatevas well known before we started this work. Here we dem-
tuning to minimize the mixing of the & with the ground onstrated that quenching errors are equally important for pre-
state. Given our rather coarse lattices we did not attempt toision measurements of the spectrum of heavy quarkonia.
perform a systematic study of this quantity, but in the contexPerhaps more worrying are scaling violations, which we
of this section it is important to notice that we do not observecould resolve in many quantities. Without a proper control of
any chiral dependence of the ratR,;s=(2S-1S)/(1P-1S). lattice spacing artifacts it is not possible to make predictions

In Fig. 16 we compiled representative data from otherfor such UV-sensitive quantities as the hyperfine splitting on
groups[ 15,25 along with our new results from the RG ac- the lattices we used here.
tion. Within the large errors we cannot resolve a discrepancy While the lattice predictions forPP;-3P and 3P,-3P
between the experiment and the lattice data. This result is ingree well with their experimental values, the determination

E. 2S-1S splitting
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of the 3P, is more problematic and we still observed large observation of both scaling violations and sea quark effects
deviations from the experimental value when thB-1S  to future studies with refined methods.

splitting is used to set the scale. Clearly much work remains

to be done to reduce the systematic errors in heavy quark ACKNOWLEDGMENTS
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