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Anomalous chiral behavior in quenched lattice QCD
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A study of the chiral behavior of pseudoscalar masses and decay constants is carried out in quenched lattice
QCD with Wilson fermions. Using the modified quenched approximation to cure the exceptional configuration
problem, accurate results are obtained for pion masses as low as'200 MeV. The anomalous chiral log effect
associated with quenchedh8 loops is studied in both the relation betweenmp

2 vs mq and in the light-mass
behavior of the pseudoscalar and axial vector matrix elements. The size of these effects agrees quantitatively
with a direct measurement of theh8 hairpin graph, as well as with a measurement of the topological suscep-
tibility, thus providing several independent and quantitatively consistent determinations of the quenched chiral
log parameterd. For b55.7 with clover-improved fermions (Csw51.57) all results are consistent withd
50.06560.013.

PACS number~s!: 12.38.Gc, 11.15.Ha, 11.30.Rd, 12.39.Fe
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I. INTRODUCTION

Until recently, efforts to study the chiral limit of lattice
QCD with Wilson-Dirac fermions have been impeded by t
large non-Gaussian fluctuations encountered at light qu
mass~the ‘‘exceptional configuration’’ problem!. These sta-
tistical problems have been shown to be symptomatic of
nonconvergence of the quenched lattice Monte Carlo inte
tion due to the presence of exactly real Dirac eigenmode
the physical mass region@1#. These real eigenmodes are
topological origin, but are displaced from zero mass by
explicit chiral symmetry breaking of the Wilson-Dirac oper
tor. The modified quenched approximation~MQA! is a pre-
scription for constructing a modified quark propagator
shifting positive mass real poles to zero mass in a comp
sated way@2#. This procedure is the most straightforward a
effective way of removing the lattice artifact which produc
exceptional configurations, while leaving the results
heavier quarks outside the pole region essentially unchan
In the continuum limit, the spread of eigenmodes to posit
mass shrinks to zero, so that if we shift all poles abov
given quark mass, the fraction of gauge configurations in
ensemble that would require MQA pole-shifting approach
zero in the continuum limit. In this sense, the MQA has t
right continuum limit, and provides a sensible definition
the otherwise undefined quenched theory at finite lat
spacing and small quark mass. Exactly how effective
MQA is in restoring the chiral behavior expected fro
quenched continuum arguments is a question that can be
addressed by detailed calculations. As we will show in t
paper, by using the MQA procedure we are able to study
behavior of pseudoscalar masses and decay constants
0556-2821/2000/62~11!/114505~16!/$15.00 62 1145
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high statistics down to a much lower pion mass~190 MeV
for the larger volume 163332 lattices! than has previously
been accessible atb55.7 @for example, a recent high statis
tics study @3# of quenched chiral behavior~at b>5.9 and
large physical volumes! extends only tomp'300 MeV#.
The results confirm in considerable detail the expected ch
behavior predicted for these quantities from chiral Lagra
ian arguments. The overall size of the quenched chiral

parameterd is about a factor of 212 smaller than thed
'0.17 expected from the theoretical result

d5
m0

2

16p2f p
2 Nf

, ~1!

using the physical values ofmh8 and f p . ~Here the normal-
ization of f p is such that its physical value is'95 MeV.
Chiral perturbation theory and the physical mass of theh8
give m0'850 MeV.! Nevertheless, the quantitative rela
tions between various quantities inferred from continuu
chiral Lagrangian arguments appear to be well satisfied
fact, the smallness ofd is consistent with our previous ca
culations at heavier quark mass which did not use MQ
shifting @4#.

In this paper, we describe several independent quan
tive estimates of the quenched chiral log~QCL! parameterd:
~1! by a direct measurement of theh8 hairpin diagram,~2!
by a calculation of the topological susceptibility combin
with the Witten-Veneziano formula@5#, ~3! by measuremen
of the QCL effect inmp

2 vs mq and in the vacuum-to-one
particle matrix element of the pseudoscalar density,~4! by
fitting cross-ratios of masses and matrix elements using
©2000 The American Physical Society05-1
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lowest-order chiral perturbation theory prediction~to first or-
der in d), and ~5! by a global fit of all masses and matr
elements to the next-to-leading order chiral perturbat
theory prediction. When the two quark masses in the pion
allowed to vary independently, as in~4! and ~5!, the corre-
sponding masses and decay constants provide additional
of quenched chiral log structure~cf. the analysis of the
CPPACS Collaboration@3#!. In this paper we present th
results of analyses of chiral log structure both in the ‘‘dia
onal’’ ~equal quark mass! sector~often referred to as ‘‘de-
generate’’ mesons!, and for mesons with unequal qua
masses. The various determinations ofd are all consistent
within statistics, giving an exponentd50.065(13) for
clover-improved Wilson fermion action, andd50.06(2) for
unimproved Wilson action.

As discussed below, operators which do not chan
chirality, such as the axial-vector current, are not expecte
exhibit a QCL singularity~for equal mass quarks!. In agree-
ment with this theoretical expectation, our results for t
mass dependence of the axial-vector decay constant sh
smooth analytic behavior with no enhancement in the ch
limit. The contrast between the singular chiral behavior
the pseudoscalar matrix element and the smooth analytic
havior of the axial-vector matrix element is a particula
convincing piece of evidence that we are indeed seeing
effects of virtualh8 loops.

In Sec. II we briefly review the essential features
quenched chiral behavior in QCD in the language
effective-field theory. Details of the lattice calculations a
presented in Sec. III. The direct determinations ofd from the
h8 hairpin correlator and from the topological susceptibil
are presented in Sec. IV. In Sec. V, QCL effects in t
squared pseudoscalar mass as a function of quark mas
discussed, for ‘‘diagonal’’ mesons composed of equal m
quarks only. The QCL behavior of the pseudoscalar a
axial-vector decay constants~again, for diagonal meson
only! is studied in Sec. VI. In Sec. VII we extract the chir
log parameterd from an analysis of cross-ratios of pseud
scalar meson masses and decay constants for unequal
masses, along the lines of the CPPACS analysis@3#. In Sec.
VIII we compare our lattice data for all mesons~equal and
unequal quark masses! with the results of a detailed
quenched chiral perturbation theory~to orderp4) calculation
for the pseudoscalar masses and decay constants. Final
Sec. IX we summarize our results and draw some broad c
clusions. Some technical remarks on the efficacy and a
racy of the all-source technique used to extract hairpin a
plitudes are relegated to Appendix A, while chir

FIG. 1. Chiral Lagrangian representation of the quark hair
diagram at anh8 mass insertion.
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perturbation theory formulas for pseudoscalar and axial
cay constants are given in Appendix B.

II. BRIEF REVIEW OF QUENCHED CHIRAL THEORY

The presence of anomalous chiral behavior induced by
quenched approximation was first investigated in the work
Sharpe@6# and Bernard and Goltermann@7#. Physically, the
quenched chiral log effect can be understood as a co
quence of the absence of topological screening in quenc
QCD. Diagramatically, the quenched approximation disca
some, but not all, of theh8 hairpin mass insertions. Instea
of the massiveh8 propagator of full QCD, the quenche
hairpin diagram exhibits a double Goldstone pole; see Fig
This leads to infrared singularh8 loop diagrams, such as tha
shown in Fig. 2, which alter the chiral behavior of certa
matrix elements. A convenient way to understand the eff
of the QCL singularities is to interpret them as a renorm
ization factor in the chiral field. Begin with a U(3)3U(3)
chiral Lagrangian, with a chiral field

U5expF i(
i 50

8

l ip i / f G[eip0 / f Ũ, ~2!

wherel051 andp0[h8 represents the SU~3!-flavor singlet
meson. Now consider the effect of integrating out theh8
field. The remaining SU(3)3SU(3) Goldstone fields will be
renormalized as

U→^eip0 / f&Ũ5exp@2^p0
2&/2f 2#Ũ, ~3!

where, in the quenched theory,

^p0
2&5E d4p

~2p!4

1

p21Mh8
2 →E d4p

~2p!4

2m0
2

~p21Mp
2 !2

. ~4!

In full QCD, the h8 mass is large, so the effect of inte
grating out theh8 field is to induce a finite renormalizatio
that is nonsingular in the chiral limit. The chiral limit i
described by the SU(3)3SU(3) chiral Lagrangian withou
anh8. Now consider the effect of quenching on the result
integrating out theh8 field. The double Goldstone pole in th
quenchedh8 propagator produces logarithmically diverge
loop integrals in chiral perturbation theory. This results in
renormalization factor for the fieldU that is singular in the
chiral limit, and thus alters themp→0 behavior of the chiral
field:

n

FIG. 2. A quenchedh8 loop diagram which produces anoma
lous chiral log behavior.
5-2
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ANOMALOUS CHIRAL BEHAVIOR IN QUENCHED LATTICE QCD PHYSICAL REVIEW D62 114505
U→exp@2d logmp
2 #Ũ5S 1

mp
2 D d

Ũ, ~5!

whereŨ is nonsingular asmp→0. In the following subsec-
tions, we will discuss the chiral log effect~or lack thereof! in
the pseudoscalar and axial-vector charge matrix elem
and in the mass of the pion as a function of quark mass

Define the decay constantsf P and f A :

^0uc̄g5cup~p!&5 f P ,
~6!

^0uc̄g5gmcup~p!&5pm f A .

From the chiral-field expressions for the quark bilinears,

c̄g5c}U2U†,
~7!

c̄g5gmc} i @U21]mU2~]mU21!U#,

we conclude that a singular chiral log factor will appear
the quenched calculation off P , but not of f A ,

f P
quenched5S 1

mp
2 D d

f̃ P ,

~8!
f A

quenched5 f̃ A ,

where f̃ P and f̃ A go to a constant in the chiral limit. Both o
these expectations are confirmed by the data, as discu
below. The chiral behavior of the pion mass as a function
quark mass is easily derived from the results for the pseu
scalar and axial-vector densities, combined with a par
conservation of axial vector coupling. This gives

mp
2 .const3mqS 1

mp
2 D d

, mq→0. ~9!

This predicted behavior is also confirmed by the lattice
sults, as discussed in Sec. V.

The quantitative significance of the quenched chiral
behavior that we observe is further reinforced by compar
it with a direct calculation of the anomalous exponentd. We
have done this calculation in two related but distinct wa
One is a calculation of the hairpin diagram Fig. 1:

Dh~x!5^Tr g5G~x,x!Tr g5G~0,0!&, ~10!

whereG(x,y) is the quark propagator. The size of the ha
pin mass insertion determines the coefficient of the logar
mic divergence in theh8 loop diagrams. Let us denote bym0

2

the value of theh8 mass insertion vertex obtained from th
long-range behavior of the hairpin diagram. Then the p
dicted chiral log exponent is given by Eq.~1!.

The other quantity which provides an evaluation ofd is
the topological susceptibility,x t . The Witten-Veneziano for-
mula allows us to relatex t to theh8 mass insertion,
11450
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2Nf

f p
2

x t , ~11!

whereNf is the number of~light! quark flavors. The topo-
logical susceptibility is given in terms of winding numbersn
on a lattice of four-volumeV by

x t5
^n2&

V
. ~12!

To calculate winding numbers, we use the integra
anomaly technique~‘‘fermionic method’’! of Smit and Vink
@8#. The configuration-by-configuration calculation of wind
ing numbers provides a determination of thex t , and hence,
via Eqs.~11! and~1!, an estimate ofd. The results obtained
from the hairpin residue and from the topological susce
bility are in good agreement for clover improved fermion
as discussed in Sec. IV.

III. LATTICE CALCULATION OF PSEUDOSCALAR
MASSES AND DECAY CONSTANTS

Most of the results which we will focus on in the subs
quent discussion are obtained from the ‘‘b’’ ensemble
gauge configurations stored in the Fermilab ACPMAPS
brary. This ensemble consists of a set of 300 quenched
figurations on a 123324 lattice atb55.7. The fermion ac-
tion used in our calculations was clover improved with
clover coefficient ofCsw51.57. This numerical value is con
sistent with previous studies@9# at b55.7 using the tadpole
improved perturbative scheme.~We will denote this set of
gauge fields and propagators the ‘‘b1’’ run.!

To get some estimate of the effects of improved ferm
action and finite volume corrections, we also calcula
masses and decay constants on 200 configurations of t
lattice ensemble with unimproved Wilson fermions (Csw
50) ~denoted ‘‘b0’’!, and on the ‘‘a’’ lattice ensemble
(163332 atb55.7), also with unimproved Wilson fermion
~denoted ‘‘a0’’!. For easy reference, the full set of lattice
and quark masses considered is given in Table I.

The masses and decay constants and their quoted e
are obtained from fully correlated fits to the smeare
smeared and smeared-local propagators, using a sme
pseudoscalar source in the Coulomb gauge combined
local pseudoscalar and axial-vector sources. Calculat
with different smearing functions give results that are co
sistent within less than one standard deviation, indicat
that the systematic error associated with excited-state c
tamination is less than our statistical errors. For the hair
correlator, the issue of excited-state contamination is
dressed in detail in Sec. IV B by comparing the ratio
smeared and local hairpin propagators. Remarkably, we
that for small quark masses there is very little excited-st
contribution to the hairpin propagator, even at time sepa
tions as small ast51. This is in marked contrast to th
valence pion propagator, which has substantial excited s
components at short time. We conclude that the hairpin v
tex itself is largely decoupled from the excited states in
pseudoscalar channel.
5-3
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TABLE I. Various ensembles considered atb55.7.

Run Label Volume CSW configurations k values

a0 163332 0 200 0.1687,0.1685,0.1683,0.1680,0.16
0.1667,0.1650,0.1630,0.1610

b0 123324 0 200 0.1685,0.1680,0.1675,0.1667,0.16
0.1630,0.1610

b1 123324 1.57 300 0.1428,0.1427,0.1425,0.1423,0.14
0.1415,0.1410,0.1405,0.1400
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The essential new ingredient in the present study wh
allows a detailed exploration of chiral behavior is the use
the pole-shifting procedure of the modified quenched
proximation. The details of this procedure and its effectiv
ness in resolving the exceptional configuration problem h
been described previously@2#. For each gauge ensemble a
choice of fermion action, we carried out a careful scan
each configuration for poles over a range of quark mas
starting at a value heavy enough to be beyond all real eig
mode poles and going to nearly zero mass. For example
the run with clover action, wherekc50.14329, poles ap
peared as low ask'0.1417 (mq.45 MeV), and we
scanned for and located all poles up to 0.1431 . The valu
the integrated pseudoscalar chargeQ55*d4xc̄g5c is calcu-
lated for a sequence of hopping parameter values, using
same allsource method that is used to calculate the ha
propagator~see below!. A Padéfit to theseQ5 values deter-
mines the location of any poles within and somewhat bey
the range scanned. Extremely precise pole locations ca
obtained by performing further conjugate gradient inversio
very close to the pole positions determined by the Pade´ fit.
Using the stabilized biconjugate gradient algorith
~BICGSTAB @10#!, we are able to perform inversions at ho
ping parameters very close to the pole position without a
major increase in convergence time. In our calculations,
have located the pole positions as a function of hopping
rameterk to at least eight-digit accuracy in all cases. On
all the visible poles in an ensemble are located, their resid
in the quark propagator are determined by performing inv
sions slightly above and below the pole and subtracting.
found that accurate pole residues could be computed f
pole atk0 by inverting atk5k060.000 001.~The computa-
tion of pole residues can be done very economically by n
ing that the pole contribution to all 12 color-spin compone
of the quark propagator can be obtained from a single co
spin inversion above and below the pole, i.e. only 1/12 o
full propagator calculation is required.!

An alternative procedure for locating poles of the qua
propagator}1/(D” 2mq) is to use the Arnoldi algorithm@11#
to partially diagonalize the Wilson-Dirac operator in the r
gion around zero mass. The returned eigenvalues are the
positions, and the residues needed to perform the p
shifting procedure may be reconstructed from the Arno
eigenvectors. This method locates not only the real eigen
ues but also the complex ones in the continuum band.
Arnoldi analysis was carried out@12# on a subset of the con
figurations used in this investigation, extracting appro
11450
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mately 50 eigenvalues from each gauge configuration a
lyzed. For the lattices which exhibited visible poles in t
BICGSTAB scanning procedure described above, the result
the Arnoldi calculation agree accurately with that analy
for both the pole positions and residues. The low-lying sp
trum for an ‘‘exceptional’’ gauge configuration (b:021 000)
is shown in Fig. 3.~Note: The positive mass region is to th
right in this plot. The three modes farthest to the right on
real axis were MQA shifted.!

The effects of the MQA pole-shifting procedure are
eliminate the problem of exceptional configurations and
dramatically improve error bars on all quantities calcula
from light quark propagators, as shown in detail in Ref.@2#.
Since theh8 hairpin propagator is particularly sensitive
the topological structure of gauge configurations, the i
provement obtained by using the MQA method for the ha
pin calculations is even more striking than that for valen
quark meson propagators. The MQA-improved results
sufficiently accurate to allow a detailed study of the tim
dependence of the hairpin propagator even as far outt
59 or 10. The result of this analysis provides quantitat
support for the assumption, often used in phenomenolog
discussions, that the momentum dependence of the ha
vertex is mild and that it can therefore be treated simply a
mass insertion. The time dependence of both local-sou

FIG. 3. A portion of the low-lying spectrum of theCsw50
Wilson-Dirac spectrum of a quenched gauge configurat
~b_021000 of the ACPMAPS library! in the regionl'1/kc . This
configuration has four real poles in the continuum band. The ve
cal line is at Rel51/kc . The three real poles farthest to the rig
on the plot require shifting.
5-4
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ANOMALOUS CHIRAL BEHAVIOR IN QUENCHED LATTICE QCD PHYSICAL REVIEW D62 114505
and smeared-source hairpin correlators is discussed in d
in Sec. IV B.

IV. h8 MASS AND CHIRAL LOG PARAMETER d

A. Topological susceptibility

For both the hairpin correlator and the calculation of t
integrated pseudoscalar chargeQ5, the method used is on
introduced into such loop calculations in Ref.@13#. This
method employs an ‘‘allsource’’ quark propagator calcula
with a source that consists of a color-spin unit vector onall
sitesof the lattice. This allows closed quark loops originati
from any space-time point to be included in a calculat
~e.g., of Q55Tr Gg5 or of a hairpin diagram!, relying on
random gauge phases to cancel out the gauge-variant
loops. Even on a single gauge configuration, this method
reasonably accurate way of calculating global quantities
Q5, since random phase cancellation of noninvariant te
should take place in the sum over sites. The topolog
winding numbern of each gauge configuration can be det
mined using the integrated anomaly equation@8#

n52 imqQ5 . ~13!

Thus we expect the quark-mass dependence ofQ5 to exhibit
a simple pole atmq50 with residue given by the winding

FIG. 4. Q5 as a function of quark mass for two typical ‘‘b1’
gauge configurations after MQA pole shifting.
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number. The plots ofQ5 vs mq for two typical b1 configu-
rations~after MQA pole shifting! are shown in Fig. 4. The
solid line in each case is the best single-pole fit. For the 3
lattice b1 ensemble with clover action, the distribution
winding numbers determined in this way is shown in Fig.

The topological susceptibilityx t can now be calculated a
the mean-squared winding number per unit four-volume

x t5
^n2&

V
5

mq
2

V
^Q5

2&. ~14!

By calculating the last expression in Eq.~14!, we observe
only a slight quark-mass dependence of the result, as sh
in Fig. 6. Extrapolating to the chiral limit, we obtain, fo
Csw51.57 ~the b1 run!,

x t56.48~58!310245@188~5! MeV#4, ~15!

where the first result is in lattice units, and the second
obtained by using the charmonium scale atb55.7 of a21

51.18 GeV. The corresponding result for 163332 unim-
proved Wilson fermions (Csw50) ~the a0 run! is

FIG. 5. Distribution of winding numbers determined from th
integrated pseudoscalar density for a ‘‘b1’’ run.

FIG. 6. Topological susceptibility calculated by the fermion
method on the 123324 ‘‘b1’’ lattice with clover-improved (Csw

51.57) fermions as a function of the quark mass used to determ
Q5.
5-5
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x t53.24~39!310245@158~5! MeV#4. ~16!

Using the topological susceptibility and the value of ax
vector decay constant obtained from the valence propag
fits @see Sec. VI#, the Witten-Veneziano formula gives

d50.063~6! ~17!

for ~b1! clover-improved quarks (Csw51.57), and

d50.074~9! ~18!

for ~a0! unimproved Wilson quarks. In Eqs.~15! and~16! we
used the bare quark mass obtained from the hopping pa
eter to determine winding numbers fromQ5 values. Here and
elsewhere, we have taken the bare quark mass to be the
mass

mq5 log@11 1
2 ~k212kc

21!#, ~19!

but the results for the chiral log parameter are not sign
cantly different if we use the naive bare mass (k21

2kc
21)/2. If, instead, we use the current algebra mass

mq
CA[ f Amp

2 /2f P , ~20!

results ~15! and ~17! are essentially unchanged, while th
Csw50 results@Eqs.~16! and ~18!# are decreased to

x t51.40~17!310245@128~2! MeV#4 ~21!

and

d50.032~4!. ~22!

The large discrepancy between thed values in Eqs.~18! and
~22! reflects, in part, a large renormalization factor for t
bare pseudoscalar density in the case of Wilson fermio
@See the discussion following Eq.~29!.#

An important check of the calculation of topological su
ceptibility is to show that̂n2& has the proper dependence
volume, i.e.,̂ n2&}V. In Fig. 7 we comparên2& calculated
on a 123324 b0 lattice and on a 163332 a0 lattice, both

FIG. 7. The volume dependence of^n2& for 123324 ‘‘b0’’
lattices and 163332 ‘‘a0’’ lattices, for Wilson-Dirac fermions,
Csw50.
11450
l
tor
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with unimproved Wilson fermions (Csw50). @For the 123

324 ‘‘b0’’ lattices, x t54.00(43)31024.# The results shown
in Fig. 7 are consistent with the expected extensive prope
i.e., a linear volume dependence for^n2&.

B. Hairpin correlator and the h8 mass insertion

Using the same allsource propagators as in Sec. IV A,
calculate the hairpin contribution to the flavor singlet pse
doscalar propagator, i.e., the loop-loop correlator@Eq. ~10!#.
Earlier calculations of this correlator@4,13,14# were re-
stricted to a relatively heavy quark mass, and had large er
which prevented a detailed study of time dependence.
discussed in Sec. I, the statistical problems encountere
these previous investigations arise from exactly real Wils
Dirac eigenmodes, the effect of which is magnified by t
fact that the hairpin propagator receives its largest contri
tions from topologically nontrivial gauge configuration
which necessarily contain such real modes. The MQA po
shifting procedure is thus particularly effective in improvin
the hairpin calculation. Figure 8 shows an example of a h
pin propagator before and after MQA improvement of t
corresponding quark propagators. The quark mass is
rather heavy here (mq.36 MeV, mp50.386a21

'450 MeV). For even lighter quarks, the unimproved ha
pin propagator is unmeasurable, with errors.100%, while
the MQA improved hairpin is still quite well determined

FIG. 8. The hairpin correlator fork50.1420 andCsw51.57
~‘‘b1’’ run ! before and after MQA improvement.
5-6
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ANOMALOUS CHIRAL BEHAVIOR IN QUENCHED LATTICE QCD PHYSICAL REVIEW D62 114505
allowing a reasonably accurate measurement of theh8 mass
insertion even at the lightest quark mass we have studie

The size and time dependences of the hairpin correl
are measured accurately enough in the MQA method to
dress the two issues of excited state contamination
p2-dependent vertex insertion terms mentioned in Sec
These two effects are distinct, but they are difficult to dise
tangle from the time dependence alone, since they both h
the effect of adding a single pole term to the correlator. F
tunately, there is another way to determine the presenc
absence of excited states, namely, to study the ratio of h
pin correlators obtained from smeared and localc̄g5c
sources. This can be compared with the overlap of the s
smeared and local sources with the ground-state pion, as
termined from the large-t behavior of the corresponding va
lence pion propagators.

We construct smeared-source hairpin correlators b
modification of the allsource method used for the loc
source hairpins. In the latter, the source used for propag
inversion was a unit color-spin vector on every site. In ord
to obtain meaningful results for smeared source propaga
we must perform the smearing in Coulomb gauge. T
smeared sources used for the valence pion propagators
constructed using an exponential smearing function}e2lr .
Based on other studies of hadron wave functions at this v
of b, we tookl50.5 in lattice units. There is an addition
subtlety in the implementation of Coulomb gauge smear
in the allsource method. Since this method relies on rand
gauge phase cancellations, the actual sums over sites fo
two ends of the hairpin must be carried out in the origin
unfixed gauge. In fact we carry out all calculations in t
unfixed gauge, just as in the local calculation. The only d
ference is that the source used for propagator inversion
‘‘smeared allsource’’ which is constructed by the followin
procedure.

~1! Construct an ordinary allsource, i.e., a unit color-sp
vector on every site.

~2! To the allsource, apply the gauge transformation t
transforms from the original unfixed gauge to the Coulo
gauge.

~3! Smear the source terms on each site in Coulomb ga
by convoluting with an exponential smearing function.@This
is most efficiently done in momentum space using fast F
rier transforms.#

~4! Transform the smeared allsource back to the origi
unfixed gauge.

This smeared allsource can be used as the source fo
quark propagator calculation, and the subsequent analys
identical to that of the local hairpin correlator. In Coulom
gauge the smeared allsource is a superposition of real e
nential sources originating from every point. By going ba
to the unfixed gauge, we attach the original random SU~3!
gauge phase to each exponential, so that a quark loop w
starts on one exponential and ends on another will hav
random phase~even if it actually starts and ends at the sa
space-time point!, whereas terms which start and end on t
same exponential have no random phase~even if they start
and end on different points!. In this sense, the method is ve
similar in spirit to one introduced earlier by Butleret al.
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@15#, where multiple smeared sources were introduced
hadron spectroscopy calculations by attaching random U~1!
phases to each source.

The ratio of ground-state overlaps of the smeared
local sources with the pion is easily and accurately de
mined from the behavior of the smeared-smeared
smeared-local valence pion propagators. As discussed in
V, values for the pion mass and for the ground-state overl
are obtained from a combined fit to the propagators us
smeared pseudoscalar, local pseudoscalar, and local
vector sources and sinks.

Define the local and smearedc̄g5c operators byPl(x)
andPs(x), respectively, and measure the corresponding m
trix elements

^0uPi~0!up~pW 50!&5 f P
( i ) , i 5 l ,s. ~23!

To test for the presence of excited states in the hairpin c
relator, define the smeared and local hairpin correlators~at
zero 3-momentum! Dh

( i )(t), i 5s,l , and plot the ratio

R~ t ![
Dh

( l )~ t !/~ f P
( l )!2

Dh
(s)~ t !/~ f P

(s)!2
. ~24!

If there are no excited states, this ratio should be equa
unity. In Fig. 9 we plot this ratio for one of the lightest ma
hairpins calculated (k50.1427 or mq50.0137 in lattice
units!. The absence of any excited-state contamination in
hairpin propagator is striking. By contrast, the ratio of v
lence propagators at small times is substantially larger t
its asymptotic value, indicating that the local valence pro
gator has a larger excited-state contribution. We concl
that the hairpin vertex is very nearly decoupled from exci
pseudoscalar states. In Fig. 10, we also plot the results
similar analysis for a heavier quark mass (k50.1410 ormq
50.0559 in lattice units!. Here the relative contribution o
excited states to the valence propagator~also shown in the
plot! is even larger than in the light mass case. The hair
propagator, on the other hand, still exhibits little if an
excited-state contribution. Fort>2, there is no significant

FIG. 9. RatioR(t) of the local-source hairpin divided by th
smeared-source hairpin withk50.1427, normalized by the
asymptotic valence propagator ratio.
5-7
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departure of the hairpin ratio from its asymptotic value. T
analysis of the smeared-to-local hairpin ratio has been
ried out at all the other mass values with similar conclusio
In no case is there any significant indication of excited sta
for t>2.

The demonstrated absence of excited states from the
pin diagram allows us to make effective use of the tim
dependence of the correlator to investigate the structur
the hairpin vertex. The simplest assumption, often invoked
phenomenological discussions, is that the hairpin is simp
momentum-independent mass insertionm0

2. With this as-
sumption, the quenched hairpin correlator in moment
space is given by

D̃h~p!5 f P

1

p21mp
2

m0
2 1

p21mp
2

f P . ~25!

Fourier transforming overp0, this implies a time dependenc
for the zero momentum propagator of

Dh~pW 50;t !5
f P

2m0
2

4mp
3 ~11mpt !e2mpt1~ t→NT2t !.

~26!

This structureless hairpin vertex is suggested by largeNc
arguments, but it is important to test for the more gene
possibility that the vertex has some additionalp2 depen-
dence. To lowest order in ap2 expansion, this would gener
alize the above analysis by the replacement

m0
2→P~p2!'P~2mp

2 !1~p21mp
2 !P8~2mp

2 !1••• .
~27!

To test for thep2 dependence of the hairpin vertex, and
estimate its effect on the determination of theh8 mass, we
carried out two sets of correlated fits to the hairpin tim
dependence, one with the pure double-pole formula@Eq.
~26!# and one to the single-pole plus double-pole form
resulting from Eq.~27!. In all these fits, the pion mass wa

FIG. 10. RatioR(t) ~boxes! of the local-source hairpin divided
by the smeared-source hairpin withk50.1410, normalized by the
asymptotic valence propagator ratio. Also shown (3 ’s! is the same
ratio for the valence propagator.
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held fixed at the value given by the valence propaga
analysis. Since we have already demonstrated that the
very little excited-state contamination in the hairpin prop
gator, the range of times used in the fits is taken to be 2<t
<10. To summarize the overall results of these fits, the h
pin time dependence for all the quark masses studied is
described by a single-parameter fit to the pure double-p
formula@Eq. ~26!#. ~Here the pion mass is not a fit paramete
since it is already accurately determined from the vale
propagator.! In Fig. 11 we show an example of a pur
double-pole fit to the hairpin correlator over the entire acc
sible t range. We conclude that the hairpin vertex is reas
ably well described by a momentum-independent mass in
tion. The final results form0

2, given in Table II, are extracted
from pure double-pole fits. Using Eq.~1! and the lattice
value for f p(5 f A /A2) ~see Table III!, this gives

d50.062~7! ~28!

for Csw51.57 ~the b1 run!, and

d50.044~5! ~29!

for Csw50 ~the b0 run!.
In the pure double-pole approximation to the hairpin c

relator, the value ofd from x t and that obtained from the

FIG. 11. One-parameter fit to a pure double Goldstone p
form for the hairpin correlator atk50.1420. The pion mass is fixe
from the valence propagator analysis.

TABLE II. Value of m0, the hairpin contribution to theh8 mass,
for a Csw51.57 ‘‘b1’’ run ~first three columns! and aCsw50 ‘‘b0’’
run ~last three columns! at b55.7, for Nf53.

k mpa m0a k mpa m0a

0.1410 0.505~2! 0.517~23!

0.1415 0.450~3! 0.534~24! 0.1630 0.556~2! 0.179~10!

0.1420 0.386~3! 0.554~24! 0.1650 0.456~2! 0.239~16!

0.1423 0.342~4! 0.568~26! 0.1667 0.354~3! 0.289~13!

0.1425 0.307~4! 0.576~27! 0.1675 0.294~3! 0.321~13!

0.1427 0.267~5! 0.576~30! 0.1680 0.249~4! 0.338~13!

0.1428 0.245~6! 0.576~33! 0.1685 0.190~6! 0.353~18!

kc — 0.580~27! kc — 0.393~15!
5-8
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TABLE III. Pseudoscalar masses and decay constants for aCsw51.57 ‘‘b1’’ run ~first four columns! and
a Csw50 ‘‘a0’’ run ~last four columns! at b55.7.

k mPa fAa fPa k mPa fAa fPa

0.1400 0.603~2! 0.196~2! 0.458~5! 0.1610 0.647~1! 0.224~3! 0.518~9!

0.1405 0.556~2! 0.190~2! 0.444~5! 0.1630 0.558~1! 0.199~2! 0.471~9!

0.1410 0.505~2! 0.183~2! 0.430~6! 0.1650 0.458~1! 0.174~2! 0.424~8!

0.1415 0.450~3! 0.176~2! 0.418~6! 0.1667 0.356~2! 0.154~2! 0.387~8!

0.1420 0.386~3! 0.169~2! 0.410~7! 0.1675 0.297~2! 0.144~2! 0.371~8!

0.1423 0.342~4! 0.165~3! 0.410~9! 0.1680 0.254~2! 0.136~5! 0.358~12!

0.1425 0.307~4! 0.163~3! 0.413~10! 0.1683 0.221~3! 0.132~6! 0.353~19!

0.1427 0.267~5! 0.161~4! 0.424~14! 0.1685 0.195~4! 0.129~7! 0.342~25!

0.1428 0.245~6! 0.161~5! 0.439~17! 0.1687 0.164~5! 0.126~11! 0.345~38!

kc 222 0.151~2! 222 kc 222 0.122~2! 222
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hairpin residue are related by a factor (f Amp
2 /2f Pmq)2,

which should be unity by the chiral Ward identity. Th
agreement between Eqs.~15! and ~28! for the clover-
improved calculations can be traced to the following tw
facts:~1! the double-pole formula gives a good description
the hairpin correlator for all time separations, and~2! the
Ward identity is well satisfied forCsw51.57. ~By contrast,
the current algebra quark mass is about 40% smaller than
bare mass forCsw50.!

V. QUENCHED CHIRAL LOGS IN THE
PSEUDOSCALAR MASS

The effect of quenchedh8 loops on the chiral behavior o
the pseudoscalar mass is one of the most definitive pre
tions of the quenched chiral log analysis@6,7#. In a previous
analysis of the pion mass as a function of quark mass@4#, no
evidence was found for quenched chiral log behavior ab
55.7 for unimproved Wilson fermions, with a one-standa
deviation upper bound on the chiral log parameter ofd
,0.07. This was also shown to be consistent with the siz
the hairpin propagator. That analysis was done before
development of the MQA method for resolving the exce
tional configuration problem, and the lightest pion mass u
was mpa50.249 ~hopping parameterk50.1680 andCsw
50). With MQA improvement of quark propagators we o
tain much better statistical errors onmp and also are able to
go to a much lighter quark mass (mpa50.164 or k
50.1687 for Csw50 and mpa50.244 or k50.1428 for
Csw51.57). As we discuss in this section, this improv
analysis allows us to observe clearly the quenched chiral
effect in the pion mass with a value of the chiral log para
eter d50.054, slightly less than the previously establish
upper bound for theCsw50 case. The value ofd is some-
what larger for clover improved quarks (d50.073), suggest-
ing that the suppression ofd compared to the expected co
tinuum value'0.17 may be at least partially due to fini
lattice spacing effects. The recent results from CPPACS
d50.0620.12 @3# for several values ofb is consistent with
this possibility, but is not accurate enough to observe
clear lattice spacing dependence.

To extract a value of the chiral log parameter from t
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pion mass as a function of bare quark mass, in this sec
we shall consider only the case where the two quark ma
involved are equal~in Sec. VII chiral log formulas for un-
equal quark masses will be derived from a model chiral L
grangian and used to perform global fits to the b1 latt
data!. In the equal quark mass case, the chiral logs sum u
a leading log approximation to give an anomalous power-
dependence of the squared pion mass on the quark mas

mp
2 5const3mq

1/(11d) . ~30!

For Csw51.57 ~the b1 run!, we calculated the pion mass a
nine values of hopping parameter ranging fromk50.1400 to
0.1428. The masses are obtained from a combined, co
lated fit of smeared-local and smeared-smeared propaga
using a smeared pseudoscalar source, a local pseudos
source, and a local axial-vector source. The pion masses
tained are listed in Table III.

Figures 12 and 13 exhibit the chiral log effect in the pse
doscalar mass graphically. The first plot includes all n
values of quark mass. The solid line is the best quadratic
~i.e., mp

2 5Amq1Bmq
2) to the four heaviest masses~with kc

included as a fit parameter!. The second plot~Fig. 13! is an
expanded view of the small mass region. It shows clea

FIG. 12. mP
2 vs quark mass forb55.7 andCsw51.57 ‘‘b1’’

runs. The solid line is the second-orderxPT fit to the four heaviest
masses.
5-9



la
t

a

e
II.
th
x
og

o
t

th

do

th
,
:

a
fe

rk
alcu-
ba-
re

s
and
st

r
the

by
fit

to

al

t, as

W. BARDEEN, A. DUNCAN, E. EICHTEN, AND H. THACKER PHYSICAL REVIEW D62 114505
that the light pion masses fall below the quadratic extrapo
tion of the heavier masses~solid line!. The dashed line is a fi
of the lowest five masses to the chiral log formula@Eq. ~30!#
~again with the value ofkc as one of the fit parameters!. We
find

d50.073~20!. ~31!

We have also calculated the pion masses forCsw50 on
an ensemble of 200 gauge configurations atb55.7 on a
163332 lattice~the a0 ensemble!. Here also we calculatemp

at nine values of hopping parameter ranging fromk
50.1610 to 0.1687. For this case we were able to go to
even smaller pion mass ofmpa50.164, which is less than
200 MeV in physical units~using the charmonium scal
a2151.18 GeV!. The pion masses are listed in Table I
Again the quenched chiral log effect is clearly visible, wi
the lightest-mass points falling significantly below an e
trapolated quadratic fit. Fitting to the quenched chiral l
formula @Eq. ~30!#, we find

d50.054~20!. ~32!

Consistent with the direct hairpin calculation, the value
the chiral log parameter from themp

2 analysis is somewha
smaller forCsw50 ~the a0 run! than forCsw51.57 ~the b1
run!, although in this case the error bars are larger, so
difference is only marginally significant.

VI. CHIRAL BEHAVIOR OF THE PSEUDOSCALAR AND
AXIAL-VECTOR MATRIX ELEMENTS

As discussed in Sec. I, the chiral behavior of the pseu
scalar and axial-vector decay constantsf P and f A provide
further tests of quenched chiral log predictions. When
two quarks in the pseudoscalar meson have equal mass
should find a clear contrast between these two quantitiesf P

should exhibit a QCL factor}(mp
2 )2d, while f A should have

a smooth, nonsingular chiral limit. The values off P and f A
are obtained from the combined fit to smeared-smeared
smeared-local propagators discussed in Sec. V. The ef

FIG. 13. Quenched chiral log fit~dashed line! to the five lightest
mass values withd50.073. The solid line is the extrapolatedxPT
fit to the heaviest four masses.
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of full tadpole improvement for the normalization of qua
masses and quark operators have been included in our c
lations, but we have not carried out a complete nonpertur
tive O(a) improvement program. The numerical results a
presented in Table III. For theCsw51.57 results, the mas
dependence of the decay constants is shown in Figs. 14
15. It is clear from these plots that at the very lighte
masses, the value off P is significantly larger than a linea
extrapolation of the heavier mass results, consistent with
singular (mp

2 )2d expected from QCL effects, whilef A ex-
hibits no sign of singular behavior, and is well described
a linear fit. In both figures, the solid line is the best linear
to the four heaviest masses.

Since the singular behavior off P in the chiral limit is
determined by the ubiquitous chiral log parameterd, it
should be possible to use the results forf P to obtain another
estimate of this parameter. The extraction of a value ofd is
made somewhat more difficult by the fact that, in addition
the singular QCL effect, the mass dependence off P implies
a significant contribution from higher-order terms in chir
perturbation theory~i.e., terms linear inmp

2 ). With the accu-

FIG. 14. Pseudoscalar decay constantf P as a function of quark
mass for the ‘‘b1’’ run. The enhancement at smallmq is a QCL
effect.

FIG. 15. Axial-vector decay constantf A as a function of quark
mass for the ‘‘b1’’ run. Note the absence of a QCL enhancemen
predicted by theoretical arguments.
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racy of our data, the two contributions are difficult to dise
tangle. Although the QCL effect is clearly visible, a fit tof P
which includes both QCL andxPT terms is rather unstable
and the resulting value ford is poorly determined. We can
do much better if we make an additional, phenomenolo
cally motivated assumption that the perturbative slopes of P
and f A are approximately equal@17#. The data in Figs. 14
and 15 are consistent with this assumption. The ratiof P / f A
should thus exhibit a relatively pure chiral log behavior:

f P

f A
5const3~mp

2 !2d. ~33!

The lattice results for this ratio are shown in Fig. 16, alo
with the best fit to the QCL formula@Eq. ~33!#. This gives a
value of the chiral log parameter of

d50.085~23!. ~34!

VII. EXTRACTION OF d FROM MASS AND DECAY
CONSTANT CROSS-RATIOS

To facilitate a comparison with previous work by th
CPPACS collaboration@3#, we have extracted the chiral lo
parameterd from our full set of b-lattice clover-improved
results for masses and decay constants of the 45 indepen
mesons which can be formed from the nine available qu
masses, using the cross-ratio method introduced in Ref.@3#.
For a given meson parameteryi j ~here i and j label the
quarks in the meson and run from 1 to 9!, the cross-ratioRi j
is defined as follows:

Ri j [
yi j

2

yii y j j
. ~35!

Let Mi j , f P; i j , and f A; i j denote the mass, pseudoscalar, a
axial-vector decay constants of the meson with quark c
tentsi andj ~and quark massesmi andmj ). Then, with either
yi j 5Mi j

2 /(mi1mj ) or yi j 5 f P; i j / f A; i j , one has, to leading
order ind,

Ri j 5const3~11dXi j !, ~36!

FIG. 16. Ratiof P / f A as a function of quark mass for the ‘‘b1’
run. The solid line is a QCL fit withd50.085.
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where the chiral logarithm is contained in the factorXi j .
@Higher-order chiral perturbation theory contribution
O(L5d,L8d) have been ignored, while the termsO(L5 ,L8)
automatically cancel in the cross-ratio@16,17#.# At infinite
volume, this factor becomes

Xi j 521
mi1mj

mi2mj
ln

mj

mi
. ~37!

The analysis in this section is carried out only for the
ensemble. These lattices are at smaller volume than thos
the work cited above~physical extent.2 F as compared to
3 F in Ref. @3#! and we go to considerably smaller qua
masses, so we have used a finite volume version of the fit
parameterXi j ~see Sec. VIII below for a discussion!:

Xi j 52I i j 2I i i 2I j j , ~38!

where the finite volume sumsI i j are defined in Eq.~45!.
Fitting the cross-ratios of the masses of all 36 o

diagonal mesons, we obtain

d50.06060.016 ~x2554/35 d.o.f.!, ~39!

while a fit of cross-ratios of the decay constant rat
f P; i j / f A; i j gives

d50.07160.010 ~x2537/35 d.o.f.!. ~40!

Finally, a combined fit of both the mass and decay-cons
ratios gives

d50.07360.008 ~x25118/71 d.o.f.!. ~41!

Results~39!–~41! are for the b1 ensemble (Csw51.57).
The expected linearity in theX variable of Eq.~36! is

displayed graphically in Fig. 17 for pseudoscalar masses,
in Fig. 18 for the ratio of pseudoscalar to axial decay co
stants. The results of fully correlated fits are displayed
solid lines.

The effects of finite volume corrections to the fitting fo
mula are significant here. For example, if we used the na

FIG. 17. Cross-ratios ofMi j
2 /(mi1mj ) as a function of finite

volumeXi j variable.
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infinite volume forms we would have obtainedd
50.104(14) (x25131/71) from a combined fit of ratio
@Compare Eq.~41!#.

VIII. COMPARISON WITH QUENCHED CHIRAL
PERTURBATION THEORY

For pions made from a quark and antiquark with uneq
masses, the form of the quenched chiral log effect is m
complicated@3,7#. For the range of masses we consider, it
sufficient to keep only lowest order terms ind ~i.e., one-loop
terms!, or equivalently, in a hairpin mass term which can
included explicitly as a correction to the basic chiral L
grangian:

L5
f 2

4
Tr~]mU†]mU !1

f 2

4
Tr~x†U1U†x!

1L5 Tr@]mU†]mU~x†U1U†x!#

1L8 Tr~x†Ux†U1U†xU†x!1Lhairpin, ~42!

where

Lhairpin[2
1

2
m0

2 f 2

8
@ i Tr ln~U†!2 i Tr ln~U !#2. ~43!

The lowest-order chiral Lagrangian has been suppleme
by the chiral symmetry breaking termsL5 of O(p2mp

2 ) and
L8 of O(mp

4 ) which model the leading mass dependence
the slope in the pseudoscalar masses. Starting from this
grangian, we can derive explicit formulas for the pseud
scalar masses, and pseudoscalar and axial vector decay
stants, consistent through orderp4 and including the effects
of the hairpin mass insertion~assumed local! through the
term Lhairpin in Eq. ~42!. The coefficientsL5 and L8 follow
the notation of Gasser and Leutwyler@17#. The evaluation of
the one-loop chiral integrals appearing in this calculation
also been carried out at finite volume~appropriate for the
physical size of the lattices used!. The size of the finite vol-
ume corrections to the one-loop chiral integrals are ill
trated in Table IV.

FIG. 18. Cross-ratios off P; i j / f A; i j as a function of the finite
volumeXi j variable.
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The one-loop chiral integrals appearing in this calculat
uses a Pauli-Villars subtraction to regulate the ultraviolet
vergences. For example, logarithmically divergent integr
such as

I i j 5
1

p2E d4p
1

p21Mi
2

1

p21M j
2

~44!

are replaced by

I i j 516p2(
p

@D~p,Mi !D~p,M j !2D~p,L!2#, ~45!

where the momentum integration is now a discrete sum o
a finite volume free boson propagatorD(p,M ). We have
typically chosen the cutoff scaleL.1/a, but the sensitivity
of the results to this choice is very small. One also enco
ters quadratically divergent graphs in the course of the
culation, which are regulated as follows:

I i516p2(
p

@D~p,Mi !2D~p,L!2~L22Mi
2!D~p,L!2#.

~46!

With these preliminaries, we find the following expre
sion for the pseudoscalar masses~squared!, up to first order
in the hairpin mass and~independently! in L5 andL8:

Mi j
2 5

x i1x j

2
~11dI i j !

3H 11
1

f 2
~8L824L5!~x i1x j !1

1

f 2
d~8L824L5!

3@2I i i x i12I j j x j1~x i1x j !I i j #18
1

f 2
L5dJi j J , ~47!

Ji j [@ I i1I j2~Mii
2 1M j j

2 !I i j #/2. ~48!

The quantitiesx i encode the quark masses: our data
clude values for nine differentk values, so the indicesi and
j above run from 1 to 9, allowing for 45 independent qua
antiquark combinations. Thus

TABLE IV. Effect of the finite volume correction on the one
loop chiral integralI i i ,i 5129. The ratio of finite to infinite vol-
ume results are shown for the diagonal meson masses used i
‘‘b1’’ and ‘‘a0’’ ensembles.

b1 lattices

mpa 0.603 0.556 0.505 0.450 0.386 0.342 0.307 0.267 0.2
ratio 1.00 1.00 1.02 1.03 1.05 1.09 1.13 1.23 1.3

a0 lattices

mpa 0.647 0.558 0.458 0.356 0.297 0.254 0.221 0.195 0.1
ratio 1.00 1.00 1.01 1.02 1.03 1.07 1.12 1.20 1.4
5-12
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FIG. 19. Global fits, using
Eqs. ~47!, ~B1!, and ~B2!, for
kc ,d,r 0 ,L5,8, f A5A2 f , and f P

5r 0f A . Results are shown for
time windows 5–11, 6–11, 7–11
and 8–11.
s
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g

x i52r 0mi , ~49!

where r 0 is a slope parameter~which we also extract from
the fits!, and we have used the pole value for the quark ma

mi[ lnS 11
1

2k i
2

1

2kc
D . ~50!

Similar formulas were obtained for the pseudoscalar
axial decay constantsf P; i j and f A; i j , and are listed in Ap-
pendix B. We have performed global fits to the masses
decay constants for all 45 mesons~in the b1 ensemble! in
order to extract the parametersf , r 0 , d, L5, andL8. The fits
were performed for a variety of time-windows~for the 123

324 b1 lattices, on time windows 5–11, 6–11, 7–11, a
11450
s:

d

d

d

8–11! in order to isolate any remaining sensitivity to high
state contamination, and the results for the various ch
parameters, as a function of the initial time for the windo
are shown in Fig. 19. With only 300 independent configu
tions, it is not possible to obtain a sufficiently stable cova
ance matrix to fit all 135 masses and decay constants
these results reflect an uncorrelated fit to all meson par
eters using Eqs.~47!, ~B1! and ~B2!.

To summarize our results, a global fit to all pseudosca
masses and decay constants from the b1 ensemble, us
time window of 6–11, gives a final value for the chiral lo
parameter of

d50.05960.015, ~51!
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while the slope and critical kappa parameters in Eqs.~49!
and ~50! are determined as

r 051.9960.12, ~52!

kc50.143 28760.000 022. ~53!

For the chiral breaking parametersL5 andL8, our fits give

L55~2.560.5!31023 ~54!

and

L82
1

2
L55~0.260.1!31023. ~55!

The dimensionless chiral parametersL5 and L8 are only
roughly determined by phenomenology. Recent estima
@18# give

L5~M r!5~1.460.5!31023, ~56!

renormalized at the rho mass, with the combinationL8
2 1

2 L5 consistent with zero:

L82
1

2
L55~0.260.4!31023. ~57!

Finally, our result for the axial decay constant correspond
a value for the pion decay constant~bare, in lattice units! of

f 5 f p50.106660.0024. ~58!

IX. SUMMARY AND DISCUSSION

The calculations presented above confirm all the esse
features of anomalous quenched chiral behavior sugge
by continuum calculations. Our lattice studies lead to
following basic conclusions:

~1! The MQA pole-shifting technique allows for an acc
rate computation of meson and hairpin correlators down
small quark masses (mp'200 MeV). Probing this region is
essential in order to obtain reliable signatures of anoma
chiral behavior.

~2! The hairpin vertex has only a small coupling to e
cited states, and very gentle momentum dependence.
suggests that it may be accurately modeled by a local m
insertion term in a chiral Lagrangian.

~3! Determination of the chiral log parameterd using five
separate methods gives consistent results. A summary o
results for this parameter indicating the various meth
used is displayed in Table V. The overall average of o
Csw51.57 ensemble givesd50.06560.013. Our values for
d at b55.7 are considerably smaller than those expec
from a naive continuum analysis, but are in agreement w
previous lattice estimates.
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~4! Using the MQA technique, meson properties~masses
and decay constants! can be extracted with sufficient accu
racy to allow a fit of higher-order chiral parameters, such
L5 andL8.

Careful quantitative studies of chiral behavior
quenched QCD in comparison with quenched chiral per
bation theory can provide a great deal of insight into t
connection between QCD and the effective chiral Lagrang
that describes its long-range behavior in the limit of sm
quark mass. Even if the numerical simulation of full QC
were not so expensive computationally, the study of ch
behavior in quenched QCD would still be of theoretical i
terest. For example, the Witten-Veneziano relation conne
the h8 mass to the topological susceptibility ofquenched
QCD. The geometric summation of multipleh8 mass inser-
tions is only the simplest example of how, in some cases,
most important effects of the full QCD fermion determina
can be incorporated into a quenched result, with the guida
of chiral perturbation theory. Because of the smallness of
parameterd, QCL effects are adequately described by on
loop xPT, even for quark masses close to the physical up
down mass. It is thus straightforward to apply appropri
and calculable QCL corrections to quenched results.
course the masses, decay constants, and higher-order c
Lagrangian coefficients obtained in quenched QCD will d
fer somewhat from those of the full theory, but all of th
disturbing structural properties of the quenched theory~lack
of unitarity, absence of topological screening, etc.! can be
systematically repaired in the context of chiral perturbat
theory. Further precision studies of anomalous chiral beh
ior in the quenched meson and baryon spectrum should
vide additional insight into the origin and structure of chir
symmetry in QCD. The results presented in this paper p
vide strong support for the usefulness of the MQA techniq
to facilitate these studies.

Ideally, similar studies should be performed using an
actly chirally symmetric Dirac operator which satisfie
Ginsparg-Wilson relations, e.g., the Neuberger operator@19#.
Explicit Ginsparg-Wilson chiral symmetry would resolve th
exceptional configuration problemab initio. Unfortunately,
such operators are necessarily not ultralocal@20#, and are
difficult to invert or diagonalize numerically. The MQA

TABLE V. Summary of results for chiral log parameterd.

Method Csw Ensemble d

Witten-Veneziano 1.57 b1 0.063~6!

hairpin vertex 1.57 b1 0.062~7!

diagonal mesons 1.57 b1 0.073~20!

ratio fit, masses 1.57 b1 0.060~16!

ratio fit, f P / f A 1.57 b1 0.071~10!

global fit 1.57 b1 0.059~15!

Witten-Veneziano 0 a0 0.074~9!

hairpin vertex 0 b0 0.044~5!

diagonal mesons 0 a0 0.054~20!
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method attempts to account for the most salutary effect o
explicitly chirally symmetric approach. The underlying a
sumption in this procedure is that the most important eff
of the explicit chiral symmetry breaking contained in t
Wilson-Dirac operator is the real displacement of its sm
eigenvalues. The MQA method merely removes these
placements in a compensated manner. The principal di
vantage of the method is its apparent lack of locality. Us
a basis of hopping terms~nearest-neighbor, next-neare
neighbor, etc.!, it may be possible to identify terms in a
ultralocal expansion of the Dirac operator which correspo
most closely to a MQA improved Wilson-Dirac operato
The additional hopping terms would have the effect of
ducing the dispersion of the small real eigenvalues, as w
as inducing small rotations of the basis wave functions,
Such an analysis has not yet been carried out. The c
quantitative success of the MQA procedure in restoring
sired chiral behavior is a promising indication that su
eigenmode-based methods can be both efficient and effe
in removing the dominant spurious effects of chiral symm
try breaking contained in the Wilson-Dirac formulation
lattice fermions.
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APPENDIX A: ALLSOURCE METHOD

The allsource method, first applied to theh8 mass calcu-
lation in Ref.@13#, is used here to calculate hairpin diagram
as well as the pseudoscalar charge for the determinatio
winding numbers. We have also introduced a generaliza
of this allsource method which allows the calculation
closed loops which originate from a smeared source, i.e.,
two ends of the quark propagator are contracted over c
and spin, but are spatially separated with an exponen
weight function. The method relies on the fact that gau
noninvariant terms in the calculation will cancel out due
random SU~3! gauge phases. For example, in the calculat
of a single quark loop, the closed loop terms where the qu
starts and ends on the same point~or on the same exponentia
source in the smeared calculation! add coherently when
summed over sites, while loops which start and end on
ferent sources have random phases and cancel.

While the cancellation of random gauge phases in
allsource method should work arbitrarily well for a larg
enough ensemble of gauge configurations, it is very instr
tive to test this method in a situation where we know t
exact gauge-invariant answer which can be used to check
accuracy of the random phase cancellation. To carry out s
a comparison, we have calculated the ordinary valence p
propagator using the allsource technique. This calcula
11450
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uses the same allsource propagators that were used to c
late hairpin correlators. In the hairpin calculation, we co
puted the correlator of two closed loops by contracting
two color indices of each allsource propagator with a fix
time separation between the two propagators. To calcu
the valence propagator, we instead take the same two
source propagators with fixed time separation and cro
contract the color indices to form a single loop from the tw
propagators and then project out the color singlet compon
~The last step amounts to leaving out the terms in which
four-color indices are equal and then multiplying by a fac
of 3/2.! In Fig. 20, the valence pion propagator calculated
the allsource method is compared with the results of the s
dard calculation using local and smeared sources on a fi
timeslice. The results are shown for hopping parametek
50.1425, but a similar agreement is obtained at allk values.

The agreement is excellent and well within statistical
rors. For small times (t,5), the errors on the allsource ca
culation are actually smaller than those from a fixed sour
~Remember that the allsource calculation allows the me
propagator to be averaged over all locations on the latt
thus increasing the effective statistics relative to the fix
source method.! Unlike the fixed source calculation howeve
the statistical errors for the allsource calculation are more
less constant in absolute magnitude for all time separatio
This results in a signal-to-noise ratio that becomes rap
worse as we go out in time, just as in the hairpin calculati
This roughly constant noise level is presumably the effec
incomplete cancellation of random gauge phases. Becaus
this, the allsource method is an inferior way of studying t
asymptotic behavior of the pion propagator. Neverthele
for short times it accurately reproduces the results of
standard method. It is a fortuitous circumstance that the h
pin correlator is found to be almost entirely free of excite
state contamination. This allows us to extract the grou
state vertex insertion from its value at relatively short tim
where the allsource technique is accurate.

APPENDIX B: QUENCHED CHIRAL RESULTS FOR
DECAY CONSTANTS

A next-to-leading-order chiral perturbation theory calc
lation of the pseudoscalar and axial decay constants ca

FIG. 20. Comparison of the valence pion propagator compu
by the allsource method (3 ’s! and the conventional metho
~boxes!. Data points are offset slightly for clarity.
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carried out along the same lines as discussed in Sec. VII
the pseudoscalar mass spectrum. Starting from the Lagr
ian equation~42! and using the notations introduced the
we find

f P; i j 5A2 f r 0S 11
1

4
d~ I i i 1I j j 12I i j ! D3H 11

1

f 2
~8L8

22L5!~x i1x j !$11d@2I i i x i12I j j x j1~x i

1x j !I i j #/~x i1x j !%2
2

f 2
L5d@ I i i x i1I j j x j1~x i

1x j !I i j #1
4

f 2
L5d~Jii 1Jj j !J ~B1!

for the pseudoscalar decay constant, and
ys

H

cl

.

11450
or
g-

,
f A; i j 5A2 f S 11

1

4
d~ I i i 1I j j 22I i j ! D3H 11

2

f 2
L5~x i1x j !

12
1

f 2
L5d@2~x i1x j !I i j 2x i I i i 2x j I j j #J ~B2!

for the axial decay constant. These formulas, together w

Mi j
2 5

x i1x j

2
~11dI i j !

3H 11
1

f 2
~8L824L5!~x i1x j !1

1

f 2
d~8L824L5!

3@2I i i x i12I j j x j1~x i1x j !I i j #18
1

f 2
L5dJi j J ~B3!

for the pseudoscalar masses, were used to perform the g
fits described in Sec. VIII.
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