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A study of the chiral behavior of pseudoscalar masses and decay constants is carried out in quenched lattice
QCD with Wilson fermions. Using the modified quenched approximation to cure the exceptional configuration
problem, accurate results are obtained for pion masses as lev2@8 MeV. The anomalous chiral log effect
associated with quenchegl’ loops is studied in both the relation betwemf; vs mg and in the light-mass
behavior of the pseudoscalar and axial vector matrix elements. The size of these effects agrees quantitatively
with a direct measurement of thg hairpin graph, as well as with a measurement of the topological suscep-
tibility, thus providing several independent and quantitatively consistent determinations of the quenched chiral
log parameters. For 8=5.7 with clover-improved fermionsG,,=1.57) all results are consistent wiih
=0.065+0.013.

PACS numbds): 12.38.Gc, 11.15.Ha, 11.30.Rd, 12.39.Fe

[. INTRODUCTION high statistics down to a much lower pion mg¢90 MeV
for the larger volume 18x 32 lattice$ than has previously
Until recently, efforts to study the chiral limit of lattice been accessible #=5.7 [for example, a recent high statis-
QCD with Wilson-Dirac fermions have been impeded by thetics study[3] of quenched chiral behavidiat 5=5.9 and
large non-Gaussian fluctuations encountered at light quarkarge physical volumegsextends only tom,~300 MeV].
mass(the “exceptional configuration” problem These sta- The results confirm in considerable detail the expected chiral
tistical problems have been shown to be symptomatic of th&ehavior predicted for these quantities from chiral Lagrang-
nonconvergence of the quenched lattice Monte Carlo integrd@n arguments. The overall size of the quenched chiral log
tion due to the presence of exactly real Dirac eigenmodes iparameters is about a factor of 2 smaller than thes
the physical mass regidii]. These real eigenmodes are of ~0.17 expected from the theoretical result
topological origin, but are displaced from zero mass by the

explicit chiral symmetry breaking of the Wilson-Dirac opera- mg
tor. The modified quenched approximatiMQA) is a pre- = YOI (1)
scription for constructing a modified quark propagator by 16mf7N;

shifting positive mass real poles to zero mass in a compen-

sated way2]. This procedure is the most straightforward andusing the physical values of,, andf . (Here the normal-
effective way of removing the lattice artifact which producesization of f . is such that its physical value 95 MeV.
exceptional configurations, while leaving the results forChiral perturbation theory and the physical mass of tfie
heavier quarks outside the pole region essentially unchangeg@live my~850 MeV) Nevertheless, the quantitative rela-
In the continuum limit, the spread of eigenmodes to positivelions between various quantities inferred from continuum
mass shrinks to zero, so that if we shift all poles above &hiral Lagrangian arguments appear to be well satisfied. In
given quark mass, the fraction of gauge configurations in affact, the smallness of is consistent with our previous cal-
ensemble that would require MQA pole-shifting approachesgulations at heavier quark mass which did not use MQA
zero in the continuum limit. In this sense, the MQA has theshifting [4].

right continuum limit, and provides a sensible definition of In this paper, we describe several independent quantita-
the otherwise undefined quenched theory at finite latticdive estimates of the quenched chiral I&@CL) paramete®:
spacing and small quark mass. Exactly how effective thél) by a direct measurement of thg hairpin diagram,2)
MQA is in restoring the chiral behavior expected from by a calculation of the topological susceptibility combined
quenched continuum arguments is a question that can best éth the Witten-Veneziano formulgs], (3) by measurement
addressed by detailed calculations. As we will show in thisof the QCL effect inm? vs mg and in the vacuum-to-one-
paper, by using the MQA procedure we are able to study thearticle matrix element of the pseudoscalar denduy,by
behavior of pseudoscalar masses and decay constants wittting cross-ratios of masses and matrix elements using the
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FIG. 1. Chiral Lagrangian representation of the quark hairpin
diagram at any’ mass insertion.

FIG. 2. A quenchedy’ loop diagram which produces anoma-
lous chiral log behavior.

lowest-order chiral perturbation theory predictiga first or-
der in 6), and (5) by a global fit of all masses and matrix perturbation theory formulas for pseudoscalar and axial de-
elements to the next-to-leading order chiral perturbatiorcay constants are given in Appendix B.
theory prediction. When the two quark masses in the pion are
allowed to vary independently, as {#) and(5), the corre- Il. BRIEF REVIEW OF QUENCHED CHIRAL THEORY
sponding masses and decay constants provide additional tests
of quenched chiral log structuréf. the analysis of the
CPPACS Collaborationi3]). In this paper we present the
results of analyses of chiral log structure both in the “diag-
onal” (equal quark magssector(often referred to as “de-
generate” mesons and for mesons with unequal quark
masses. The various determinationsé#fre all consistent
within statistics, giving an exponen$=0.065(13) for

The presence of anomalous chiral behavior induced by the
quenched approximation was first investigated in the work of
Sharpg]6] and Bernard and Goltermaiiii]. Physically, the
quenched chiral log effect can be understood as a conse-
quence of the absence of topological screening in quenched
QCD. Diagramatically, the quenched approximation discards
some, but not all, of the;’ hairpin mass insertions. Instead
y ; : : of the massivern’ propagator of full QCD, the quenched
clover-improved Wilson fermion action, anit=0.06(2) for hairpin diagram exhibits a double Goldstone pole; see Fig. 1.

unimproved Wilson action. This leads to infrared sinaulas’ | di h as that
As discussed below, operators which do not change IS leads to infraréd singuiay l1oop diagrams, such as tha

chirality, such as the axial-vector current, are not expected t8h°V_V” in Fig. 2, which altt_ar the chiral behavior of certain
exhibit a QCL singularity(for equal mass quarksin agree- matrix elements. A convenient way to understand the effect

: . : : of the QCL singularities is to interpret them as a renormal-
ment with this theoretical expectation, our results for the” . . ) . oo
b tion factor in the chiral field. Begin with a U()U(3)

mass dependence of the axial-vector decay constant show'%8 L . h a chiral field
smooth analytic behavior with no enhancement in the chiraf"'"@! Lagrangian, with a chiraf ie
limit. The contrast between the singular chiral behavior of 8

the _pseudoscalar matrix elemer_1t and the sr_nooth an_alytic be- U =eXF{ i > Nl
havior of the axial-vector matrix element is a particularly i=0

convincing piece of evidence that we are indeed seeing the _
effects of virtualy’ loops. whereh =1 andmy= 7’ represents the SB)-flavor singlet

In Sec. Il we briefly review the essential features of Meson. Now consider the effect of integrating out the
quenched chiral behavior in QCD in the language offield. The_ remaining SU(3X SU(3) Goldstone fields will be
effective-field theory. Details of the lattice calculations arefénormalized as
presented in Sec. Ill. The direct determinationsydfom the e 2\ e 2
7' hairpin correlator and from the topological susceptibility U—(e'mo™)U=exd —(mp)/2f]U, 3)
are presented in Sec. IV. In Sec. V, QCL effects in the .
squared pseudoscalar mass as a function of quark mass gylgere, in the quenched theory,
discussed, for “diagonal” mesons composed of equal mass 4 1 g —m
quarks only. The QCL behavior of the pseudoscalar and <W§>:j P Hf P °__ (4)
axial-vector decay constant@gain, for diagonal mesons (2m)* p2+Mf], (2m)* (p?+M?2)?
only) is studied in Sec. VI. In Sec. VII we extract the chiral
log paramete® from an analysis of cross-ratios of pseudo- In full QCD, the " mass is large, so the effect of inte-
scalar meson masses and decay constants for unequal quariating out thez’ field is to induce a finite renormalization
masses, along the lines of the CPPACS analy&isin Sec.  that is nonsingular in the chiral limit. The chiral limit is
VIII we compare our lattice data for all mesofequal and described by the SU(3SU(3) chiral Lagrangian without
unequal quark masseswith the results of a detailed anz’. Now consider the effect of quenching on the result of
quenched chiral perturbation theditp orderp?) calculation  integrating out the;’ field. The double Goldstone pole in the
for the pseudoscalar masses and decay constants. Finally, gmenchedy,’ propagator produces logarithmically divergent
Sec. IX we summarize our results and draw some broad coreop integrals in chiral perturbation theory. This results in a
clusions. Some technical remarks on the efficacy and accuenormalization factor for the fieltd that is singular in the
racy of the all-source technique used to extract hairpin amehiral limit, and thus alters then,— 0 behavior of the chiral
plitudes are relegated to Appendix A, while chiral field:

Eei’TO/fU, (2)
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U—exq — slogm2]U =

1 §~ 2 2Nf
m_727 U1 (5) mozﬁxt , (11)

whereU is nonsingular asn,— 0. In the following subsec- WhereNy is the number oflight) quark flavors. The topo-
tions, we will discuss the chiral log effetar lack thereofin  l0gical susceptibility is given in terms of winding numbers
the pseudoscalar and axial-vector charge matrix elemenf @ lattice of four-volumé/ by

and in the mass of the pion as a function of quark mass. (v?)
Define the decay constants andf,: ==y (12)
] -
(Olyy>ylm(p)="fe, To calculate winding numbers, we use the integrated
_ (6) anomaly techniqué€‘fermionic method”) of Smit and Vink
(Olgry®y i m(p)) = pHfa. [8]. The configuration-by-configuration calculation of wind-

ing numbers provides a determination of the and hence,
From the chiral-field expressions for the quark bilinears,  via Egs.(11) and (1), an estimate 0. The results obtained
_ from the hairpin residue and from the topological suscepti-
Yy e U—UT, bility are in good agreement for clover improved fermions,
(7)  as discussed in Sec. IV.
Yy y* =i[UT U — (9 U U],
Ill. LATTICE CALCULATION OF PSEUDOSCALAR
we conclude that a singular chiral log factor will appear in MASSES AND DECAY CONSTANTS

the quenched calculation &f, but not off 4, . . .
q b A Most of the results which we will focus on in the subse-

s quent discussion are obtained from the “b” ensemble of
) Te, gauge configurations stored in the Fermilab ACPMAPS li-
brary. This ensemble consists of a set of 300 quenched con-
(8) figurations on a 12x 24 lattice atB=5.7. The fermion ac-
fquenched§ tion used in our calculations was clover improved with a
clover coefficient ofCg,,=1.57. This numerical value is con-
¢ Sistent with previous studid®] at 3=5.7 using the tadpole
Si,_gaproved perturbative scheméNe will denote this set of

fquenched_ ( i
P T2

w

wherefp andf, go to a constant in the chiral limit. Both o
these expectations are confirmed by the data, as discus fauge fields and propagators the “b1” run.

below. The chiral behavior of the pion mass as a function o To get some estimate of the effects of imoroved fermion
guark mass is easily derived from the results for the pseudo- .. 9 . : . P
ction and finite volume corrections, we also calculated

scalar and axial-vector densities, combined with a partial"l , :
conservation of axial vector coupling. This gives masses and decay constants on 200 configurations of the b

lattice ensemble with unimproved Wilson fermion€(,
s =0) (denoted “b0"), and on the “a” lattice ensemble
) ., mg—0. (9) (16°x 32 at3=5.7), also with unimproved Wilson fermions
(denoted “a0"). For easy reference, the full set of lattices
and quark masses considered is given in Table I.
This predicted behavior is also confirmed by the lattice re- The masses and decay constants and their quoted errors
sults, as discussed in Sec. V. are obtained from fully correlated fits to the smeared-
The quantitative significance of the quenched chiral logsmeared and smeared-local propagators, using a smeared
behavior that we observe is further reinforced by comparingpseudoscalar source in the Coulomb gauge combined with
it with a direct calculation of the anomalous exponéntWe  local pseudoscalar and axial-vector sources. Calculations
have done this calculation in two related but distinct wayswith different smearing functions give results that are con-

1
m;

2
mZ = constx mq(

One is a calculation of the hairpin diagram Fig. 1: sistent within less than one standard deviation, indicating
that the systematic error associated with excited-state con-
Ap(x)=(Tr y°G(x,x)Tr y°G(0,0)), (100 tamination is less than our statistical errors. For the hairpin

correlator, the issue of excited-state contamination is ad-

whereG(x,y) is the quark propagator. The size of the hair-dressed in detail in Sec. IVB by comparing the ratio of
pin mass insertion determines the coefficient of the logarithsmeared and local hairpin propagators. Remarkably, we find
mic divergence in they’ loop diagrams. Let us denote b}é that for small quark masses there is very little excited-state
the value of thep’ mass insertion vertex obtained from the contribution to the hairpin propagator, even at time separa-
long-range behavior of the hairpin diagram. Then the pretions as small ag=1. This is in marked contrast to the
dicted chiral log exponent is given by E@). valence pion propagator, which has substantial excited state

The other quantity which provides an evaluation®fs  components at short time. We conclude that the hairpin ver-
the topological susceptibilityy; . The Witten-Veneziano for- tex itself is largely decoupled from the excited states in the
mula allows us to relatg; to the ' mass insertion, pseudoscalar channel.
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TABLE |. Various ensembles considered @ 5.7.

Run Label Volume Csw configurations x values
a0 16x 32 0 200 0.1687,0.1685,0.1683,0.1680,0.1675
0.1667,0.1650,0.1630,0.1610
b0 12x24 0 200 0.1685,0.1680,0.1675,0.1667,0.1650
0.1630,0.1610
bl 1Bx 24 1.57 300 0.1428,0.1427,0.1425,0.1423,0.1420,

0.1415,0.1410,0.1405,0.1400

The essential new ingredient in the present study whichmately 50 eigenvalues from each gauge configuration ana-
allows a detailed exploration of chiral behavior is the use oflyzed. For the lattices which exhibited visible poles in the
the pole-shifting procedure of the modified quenched ap8BICGSTAB scanning procedure described above, the results of
proximation. The details of this procedure and its effective-the Arnoldi calculation agree accurately with that analysis
ness in resolving the exceptional configuration problem havéor both the pole positions and residues. The low-lying spec-
been described previous|g]. For each gauge ensemble and trum for an “exceptional” gauge configuratiorp{021 000)
choice of fermion action, we carried out a careful scan ofis shown in Fig. 3(Note: The positive mass region is to the
each configuration for poles over a range of quark massegight in this plot. The three modes farthest to the right on the
starting at a value heavy enough to be beyond all real eigeneg| axis were MQA shifted.
mode poles and going to nearly zero mass. For example, in The effects of the MQA pole-shifting procedure are to
the run with clover action, where;=0.14329, poles ap- eliminate the problem of exceptional configurations and to
peared as low as~0.1417 (n,=45 MeV), and we dramatically improve error bars on all quantities calculated
scanned for and located all pOIeS up to 01_431 . The value Cﬂ:'om ||ght quark propagators, as shown in detail in F{e]
the integrated pseudoscalar cha@g= [d*xyy° is calcu-  Since the’ hairpin propagator is particularly sensitive to
lated for a sequence of hopping parameter values, using thtee topological structure of gauge configurations, the im-
same allsource method that is used to calculate the hairpiprovement obtained by using the MQA method for the hair-
propagator(see below. A Padefit to theseQs values deter- pin calculations is even more striking than that for valence-
mines the location of any poles within and somewhat beyondjuark meson propagators. The MQA-improved results are
the range scanned. Extremely precise pole locations can Isefficiently accurate to allow a detailed study of the time-
obtained by performing further conjugate gradient inversiongslependence of the hairpin propagator even as far out as
very close to the pole positions determined by the Fidde =9 or 10. The result of this analysis provides quantitative
Using the stabilized biconjugate gradient algorithmsupport for the assumption, often used in phenomenological
(BICGSTAB [10]), we are able to perform inversions at hop- discussions, that the momentum dependence of the hairpin
ping parameters very close to the pole position without anyertex is mild and that it can therefore be treated simply as a
major increase in convergence time. In our calculations, wenass insertion. The time dependence of both local-source
have located the pole positions as a function of hopping pa-
rameterx to at least eight-digit accuracy in all cases. Once 0.4
all the visible poles in an ensemble are located, their residue:

in the quark propagator are determined by performing inver- 03| 1«
sions slightly above and below the pole and subtracting. We oz | o : x
found that accurate pole residues could be computed for ¢ «
pole atkg by inverting atk= k+0.000 001(The computa- & 01} R

tion of pole residues can be done very economically by not-g

ing that the pole contribution to all 12 color-spin components‘—E“ ° " . o "
of the quark propagator can be obtained from a single color-~ 0.1 x x
spin inversion above and below the pole, i.e. only 1/12 of a 0z | N .
full propagator calculation is requirgd. ’ N IV
An alternative procedure for locating poles of the quark 03| N
propagator:1/(ID —m,) is to use the Arnoldi algorithriil 1] o4 . N . .
to partially diagonalize the Wilson-Dirac operator in the re- 5.8 5.85 5.9 Re?a_?nsbda 6 6.05 6.1

gion around zero mass. The returned eigenvalues are the poie
positions, and the residues needed to perform the pole- giG, 3. A portion of the low-lying spectrum of th€,=0
shifting procedure may be reconstructed from the Arnoldiwilson-Dirac spectrum of a quenched gauge configuration
eigenvectors. This method locates not only the real eigenvalp_021000 of the ACPMAPS librayyin the region\ ~1/«.. This
ues but also the complex ones in the continuum band. Theonfiguration has four real poles in the continuum band. The verti-
Arnoldi analysis was carried o(it2] on a subset of the con- cal line is at Re.=1/x.. The three real poles farthest to the right
figurations used in this investigation, extracting approxi-on the plot require shifting.
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FIG. 4. Qs as a function of quark mass for two typical “b1”
gauge configurations after MQA pole shifting.

and smeared-source hairpin correlators is discussed in detall

in Sec. IVB.

IV. »" MASS AND CHIRAL LOG PARAMETER é
A. Topological susceptibility

For both the hairpin correlator and the calculation of the
integrated pseudoscalar char@g, the method used is one
introduced into such loop calculations in RéfL3]. This

method employs an “allsource” quark propagator calculated

with a source that consists of a color-spin unit vectoratin
sitesof the lattice. This allows closed quark loops originating
from any space-time point to be included in a calculation
(e.g., of Qs=TrGv® or of a hairpin diagram relying on

random gauge phases to cancel out the gauge-variant opes,

PHYSICAL REVIEW D62 114505
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FIG. 5. Distribution of winding numbers determined from the
integrated pseudoscalar density for a “b1” run.

number. The plots 0Qs vs m, for two typical b1 configu-
rations (after MQA pole shifting are shown in Fig. 4. The
solid line in each case is the best single-pole fit. For the 300
lattice b1 ensemble with clover action, the distribution of
winding numbers determined in this way is shown in Fig. 5.

The topological susceptibility, can now be calculated as
the mean-squared winding number per unit four-volume

»?) m?
==y,

(14)

By calculating the last expression in E{.4), we observe
only a slight quark-mass dependence of the result, as shown
in Fig. 6. Extrapolating to the chiral limit, we obtain, for
Csw=1.57 (the b1l run,
x:=6.4858)x 10 4=[1885) MeV]*, (15)
where the first result is in lattice units, and the second is
obtained by using the charmonium scalegat5.7 of a™*
=1.18 GeV. The corresponding result for3:632 unim-
proved Wilson fermions,,=0) (the a0 run is

12

(lattice units)
® >

4
»

loops. Even on a single gauge configuration, this method is ¢x
reasonably accurate way of calculating global quantities likex
Qs, since random phase cancellation of noninvariant terms
should take place in the sum over sites. The topological
winding numberv of each gauge configuration can be deter-
mined using the integrated anomaly equati8h

V= _iqu5. (13)

n
T

0.05

0.1 0.15 0.2 0.25

. 0.3
mpi’2 (lattice units)

FIG. 6. Topological susceptibility calculated by the fermionic

method on the 1224 “b1” lattice with clover-improved Cg,

Thus we expect the quark-mass dependenc@sab exhibit
a simple pole am,=0 with residue given by the winding

114505-5

=1.57) fermions as a function of the quark mass used to determine

Qs.



W. BARDEEN, A. DUNCAN, E. EICHTEN, AND H. THACKER

60

50

40

30

<vh2>

20 |

10

10 15 20
V x 1074 (lat)

FIG. 7. The volume dependence ¢#%) for 12°x24 “b0”
lattices and 16x32 “a0” lattices, for Wilson-Dirac fermions,
Cow=0.

xt=3.2439)x 10 4=[1585) MeV]*. (16)

Using the topological susceptibility and the value of axial

vector decay constant obtained from the valence propagatoE

fits [see Sec. V|| the Witten-Veneziano formula gives

6=0.0636) a7
for (b1) clover-improved quarksQ,~=1.57), and
6=0.0749) (19

for (a0) unimproved Wilson quarks. In Eg€l5) and(16) we
used the bare quark mass obtained from the hopping paral
eter to determine winding numbers fra@y values. Here and
elsewhere, we have taken the bare quark mass to be the p
mass

my=log[1+3(k =Y, (19

but the results for the chiral log parameter are not signifi-

cantly different if we use the naive bare mass ¢
— k. h/2. If, instead, we use the current algebra mass

CA_

SA=fam2/2fp,

m, (20

results (15 and (17) are essentially unchanged, while the
C.w=0 results[Eqgs.(16) and(18)] are decreased to
xi=1.4017)x 10 4=[1282) MeV]* (21

and
5=0.0324). (22

The large discrepancy between thealues in Eqs(18) and

PHYSICAL REVIEW D62 114505
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FIG. 8. The hairpin correlator fok=0.1420 andCg,~=1.57

rg‘bl” run) before and after MQA improvement.

ith unimproved Wilson fermionsQ,,=0). [For the 13

e

D24 “bh0” lattices, y,= 4.00(43)x 10~ 4.] The results shown

in Fig. 7 are consistent with the expected extensive property,
i.e., a linear volume dependence f{ar).

B. Hairpin correlator and the #»’' mass insertion

Using the same allsource propagators as in Sec. IVA, we
calculate the hairpin contribution to the flavor singlet pseu-
doscalar propagator, i.e., the loop-loop correldeg. (10)].
Earlier calculations of this correlatd4,13,14 were re-
stricted to a relatively heavy quark mass, and had large errors
which prevented a detailed study of time dependence. As
discussed in Sec. |, the statistical problems encountered in
these previous investigations arise from exactly real Wilson-
Dirac eigenmodes, the effect of which is magnified by the
fact that the hairpin propagator receives its largest contribu-
tions from topologically nontrivial gauge configurations
which necessarily contain such real modes. The MQA pole-
shifting procedure is thus particularly effective in improving

(22) reflects, in part, a large renormalization factor for thethe hairpin calculation. Figure 8 shows an example of a hair-
bare pseudoscalar density in the case of Wilson fermiongin propagator before and after MQA improvement of the

[See the discussion following E¢(R9).]

An important check of the calculation of topological sus-
ceptibility is to show that»?) has the proper dependence on
volume, i.e.(»?) V. In Fig. 7 we comparé»?) calculated
on a 12x24 bo lattice and on a $&32 a0 lattice, both

corresponding quark propagators. The quark mass is still
rather heavy here nf,~36 MeV, m,=0.386 "
~450 MeV). For even lighter quarks, the unimproved hair-
pin propagator is unmeasurable, with errordé00%, while

the MQA improved hairpin is still quite well determined,
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allowing a reasonably accurate measurement ofithenass

insertion even at the lightest quark mass we have studied.
The size and time dependences of the hairpin correlator 12}

are measured accurately enough in the MQA method to ad- T 4}

dress the two issues of excited state contamination anc

p2-dependent vertex insertion terms mentioned in Sec. l_ o8l }

These two effects are distinct, but they are difficult to disen- &

tangle from the time dependence alone, since they both havi o6}

the effect of adding a single pole term to the correlator. For-

-y
= al
Ha—

g

g
—a—)|
—e]

—a—
—a—
—a
—

tunately, there is another way to determine the presence o %47

absence of excited states, namely, to study the ratio of hair |

pin correlators obtained from smeared and logay®y

sources. This can be compared with the overlap of the sam %, > 4 5 : 10 12
smeared and local sources with the ground-state pion, as de time (lat)

termined from the largé-behavior of the corresponding va-
lence pion propagators.

We construct smeared-source hairpin correlators by
modification of the allsource method used for the local-
source hairpins. In the latter, the source used for propagat
inversion was a unit color-spin vector on every site. In orde
to obtain meaningful results fo_r sm_eared source propagator hases to each source.
we must perform the smearing in Coulomb gauge. Th

smeared sources used for the valence pion propagators w The ratio of ground-state overlaps of the smeared and
. . pion prop .g,M §6tal sources with the pion is easily and accurately deter-
constructed using an exponential smearing functien .

FIG. 9. RatioR(t) of the local-source hairpin divided by the
gmeared-source hairpin  withk=0.1427, normalized by the
asymptotic valence propagator ratio.

:ffLS], where multiple smeared sources were introduced in
hadron spectroscopy calculations by attaching randdf) U

of B, we tookA=0.5 in lattice units. There is an additional
subtlety in the implementation of Coulomb gauge smearin
in the allsource method. Since this method relies on rando
gauge phase cancellations, the actual sums over sites for t

&ctor sources and sinks.
two ends of the hairpin must be carried out in the original , he local — ¢
unfixed gauge. In fact we carry out all calculations in the DEfine the local and smearefty>y operators byP|(x)

unfixed gauge, just as in the local calculation. The only dif-21dPs(x), respectively, and measure the corresponding ma-

ference is that the source used for propagator inversion is %X €lements
“smeared allsource” which is constructed by the following
procedure.

(1) Construct an ordinary allsource, i.e., a unit color-spin

V, values for the pion mass and for the ground-state overlaps
%re obtained from a combined fit to the propagators using
meared pseudoscalar, local pseudoscalar, and local axial

(0|P;(0)|m(p=0))=f8), i=ls. (23)

To test for the presence of excited states in the hairpin cor-

vector on every site. . L
. elator, define the smeared and local hairpin correlatars
(2) To the allsource, apply the gauge transformation tha{Zero 3—momentumAﬂ)(t), i—s.1, and plot the ratio

transforms from the original unfixed gauge to the Coulomb

gauge. o A(I)(t)/(f(l))z
(3) Smear the source terms on each site in Coulomb gauge ()= h P’ (24)
by convoluting with an exponential smearing functiffihis AO)1(£5))?
is most efficiently done in momentum space using fast Fou-
rier transformg. If there are no excited states, this ratio should be equal to
(4) Transform the smeared allsource back to the originalinity. In Fig. 9 we plot this ratio for one of the lightest mass
unfixed gauge. hairpins calculated K=0.1427 or my=0.0137 in lattice

This smeared allsource can be used as the source for thumits). The absence of any excited-state contamination in the
quark propagator calculation, and the subsequent analysis lirpin propagator is striking. By contrast, the ratio of va-
identical to that of the local hairpin correlator. In Coulomb lence propagators at small times is substantially larger than
gauge the smeared allsource is a superposition of real expis asymptotic value, indicating that the local valence propa-
nential sources originating from every point. By going backgator has a larger excited-state contribution. We conclude
to the unfixed gauge, we attach the original randon{(33U that the hairpin vertex is very nearly decoupled from excited
gauge phase to each exponential, so that a quark loop whigiseudoscalar states. In Fig. 10, we also plot the results of a
starts on one exponential and ends on another will have similar analysis for a heavier quark mass<0.1410 orm,,
random phaséeven if it actually starts and ends at the same=0.0559 in lattice unis Here the relative contribution of
space-time point whereas terms which start and end on theexcited states to the valence propagatidso shown in the
same exponential have no random phéseen if they start  plot) is even larger than in the light mass case. The hairpin
and end on different poinksin this sense, the method is very propagator, on the other hand, still exhibits little if any
similar in spirit to one introduced earlier by Butlet al.  excited-state contribution. Fde=2, there is no significant
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FIG. 11. One-parameter fit to a pure double Goldstone pole
form for the hairpin correlator at=0.1420. The pion mass is fixed
from the valence propagator analysis.

FIG. 10. RatioR(t) (boxes of the local-source hairpin divided
by the smeared-source hairpin wik+0.1410, normalized by the
asymptotic valence propagator ratio. Also show1g) is the same

ratio for the valence propagator. . .
held fixed at the value given by the valence propagator

departure of the hairpin ratio from its asymptotic value. This2nalysis. Since we have already demonstrated that there is
analysis of the smeared-to-local hairpin ratio has been caNery little excited-state contamination in the hairpin propa-
ried out at all the other mass values with similar conclusionsgator, the range of times used in the fits is taken to & 2
In no case is there any significant indication of excited statess 10. To summarize the overall results of these fits, the hair-
for t=2. pin time dependence for all the quark masses studied is well
The demonstrated absence of excited states from the hafiescribed by a single-parameter fit to the pure double-pole
pin diagram allows us to make effective use of the timeformula[Eq.(26)]. (Here the pion mass is not a fit parameter,
dependence of the correlator to investigate the structure ¢fince it is already accurately determined from the valence
the hairpin vertex. The simplest assumption, often invoked irPropagato). In Fig. 11 we show an example of a pure
phenomenological discussions, is that the hairpin is simply gouble-pole fit to the hairpin correlator over the entire acces-
momentum-independent mass insertimg. With this as- siblet range. We conclude that the hairpin vertex is reason-
sumption, the quenched hairpin correlator in momentun@Ply well described by a ngomentl{m-lndependent mass inser-
space is given by tion. The final results fomg, given in Table Il, are extracted
from pure double-pole fits. Using Eql) and the lattice

B 1 , 1 value forf_(=f,/\2) (see Table I}, this gives
App)=fpZ——mo5——=Tp. (25
pe+mz  ptmy 6=0.0627) (28
Fourier transforming ovep,, this implies a time dependence for Cg,,=1.57 (the bl run, and
for the zero momentum propagator of
6=0.0445) (29
R f2ma B
An(p=0;t)=——(1+m,t)e ™'+ (t—Nr—1). for Cs,,=0 (the bO run. o o
4m;. In the pure double-pole approximation to the hairpin cor-

(26)  relator, the value o5 from y; and that obtained from the
This StrUC'[UFe|ES.S'h6.1ifpin vertex is suggested by |&ige- TABLE II. Value of my, the hairpin contribution to the’ mass,
arguments, but it is important to test for the more generator aCg,=1.57 “b1” run (first three columnsand aC,,=0 “b0”
possibility that the vertex has some additionEl depen-  run (last three columnsat 8=5.7, for N;=3.

dence. To lowest order in p? expansion, this would gener-

alize the above analysis by the replacement K m,a ma K m,a mya
m2 - I1(p?) ~TI(— m2)+ (p2+m) I’ (—m2) + - - - . 0.1410 0.508) 0.517293

(27) 0.1415 0.45(B) 0.53424) 0.1630 0.55@) 0.17910
0.1420 0.3863) 0.55424) 0.1650 0.45@) 0.23916)
To test for thep? dependence of the hairpin vertex, and t00.1423  0.3424) 0.56826) 0.1667 0.35) 0.28913)
estimate its effect on the determination of thé mass, we 0.1425 0.30®) 0.57627) 0.1675 0.294) 0.321(13)
carried out two sets of correlated fits to the hairpin time0.1427 0.26/5) 0.57630) 0.1680 0.2484) 0.33§13)
dependence, one with the pure double-pole formiHg. 0.1428 0.248) 0.57633) 0.1685 0.1906) 0.35318)
(26)] and one to the single-pole plus double-pole formula, _ 0.58027) Ke — 0.39315)

resulting from Eq.(27). In all these fits, the pion mass was
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TABLE Ill. Pseudoscalar masses and decay constants @& 1.57 “b1” run (first four columng and
a Cg,=0 “a0” run (last four columnsat 8=5.7.

K mpa faa fpa K mpa faa fpa

0.1400 0.60®) 0.1962) 0.4585) 0.1610 0.647) 0.2243) 0.5189)
0.1405 0.55@) 0.1902) 0.4445) 0.1630 0.5581) 0.1992) 0.4719)
0.1410 0.5082) 0.1832) 0.4306) 0.1650 0.4581) 0.1742) 0.4248)
0.1415 0.45(B) 0.1762) 0.4186) 0.1667 0.35@) 0.1542) 0.3878)
0.1420 0.38®) 0.1692) 0.41Q7) 0.1675 0.29®2) 0.1442) 0.3718)

0.1423 0.34%%) 0.1653) 0.41Q9) 0.1680 0.25@) 0.1365) 0.35812)
0.1425 0.30%) 0.1633) 0.41310) 0.1683 0.223) 0.1326) 0.35319)

0.1427 0.265)  0.1614)  0.42414)  0.1685  0.196))  0.1297)  0.34225
0.1428 0.24)  0.1615  0.43917) 0.1687  0.1665)  0.12611)  0.34538)
Ke - 0.1512) - Ke - 0.1242) -

hairpin residue are related by a factofAme/prmq)z, pion mass as a function of bare quark mass, in this section
which should be unity by the chiral Ward identity. The we shall consider only the case where the two quark masses
agreement between EQq$15) and (28) for the clover- involved are equalin Sec. VII chiral log formulas for un-
improved calculations can be traced to the following twoequal quark masses will be derived from a model chiral La-
facts:(1) the double-pole formula gives a good description ofgrangian and used to perform global fits to the bl lattice
the hairpin correlator for all time separations, af®l the  data. In the equal quark mass case, the chiral logs sum up in
Ward identity is well satisfied foC,,=1.57. (By contrast, a leading log approximation to give an anomalous power-law
the current algebra quark mass is about 40% smaller than tiiiependence of the squared pion mass on the quark mass:
bare mass foC.,=0.)

m?Z = constxmy/ "), (30)
V. QUENCHED CHIRAL LOGS IN THE For C,,,=1.57 (the bl run, we calculated the pion mass at
PSEUDOSCALAR MASS nine values of hopping parameter ranging frem 0.1400 to

, . , 0.1428. The masses are obtained from a combined, corre-

The effect of quenche_@} loops on the chiral bphgwor of .lated fit of smeared-local and smeared-smeared propagators,
the pseudoscalar mass is one of the most definitive prediqyging 4 smeared pseudoscalar source, a local pseudoscalar
tions O.f the quenched chiral log ana_ly@&ﬂ]. In a previous source, and a local axial-vector source. The pion masses ob-
analysis of the pion mass as a function of quark nid§sno

. _ , tained are listed in Table I
evidence was found for quenched chiral log behaviopat —rig res 12 and 13 exhibit the chiral log effect in the pseu-

=5.7 for unimproved Wilson fermions, with a one-standard-q,gcalar mass graphically. The first plot includes all nine
deviation upper bound on the chiral log parameterdof \gyes of quark mass. The solid line is the best quadratic fit

<0.07.. This was also shown to be cqnsistent with the size o ie. mi=Amq+ Bmf]) to the four heaviest massésith «.
the hairpin propagator. That analysis was done before th cluded as a fit parameteiThe second plotFig. 13 is an

Qevelopmgnt of'the MQA method for' resolvmg the eXcep'gxpanded view of the small mass region. It shows clearly
tional configuration problem, and the lightest pion mass use

was m_a=0.249 (hopping parametek=0.1680 andC,,, 0.45
=0). With MQA improvement of quark propagators we ob-
tain much better statistical errors om. and also are able to
go to a much lighter quark massm{a=0.164 or «
=0.1687 for Cg,=0 and m_a=0.244 or k=0.1428 for
Csw=1.57). As we discuss in this section, this improved
analysis allows us to observe clearly the quenched chiral loc=

effect in the pion mass with a value of the chiral log param-3 02}
©

eter 6=0.054, slightly less than the previously established € 5|

c

0.4
0.35
03

2 (lattice units)

upper bound for th&Cs,=0 case. The value of is some- g

what larger for clover improved quark$ 0.073), suggest- 01 r
ing that the suppression @ compared to the expected con- 0.05 |
tinuum value~0.17 may be at least partially due to finite 0

lattice spacing effects. The recent results from CPPACS of 0 0.02 ua?kor?]ass (Iamc%%?] i) 0.08 0.1
6=0.06-0.12[3] for several values oB is consistent with a
this possibility, but is not accurate enough to observe any FIG. 12. m3 vs quark mass fo=5.7 andC,,=1.57 “bl”

clear lattice spacing dependence. runs. The solid line is the second-orggP T fit to the four heaviest
To extract a value of the chiral log parameter from themasses.
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FIG. 13. Quenched chiral log fitlashed lingto the five lightest FIG. 14. Pseudoscalar decay constinas a function of quark
mass values wittd=0.073. The solid line is the extrapolatgdP T mass for the “b1” run. The enhancement at smalj is a QCL
fit to the heaviest four masses. effect.

that the light pion masses fall below the quadratic extrapolabf full tadpole improvement for the normalization of quark
tion of the heavier massésolid line). The dashed line is a fit P P q

of the lowest five masses to the chiral log formy. (30)] masses and quark operators_have been included in our calcu-
oo . lations, but we have not carried out a complete nonperturba-
(again with the value ok as one of the fit parametgrdVe

find tive O(a) improvement program. The numerical results are
presented in Table Ill. For th€,,=1.57 results, the mass
5=0.07320). (31) dependence of the decay constants is shown in Figs. 14 and
15. It is clear from these plots that at the very lightest
We have also calculated the pion massesdg=0 on  Masses, the value d is significantly larger than a linear
an ensemble of 200 gauge configurationsBat5.7 on a  €xtrapolation of the heavier mass results, consistent with the
16%x 32 lattice(the a0 ensembleHere also we calculata, ~ Singular (n7)~° expected from QCL effects, whilé, ex-
at nine values of hopp|ng parameter ranging fromn hibits no sign of Slngulal’ behaVIOI‘, and is well described by
=0.1610 to 0.1687. For this case we were able to go to ad linear fit. In both figures, the solid line is the best linear fit
even smaller pion mass of,a=0.164, which is less than t0 the four heaviest masses. . o
200 MeV in physical units(using the charmonium scale  Since the singular behavior df, in the chiral limit is
a~1=1.18 GeV. The pion masses are listed in Table IiIl. determined by the ubiquitous chiral log parametr it
Again the quenched chiral log effect is clearly visible, with Should be possible to use the results ffigrto obtain another
the lightest-mass points falling significantly below an ex-€stimate of this parameter. The extraction of a valué of
trapo'ated quadratic fit. F|tt|ng to the quenched chiral |Ogmade somewhat more difficult by the fact that, in addition to

formula[Eg. (30)], we find the singular QCL effect, the mass dependencésamplies
a significant contribution from higher-order terms in chiral
6=0.05420). (32 perturbation theoryi.e., terms linear irmfr). With the accu-

Consistent with the direct hairpin calculation, the value of 0.22
the chiral log parameter from thaf, analysis is somewhat
smaller forCg,=0 (the a0 run than forCg,,=1.57 (the bl
run), although in this case the error bars are larger, so the
difference is only marginally significant.

02

VI. CHIRAL BEHAVIOR OF THE PSEUDOSCALAR AND
AXIAL-VECTOR MATRIX ELEMENTS 0.16 |

f_A (Iat)

As discussed in Sec. I, the chiral behavior of the pseudo-
scalar and axial-vector decay constaftsand f, provide 0.14 |
further tests of quenched chiral log predictions. When the
two quarks in the pseudoscalar meson have equal mass, w

: ; 0.12 . . . . : : .

should find a clear contrast between these two quantitjes: 0 005 o1 015 02, (|§’{)25 03 035 04
should exhibit a QCL facto«(mi)“s, while f , should have o

a smooth, nonsingular chiral limit. The valuesfef and f FIG. 15. Axial-vector decay constafif as a function of quark

are obtained from the combined fit to smeared-smeared anglass for the “b1” run. Note the absence of a QCL enhancement, as
smeared-local propagators discussed in Sec. V. The effectgedicted by theoretical arguments.
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FIG. 16. Ratiof /T, as a function of quark mass for the “b1” FIG. 17. Cross-ratios oMﬁ-/(mi+mj) as a function of finite
run. The solid line is a QCL fit with5=0.085. volume X;; variable.

racy of our data, the two contributions are difficult to disen-where the chiral logarithm is contained in the fachE' .
tangle. Although the QCL effect is clearly visible, a fitke ~ [Higher-order chiral perturbation theory contributions
which includes both QCL angtP T terms is rather unstable, O(Ls8,Lgd) have been ignored, while the terr@Ls,Lg)
and the resulting value fo is poorly determined. We can automatically cancel in the cross-rafi®6,17.] At infinite

do much better if we make an additional, phenomenologivolume, this factor becomes

cally motivated assumption that the perturbative slopefsof

and f, are approximately equdll7]. The data in Figs. 14 mi+m; m,
and 15 are consistent with this assumption. The rigiftf 5 Xij=2+ m-m m’
should thus exhibit a relatively pure chiral log behavior: :

(37)

; The analysis in this section is carried out only for the bl
—P=const><(mi)*5. (33) ensemble..These Iatt|ces'are at smaller volume than those in
fa the work cited abovéphysical extent=2 F as compared to

) ) ) o 3 F in Ref.[3]) and we go to considerably smaller quark
The lattice results for this ratio are shown in Fig. 16, alongmgasses, so we have used a finite volume version of the fitting

with the best fit to the QCL formulEEg. (33)]. This gives a parameteiX;; (see Sec. VIII below for a discussipn
value of the chiral log parameter of

Xii=2l;—Li— 1, 38
5=0.08523). (34) ij = <lij i = 1) (39)
where the finite volume sunlg; are defined in Eq(45).
VIl. EXTRACTION OF & FROM MASS AND DECAY Fitting the cross-ratios of the masses of all 36 off-
CONSTANT CROSS-RATIOS diagonal mesons, we obtain
To facilitate a comparison with previous work by the 5=0.060+0.016 (x2=54/35 d.o.f, (39)

CPPACS collaboratiof3], we have extracted the chiral log

parameters from our full set of b-lattice clover-improved while a fit of cross-ratios of the decay constant ratios
results for masses and decay constants of the 45 independqwgtij If asij gives

mesons which can be formed from the nine available quark '

masses, using the cross-ratio method introduced in [Bgf. 5=0.071+0.010 (x?=37/35 d.o.f). (40
For a given meson parametgy; (herei andj label the
quarks in the meson and run from 1 tp the cross-ratidy;; Finally, a combined fit of both the mass and decay-constant
is defined as follows: ratios gives
yﬁ 5=0.073-0.008 (x?>=118/71d.0.1. (47

Results(39)—(41) are for the b1 ensembleC¢,,=1.57).
LetM;;, fp.j;, andf,.;; denote the mass, pseudoscalar, and The expected linearity in th& variable of Eq.(36) is
axial-vector decay constants of the meson with quark condisplayed graphically in Fig. 17 for pseudoscalar masses, and
tentsi andj (and quark masses; andm;). Then, with either  in Fig. 18 for the ratio of pseudoscalar to axial decay con-
Yij=|\/|i2j/(mi+mj) or y;;=fp.j/fai;, One has, to leading stants. The results of fully correlated fits are displayed as
order in 8, solid lines.
The effects of finite volume corrections to the fitting for-

j =constX (1+ 6X;;), (36) mula are significant here. For example, if we used the naive

Rij
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TABLE V. Effect of the finite volume correction on the one-
1 T:;BX [8=0.071(10)] loop chiral integrall; ,i=1—9. The ratio of finite to infinite vol-
pfia ratio ume results are shown for the diagonal meson masses used in the
0.98 |
“b1” and “a0” ensembles.
0.96 | )
o b1l lattices
g i
~\-: 094 m,a 0.603 0.556 0.505 0.450 0.386 0.342 0.307 0.267 0.245
- 092 | ratio 1.00 1.00 1.02 1.03 1.05 1.09 1.13 123 1.32
09 a0 lattices
0.88 | m_a 0.647 0.558 0.458 0.356 0.297 0.254 0.221 0.195 0.164
) 12 " 1o 18 2 20 ratio 1.00 1.00 1.01 1.02 1.03 1.07 1.12 120 1.40
1-x
FIG. 18. Cross-ratios ofp.j; /fa;; as a function of the finite The one-loop chiral integrals appearing in this calculation
volumeX;; variable. uses a Pauli-Villars subtraction to regulate the ultraviolet di-

vergences. For example, logarithmically divergent integrals
infinite volume forms we would have obtained  such as
=0.104(14) {?=131/71) from a combined fit of ratios
[Compare Eq(41)]. 1 1 1
li _zf d*p 2 2 24 \2 (44)
™ P +Mj p*+ M;

VIIl. COMPARISON WITH QUENCHED CHIRAL

For pions made from a quark and antiquark with unequal
masses, the form of the quenched chiral log effec_t is more |ij:167722 [D(p,Mi)D(p,Mj)—D(p,A)z], (45)
complicated 3,7]. For the range of masses we consider, it is p
sufficient to keep only lowest order termsdni.e., one-loop ] o )
terms, or equivalently, in a hairpin mass term which can bewhgr_e the momentum integration is now a discrete sum over
included explicitly as a correction to the basic chiral La-2 finite volume free boson propagatbr(p,M). We have

grangian: typically chosen the cutoff scalé=1/a, but the sensitivity
of the results to this choice is very small. One also encoun-
f2 + f2 N . ters quadratically divergent graphs in the course of the cal-
L=, Tr(9,U'0"U)+ FTr(x'U+U'x) culation, which are regulated as follows:

+LsTr[a,UTo*U(xTU+UTy)]

=167 [D(p,M)—D(p,A)—(A?~M?)D(p,A)?].
+ L8Tr(XTUXTU + UTXUTX) +£hairpinv (42 P

(46)

where With these preliminaries, we find the following expres-

1 f2 sion for the pseudoscalar massegquared up to first order
Lhairpin=— Emgg[i Trin(UN) =i Trin(U)]%.  (43) in the hairpin mass an@ndependentlyin Ls andLg:

Xi T X
2

The lowest-order chiral Lagrangian has been supplemented Mizj =
by the chiral symmetry breaking ternhs of O(pszr) and

Lg of O(mfr) which model the leading mass dependence of 1 1
the slope in the pseudoscalar masses. Starting from this La- X1 1+ —(8Lg=4Ls)(xi+ xj) + 5 6(8Lg—4L5)
grangian, we can derive explicit formulas for the pseudo- f f

scalar masses, and pseudoscalar and axial vector decay con- 1

stants, consistent through ordet and including the effects X[21ixi+ 21 xi+ O+ x)li 1 +8=Lsdd: {, (47)
of the hairpin mass insertiofassumed localthrough the A o f2 J

term Lhaipin in EQ. (42). The coefficientd s andLg follow

(1+51}))

the notation of Gasser and Leutwy[d(7]. The evaluation of Jij=[i+1; —(Mﬁ+ MJ-ZJ-)I ijl/2. (48
the one-loop chiral integrals appearing in this calculation has
also been carried out at finite voluniappropriate for the The quantitiesy; encode the quark masses: our data in-

physical size of the lattices usedhe size of the finite vol- clude values for nine different values, so the indicesand
ume corrections to the one-loop chiral integrals are illus§ above run from 1 to 9, allowing for 45 independent quark-
trated in Table IV. antiquark combinations. Thus
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Xi=2rom;, (49 8-11) in order to isolate any remaining sensitivity to higher

state contamination, and the results for the various chiral
wherer, is a slope parametdwhich we also extract from parameters, as a function of the initial time for the window,
the fit9, and we have used the pole value for the quark massare shown in Fig. 19. With only 300 independent configura-
tions, it is not possible to obtain a sufficiently stable covari-
ance matrix to fit all 135 masses and decay constants, so
these results reflect an uncorrelated fit to all meson param-
eters using Eq9447), (B1) and(B2).

Similar formulas were obtained for the pseudoscalar and To summarize our results, a global fit to all pseudoscalar
axial decay constantbs.;; andf,.;, and are listed in Ap- masses and decay constants from the bl ensemble, using a
pendix B. We have performed global fits to the masses antime window of 6—11, gives a final value for the chiral log
decay constants for all 45 mesofis the bl ensembjein parameter of
order to extract the parametdrsrg, 6, Ls, andLg. The fits
were performed for a variety of time-window#or the 12
X 24 bl lattices, on time windows 5-11, 6—-11, 7-11, and 6=0.059+0.015, (52

m;=In . (50

1+1

114505-13



W. BARDEEN, A. DUNCAN, E. EICHTEN, AND H. THACKER PHYSICAL REVIEW D62 114505

while the slope and critical kappa parameters in Eg9) TABLE V. Summary of results for chiral log parametér
and(50) are determined as
Method Cew Ensemble S
ro=1.99+0.12, (52) Witten-Veneziano 1.57 b1l 0.063
hairpin vertex 1.57 b1l 0.062)
diagonal mesons 1.57 b1l 0.428)
kc=0.14328'# 0.000 022. (53 ratio fit, masses 157 b1 0.08®)
For the chiral breaking parametetg andLg, our fits give ratio f't’,fP/fA L.57 bl 0.070)
global fit 1.57 b1l 0.0545)
Witten-Veneziano 0 a0 0.07%
Ls=(2.5+0.5x 103 (54 hairpin vertex 0 ) 0.045)
diagonal mesons 0 a0 0.0249)

and

(4) Using the MQA technique, meson properti@sasses
and decay constantsan be extracted with sufficient accu-
racy to allow a fit of higher-order chiral parameters, such as
The dimensionless chiral parametdrs and Lg are only L andLg.
roughly determined by phenomenology. Recent estimates Careful quantitative studies of chiral behavior in
[18] give guenched QCD in comparison with quenched chiral pertur-

bation theory can provide a great deal of insight into the
_ connection between QCD and the effective chiral Lagrangian
Ls(M,)=(1.4+£0.5x10 ) (56) that describes its long-range behavior in the limit of small
renormalized at the rho mass, with the combinatiog quark mass. Even if the numericgl simulation of full QQD
— 1| . consistent with zero: were r_lot SO expensive computanona_llly, the study qf ch_lral
behavior in quenched QCD would still be of theoretical in-
terest. For example, the Witten-Veneziano relation connects
the »” mass to the topological susceptibility glienched
QCD. The geometric summation of multiplg mass inser-
Finally, our result for the axial decay constant corresponds td¢ions is only the simplest example of how, in some cases, the
a value for the pion decay constdbfre, in lattice unitsof most important effects of the full QCD fermion determinant
can be incorporated into a quenched result, with the guidance
f=f,=0.1066=0.0024. (58) of chiral perturbation theory. Because of the smallness of the
parameterd, QCL effects are adequately described by one-
IX. SUMMARY AND DISCUSSION loop xPT, even for quark masses close to the physical up and

The calculations presented above confirm all the essentiéﬂoWn mass. Itis thus stra|ghtforward to apply appropriate
features of anomalous quenched chiral behavior suggest@(Td calculable QCL corrections to quenched results. O,f
by continuum calculations. Our lattice studies lead to thetOurse the masses, decay constants, and higher-order chiral
following basic conclusions: Lagrangian coefficients obtained in quenched QCD will dif-

(1) The MQA pole-shifting technique allows for an accu- fer somewhat from those of the full theory, but all of the
rate computation of meson and hairpin correlators down tdélisturbing structural properties of the quenched thetagk
small quark massesr(,~200 MeV). Probing this region is Of unitarity, absence of topological screening, etan be
essential in order to obtain reliable signatures of anomalousystematically repaired in the context of chiral perturbation
chiral behavior. theory. Further precision studies of anomalous chiral behav-

(2) The hairpin vertex has only a small coupling to ex-ior in the quenched meson and baryon spectrum should pro-
cited states, and very gentle momentum dependence. Thisde additional insight into the origin and structure of chiral
suggests that it may be accurately modeled by a local massymmetry in QCD. The results presented in this paper pro-
insertion term in a chiral Lagrangian. vide strong support for the usefulness of the MQA technique

(3) Determination of the chiral log parametéusing five  to facilitate these studies.
separate methods gives consistent results. A summary of our Ideally, similar studies should be performed using an ex-
results for this parameter indicating the various methodsctly chirally symmetric Dirac operator which satisfies
used is displayed in Table V. The overall average of ourGinsparg-Wilson relations, e.g., the Neuberger opefdi®}
Csw=1.57 ensemble gived=0.065+0.013. Our values for Explicit Ginsparg-Wilson chiral symmetry would resolve the
S at B=5.7 are considerably smaller than those expecte@xceptional configuration problemb initio. Unfortunately,
from a naive continuum analysis, but are in agreement wittsuch operators are necessarily not ultrald@l], and are
previous lattice estimates. difficult to invert or diagonalize numerically. The MQA

1
L8—§L5=(0.2t0.1)><10‘3. (55)

1

Lg— >

Ls=(0.2-0.4)x 10 3. (57)
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method attempts to account for the most salutary effect of ar 10
explicitly chirally symmetric approach. The underlying as-
sumption in this procedure is that the most important effect
of the explicit chiral symmetry breaking contained in the
Wilson-Dirac operator is the real displacement of its small
eigenvalues. The MQA method merely removes these dis-& ™
placements in a compensated manner. The principal disadfgL 1 [
vantage of the method is its apparent lack of locality. Using @ ®
a basis of hopping termgnearest-neighbor, next-nearest g
neighbor, etg, it may be possible to identify terms in an $ o 4
ultralocal expansion of the Dirac operator which correspond @f ﬁ%
most closely to a MQA improved Wilson-Dirac operator.

The additional hopping terms would have the effect of re- 04 s . . . . .
ducing the dispersion of the small real eigenvalues, as well 0 2 4 timee(lat) 8 10 12

as inducing small rotations of the basis wave functions, etc.

Such an analysis has not yet been carried out. The clear FIG. 20. Comparison of the valence pion propagator computed
guantitative success of the MQA procedure in restoring deby the allsource method X(’s) and the conventional method
sired chiral behavior is a promising indication that such(boxes. Data points are offset slightly for clarity.
eigenmode-based methods can be both efficient and effective
in removing the dominant spurious effects of chiral Syrnme_uses the same allsource propagators that were used to calcu-

try breaking contained in the Wilson-Dirac formulation of late hairpin correlators. In the hairpin calculation, we com-
lattice fermions. puted the correlator of two closed loops by contracting the

two color indices of each allsource propagator with a fixed
time separation between the two propagators. To calculate
ACKNOWLEDGMENTS the valence propagator, we instead take the same two all-
source propagators with fixed time separation and cross-
The work of W.B. and E.E. was performed at the Fermicontract the color indices to form a single loop from the two
National Accelerator Laboratory, which is operated by Uni-propagators and then project out the color singlet component.
versity Research Association, Inc., under Contract No. DE{The last step amounts to leaving out the terms in which all
AC02-76CHO3000. The work of A.D. was supported in partfour-color indices are equal and then multiplying by a factor
by NSF Grant No. PHY97-22097. The work of H.T. was of 3/2)) In Fig. 20, the valence pion propagator calculated by
supported in part by the Department of Energy under Granthe allsource method is compared with the results of the stan-
No. DE-FG02-97ER41027. dard calculation using local and smeared sources on a fixed
timeslice. The results are shown for hopping parameter
=0.1425, but a similar agreement is obtained akalialues.
APPENDIX A® ALLSOURCE METHOD The agreement is excellent and well within statistical er-
The allsource method, first applied to thé mass calcu- rors. For small timest5), the errors on the alls_ource cal-
culation are actually smaller than those from a fixed source.

lation in Ref.[13], is used here to calculate hairpin diagrams ;
R emember that the allsource calculation allows the meson
as well as the pseudoscalar charge for the determination P

di b We h lso introduced lizati ropagator to be averaged over all locations on the lattice,
winding numpoers. We have aiso introduced a generalizatiog, increasing the effective statistics relative to the fixed

of this allsourcg methc_)d which allows the calculatpn fsource method Unlike the fixed source calculation however,
closed loops which originate from a smeared source, i.e., th@q statistical errors for the allsource calculation are more or
two ends of the quark propagator are contracted over colqgss constant in absolute magnitude for all time separations.
and spin, but are spatially separated with an exponentiathis results in a signal-to-noise ratio that becomes rapidly
weight function. The method relies on the fact that gaugeyorse as we go out in time, just as in the hairpin calculation.
noninvariant terms in the calculation will cancel out due toThis roughly constant noise level is presumably the effect of
random SU3) gauge phases. For example, in the calculatiorincomplete cancellation of random gauge phases. Because of
of a single quark loop, the closed loop terms where the quarkhis, the allsource method is an inferior way of studying the
starts and ends on the same pdorton the same exponential asymptotic behavior of the pion propagator. Nevertheless,
source in the smeared calculatioadd coherently when for short times it accurately reproduces the results of the
summed over sites, while loops which start and end on difstandard method. It is a fortuitous circumstance that the hair-
ferent sources have random phases and cancel. pin correlator is found to be almost entirely free of excited-
While the cancellation of random gauge phases in thétate contamination. This allows us to extract the ground-
allsource method should work arbitrarily well for a large State vertex insertion from its value at relatively short times
enough ensemble of gauge configurations, it is very instrucvhere the allsource technique is accurate.
tive to test this method in a situation where we know the
exact gauge-invariant answer which can be used to check the
accuracy of the random phase cancellation. To carry out such
a comparison, we have calculated the ordinary valence pion A next-to-leading-order chiral perturbation theory calcu-
propagator using the allsource technique. This calculatiomation of the pseudoscalar and axial decay constants can be

agator

APPENDIX B: QUENCHED CHIRAL RESULTS FOR
DECAY CONSTANTS

114505-15



W. BARDEEN, A. DUNCAN, E. EICHTEN, AND H. THACKER PHYSICAL REVIEW D62 114505

carried out along the same lines as discussed in Sec. VIl for 1
the pseudoscalar mass spectrum. Starting from the Lagrangf ».; = V2f| 1+ Z(S(I i +1j;—215))
ian equation(42) and using the notations introduced there,
we find

2
X{1+ f_ZLS(Xi+Xj)

1
+2f_2L55[2(Xi+Xj)|ij_Xilii_lejj]] (B2)
1 1
fpij= V2fro| 1+ Z5(I“ +1j;+215) x[1+ f—2(8L8 for the axial decay constant. These formulas, together with
o XitX
—2Ls)(xit xp{1+ o2l xi + 215 x5+ (xi Mij==— (1+6ly)
O T X —Ledllixi +11x + 1 1
xi) i O+ xp)} £2 sOLlixi+ x5+ (xi e 1+E(8L8_4L5)(Xi+Xj)+f_25(8|-8_4|—5)
4 1
+Xi)|ij]+EL56(J“+J”) (B1) X[ZliiXi+2|ijj+(Xi+Xj)|ij]+8ﬁ|—55~]ij (B3)

for the pseudoscalar masses, were used to perform the global

for the pseudoscalar decay constant, and fits described in Sec. VIII.
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