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Casimir scaling of SU(3) static potentials
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Potentials between static color sources in eight different representations are computed in four dimensional
SU(3) gauge theory. The simulations have been performed with the Wilson action on anisotropic lattices
where the renormalized anisotropies have been determined nonperturbatively. After an extrapolation to the
continuum limit we are able to exclude any violations of the Casimir scaling hypothesis that exceed 5% for
source separations of up to 1 fm.

PACS numbds): 11.15.Ha, 12.38.Aw, 12.38.Gc, 12.39.Pn

[. INTRODUCTION sources will be screened and “string breaking” effects will
be encountered that are incompatible with Casimir scaling.
Nonperturbative QCD effects in general and the nature ofn the present study we restrict ourselves to distances smaller
the confinement mechanism in particular are theoreticallghan the string breaking scaig.
challenging. At the same time these aspects are important for This article is organized as follows: in Sec. Il the lattice
high energy and low energy particle and nuclear phenommethods that we apply and our notations are introduced. A
enology. Several models of nonperturbative QCD have beedetermination of the renormalized anisotropies and lattice
proposed whose predictions happen to differ from each othespacings is presented in Sec. Ill. The potentials are then de-
substantially in some cases. Prominent examples are bdgrmined in Sec. IV before we conclude with a brief discus-
models[1-5], strong coupling and flux tube moddl§—9], sion.
bosonic string modelgl0,11], the stochastic vacuum model
[12—14], dual QCD [15—13, the Abelian Higgs model 1. NOTATION AND METHODS
[18,19, and instanton based mod¢R&0—27. Lattice simu-
lations of interactions between static color sources offer an We denote the energy of color sources, separated by a
ideal environment for discriminating between different mod-distancer, in a representatiorD=3,6,8,10, ... of the
els of low energy QCD and to learn more about the confineSU(3) gauge group byp(r,u), where u denotes some
ment mechanism. They are easily accessible analytically aneut-off scale on the gluon momenta, for instance an inverse
at the same time very accurate Monte Carlo predictions cafattice spacing,u=m/a. We shall also use the subscript
be obtained23,24. “ F" to label the fundamental3) representatiofor we may
Despite the availability of a wealth of information on fun- just omit the subscript in this case
damental potentials, only few lattice investigations of forces The static potential
between sources in higher representationS o{N) gauge
groups exist. Most of these studies have been performed in Vp(r,u)=Vp(r)+Vp sef 1) (1)
SU(2) gauge theory in thre¢25-28 and four [29-36 ] ] ] .
space-time dimensions. Zero temperature results for four dcan be factorized into an interaction paf(r) and a self-
mensionalSU(3) can be found in Ref§37—42 while de- ~ €nergy contributioVp sei() that will diverge like u/In u
terminations of Polyakov line correlators in non-fundamentaS «—° while Vp(r) will assume universal values.
representation have been performed at finite temperature by A (dimensionlesslattice potentiaVp(R,a) will resemble
Bernard[29,3( for SU(2) and in Refs[43—4§ for SU(3) the corresponding continuum potential up to lattice artifacts,
gauge theory.
~ Inour study we ;hall see that the so-called Casimir scal- VD(Ra):a_l[\’\/D(Rva)_\A/D,seh(a)][l_’_fD(Ranz)ay]i
ing hypothesiq25] is rather accurately represented by the (2)
lattice data while models predicting a different behavior are
definitely ruled out. Casimir scaling means that potentialsvhere v is a positive integer number that will in general
between sources in different representations are proportiondepend on the lattice action employed. We are concerned
to each other with their ratios given by the respective ratiowith Wilson-type gluonic action$52]. In this case,y=2.
of the eigenvalues of the corresponding quadratic CasimiNote that the coefficient functiohonly depends on the com-
operators, which is exact in the case of two dimensionabinationr =Ra and on the direction dR but not onR itself.
Yang-Mills theories. Our result is of particular interest with This guarantees that lattice artifacts are reducedsaa is
respect to recent discussions of the confinement scenarincreased.
[47-51. The static potentials are obtained from fits to smeared
At distances r>r.~1.2 fm [39] non-fundamental [53,23,54 Wilson loops forT=T,,, whereT,,, depends on
R, the statistical errors of the Wilson loops and the smearing
algorithm employed. We define a Wilson loop in representa-
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not gain anything from the facta@y within the above expres-
Wp(R,T)=Tr . )I;IC(R . Ubnpl (3  sion. Nevertheless, &>1 still results in a reduced effective
SO g? at fixeda, . Of course, equally well we could just have

where SC(R,T) denotes the oriented boundary ofgener- increased the size of our statistical ensemble by a factor four

alized rectangle with spatial extef® and a temporal sepa- and worked ag=1.

ration of T lattice spacings.r(,x) denotes an oriented link  OQUr main motivation for introducing an anisotropy is the
connecting the sita with n+ . n is an integer four-vector possibility of reducing lattice artifacts. These are most
9 o 9 prominent at small and at large distances: as longiasot

that labels a lattice site and is a unit vector pointing into a - mych larger tham,, the cubic lattice structure is clearly vis-
direction, ne{1,2,3,4. “Tr" is the normalized trace, jple. In lowest order perturbation theory these violations of
Trplp=(1/Np)trlp=1, Np is the dimension of the repre- yotational symmetry only depend dR and a, while the

sentationD and order g* coefficients exhibit a weak dependence &roo
. [55]. While we cannot hope to significantly reduce these
UD,n,MZP{ exp{i fa(nm)dX#Ai(X)Tg ] (4)  small distance effects without decreasimg, it is clear that
an on a lattice with temporal resolutiog, one cannot reliably

) _ ) _ b . resolve massem>a;l. However, atr>a, and in particu-
denotes a link variable in representatibn where Ty is @ |ar for representation® with large Casimir charges situa-
generator of the gauge group. Our conventions argions, \(r)a,>1, are easily encountered, unless1.

(TS . Th1=ifapcTe . Where fyp, are totally antisymmetric Introducing an anisotropy also means that within any
real structure constants. The normalization is such th%hysman window we have more data points at our disposaL
tr TETh = 8au/2. Now, While this might help to gain more confidence in identifying

R effective mass plateaus we find that the additional data points

(Wp(R,T)y=cp(R,a)exd —Vp(R,a)T] (T—). are highly correlated and add little extra information, at least

(5  when one is only interested in the mass of the ground state

) within a given channel.
The use of smeared Wilson loops turns out to be more v action reads

suitable for numerical simulations than implementing the

definition of Eq.(3); the spatial pieces of the Wilson loop are 1

replaced by linear combinations of various paths that model S=-8> z > Tr Unij +&> TrUnal, ®
the ground state wave function. As a result the overlap of the noLsot '

creation operator with this ground statg,, is enhanced and \hereg=2N/[g?(a, ,£)] is defined through the lattice cou-
the T—oo limit can effectively be realised at moderate pling g2 andi,j €{1,2,3. Un,,w:Un,LUnﬂl,yUT ,LUI,V

values. ) ; ntv,
(iienotes the product of four link variables around an elemen-

In numerical simulations one observes that the statistica& . . L
error AW(T) of the expectation value of a smeared Wilson ary square, the plaquette. With the above anisotropic Wilson
P action, the leading order lattice artefacts are proportional to

loop (W(T)) only weakly varies withl' [54]. From Eqs.(1) ai and afaazaﬁffl. This means that along a trajectory of

and(5) we therefore obtain the relation constant¢ the continuum limit will be approached quadrati-
W(T) R R cally in a, . The relationship between the bare anisotrgpy
Wmexp{V(a)T]ocexp[Vseh(a)T] (T—=), (6) appearing in the action E@8) and the renormalized anisot-
ropy ¢ is known in one loop perturbation theof$6]: ¢
=&[1+c1(&)g2+---]. In Sec. Il we will discuss our
nonperturbative evaluation of. Of course the function
£(9%,&p) is not unique and different non-perturbative defini-
tions might differ from each other by terms of ordey.

for the relative errorgwhich are directly proportional to the
statistical uncertainty of the potential valye tree level
perturbation theory one finds

9 _ 2 _ ) Perturbation theory yields the relation between potentials
Vo se@)=C Cpg(a), €=0.25273 ... ™ in different representationd,
the self energy is proportional to the eigenvalue of the qua- V(1) =dpVe(r,m), 9)

dratic Casimir operato@DzTrDTETg of the representation.
This means that statistical errors will increase significantly asvhered,=Cp/Cg. Table | contains all representatioBs
we investigate higher representations of the sources with bighe corresponding weightgp(q) and the ratios of Casimir
ger Casimir charges. factors,dp , for p+q=<4. In SU(3) we haveCg=4/3, and
This self energy related problem motivates us to introduce = exp(2i/3) denotes a third root of 1. Equatio®) is
an anisotropy parametéra, /a,~4 between spatial lattice known to hold to(at least one loop(orderg®) perturbation
resolutiona, and temporal IatticeA constaat.. This results theory at finite lattice spacing7] and two loopgorderg®)
in a reduction of the self energyp so=C Cpé 'g? and  in the continuum limit{58] of four dimensional Yang-Mills
therefore of the relative errors of smeared Wilson loopstheories. The main purpose of this article is to investigate
However, at the end of the day we wish to measure distanceon-perturbatively to what extent the “Casimir scaling” re-
and potential in the same unigs,. This means that we do lation Eq.(9) is violated.
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TABLE I. Group theoretical factors fo8U(3). D is the dimen- TABLE Il. Simulation parameters, lattice spacings and linear
sion of the representation,p(q) are the weight factorsz lattice extents.
=exp(2#i/3), anddp=Cy/Cg denote ratios of quadratic Casimir

charges. B L, Ncont rola, rola, L,a,/rg
D (p,q) ZP—a p+q do 5.8 8 633 3.07@9) 12.4511) 2.603)
5.8 12 139 3.05@4) 12.5213) 3.934)
3 (1,0) z 1 1 6.0 12 159 44371  18.1224) 2.705)
8 (1.1) 1 2 2.25 6.2 16 133  6.1066) 24.1623) 2.623)
6 (2,0) z* 2 25
15a (2,1) z 3 4
10 (3,0) 1 3 4.5 volumes were chosen to keep the lattice extent about con-
27 (2,2) 1 4 6 stant in physical units. In addition a volume of*x48 lat-
24 (3,1) z* 4 6.25 tice sites has been simulatedat 5.8 to investigate possible
15s (4,0) z 4 7 finite size effects.

The gauge configurations have been obtained by ran-
domly mixing Cabibbo-Marinari styl¢62] Fabricius-Haan
In what followsU denotes a group element in the funda- heatbat{63] and Creutz overrelaxatioi4] sweeps, where
mental representation &U(3), for instance the product of \we cycled over the three diagon&lU(2) subgroups. The
link variables around a closed contour. The trace$)gfin probability of a heatbath sweep was set to be 1/5. During
various representation¥p =trUp, can easily be expressed each sweep the sites were visited subsequently for each of
in terms of traces of powers &f, the four space-time directions of the links in sequential or-
der. Measurements were taken after 2000 initial heatbath
Va=tru, (10 sweeps and the gauge configurations are separated from each
other by 200 sweeps. In doing so, we did not find any signs
of autocorrelation or thermalization effects for any of the
investigated observables at any of the simulated parameter
V= E[(tru)zﬂruz], (12)  sets. In the case gB=6.0 one set of configurations was
2 generated on a Sparc station after a cold start while another
set of configurations was generated on a Cray J90, starting

Ve=(|V4*—1), (12)

Vi =trU*Vg—tru, (13)  from a hot, random configuration. No statistically significant
1 deviations between these two data sets were found either. We
_ = 3 2 3 display our simulation parameters in Table nl,,; denotes
Vio 6[(trU) F3rUrUt+2trUT, (14 the number of statistically independent configurations ana-
lyzed in each case while;=0.5 fm is the Sommer scale
Vo, =trU*Vo— Vg, (15  parametef65], implicitly defined through the static poten-
tial,
Vor=|Vg|?— V3%, (16)
1 avir) =1.65 18
Vis= Zl[(trU)4+ 6(tr U)%tr U2+ 3(tru?)? dr | _ 777 (18)
-0

3 4 We label quantities associated with the fine grained direc-
+8wUruU+6truUr]. (17 tion by an indexr while o refers to coarse grained direc-

tions. On an anisotropic lattice various ways of associating
Note that TpUp=(1/Np)trUp=Vp/Np. Hence, the nor- ) : . o
malization of Vp differs by a factorN, from that of the the sides of smeared Wilson loops with these directions ex-

Wilson loop Wp of Eq. (3). Under the replacement) {/S\;[: (r/a t/\gT)‘T(rlgitTh’gig)s'e \évt;‘\/”(r;{;“\;\féﬁ”;s folW aﬂ?g
—~zU, Wy transforms  like, Wp—22""Wp . Representa- "ot 5 i be boints into a direction. The spatial coor-
tions withzP~ %=1 have zero triality. ! ! pomts i rection. pati

dinate is identified with the- direction in the first case and a
o direction in the latter case. While the spatial connections
within W_, are parallel to ther axis, in the case oWV, , we
realize planar off-axis configurationsR|(1,1,0) and
We simulateSU(3) gauge theory at the parameter valuesR[(2,1,0), in addition to on-axis separatiohsFinally,
(B,£0)=(5.8,3.10),(6.0,3.20 and (6.2,3.25). From explor- Within W, the time coordinate is taken along the fine
atory simulations with limited statistics and the publisheddrained dimension and the spatial coordinate coarse grained.
data of Refs.[59-61] we expect to find renormalized
anisotropiesé~4 at these combinations. At the above pa-
rameter values volumes df3xL,=83x48, 12x72 and  we ignore the possibility of mixing and o coordinates within
16X 96 lattice sites have been realized, respectively. Thesthe “spatial” separation.

IIl. DETERMINING ANISOTROPY AND LATTICE
SPACING
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We determine W, for the standard separationg3], ' T T '

R[(1,0,0), (1,1,0), (2,1,0), (1,1,1), (2,1,1), (2,2,1). R I B
In the spatially isotropic situation\{,,) we iteratively 09 f K %@-
construct fat links in the standard way by replacing a given %
link by the sum of itself and the neighboring four spatial Q8 o |
staples with some weight parametetz 1, T o7y ’%;E -
S [
0.6 9@?% i
Un,i—>PSU(3)(aUn,i+J§i Frijl o P %%ﬁ?ﬁ |
oG —&— 3
. . 04f T B#
Frj=UniUnijiVnei T Un g iUn-iiUn-i4) - gl o
(19) "0 02 04 06 08 1 12 14
r/ry
Psys) denotes a projection operator, back onto 81g(3)
manifold. We employ the definitiori23], U= PSU(3)(A) FIQ. 1. Grou_nd state ove_rlaps for ’[heT case of _the fundamental
eSU(3), Re TIUAT=max and iterate Eq(19) 26 times potentlal determined from Wilson loops in three different orienta-
with a=2.3. tions at3=6.2, £,=3.25.

We use a somewhat different novel smearing algorithm in . R .
the case ofV,, andW,,, where the spatial volume is aniso- Note that whileV_, andV,, are given in units of,, V.
tropic with one fine and two coarse directions: when ondS measured in units o&,. These potentials are related to
only considers links parallel to the one being replaced, Eqeach other:
(19 resembles a two dimensional diffusion process:

—Psyal(a+4+V3)U]. We are interested to maintain an Voo(Ra,) =V ,(£R,a,)[1+O(a,)?] (25
isotropic propagation of the link fields when an anisotropy . ~
parameteg>1 is introduced. Following the above diffusion =[€Vs(R,a,) +AVge(a,) ]

model this is achieved by replacing Hd.9) with X[140(a,)?]. 26)

2
Uni=Psus)(@Unit Fa, 6, 20 where AV =V oo sei— €Vorse- While V,, and V., are
equal at a given physical distan@ép to lattice artifacts in
Un —Psyg)| (a+ 252—2)UM+2 Fn,i}, the case o/, a shift by an additive constant is expected
: (21) since the self energies differ:

\/ = 2 ..
where i,j e{1,2},j#i. We perform 22 iterations of Egs. AVseafa,)=0.082% . ..g7+ - --. 27

(200—(21) with «=3.7. Indeed, in doing so we find very
similar overlaps with the physical ground stai,,(R)
~c,,(R), wherec=cge[0,1] is defined in Eq.(5 and
W0 (R, T=0)=W,,(R,T=0)=1. This is illustrated in the  enormalized anisotropiésEquation(26) can then be used
comparison of data obtained At=6.2, £,=3.25 of Fig. 1. a5 an independent consistency chéntodulo lattice arti-

We have not been able, however, to sustain the high overlaggcty. |n order to guarantee a consistent definitionéofve
achieved foW,,, (triangles for W, or W,,. The situation ¢4 ejther consider the limif1] R— or demand the

at the other f8,£,) combinations is similar. matching to be performed at the same distance in terms of a

From the asymptotic behavior of the different Wilson eaqured correlation length. We follow the latter strategy
loops at large temporal separatianshree lattice potentials 5 impose

can be determined:

The numerical value has been obtained in lowest order per-
turbation theory forg=¢,=4.
Following Ref.[59] we use EQ.(25 to determine the

Voo Ry, 8,) =V, (¢RY,a,) (28)

. d
a, 'V, (rla,)=— lim—einW,,(r/a, t/a,), (22
t—o

at Ry ~Ry,=(2/3)ro/a, wherer,~0.5 fm is the Sommer
scale of Eq(18). We restrict ourselves to on-axis separations
R and takeR;=2,3,4 for 8=5.8, 6.0 and 6.2, respectively.
a, W, (rla,)=— Iimaln W, (rla,,t/a,), This choice is justified by our subsequent analysis where we

e 23 find R,=2.05(2) andR,,=2.03(2) on the 8 and 12 g

~ d
a;lvm(r/a(,)= — |imd_|n W, (rla,,t/a,). Note that unlike Ref[59] our analysis is based on asymptotic
t T— o results rather than on pre-asymptotic finitapproximants to
(24 the potential.

t—oo
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TABLE lll. Fits to V., and determination of the renormalized anisotr@gpyThe fit parameters are
displayed in units of,, .

tmin m
B Ly 3, a, ¢ Vors C K.oé
5.8 8 3 6 4.0532) 0.82643) 0.35243) 0.14311)
5.8 12 3 6 4.1083) 0.83445) 0.36644) 0.14412)
6.0 12 4 5 4.08474) 0.81320) 0.33219) 0.069749)
6.2 16 4 8 3.95(B1) 0.792198) 0.35629) 0.038428)

=5.8 lattices andk,,=2.96(4) andR,,=4.07(4) atB=6.0  =2ry/3. The results are compiled in Table VI. The fit param-
and 8=6.2, respectively. The renormalized anisotrapys  eterse andK agree within errors with those determined from
then obtained from Eq(28) by interpolating the potential the data orv,, of Table Il while theV, values tend to be

V., according to three parameter fits: somewhat smaller, in agreement with the expectation of Eq.
(27). Note that the parametrization is thought to be effective
% % eT(T i i
V. (R)=Vo.,+K.,R— . (29) o!’lly and that the fit ranges employed_ for the two potentials
' R differ from each other. From the fit parameters, values

_ _ ro/a,=+(1.65¢ T—e)/K can be extracted. These are dis-
The errors are obtained via the bootstrap procedure. The rgjayed in Table Il, along with the linear spatial lattice extent.
suling anisotropies and fit ranges employed®  Compared to the isotropic cas&,=1, where[69,70 r,/a
€[Rmin,L/2], as well as the fit parameters in unitsapfare  =3.645), 5.333) and 7.29(4) ai{3=5.8, 6.0 and 6.2, re-

displayed in Table ILTyn=tmin/a, denotes the “temporal”  spectively,a,, is somewhat increased while the temporal lat-
separation from which onwards effective mass ddfgs.  (ice spacing a, is reduced. The ratiosrpa a4
. (o

T

(22) and(23)] saturated into plateaus. _ —4.364), 6.31(10) and 8.61(9) exhibit that &=4 the
The renormalized anlsotroplg’se}re also mcludeq in the geometrically averaged lattice spacings are about 15%
last column of Table IV. In the third column of this table gmgajier than their isotropic counterparts, obtained at the
the one loop resultb6,66 are displayed while in the second sameg values.
last column mean field estimatgs7,68 are shown: Assigning the phenomenological valugs5,71,72,70
U 0.5 fmtory we find Laggwl.S fm on the small lattices and
o ot T NN L,a,~2 fm on the 12 lattice at3=5.8. This means that
ir=4o (Uyo)’ Bir=F{Us{Us0). (30 JV3L,a,/2>1.1 fm in all our simulations; along the
R|(1,1,1) direction we are safe from the effect of mirror
The temporal and spatial average plaquettéd () and charges up to distances bigger than one fm. Beyond this
(U,,)) are also included in the table. While the renormal-distance only representations with non-zero triality are pro-
ized anisotropies are underestimated by the one loop resultscted by the center symmetfy0] from direct finite size
by about 10% they are overestimated by the mean field valeffects.
ues by almost the same amount. Finally, in Table V we com- In Fig. 2 we display all three potentials in units af at
pile the bare anisotropie&, ;=4 £,/¢ at which we should B=6.2. Note that the anisotropy has been determined by
have simulated in order to achieve=4. In doing so we matchingV,, to V,, atr=4a,. In addition to the data

assume that our statistical uncertaintiestaf order 1% will  points two curves are included that correspond to the param-
dominate over variations of the ratigg/ & under a change of eter values of Table Ill and Table VI from fits according to
&o by less than 2%. Eq. (29 to V,, for r>2a, and toV,, for r=4a,, respec-

After determining the anisotropies, the potentig), is  tively. The matched potentialé,, andV,, follow the same
fited to the parametrization EQq(29) for rar,anrm curve.

TABLE IV. Bare, one loop, and mean field estimatédadpole improved”) anisotropies versus the
nonperturbatively determined renormalized anisotropy.

B ‘50 ggz <U 0'0'> < u a"r> gil’ 6

5.8 3.10 3.470 0.41553) 0.80717%5) 4.320 4.07€25)
6.0 3.20 3.573 0.4454D) 0.8204634) 4.343 4.08474)
6.2 3.25 3.619 0.46924) 0.8297612) 4.322 3.957%1)

3Note that in this table we have averaged the results obtained or? thed812 lattices at3=5.8 that agree with each other within errors.
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Up to lattice artifacts and the self energy shift 0.3 i . - - -
AV, &V, andV,,, that both live along coarse grained 2; 02 | treelevel - } |
lattice directions, should also agree with each otHeg. . o o
(26)]. Indeed, as is demonstrated in Fig. 3, the differences are > 0.1 P ;
compatible with constants of the order suggested by tree ol - - ' - s -
level perturbation theory fof=&,=4, Eq.(27). Averaging 12 3 4 5 6 7
the R=R. data points results in the values, 0.3 — Py S— e

~ [<] =60 —=—
0.091(9), 0.096(18) and 0.124(11) foAVys at 8=5.8, % 0o | treelevel ——— _
6.0 and 6.2, respectivelfsolid lines with error bands On > . I d
the large lattice aB=5.8 we obtain the value 0.081(8)*, > LR RS
in agreement with that above, from the smaller volume. oL . . . .
These shifts of the self energies result in reduced relative 128 4 5 67 8 910
errors of{ W,..) [Eq. (6)] (and in increased errors ¢¥V,,)), 0.3 : . r— . :
relative to the isotropic case. ,g; o2 | el o2 T - |
1 Efd .|
IV. THE POTENTIALS E.g - .

. . . 0 1 1 1 1 1 1 1

The potentlals in non—fundgmental representations are ex- > 4 6 8 10 12 14
tracted in the same way as discussed above from fits to the r/a,
corresponding smeared Wilson loops. These are obtained _ R R
from the fundamental ones by use of E¢E0)—(17). In the FIG. 3. Differences betwee¥,, and &V, .

case of the fundamental Wilson loops, discussed in Sec. llI,

temporal links have been replaced by their thermal averages

in the vicinity of the surrounding staples in order to reduce . . .

statistical fluctuationg71,73 (link integration [74]). Note gz';fABLE V. Estimates of the bare anisotropies that correspond to

that our use of Eqs10)—(17) implies that we cannot ther- i

mally average fundamental links in the construction ofﬂ 5.8 6.0 6.2

higher representation Wilson loops anymore.
We determine the potentials from correlated exponentiakg 4 3.043) 3.136) 3.294)

fits to(Wp .., data according to Ed5). The fit range irT is

selected separately for each distafcand representatioD,

such thaty?/Npe<1.5. In addition, we demand the satura-

tion of “effective masses,” Vp(Ma,

= (&14) In[(Wp(T)Y{Wp(T+4))], into plateaus fol =T i, In TABLE VI. Fits to V,,. The fit parameters are displayed in

Table VII we display the resulting fit rangesrT units ofa, .

e[ Tmin,Tmax] that have been selected by means of this pro

cedure for the example of the poifp(R) with R B Lo tmn/@ Tmnf8s V& €oré Koré
~rgla,. In general, the interplay between statistical errors
and ground state overlaps was such thgt, only slightly >8 8 13 V5 0.75650 0.34874)  0.1388)
varied with R. In the case of the fundamental potential we>8 12 13 V5 073255 029880 0.1459)

find values % ,<t;,<4.5r,, depending orR and the pa- 60 12 10-11 3 0.7489) 0.35480) 0.065941)
6.2 16 16-19 4 0.6585 0.24967) 0.037617)

1.2 : - ; ; -
1F 7
P
08 - 4 TABLE VII. Fit rangestn/a,~tmax/a, atr=~rq.
o}
% 06 i D B=5.8 B=6.0 B=6.2
>
04| | 3 13 -24 10 - 36 16 — 40
’ v 8 7-12 9-18 10 - 20
| 0
02 b/ é\\/f"’* i 6 7-12 8 -18 10 - 20
ot 15a 6 - 11 6 - 14 8 -15
0 L L 10 5-10 5-11 6 —12
G = & &8 ® W 27 4-8 4-8 5-9
C
24 4-8 4-8 5-9
FIG. 2. The three potentialé.,, V,, andV,, in units ofa, at 15s 3-7 3-7 4 -7

B=6.2, £=3.25.
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TABLE VIII. Ground state overlapsp atr=ry. d g ; ’
7 15s
B8
D ,3:58 ﬁ:60 ,8:62 645 T%8s g O o0 f,{: %
3 0.89(1) 0.96 (1) 0.97(1) < & 57° °°es ol 3 §-5 .eé .
8 0.81(1) 0.90(3) 0.91(2) £ 5| §° % : |
6 0.80(2) 0.90(3) 0.90(3) > 10 —
15a 0.68(4) 0.84(3) 0.88(5) g O m; ' :;; gi o b
10 0.62(3) 0.82(2) 0.89(3) = 15a g
27 0.67(3) 0.81(2) 0.88(3) > 3r & -
24 0.65(3) 0.77(2) 0.90(4) v v vvT v - e oz % §
155 0.66(3) 0.79(2) 0.86(3) 2r 8 0
1 1 1 1 1
0.5 1 15 2
rirg

rameter values we simulate at, while fbr=15swe find,
0.7ro<tmiy<ro. The corresponding estimated ground state F|G. 5. The potentials normalized to the fundamental potential
overlapscp are displayed in Table VIIl. The overlaps de- at g=5.8, in comparison to the expectations from Casimir scaling
crease with increasing Casimir constant, lattice spacing Othorizontal lines.

distancer. At r~r the overlaps range from 0.62(3) in the

wo_rs_t case to 0.97(1) jn the be;t case which quantifies thR:f_ Egs.(1),(2)] in this comparison. A3=5.8 and3=6.0
efficiency of our smearing algorithm. _ we find the data to lie significantly below the corresponding

In Fig. 4 we display the resulting potentials A=6.2.  Casimir ratioghorizontal lines. However, the deviations de-
The curves correspond to the three parameter fit(E9.t0  crease rapidly as the lattice spacing is reduced.
the fundamental potential, multiplied by the respective ratio  prior to a continuum limit extrapolation of the ratios we
of Casimir factorsdp, of Table I. It is clear that the Casimir gha|| investigate finite size effects by comparing results ob-
scaling hypothesis Eq9) works quite well on ourB=6.2  tained on the 1.3 fm lattice with results from the 2 fm lattice
data fOI‘ t’he inVeStiqated distances. In FIgS 5-7 we dISplaﬁt IB: 5.8. For the fundamenta' potentia' we a|ready knOW
the ratiosVp(R,a,)/Ve(R,a,) for our three lattice spacings. from previous studies that for spatial extents,a,>2r,,

We did not attempt to subtract the self energy contributionsuch effects are well below the 2% leJ@i3]. The situation

is less clear for potentials in higher representations. In prin-
. . . T ciple, the flux tube between the sources could widen when
the energy per unit length is increased and, therefore, higher
representation potentials might be more susceptible to finite
size effects.

In Fig. 8 we compare the fundamental, octet and sextet
potentials obtained on the 3 2attices at3=5.8 (full sym-
bols) with those obtained on the*dattices(open symbols
Up to distances well beyondr3~6 a, no statistically sig-
nificant deviations are seen. In Fig. 9 we show the relative

deviations,V:S‘T:12(r)/V'|‘3‘T:8(r)—1, between the potentials
,;‘,3 determined on the larger lattices and those measured on the
g
E T T T T
> ; 15s
5 EEEEE B8 ® Omg @nm o E m%m i @@%
»a 6 .;;-;;;= ® Qg0 &‘m o 2 o3 g g
P 27
T 5 10 | ]
; U TTTS o6 6 Gee wms = g aa s
il 4 o~ aaran a5 maa &5 5% % ;\ Tf-
g 15a 214
o
> 3 6
A T B L’ Sl < X
2 AGR A S A S 4 4 TEY W v% EA g 2 ng
C 8 i
r/r
0 1 1 1 1 1
. . . 0.5 1 1.5 2
FIG. 4. The potentials for all measured representations, obtained r/xr,
at 8=6.2. Note that we did not subtract any self-energy pieces but
just rescaled the raw lattice data in unitsrgf FIG. 6. The same as Fig. 5 g=6.0.
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15s
[FEEEF & & ooe ga gf Gpe o @@ WC
24

T

[

o]

Vp(r/a,a)/Vg(r/a,a)

s
4 Lo ennto ag o nen oms mg apE 4 $§$ %A = QJM\ —
15a ) i
3 - -
6

r/rg

FIG. 7. The same as Fig. 5 gt=6.2.
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TABLE IX. Perturbative estimates of the self-ener@]yvse” (in
units ofa,).

B bareg?, renormalizeds mean fieldg3 &7
5.8 0.085%05) 0.13931
6.0 0.082515) 0.12835
6.2 0.082411) 0.12093

dominant contributions to the lattice potentials. In order to
avoid the trivial Casimir scaling described above we will
only study ratios of physical interaction energies,

_ Vp(r) _ VD(R'aU)_vD,seli(aa)
VF(r) VF(Rvau)_vF,seli(au)

[1+0(a2)],
(31)

Rp(r)

smaller lattices for all the representations that we have inves-

tigated. Again, no systematic or statistically significant dif-

ferences are detected. Up te-4 a,~ 1.4r this holds true

wherer=Ra, .
We estimate the self energies in leading order perturba-

on the 1% level for the fundamental potential and on thefion theory, Eq(7). Lattice perturbation theory is notorious
3-5% level for higher representation potentials. Beyond thidor its bad convergence behavif24,68. However, in our
distance the statistical errors start to explode. The same cor@nisotropic case the effective expansion paramgtej * is
parison has been performed for ratios of potentials. In thignuch smaller than in standard applications of lattice pertur-
case the relative errors are slightly reduced due to correlatioation theory. In Fig. 3 we have indeed seen that leading
effects. However, no statistically significant tendencies weré@rder perturbation theory predictions on the difference of
observed either. The relative statistical errors on the two lattwo self energies agree within 30% with numerical data. We

tices are of about the same size and comparable to those
the 8=6.0 andB=6.2 simulations. Thus, we do not expect

gptimate the self energies in two different waga: we use
the bare lattice coupling and the renormalized anisot&py

finite size effects to exceed the statistical errors on any of théd) we mean field(“tadpole”) improve [67,68 both, cou-

simulated lattice volumes.
We now attempt a continuum limit extrapolation of our

pling and anisotropy{Eq. (30)], &;195 =& '9X(U,p) 2

data. We remark that in the limié,—0 [Egs. (1),(2)] the o.og F3 ' ' " - RS,
Casimir scaling of the diverging self energiés c.i(a,) au- 005 | . . . R 1
tomatically implies Casimir scaling &D(R,ag). However, T T r T
. b ; 7 . 0.05F g 4 i 1 g
with Vp ¢ being a purely ultra violet quantity, this sort of OFe-eoesee ab. g 28g 3le ¢
Casimir scaling has little to do with nonperturbative aspects -0.05 ' s ' . s i
of the theory. As can be seen from Fig. 4, where the poten- 01 5 T T y .; l
tials vary by more than a factor two with the distance, even 0 [oe-eeee Sy g tag. gt . +
at our finest lattice resolutiovp <o have not yet become the 0.1 = . : . . .
0.1 T T T T T T
T T T T T T 0 -_15-3- e I; E 2 es i}i i I }
1 L B:g I 4 _01 i 1 1 1 1 1 ?
D=3 —a— f 0.1 B 10 T T T T i ]
§ s % [V R — Y PSS " 2.5 % E §
08| 4 LR C )
§ L} ‘g -0.1 1 1 1 1 ) )
dﬂ [ ] ) 8 ¢ 02 r T 27 T T T i EI ; ]
= 06 | !: ° i 0-' 0. 0.009 gg& § [} }- - [
> n .: .8% L 1 1 1 1 )
me® § . T T T T T T
047 R Lh 0'_24. PP SPNPCT
e L aa . 2t -0.2 [ 2 L L L L
0.2 - AA“ - 0.2 -I158 T T T T ]
o ) ) i i | 1 0 [-oee-e-ee- e e B e § { 1
1 2 3 4 5 6 7 02 L L s . .
r/ag 1 2 3 4 5 6 7
r/ag
FIG. 8. Comparison between the potentials in the lowest dimen- ~ ~
sional three representations betweenlihe=8 lattices(open sym- FIG. 9. Relative deviationy;"’12(r)/VE"’8(r)— 1 of the po-

bols) andL =12 lattices(full symbolg at 3=5.8 in lattice units.

tentials obtained on different volumes as a functior /faf,, .
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— %% % T '@ y TABLE XI. The same as Table X for higher representations.
7 T - 1§S bl il E@
R ELE VI T Pp 4 rro D=10 D=27 D=24 D=15s
6 (I L P S
TeeER 35 9 ;” - 0.33 4.4%37) 6.2365) 5.9957) 6.8483)
~ 5f - TR 0.46 4.3918) 6.10133) 5.9422) 6.9527)
Eé $ s avE g ¢ i?; %% — 0.56 4.3816) 5.9629) 5.8223 6.8723
4 ik RAE iéa 3 T 1 = 0.65 4.3713 6.10116) 5.8614) 6.8619)
3l | 0.73 4.4%11) 6.21(15) 5.9714) 6.9017)
e w o o, B oo ogw o 3 0.80 4.4312) 6.1816) 5.9214) 6.8917)
af = " 5 e 0.92 4.4310) 6.1716) 59514  6.8121)
0.98 4.3414) 6.2814) 5.9515) 7.0013)
10.2 oi4 oje oia 1 1i2 1i4 1i6 1i8 2 0.98 4.3114 6.21(12) 5.91(14) 6.9512)
g 1.13 4.4810) 6.0617) 5.8219) 6.71(19)
_ o _ 1.30 4.4611) 5.7624) 5.5224) 6.9916)
FIG. 10. Conpn_uum I|_m|t extrapole_lte(_j ratlos,_ E@1), com- 1.38 4.5010) 6.0021) 5.9923) 7.0814)
pared to the Casimir scaling hypotheéi®rizontal lines. 1.45 4.4410) 6.21(16) 5.9618) 7.1912)
The results from the two methods, shown in Table IX, differl'59 4.5812) 6.5023 6.5223) 7.2715)
by up to 60 % from each other. We will use the estimae 1.63 4.4813) 6.0221) 6.0529) 7.2314)
in our analysis but take the difference betwdanand (b) 1.69 4.5016 6.3931) 6.1928) 7.3317)
into account as a systematic error. While data at large dist-84 4.7914) 6.5327) 6.0922) 7.5116)
tances are marginally affected by this uncertainty, the errof-9° 4.7420) 6.5133) 6.21(30) 7.1648)
bars at small distances are significantly increased. 1 4.7119) 6.5432) 6.1629) 7.3339)
After subtracting the(scaling violating self energy con- 2-18 4.4036) 5.9353 5.8943 7.1957)
tributions we determine the continuum extrapolated ratio®-25 3.1250) 5.6171) 5.9958)
Rp(r) by means of quadratic fits, E(31). We perform these 2.30 3.8244) 6.3776) 5.9753)
extrapolations for all the distanceghat have been realized 2.39 3.6253)
exp. 4.5 6 6.25 7

TABLE X. The continuum ratios, Ry(r)=Vp(r)/Vg(r).

“exp.” denotes the Casimir scaling expectation.

rirg D=8 D=6 D=15a
0.33 2.2409 2.4811) 3.9729)
0.46 2.2703) 2.5304) 3.9910)
0.56 2.2104) 2.5004) 3.8615)
0.65 2.2304) 2.4505) 3.9611)
0.73 2.2402) 2.5003) 3.9708)
0.80 2.2303) 2.4504) 3.9511)
0.92 2.2403 2.4505) 4.0008)
0.98 2.2304) 2.50005) 3.8712)
0.98 2.2204) 2.4904) 3.8511)
1.13 2.2404) 2.4805) 3.8912)
1.30 2.2705) 2.4907) 4.1%16)
1.38 2.2804) 2.4307) 4.0516)
1.45 2.2404) 2.5505) 3.8613)
1.59 2.2405) 2.4908) 4.11(19)
1.63 2.2905) 2.60008) 4.0913)
1.69 2.2806) 2.61(10 3.8417)
1.84 2.3306) 2.5509) 4.0014)
1.95 2.2610 2.67112) 4.1019)
1.95 2.2709 2.6611) 4.1018)
2.18 2.3011) 2.11(16) 3.6726)
2.25 1.9716) 2.0320) 3.41(43
2.30 2.2614) 2.4517) 3.7231)
2.39 2.2914) 2.4616)

exp. 2.25 25 4

on our coarsest latticeB=5.8) in units ofry. On the finer
lattices, we linearly interpolate between the two lattice points
that are closest to each given distangprior to the quadratic
continuum limit fit. We find the data to be compatible with
the quadratic ansatz and the resulting ratios are shown in Fig.
10. The numerical values are displayed in Tables X—XI. No
statistically significant violations of Casimir scaling are
found. Our accuracy is somewhat limited at short distances,
due to the perturbative estimation of the self energies. The
slope of the extrapolation ia? increases with the distance

as well as with the Casimir charg€p; large masses

\A/D(R,a(,)>a;1 are more affected by lattice artifacts than
small masses. This observation also explains why the devia-
tions from Casimir scaling aB=5.8 and3=6.0 increase
with the distanceFigs. 5,6.

V. DISCUSSION

We have confirmed that violations of the Casimir scaling
hypothesis,

Vp,(r)  Cp,
Vp,(1) - Co,’

(32

are below the 5% level for distances<2ry~1 fm in the
continuum limit of four dimensionab U(3) gauge theory for

all representations witlep<7. This finding rules out many
models of nonperturbative QCD and imposes serious restric-
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tions onto others. For instance in a bag model calculatioris reflected in Eqs(10)—(17): whereverz®~9=1 (zero trial-
scaling of string tensions with the square root of the respediy), the source will be reduced into a singlet component at
tive Casimir ratio has been obtaingtb] and instanton liquid large distances while, whereve? %=z (or z*), it will be
calculations result in ratios between potentials in differentscreened, up to a residu@nti-)triplet component, i.e., one
representations that are smaller than the Casimir ratios tocan easily read off the asymptotic string tensieitherzero
[76]. or the fundamental string tensipfrom the third column of
Another possibility would have been scaling proportionalTable I, rather than having to multiply and reduce represen-
to the number of fundamental flux tubes embedded into theations. As a result, the self-adjoint representati@rend27,
higher representation vort¢p+q in SU(3)][39,41], which  as well as the representatidi), will be completely screened
happens to coincide with Casimir scaling in the lakgemit ~ while in all other representations with+g=<4 a residual
of SU(N). This picture is supported by the finding that the fundamental component survives. The same argument, ap-
SU(N) vacuum seems to act like a type | superconductoplied to SU(2), results in the prediction that all odd-
[77,78, i.e. flux tubes repel each other. However, this scedimensional (bosoni¢ representations are completely
nario is also excluded by the present study. Furthermorescreened while all even-dimensior{&rmionic) representa-
serious restrictions onto most of the remaining models ar¢ions will tend towards the fundamental string tension at
imposed(see for instance Ref51]). It is particularly disap- large distances.
pointing that neither center vortex mod¢#7—49 nor the One expects this sort of string breaking and flattening of
dual superconductor scenari@9,80,78 or string models the potential to occur at distances larger than aboutrg.4
[11] seem to offer any explanation why the numerical data s¢39]. Obviously, once the string is broken Casimir scaling is
closely resemble the Casimir ratios. Certainly, it is worth-violated. It is certainly interesting to investigate what hap-
while to dedicate more theoretical effort to this fundamentalpens around the string breaking distance. However, this re-
phenomenon. quires lattice volumes exceeding those used in the present
We have not discussed “string breaking” so far. While study as well as additional operators that are designed for an
the fundamental potential in pure gauge theories linearloptimal overlap with the respective broken string st@8s.
risesad infinitum the adjoint potential will be screened by
gluons and, at sufficiently large distances, decay into two
disjoint gluelumps[81,39,7Q. This string breaking has in-
deed been confirmed in numerical studjdg,45,27,28,3b This work was supported by DFG grants Ba 1564/3-1,
Therefore, strictly speaking, the adjoint string tensiorem 1564/3-2 and 1564/3-3 as well as EU grant HPMF-CT-1999-
In fact, all charges in higher than the fundamental represer®0353. The simulations were performed on the Cray J90 sys-
tation will be at least partially screened by the backgroundem of the ZAM at Forschungszentrumlid¢h as well as on
gluons. For instanc&® 8= 244 15a° @ 64 3*: in interacting  workstations of the John von Neumann Institut €omput-
with the glue, the sextet potential obtains a fundamentaing. We thank the support teams of these institutions for their
component. A simple rule, related to the center of the grouphelp.
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