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Casimir scaling of SU„3… static potentials

Gunnar Singh Bali*
Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland

~Received 23 June 2000; published 24 October 2000!

Potentials between static color sources in eight different representations are computed in four dimensional
SU(3) gauge theory. The simulations have been performed with the Wilson action on anisotropic lattices
where the renormalized anisotropies have been determined nonperturbatively. After an extrapolation to the
continuum limit we are able to exclude any violations of the Casimir scaling hypothesis that exceed 5% for
source separations of up to 1 fm.

PACS number~s!: 11.15.Ha, 12.38.Aw, 12.38.Gc, 12.39.Pn
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I. INTRODUCTION

Nonperturbative QCD effects in general and the nature
the confinement mechanism in particular are theoretic
challenging. At the same time these aspects are importan
high energy and low energy particle and nuclear pheno
enology. Several models of nonperturbative QCD have b
proposed whose predictions happen to differ from each o
substantially in some cases. Prominent examples are
models@1–5#, strong coupling and flux tube models@6–9#,
bosonic string models@10,11#, the stochastic vacuum mode
@12–14#, dual QCD @15–17#, the Abelian Higgs mode
@18,19#, and instanton based models@20–22#. Lattice simu-
lations of interactions between static color sources offer
ideal environment for discriminating between different mo
els of low energy QCD and to learn more about the confi
ment mechanism. They are easily accessible analytically
at the same time very accurate Monte Carlo predictions
be obtained@23,24#.

Despite the availability of a wealth of information on fun
damental potentials, only few lattice investigations of forc
between sources in higher representations ofSU(N) gauge
groups exist. Most of these studies have been performe
SU(2) gauge theory in three@25–28# and four @29–36#
space-time dimensions. Zero temperature results for fou
mensionalSU(3) can be found in Refs.@37–42# while de-
terminations of Polyakov line correlators in non-fundamen
representation have been performed at finite temperatur
Bernard@29,30# for SU(2) and in Refs.@43–46# for SU(3)
gauge theory.

In our study we shall see that the so-called Casimir s
ing hypothesis@25# is rather accurately represented by t
lattice data while models predicting a different behavior
definitely ruled out. Casimir scaling means that potenti
between sources in different representations are proporti
to each other with their ratios given by the respective ra
of the eigenvalues of the corresponding quadratic Cas
operators, which is exact in the case of two dimensio
Yang-Mills theories. Our result is of particular interest wi
respect to recent discussions of the confinement scen
@47–51#.

At distances r .r c'1.2 fm @39# non-fundamental
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sources will be screened and ‘‘string breaking’’ effects w
be encountered that are incompatible with Casimir scali
In the present study we restrict ourselves to distances sm
than the string breaking scaler c .

This article is organized as follows: in Sec. II the lattic
methods that we apply and our notations are introduced
determination of the renormalized anisotropies and lat
spacings is presented in Sec. III. The potentials are then
termined in Sec. IV before we conclude with a brief discu
sion.

II. NOTATION AND METHODS

We denote the energy of color sources, separated b
distance r, in a representationD53,6,8,10, . . . of the
SU(3) gauge group byVD(r ,m), where m denotes some
cut-off scale on the gluon momenta, for instance an inve
lattice spacing,m5p/a. We shall also use the subscrip
‘‘ F ’ ’ to label the fundamental (3) representation~or we may
just omit the subscript in this case!.

The static potential

VD~r ,m!5VD~r !1VD,self~m! ~1!

can be factorized into an interaction partVD(r ) and a self-
energy contributionVD,self(m) that will diverge likem/ ln m
asm→` while VD(r ) will assume universal values.

A ~dimensionless! lattice potentialV̂D(R,a) will resemble
the corresponding continuum potential up to lattice artifac

VD~Ra!5a21@V̂D~R,a!2V̂D,self~a!#@11 f D~Ra,R̂!an#,
~2!

where n is a positive integer number that will in gener
depend on the lattice action employed. We are concer
with Wilson-type gluonic actions@52#. In this case,n52.
Note that the coefficient functionf only depends on the com
binationr 5Ra and on the direction ofR but not onR itself.
This guarantees that lattice artifacts are reduced asr @a is
increased.

The static potentials are obtained from fits to smea
@53,23,54# Wilson loops forT>Tmin whereTmin depends on
R, the statistical errors of the Wilson loops and the smear
algorithm employed. We define a Wilson loop in represen
tion D,
©2000 The American Physical Society03-1
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GUNNAR SINGH BALI PHYSICAL REVIEW D 62 114503
WD~R,T!5TrS )
(n,m)PdC(R,T)

UD,n,mD , ~3!

wheredC(R,T) denotes the oriented boundary of a~gener-
alized! rectangle with spatial extentR and a temporal sepa
ration of T lattice spacings. (n,m) denotes an oriented link
connecting the siten with n1m̂, n is an integer four-vector
that labels a lattice site andm̂ is a unit vector pointing into a
direction, mP$1,2,3,4%. ‘‘Tr’’ is the normalized trace,
TrD1D5(1/ND)tr 1D51, ND is the dimension of the repre
sentationD and

UD,n,m5PH expF i E
an

a(n1m̂)
dxmAm

a ~x!Ta
DG J , ~4!

denotes a link variable in representationD, whereTa
D is a

generator of the gauge group. Our conventions
@Ta

D ,Tb
D#5 i f abcTc

D , where f abc are totally antisymmetric
real structure constants. The normalization is such
tr Ta

FTb
F5dab/2. Now,

^WD~R,T!&5cD~R,a!exp@2V̂D~R,a!T# ~T→`!.
~5!

The use of smeared Wilson loops turns out to be m
suitable for numerical simulations than implementing t
definition of Eq.~3!; the spatial pieces of the Wilson loop a
replaced by linear combinations of various paths that mo
the ground state wave function. As a result the overlap of
creation operator with this ground state,cD , is enhanced and
the T→` limit can effectively be realised at moderateT
values.

In numerical simulations one observes that the statist
error DW(T) of the expectation value of a smeared Wils
loop ^W(T)& only weakly varies withT @54#. From Eqs.~1!
and ~5! we therefore obtain the relation

DW~T!

^W~T!&
}exp@V̂~a!T#}exp@V̂self~a!T# ~T→`!, ~6!

for the relative errors~which are directly proportional to the
statistical uncertainty of the potential values!. In tree level
perturbation theory one finds

V̂D,self~a!5c CDg2~a!, c50.252731 . . . ; ~7!

the self energy is proportional to the eigenvalue of the q
dratic Casimir operatorCD5TrDTa

DTa
D of the representation

This means that statistical errors will increase significantly
we investigate higher representations of the sources with
ger Casimir charges.

This self energy related problem motivates us to introd
an anisotropy parameterj5as /at'4 between spatial lattice
resolutionas and temporal lattice constantat . This results
in a reduction of the self energy,V̂D,self5c CDj21g2, and
therefore of the relative errors of smeared Wilson loo
However, at the end of the day we wish to measure dista
and potential in the same unitsas . This means that we do
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not gain anything from the factorj within the above expres
sion. Nevertheless, aj.1 still results in a reduced effectiv
g2 at fixed as . Of course, equally well we could just hav
increased the size of our statistical ensemble by a factor
and worked atj51.

Our main motivation for introducing an anisotropy is th
possibility of reducing lattice artifacts. These are mo
prominent at small and at large distances: as long asr is not
much larger thanas the cubic lattice structure is clearly vis
ible. In lowest order perturbation theory these violations
rotational symmetry only depend onR and as while the
order g4 coefficients exhibit a weak dependence onj too
@55#. While we cannot hope to significantly reduce the
small distance effects without decreasingas , it is clear that
on a lattice with temporal resolutionat one cannot reliably
resolve massesm@at

21 . However, atr @as and in particu-
lar for representationsD with large Casimir charges situa
tions,VD(r )as@1, are easily encountered, unlessj@1.

Introducing an anisotropy also means that within a
physicalt window we have more data points at our dispos
While this might help to gain more confidence in identifyin
effective mass plateaus we find that the additional data po
are highly correlated and add little extra information, at le
when one is only interested in the mass of the ground s
within a given channel.

Our action reads

S52b(
n

F 1

j0
(
i . j

Tr Un,i j 1j0(
i

Tr Un,i4G , ~8!

whereb52N/@g2(as ,j)# is defined through the lattice cou
pling g2 and i , j P$1,2,3%. Un,mn5Un,mUn1m̂,nUn1 n̂,m

†
Un,n

†

denotes the product of four link variables around an elem
tary square, the plaquette. With the above anisotropic Wil
action, the leading order lattice artefacts are proportiona
as

2 andatas5as
2j21. This means that along a trajectory o

constantj the continuum limit will be approached quadra
cally in as . The relationship between the bare anisotropyj0
appearing in the action Eq.~8! and the renormalized aniso
ropy j is known in one loop perturbation theory@56#: j
5j0@11c1(j0)g21•••#. In Sec. III we will discuss our
nonperturbative evaluation ofj. Of course the function
j(g2,j0) is not unique and different non-perturbative defin
tions might differ from each other by terms of orderas .

Perturbation theory yields the relation between potent
in different representationsD,

VD~r ,m!5dDVF~r ,m!, ~9!

wheredD5CD /CF . Table I contains all representationsD,
the corresponding weights (p,q) and the ratios of Casimir
factors,dD , for p1q<4. In SU(3) we haveCF54/3, and
z5exp(2pi/3) denotes a third root of 1. Equation~9! is
known to hold to~at least! one loop~orderg4) perturbation
theory at finite lattice spacing@57# and two loops~orderg6)
in the continuum limit@58# of four dimensional Yang-Mills
theories. The main purpose of this article is to investig
non-perturbatively to what extent the ‘‘Casimir scaling’’ re
lation Eq.~9! is violated.
3-2
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CASIMIR SCALING OF SU(3) STATIC POTENTIALS PHYSICAL REVIEW D 62 114503
In what followsU denotes a group element in the fund
mental representation ofSU(3), for instance the product o
link variables around a closed contour. The traces ofUD in
various representations,VD5tr UD , can easily be expresse
in terms of traces of powers ofU,

V35tr U, ~10!

V85~ uV3u221!, ~11!

V65
1

2
@~ tr U !21tr U2#, ~12!

V15a5tr U* V62tr U, ~13!

V105
1

6
@~ tr U !313 trU tr U212 trU3#, ~14!

V245tr U* V102V6 , ~15!

V275uV6u22uV3u2, ~16!

V15s5
1

24
@~ tr U !416~ tr U !2tr U213~ tr U2!2

18 trU tr U316 trU4#. ~17!

Note that TrDUD5(1/ND)tr UD5VD /ND . Hence, the nor-
malization of VD differs by a factorND from that of the
Wilson loop WD of Eq. ~3!. Under the replacement,U
→z U, WD transforms like,WD→zp2qWD . Representa-
tions with zp2q51 have zero triality.

III. DETERMINING ANISOTROPY AND LATTICE
SPACING

We simulateSU(3) gauge theory at the parameter valu
(b,j0)5(5.8,3.10),~6.0,3.20! and (6.2,3.25). From explor
atory simulations with limited statistics and the publish
data of Refs. @59–61# we expect to find renormalize
anisotropiesj'4 at these combinations. At the above p
rameter values volumes ofLs

33Lt583348, 123372 and
163396 lattice sites have been realized, respectively. Th

TABLE I. Group theoretical factors forSU(3). D is the dimen-
sion of the representation, (p,q) are the weight factors,z
5exp(2pi/3), anddD5CD /CF denote ratios of quadratic Casim
charges.

D (p,q) zp2q p1q dD

3 (1,0) z 1 1
8 (1,1) 1 2 2.25
6 (2,0) z* 2 2.5
15a (2,1) z 3 4
10 (3,0) 1 3 4.5
27 (2,2) 1 4 6
24 (3,1) z* 4 6.25
15s (4,0) z 4 7
11450
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volumes were chosen to keep the lattice extent about c
stant in physical units. In addition a volume of 123348 lat-
tice sites has been simulated atb55.8 to investigate possible
finite size effects.

The gauge configurations have been obtained by r
domly mixing Cabibbo-Marinari style@62# Fabricius-Haan
heatbath@63# and Creutz overrelaxation@64# sweeps, where
we cycled over the three diagonalSU(2) subgroups. The
probability of a heatbath sweep was set to be 1/5. Dur
each sweep the sites were visited subsequently for eac
the four space-time directions of the links in sequential
der. Measurements were taken after 2000 initial heatb
sweeps and the gauge configurations are separated from
other by 200 sweeps. In doing so, we did not find any sig
of autocorrelation or thermalization effects for any of t
investigated observables at any of the simulated param
sets. In the case ofb56.0 one set of configurations wa
generated on a Sparc station after a cold start while ano
set of configurations was generated on a Cray J90, star
from a hot, random configuration. No statistically significa
deviations between these two data sets were found either
display our simulation parameters in Table II.nconf denotes
the number of statistically independent configurations a
lyzed in each case whiler 0'0.5 fm is the Sommer scale
parameter@65#, implicitly defined through the static poten
tial,

dV~r !

dr U
r 5r 0

51.65. ~18!

We label quantities associated with the fine grained dir
tion by an indext while s refers to coarse grained direc
tions. On an anisotropic lattice various ways of associat
the sides of smeared Wilson loops with these directions
ist: Wts(r /at ,t/as), Wss(r /as ,t/as) and
Wst(r /as ,t/at). In the case ofWts as well as forWss the
time coordinate points into as direction. The spatial coor-
dinate is identified with thet direction in the first case and
s direction in the latter case. While the spatial connectio
within Wts are parallel to thet axis, in the case ofWss we
realize planar off-axis configurationsRi(1,1,0) and
Ri(2,1,0), in addition to on-axis separations.1 Finally,
within Wst the time coordinate is taken along the fin
grained dimension and the spatial coordinate coarse grai

1We ignore the possibility of mixingt ands coordinates within
the ‘‘spatial’’ separation.

TABLE II. Simulation parameters, lattice spacings and line
lattice extents.

b Ls nconf r 0 /as r 0 /at Lsas /r 0

5.8 8 633 3.074~29! 12.45~11! 2.60~3!

5.8 12 139 3.052~34! 12.52~13! 3.93~4!

6.0 12 159 4.437~71! 18.12~24! 2.70~5!

6.2 16 133 6.106~66! 24.16~23! 2.62~3!
3-3
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GUNNAR SINGH BALI PHYSICAL REVIEW D 62 114503
We determine Wst for the standard separations@23#,
Ri(1,0,0), (1,1,0), (2,1,0), (1,1,1), (2,1,1), (2,2,1).

In the spatially isotropic situation (Wst) we iteratively
construct fat links in the standard way by replacing a giv
link by the sum of itself and the neighboring four spat
staples with some weight parameter,a>1,

Un,i→PSU(3)S a Un,i1(
j Þ i

Fn, j D ,

Fn, j5Un, jUn1 ̂,iUn1 ı̂ , j
†

1Un2 ı̂ ,i
†

Un2 ı̂ ,iUn2 ı̂1 ̂, j .
~19!

PSU(3) denotes a projection operator, back onto theSU(3)
manifold. We employ the definition@23#, U5PSU(3)(A)
PSU(3), Re TrUA†5max and iterate Eq.~19! 26 times
with a52.3.

We use a somewhat different novel smearing algorithm
the case ofWts andWss where the spatial volume is aniso
tropic with one fine and two coarse directions: when o
only considers links parallel to the one being replaced,
~19! resembles a two dimensional diffusion process:U
→PSU(3)@(a141¹2

2)U#. We are interested to maintain a
isotropic propagation of the link fields when an anisotro
parameterj.1 is introduced. Following the above diffusio
model this is achieved by replacing Eq.~19! with

Un,i→PSU(3)~a Un,i1Fn, j1j2Fn,t!, ~20!

Un,t→PSU(3)F ~a12j222!Un,t1(
i

Fn,i G ,
~21!

where i , j P$1,2%, j Þ i . We perform 22 iterations of Eqs
~20!–~21! with a53.7. Indeed, in doing so we find ver
similar overlaps with the physical ground state,css(R)
'cts(R), where c5cFP@0,1# is defined in Eq.~5! and
Wts(R,T50)5Wss(R,T50)51. This is illustrated in the
comparison of data obtained atb56.2, j053.25 of Fig. 1.
We have not been able, however, to sustain the high over
achieved forWst ~triangles! for Wts or Wss . The situation
at the other (b,j0) combinations is similar.

From the asymptotic behavior of the different Wilso
loops at large temporal separationst, three lattice potentials
can be determined:

as
21V̂ts~r /at!52 lim

t→`

d

dt
ln Wts~r /at ,t/as!, ~22!

as
21V̂ss~r /as!52 lim

t→`

d

dt
ln Wss~r /as ,t/as!,

~23!

at
21V̂st~r /as!52 lim

t→`

d

dt
ln Wst~r /as ,t/at!.

~24!
11450
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Note that whileV̂ts and V̂ss are given in units ofas , V̂st
is measured in units ofat . These potentials are related
each other:

V̂ss~R,as!5V̂ts~jR,as!@11O~as!2# ~25!

5@jV̂st~R,as!1DV̂self~as!#

3@11O~as!2#, ~26!

where DV̂self5V̂ss,self2jV̂st,self. While V̂ss and V̂ts are
equal at a given physical distance~up to lattice artifacts!, in
the case ofV̂st a shift by an additive constant is expecte
since the self energies differ:

DV̂self~as!50.08214 . . .g21•••. ~27!

The numerical value has been obtained in lowest order
turbation theory forj5j054.

Following Ref. @59# we use Eq.~25! to determine the
renormalized anisotropies.2 Equation~26! can then be used
as an independent consistency check~modulo lattice arti-
facts!. In order to guarantee a consistent definition ofj we
can either consider the limit@61# R→` or demand the
matching to be performed at the same distance in terms
measured correlation length. We follow the latter strate
and impose

V̂ss~Rm
L ,as!5V̂ts~jRm

L ,as! ~28!

at Rm
L 'Rm5(2/3)r 0 /as where r 0'0.5 fm is the Sommer

scale of Eq.~18!. We restrict ourselves to on-axis separatio
and takeRm

L 52,3,4 for b55.8, 6.0 and 6.2, respectively
This choice is justified by our subsequent analysis where
find Rm52.05(2) andRm52.03(2) on the 83 and 123 b

2Note that unlike Ref.@59# our analysis is based on asymptot
T→` results rather than on pre-asymptotic finiteT approximants to
the potential.

FIG. 1. Ground state overlaps for the case of the fundame
potential determined from Wilson loops in three different orien
tions atb56.2, j053.25.
3-4
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TABLE III. Fits to Vts and determination of the renormalized anisotropyj. The fit parameters are
displayed in units ofas .

b Ls

tmin

as

rmin

at j V̂0,ts etsj21 Ktsj

5.8 8 3 6 4.052~32! 0.826~43! 0.352~43! 0.143~11!

5.8 12 3 6 4.102~33! 0.834~45! 0.366~44! 0.144~12!

6.0 12 4 5 4.084~74! 0.813~20! 0.332~18! 0.0697~49!

6.2 16 4 8 3.957~51! 0.792~18! 0.356~28! 0.0384~28!
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55.8 lattices andRm52.96(4) andRm54.07(4) atb56.0
and b56.2, respectively. The renormalized anisotropyj is
then obtained from Eq.~28! by interpolating the potentia
Vts according to three parameter fits:

V̂ts~R!5V̂0,ts1KtsR2
ets

R
. ~29!

The errors are obtained via the bootstrap procedure. The
sulting anisotropies and fit ranges employed,R
P@Rmin ,Lt/2#, as well as the fit parameters in units ofas are
displayed in Table III.Tmin5tmin /as denotes the ‘‘temporal’’
separation from which onwards effective mass data@Eqs.
~22! and ~23!# saturated into plateaus.

The renormalized anisotropiesj are also included in the
last column of3 Table IV. In the third column of this table
the one loop results@56,66# are displayed while in the secon
last column mean field estimates@67,68# are shown:

j ir 5j0A^Ust&

^Uss&
, b ir 5bA^Ust&^Uss&. ~30!

The temporal and spatial average plaquettes (^Ust& and
^Uss&) are also included in the table. While the renorm
ized anisotropies are underestimated by the one loop re
by about 10% they are overestimated by the mean field
ues by almost the same amount. Finally, in Table V we co
pile the bare anisotropiesj0,454 j0 /j at which we should
have simulated in order to achievej54. In doing so we
assume that our statistical uncertainties onj of order 1% will
dominate over variations of the ratiosj0 /j under a change o
j0 by less than 2%.

After determining the anisotropies, the potentialVst is
fitted to the parametrization Eq.~29! for r>r m

L 'r m
11450
re-

-
lts
l-
-

52r0/3. The results are compiled in Table VI. The fit param
eterse andK agree within errors with those determined fro
the data onVts of Table III while theV0 values tend to be
somewhat smaller, in agreement with the expectation of
~27!. Note that the parametrization is thought to be effect
only and that the fit ranges employed for the two potenti
differ from each other. From the fit parameters, valu
r 0 /as5A(1.65j212e)/K can be extracted. These are di
played in Table II, along with the linear spatial lattice exte
Compared to the isotropic case,j051, where@69,70# r 0 /a
53.64(5), 5.33~3! and 7.29(4) atb55.8, 6.0 and 6.2, re-
spectively,as is somewhat increased while the temporal l
tice spacing at is reduced. The ratiosr 0as

23/4at
21/4

54.36(4), 6.31(10) and 8.61(9) exhibit that atj54 the
geometrically averaged lattice spacings are about 1
smaller than their isotropic counterparts, obtained at
sameb values.

Assigning the phenomenological value@65,71,72,70#
0.5 fm tor 0 we findLsas'1.3 fm on the small lattices and
Lsas'2 fm on the 123 lattice atb55.8. This means tha
A3Lsas/2.1.1 fm in all our simulations; along the
Ri(1,1,1) direction we are safe from the effect of mirr
charges up to distances bigger than one fm. Beyond
distance only representations with non-zero triality are p
tected by the center symmetry@70# from direct finite size
effects.

In Fig. 2 we display all three potentials in units ofas at
b56.2. Note that the anisotropy has been determined
matchingVts to Vss at r 54 as . In addition to the data
points two curves are included that correspond to the par
eter values of Table III and Table VI from fits according
Eq. ~29! to Vts for r .2as and toVst for r>4as , respec-
tively. The matched potentialsVss andVts follow the same
curve.
s.
TABLE IV. Bare, one loop, and mean field estimated~‘‘tadpole improved’’! anisotropies versus the
nonperturbatively determined renormalized anisotropy.

b j0 jg2 ^Uss& ^Ust& j ir j

5.8 3.10 3.470 0.41557~3! 0.807175~5! 4.320 4.076~25!

6.0 3.20 3.573 0.44540~2! 0.820463~4! 4.343 4.084~74!

6.2 3.25 3.619 0.46924~1! 0.829761~2! 4.322 3.957~51!

3Note that in this table we have averaged the results obtained on the 83 and 123 lattices atb55.8 that agree with each other within error
3-5
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GUNNAR SINGH BALI PHYSICAL REVIEW D 62 114503
Up to lattice artifacts and the self energy sh
DV̂self, jV̂st and V̂ss , that both live along coarse graine
lattice directions, should also agree with each other@Eq.
~26!#. Indeed, as is demonstrated in Fig. 3, the differences
compatible with constants of the order suggested by
level perturbation theory forj5j054, Eq. ~27!. Averaging
the R>Rm

L data points results in the value

0.091(9), 0.096(18) and 0.124(11) forDV̂self at b55.8,
6.0 and 6.2, respectively~solid lines with error bands!. On
the large lattice atb55.8 we obtain the value 0.081(9)as

21 ,
in agreement with that above, from the smaller volum
These shifts of the self energies result in reduced rela
errors of^Wst& @Eq. ~6!# ~and in increased errors of^Wss&),
relative to the isotropic case.

IV. THE POTENTIALS

The potentials in non-fundamental representations are
tracted in the same way as discussed above from fits to
corresponding smeared Wilson loops. These are obta
from the fundamental ones by use of Eqs.~10!–~17!. In the
case of the fundamental Wilson loops, discussed in Sec.
temporal links have been replaced by their thermal avera
in the vicinity of the surrounding staples in order to redu
statistical fluctuations@71,73# ~link integration @74#!. Note
that our use of Eqs.~10!–~17! implies that we cannot ther
mally average fundamental links in the construction
higher representation Wilson loops anymore.

We determine the potentials from correlated exponen
fits to ^WD,st& data according to Eq.~5!. The fit range inT is
selected separately for each distanceR and representationD,
such thatx2/NDF,1.5. In addition, we demand the satur
tion of ‘‘effective masses,’’ VD(T)as

5(j/4)ln@^WD(T)&/^WD(T14)&#, into plateaus forT>Tmin . In
Table VII we display the resulting fit rangesT
P@Tmin ,Tmax# that have been selected by means of this p
cedure for the example of the pointV̂D(R) with R
'r 0 /as . In general, the interplay between statistical err
and ground state overlaps was such thatTmin only slightly
varied with R. In the case of the fundamental potential w
find values 2r 0<tmin<4.5r 0, depending onR and the pa-

FIG. 2. The three potentialsVts , Vss andVst in units ofas at
b56.2, j053.25.
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TABLE V. Estimates of the bare anisotropies that correspond
j54.

b 5.8 6.0 6.2

j0,4 3.04~3! 3.13~6! 3.29~4!

FIG. 3. Differences betweenV̂ss andjV̂st .

TABLE VI. Fits to Vst . The fit parameters are displayed
units of as .

b Ls tmin /at r min /as V̂0,stj estj Kstj

5.8 8 13 A5 0.756~50! 0.348~74! 0.138~8!

5.8 12 13 A5 0.732~55! 0.298~80! 0.145~9!

6.0 12 10–11 3 0.745~39! 0.354~80! 0.0659~41!

6.2 16 16–19 4 0.658~25! 0.249~67! 0.0376~17!

TABLE VII. Fit rangestmin /at–tmax/at at r'r 0.

D b55.8 b56.0 b56.2

3 13 – 24 10 – 36 16 – 40
8 7 – 12 9 – 18 10 – 20
6 7 – 12 8 – 18 10 – 20
15a 6 – 11 6 – 14 8 – 15
10 5 – 10 5 – 11 6 – 12
27 4 – 8 4 – 8 5 – 9
24 4 – 8 4 – 8 5 – 9
15s 3 – 7 3 – 7 4 – 7
3-6
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rameter values we simulate at, while forD515s we find,
0.7r 0<tmin<r0. The corresponding estimated ground st
overlapscD are displayed in Table VIII. The overlaps de
crease with increasing Casimir constant, lattice spacing
distancer. At r'r 0 the overlaps range from 0.62(3) in th
worst case to 0.97(1) in the best case which quantifies
efficiency of our smearing algorithm.

In Fig. 4 we display the resulting potentials atb56.2.
The curves correspond to the three parameter fit Eq.~29! to
the fundamental potential, multiplied by the respective ra
of Casimir factors,dD of Table I. It is clear that the Casimi
scaling hypothesis Eq.~9! works quite well on ourb56.2
data for the investigated distances. In Figs. 5–7 we disp
the ratiosV̂D(R,as)/V̂F(R,as) for our three lattice spacings
We did not attempt to subtract the self energy contributio

TABLE VIII. Ground state overlapscD at r'r 0.

D b55.8 b56.0 b56.2

3 0.89~1! 0.96 ~1! 0.97 ~1!

8 0.81~1! 0.90 ~3! 0.91 ~2!

6 0.80~2! 0.90 ~3! 0.90 ~3!

15a 0.68~4! 0.84 ~3! 0.88 ~5!

10 0.62~3! 0.82 ~2! 0.89 ~3!

27 0.67~3! 0.81 ~2! 0.88 ~3!

24 0.65~3! 0.77 ~2! 0.90 ~4!

15s 0.66~3! 0.79 ~2! 0.86 ~3!

FIG. 4. The potentials for all measured representations, obta
at b56.2. Note that we did not subtract any self-energy pieces
just rescaled the raw lattice data in units ofr 0.
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@cf. Eqs.~1!,~2!# in this comparison. Atb55.8 andb56.0
we find the data to lie significantly below the correspondi
Casimir ratios~horizontal lines!. However, the deviations de
crease rapidly as the lattice spacing is reduced.

Prior to a continuum limit extrapolation of the ratios w
shall investigate finite size effects by comparing results
tained on the 1.3 fm lattice with results from the 2 fm latti
at b55.8. For the fundamental potential we already kno
from previous studies that for spatial extents,Lsas.2 r 0,
such effects are well below the 2% level@23#. The situation
is less clear for potentials in higher representations. In p
ciple, the flux tube between the sources could widen wh
the energy per unit length is increased and, therefore, hig
representation potentials might be more susceptible to fi
size effects.

In Fig. 8 we compare the fundamental, octet and se
potentials obtained on the 123 lattices atb55.8 ~full sym-
bols! with those obtained on the 83 lattices~open symbols!.
Up to distances well beyond 2r 0'6 as no statistically sig-
nificant deviations are seen. In Fig. 9 we show the relat
deviations,VD

Ls512(r )/VD
Ls58(r )21, between the potential

determined on the larger lattices and those measured on

ed
ut

FIG. 5. The potentials normalized to the fundamental poten
at b55.8, in comparison to the expectations from Casimir scal
~horizontal lines!.

FIG. 6. The same as Fig. 5 atb56.0.
3-7
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GUNNAR SINGH BALI PHYSICAL REVIEW D 62 114503
smaller lattices for all the representations that we have inv
tigated. Again, no systematic or statistically significant d
ferences are detected. Up tor 54 as'1.4r 0 this holds true
on the 1% level for the fundamental potential and on
3–5% level for higher representation potentials. Beyond
distance the statistical errors start to explode. The same c
parison has been performed for ratios of potentials. In
case the relative errors are slightly reduced due to correla
effects. However, no statistically significant tendencies w
observed either. The relative statistical errors on the two
tices are of about the same size and comparable to thos
the b56.0 andb56.2 simulations. Thus, we do not expe
finite size effects to exceed the statistical errors on any of
simulated lattice volumes.

We now attempt a continuum limit extrapolation of o
data. We remark that in the limitas→0 @Eqs. ~1!,~2!# the
Casimir scaling of the diverging self energiesV̂D,self(as) au-
tomatically implies Casimir scaling ofV̂D(R,as). However,
with VD,self being a purely ultra violet quantity, this sort o
Casimir scaling has little to do with nonperturbative aspe
of the theory. As can be seen from Fig. 4, where the pot
tials vary by more than a factor two with the distance, ev
at our finest lattice resolutionVD,self have not yet become th

FIG. 7. The same as Fig. 5 atb56.2.

FIG. 8. Comparison between the potentials in the lowest dim
sional three representations between theLs58 lattices~open sym-
bols! andLs512 lattices~full symbols! at b55.8 in lattice units.
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dominant contributions to the lattice potentials. In order
avoid the trivial Casimir scaling described above we w
only study ratios of physical interaction energies,

RD~r !5
VD~r !

VF~r !
5

V̂D~R,as!2V̂D,self~as!

V̂F~R,as!2V̂F,self~as!
@11O~as

2 !#,

~31!

wherer 5Ras .
We estimate the self energies in leading order pertur

tion theory, Eq.~7!. Lattice perturbation theory is notoriou
for its bad convergence behavior@24,68#. However, in our
anisotropic case the effective expansion parameterg2j0

21 is
much smaller than in standard applications of lattice per
bation theory. In Fig. 3 we have indeed seen that lead
order perturbation theory predictions on the difference
two self energies agree within 30% with numerical data. W
estimate the self energies in two different ways:~a! we use
the bare lattice coupling and the renormalized anisotropyj,
~b! we mean field~‘‘tadpole’’ ! improve @67,68# both, cou-
pling and anisotropy@Eq. ~30!#, j0,ir

21gir
2 5j0

21g2^Ust&
21.

-
FIG. 9. Relative deviationsVD

Ls512(r )/VD
Ls58(r )21 of the po-

tentials obtained on different volumes as a function ofr /as .

TABLE IX. Perturbative estimates of the self-energyV̂F,self ~in
units of at).

b bareg2, renormalizedj mean fieldgir
2 j0,ir

21

5.8 0.0855~05! 0.13931
6.0 0.0825~15! 0.12835
6.2 0.0824~11! 0.12093
3-8
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The results from the two methods, shown in Table IX, dif
by up to 60 % from each other. We will use the estimate~a!
in our analysis but take the difference between~a! and ~b!
into account as a systematic error. While data at large
tances are marginally affected by this uncertainty, the e
bars at small distances are significantly increased.

After subtracting the~scaling violating! self energy con-
tributions we determine the continuum extrapolated ra
RD(r ) by means of quadratic fits, Eq.~31!. We perform these
extrapolations for all the distancesr that have been realize

FIG. 10. Continuum limit extrapolated ratios, Eq.~31!, com-
pared to the Casimir scaling hypothesis~horizontal lines!.

TABLE X. The continuum ratios, RD(r )5VD(r )/VF(r ).
‘‘exp.’’ denotes the Casimir scaling expectation.

r /r 0 D58 D56 D515a

0.33 2.24~09! 2.48~11! 3.97~29!

0.46 2.27~03! 2.53~04! 3.99~10!

0.56 2.21~04! 2.50~04! 3.86~15!

0.65 2.23~04! 2.45~05! 3.96~11!

0.73 2.24~02! 2.50~03! 3.97~08!

0.80 2.23~03! 2.45~04! 3.95~11!

0.92 2.24~03! 2.45~05! 4.00~08!

0.98 2.23~04! 2.50~05! 3.87~12!

0.98 2.22~04! 2.49~04! 3.85~11!

1.13 2.24~04! 2.48~05! 3.88~12!

1.30 2.27~05! 2.49~07! 4.11~16!

1.38 2.28~04! 2.43~07! 4.05~16!

1.45 2.24~04! 2.55~05! 3.86~13!

1.59 2.24~05! 2.49~08! 4.11~19!

1.63 2.29~05! 2.60~08! 4.09~13!

1.69 2.28~06! 2.61~10! 3.84~17!

1.84 2.33~06! 2.55~09! 4.00~14!

1.95 2.26~10! 2.67~12! 4.10~19!

1.95 2.27~09! 2.66~11! 4.10~18!

2.18 2.30~11! 2.11~16! 3.67~26!

2.25 1.97~16! 2.03~20! 3.41~43!

2.30 2.26~14! 2.45~17! 3.72~31!

2.39 2.29~14! 2.46~16!

exp. 2.25 2.5 4
11450
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on our coarsest lattice (b55.8) in units ofr 0. On the finer
lattices, we linearly interpolate between the two lattice poi
that are closest to each given distancer, prior to the quadratic
continuum limit fit. We find the data to be compatible wi
the quadratic ansatz and the resulting ratios are shown in
10. The numerical values are displayed in Tables X–XI.
statistically significant violations of Casimir scaling a
found. Our accuracy is somewhat limited at short distanc
due to the perturbative estimation of the self energies. T
slope of the extrapolation inas

2 increases with the distancer
as well as with the Casimir chargeCD ; large masses
V̂D(R,as).at

21 are more affected by lattice artifacts tha
small masses. This observation also explains why the de
tions from Casimir scaling atb55.8 andb56.0 increase
with the distance~Figs. 5,6!.

V. DISCUSSION

We have confirmed that violations of the Casimir scali
hypothesis,

VD1
~r !

VD2
~r !

5
CD1

CD2

, ~32!

are below the 5% level for distancesr ,2r 0'1 fm in the
continuum limit of four dimensionalSU(3) gauge theory for
all representations withCD<7. This finding rules out many
models of nonperturbative QCD and imposes serious res

TABLE XI. The same as Table X for higher representations

r /r 0 D510 D527 D524 D515s

0.33 4.45~37! 6.23~65! 5.98~57! 6.84~83!

0.46 4.39~18! 6.10~33! 5.94~22! 6.95~27!

0.56 4.38~16! 5.96~29! 5.82~23! 6.87~23!

0.65 4.37~13! 6.10~16! 5.86~14! 6.86~19!

0.73 4.45~11! 6.21~15! 5.97~14! 6.90~17!

0.80 4.43~12! 6.18~16! 5.92~14! 6.89~17!

0.92 4.43~10! 6.17~16! 5.95~14! 6.81~21!

0.98 4.34~14! 6.28~14! 5.95~15! 7.00~13!

0.98 4.37~14! 6.21~12! 5.91~14! 6.95~12!

1.13 4.48~10! 6.06~17! 5.82~19! 6.71~19!

1.30 4.46~11! 5.76~24! 5.52~24! 6.99~16!

1.38 4.50~10! 6.00~21! 5.99~23! 7.08~14!

1.45 4.44~10! 6.21~16! 5.96~18! 7.19~12!

1.59 4.55~12! 6.50~23! 6.52~23! 7.27~15!

1.63 4.48~13! 6.02~21! 6.05~29! 7.23~14!

1.69 4.50~16! 6.39~31! 6.19~28! 7.33~17!

1.84 4.79~14! 6.53~27! 6.09~22! 7.51~16!

1.95 4.74~20! 6.51~33! 6.21~30! 7.16~48!

1.95 4.71~19! 6.54~32! 6.16~29! 7.33~35!

2.18 4.40~36! 5.93~53! 5.89~43! 7.19~57!

2.25 3.12~50! 5.67~71! 5.99~58!

2.30 3.82~44! 6.37~76! 5.97~53!

2.39 3.62~53!

exp. 4.5 6 6.25 7
3-9
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GUNNAR SINGH BALI PHYSICAL REVIEW D 62 114503
tions onto others. For instance in a bag model calcula
scaling of string tensions with the square root of the resp
tive Casimir ratio has been obtained@75# and instanton liquid
calculations result in ratios between potentials in differ
representations that are smaller than the Casimir ratios
@76#.

Another possibility would have been scaling proportion
to the number of fundamental flux tubes embedded into
higher representation vortex@p1q in SU(3)# @39,41#, which
happens to coincide with Casimir scaling in the largeN limit
of SU(N). This picture is supported by the finding that th
SU(N) vacuum seems to act like a type I superconduc
@77,78#, i.e. flux tubes repel each other. However, this s
nario is also excluded by the present study. Furtherm
serious restrictions onto most of the remaining models
imposed~see for instance Ref.@51#!. It is particularly disap-
pointing that neither center vortex models@47–49# nor the
dual superconductor scenario@79,80,78# or string models
@11# seem to offer any explanation why the numerical data
closely resemble the Casimir ratios. Certainly, it is wor
while to dedicate more theoretical effort to this fundamen
phenomenon.

We have not discussed ‘‘string breaking’’ so far. Whi
the fundamental potential in pure gauge theories linea
risesad infinitum, the adjoint potential will be screened b
gluons and, at sufficiently large distances, decay into
disjoint gluelumps@81,39,70#. This string breaking has in
deed been confirmed in numerical studies@44,45,27,28,35#.
Therefore, strictly speaking, the adjoint string tension iszero.
In fact, all charges in higher than the fundamental repres
tation will be at least partially screened by the backgrou
gluons. For instance,6^ 8524% 15a* % 6% 3* : in interacting
with the glue, the sextet potential obtains a fundamen
component. A simple rule, related to the center of the gro
.F

ev

uc
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is reflected in Eqs.~10!–~17!: whereverzp2q51 ~zero trial-
ity!, the source will be reduced into a singlet componen
large distances while, whereverzp2q5z ~or z* ), it will be
screened, up to a residual~anti-!triplet component, i.e., one
can easily read off the asymptotic string tension~eitherzero
or the fundamental string tension! from the third column of
Table I, rather than having to multiply and reduce repres
tations. As a result, the self-adjoint representations,8 and27,
as well as the representation,10, will be completely screened
while in all other representations withp1q<4 a residual
fundamental component survives. The same argument,
plied to SU(2), results in the prediction that all odd
dimensional ~bosonic! representations are complete
screened while all even-dimensional~fermionic! representa-
tions will tend towards the fundamental string tension
large distances.

One expects this sort of string breaking and flattening
the potential to occur at distances larger than about 2.4r 0
@39#. Obviously, once the string is broken Casimir scaling
violated. It is certainly interesting to investigate what ha
pens around the string breaking distance. However, this
quires lattice volumes exceeding those used in the pre
study as well as additional operators that are designed fo
optimal overlap with the respective broken string states@82#.
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@22# T. Schäfer and E.V. Shuryak, Rev. Mod. Phys.70, 323~1998!.
@23# G.S. Bali and K. Schilling, Phys. Rev. D46, 2636~1992!.
@24# G.S. Bali and K. Schilling, Phys. Rev. D47, 661 ~1993!.
@25# J. Ambjo”rn, P. Olesen, and C. Peterson, Nucl. Phys.B240, 533

~1984!.
@26# G.I. Poulis and H.D. Trottier, Phys. Lett. B400, 358 ~1997!.
@27# P.W. Stephenson, Nucl. Phys.B550, 427 ~1999!.
@28# O. Philipsen and H. Wittig, Phys. Lett. B451, 146 ~1999!.
@29# C. Bernard, Phys. Lett.108B, 431 ~1982!.
3-10



t.

B

ce

,

B

or.

CASIMIR SCALING OF SU(3) STATIC POTENTIALS PHYSICAL REVIEW D 62 114503
@30# C. Bernard, Nucl. Phys.B219, 341 ~1983!.
@31# J. Ambjo”rn, P. Olesen, and C. Peterson, Nucl. Phys.B240, 189

~1984!.
@32# C. Michael, Nucl. Phys.B259, 58 ~1985!.
@33# L.A. Griffiths, C. Michael, and P.E.L. Rakow, Phys. Let

150B, 196 ~1985!.
@34# H.D. Trottier, Phys. Lett. B357, 193 ~1995!.
@35# P. de Forcrand and O. Philipsen, Phys. Lett. B475, 280

~2000!.
@36# K. Kallio and H.D. Trottier, hep-lat/0001020.
@37# N.A. Campbell, I.H. Jorysz, and C. Michael, Phys. Lett.167B,

91 ~1986!.
@38# C. Michael, Nucl. Phys. B~Proc. Suppl.! 26, 417 ~1992!.
@39# C. Michael, hep-ph/9809211.
@40# S. Deldar, Nucl. Phys. B~Proc. Suppl.! 73, 587 ~1999!.
@41# G.S. Bali, Nucl. Phys. B~Proc. Suppl.! 83-84, 422 ~2000!.
@42# S. Deldar, Phys. Rev. D62, 034509~2000!.
@43# S. Ohta, M. Fukugita, and A. Ukawa, Phys. Lett. B173, 15

~1986!.
@44# H. Markum and M.E. Faber, Phys. Lett. B200, 343 ~1988!.
@45# M. Müller, W. Beirl, M. Faber, and H. Markum, Nucl. Phys.

~Proc. Suppl.! 26, 423 ~1992!.
@46# W. Bürger, M. Faber, H. Markum, and M. Mu¨ller, Phys. Rev.

D 47, 3034~1993!.
@47# M. Faber, J. Greensite, and S. Olejnik, Phys. Rev. D57, 2603

~1998!.
@48# J.M. Cornwall, Phys. Rev. D57, 7589~1998!.
@49# S. Deldar, hep-ph/9912428.
@50# Yu.A. Simonov, Pis’ma Zh. Eksp. Teor. Fiz.71, 187 ~2000!

@JETP Lett.71, 127 ~2000!#.
@51# V.I. Shevchenko and Yu.A. Simonov, Phys. Rev. Lett.85,

1811 ~2000!.
@52# K.G. Wilson, Phys. Rev. D10, 2445~1974!.
@53# APE Collaboration, M. Albaneseet al., Phys. Lett. B192, 163

~1987!.
@54# G.S. Bali, K. Schilling, and C. Schlichter, Phys. Rev. D51,

5165 ~1995!.
@55# P. Altevogt and F. Gutbrod, Nucl. Phys.B452, 649 ~1995!.
@56# F. Karsch, Nucl. Phys.B205, 285 ~1982!.
@57# P. Weisz and R. Wohlert, Nucl. Phys.B236, 397 ~1984!.
11450
@58# Y. Schröder, Phys. Lett. B447, 321 ~1999!.
@59# T.R. Klassen, Nucl. Phys.B533, 557 ~1998!.
@60# S. Ejiri, Y. Iwasaki, and K. Kanaya, Phys. Rev. D58, 094505

~1998!.
@61# J. Engels, F. Karsch, and T. Scheideler, Nucl. Phys.B564, 303

~2000!.
@62# N. Cabibbo and E. Marinari, Phys. Lett.119B, 387 ~1982!.
@63# K. Fabricius and O. Haan, Phys. Lett.143B, 459 ~1984!.
@64# M. Creutz, Phys. Rev. D36, 515 ~1987!.
@65# R. Sommer, Nucl. Phys.B411, 839 ~1994!.
@66# M. Garcia Perez and P. van Baal, Phys. Lett. B392, 163

~1997!.
@67# G. Parisi, inProceedings of the 20th International Conferen

on High Energy Physics,Madison, 1980, edited by L. Durand
and L.G. Pondrom~American Institute of Physics, New York
1981!.

@68# G.P. Lepage and P.B. Mackenzie, Phys. Rev. D48, 2250
~1993!.

@69# K. Schilling and G.S. Bali, Int. J. Mod. Phys. C4, 1167
~1993!.

@70# G.S. Bali, hep-ph/0001312.
@71# G.S. Bali, K. Schilling, and A. Wachter, Phys. Rev. D56,

2566 ~1997!.
@72# G.S. Bali and P. Boyle, Phys. Rev. D59, 114504~1999!.
@73# P. De Forcrand and C. Roiesnel, Phys. Lett.151B, 77 ~1985!.
@74# G. Parisi, R. Petronzio, and F. Rapuano, Phys. Lett.128B, 418

~1983!.
@75# K. Johnson and C.B. Thorn, Phys. Rev. D13, 1934~1976!.
@76# D. Diakonov, V.Y. Petrov, and P.V. Pobylitsa, Phys. Lett.

226, 372 ~1989!.
@77# G.S. Bali, C. Schlichter, and K. Schilling, Suppl. Prog. The

Phys.131, 645 ~1998!.
@78# G.S. Bali, hep-ph/9809351~1998!.
@79# G.S. Bali, V. Bornyakov, M. Mu¨ller-Preußker, and K. Schill-

ing, Phys. Rev. D54, 2863~1996!.
@80# J. Ambjo”rn and J. Greensite, J. High Energy Phys.05, 004

~1998!.
@81# I.H. Jorysz and C. Michael, Nucl. Phys.B302, 448 ~1988!.
@82# K. Schilling, Nucl. Phys. B~Proc. Suppl.! 83-84, 140 ~2000!.
3-11


