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We investigate instability and reversibility within hybrid Monte Carlo simulations using a nonperturbatively
improved Wilson action. We demonstrate the onset of instability as tolerance parameters and molecular dy-
namics step sizes are varied. We compare these findings with theoretical expectations and present limits on
simulation parameters within which a stable and reversible algorithm is obtained for physically relevant
simulations. Results of optimization experiments with respect to tolerance parameters are also presented.
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I. INTRODUCTION

Hybrid Monte Carlo~HMC! @1# remains the most widely
used algorithm for lattice QCD computations with dynamic
fermions. In such computations, trial configurations are p
duced by integrating the Hamiltonian equations of mot
from an initial configuration for some fictitious molecula
dynamics~MD! time t. Configurations are then accepted
rejected by subjecting the energy changedH along a trajec-
tory to a Metropolis@2# acceptance test.

It has been observed@3,4# that the equations of motion in
the MD evolution of such an algorithm are chaotic in t
case of QCD. This implies that rounding errors induced
the use of finite precision in a digital computer may gro
exponentially. Such growth can be characterized in term
the leading Liapunov exponent of the system. Furthermor
has been shown@4# that the most commonly used MD inte
gration scheme—the leapfrog method—has the potentia
become unstable. Instability is a problem for lattice QC
simulations since it results in large energy changes al
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MD trajectories and hence negligible acceptance rates in
HMC algorithm.

The instability in the leapfrog method has been illustra
in Ref. @4# for the case of free field theory where a mech
nism has been proposed which could explain the onse
such an instability in lattice QCD. Numerical studies of t
latter were carried out on small lattices at a variety of co
plings and quark masses. The onset of instability was fo
to be at smaller step sizes for lighter quark masses.

Edwards, Horva´th, and Kennedy@4# also investigated an
optimization strategy in which reduced work~and hence ac-
curacy! in the MD calculation was balanced against the
sulting reduced acceptance in the Metropolis step. Each
step requires the iterative solution of a system of linear eq
tions. Since dynamical fermion HMC codes spend a subs
tial fraction of their execution time performing such sol
tions, it it clearly important to investigate whether substan
efficiency gains can be made without introducing undesira
effects such as the loss of reversibility in the MD. The i
vestigation@4# was quite preliminary and the errors quote
were quite large. This issue was also investigated on sm
lattices in Ref.@5#. The present paper investigates many
the issues raised in Ref.@4# and extends the numerical stud
ies to production-scale lattices.
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The paper is organized as follows. In Sec. II we summ
rize the hybrid Monte Carlo algorithm and give details of t
component algorithms used. Section III contains a discus
of the effects of numerical roundoff errors on reversibility.
Sec. IV we present results and discussion of our analysi
instability in the MD step. In Sec. V we present the results
an optimization analysis involving reduced accuracy in
MD step. Finally, in Sec. VI we summarize our results a
conclusions.

II. HYBRID MONTE CARLO ALGORITHM
AND LATTICE QCD

A. HMC algorithm

Consider a system with canonical coordinatesq and ac-
tion S(q). One wishes to generate configurationsq with an
equilibrium probability distribution in which the statistica
weight of configurationq is proportional toe2S(q). In the
hybrid Monte Carlo algorithm, we introduce fictitious mo
mentap conjugate toq and define a Hamiltonian functio
H(q,p)5p2/21S(q).

One may then generate configurations (q,p) distributed
according to

P~q,p!dq dp5
1

Z
e2H(q,p)dq dp

where

Z5E dq dp e2H(q,p). ~1!

After the integration over the momenta, we obtain the
sired distribution for the coordinates. Given an initial co
figuration (q,p), a sequence of configurations is genera
by repeated iteration of the following steps.

~1! Momentum refreshment. Draw new fictitious momenta
p from a Gaussian distribution with zero mean and unit va
ance.

~2! Molecular dynamics.Integrate the Hamiltonian equa
tions of motion for some fictitious time trajectory of lengtht,
from the initial configuration„q(0),p(0)…5(q,p) to obtain
the trial configuration„q(t),p(t)…5(q8,p8).

~3! Accept/reject step.The trial configuration (q8,p8) is
accepted with probability

Pacc~q8,p8←q,p!5min~1,e2dH!, ~2!

where

dH5H~q8,p8!2H~q,p!. ~3!

If the trial configuration is rejected the new configuration
(q,p).

B. Leap-frog integration

For the HMC algorithm to satisfy detailed balance, t
MD is required to be reversible and measure preserving. T
can be achieved through the use of symmetric symple
integration schemes, such as the leapfrog algorithm. In
11450
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algorithm, one constructs an approximationU3(dt) to the
time evolution operatorU(dt) for advancing a phase spac
vector (q,p) through a step of lengthdt in molecular dy-
namics time. The approximate operatorU3(dt) is itself com-
posed of a symmetric combination of the symplectic par
coordinate and momentum update operatorsUq(dt) and
Up(dt), respectively, for example as

U3~dt!5UpS dt

2 DUq~dt!UpS dt

2 D . ~4!

The partial update operators are themselves defined as

Uq~dt!~q,p!5~q1pdt,p!, ~5!

Up~dt!~q,p!5~q,p1Fdt!, ~6!

whereF52]S/]q is the MD force. Because of its symme
ric construction,U3(dt) is reversible and, due to the sym
plectic nature of its component updates, it is area preserv
The process of iteratively acting on an initial phase sp
vector with U3(dt) is called leapfrog integration. The
method is accurate toO(dt3) per time step.

C. Higher order integration schemes

The construction of higher order integration schemes~see,
for example, Refs.@6,7#! is recursive, proceeding from th
leapfrog scheme. Given an approximate time evolution
eratorUn11(dt) accurate toO(dtn11) for some evenn, one
can construct the operator

Un13~dt!5Un11~dt1! iUn11~dt2!Un11~dt1! i ~7!

with

dt15
dt

2i 2s
, ~8!

dt25
dt

12~2i !/s
, ~9!

where i is an arbitrary positive integer ands5(2i )1/(n12).
The step sizesdt1 and dt2 are chosen to cancel truncatio
errors ofO(dtn11) and symmetry with respect to time en
sures that there are no truncation errors ofO(dtn12). Hence
such a scheme is accurate toO(dtn13).

Sexton and Weingarten@8# have considered the gener
case where the actionS can be split into two parts asS(q)
5S1(q)1S2(q) and constructed anO(dt3) algorithm in
which the coefficient of leading order truncation error te
may be decreased. The method is advantageous if evalu
the force corresponding toS1 is computationally much
cheaper than the force associated withS2 ~or vice versa!. For
example, one may takeS1 to be the gauge action andS2 to
be some computationally expensive fermion action. The
efficient of the leading error term could then be decreased
performing more gauge update steps than momentum
dates.
1-2
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D. Formulation of MD for lattice QCD

The canonical coordinate variables for lattice QCD are
SU~3! link matricesUm(x) associated with the link emana
ing from sitex of the lattice and ending on neighboring si
x1m̂, where m̂ is a unit vector in one of the Euclidea
space-time directions. The conjugate momentum fie
pm(x) are members of the Lie algebra su~3!.

In general, one can write the fictitious Hamiltonian for
lattice QCD system with two degenerate flavors
Sheikholeslami-Wohlert~clover! improved @9,10# fermions
as

H̃5
1

2 (
x,m

pm
2 1Sg~b;U !1f†Q̃21~k,c;U !f, ~10!

where

Q̃~k,c;U !5M†~k,c;U !M ~k,c;U !. ~11!

HereM (k,c;U) is the clover improved fermion matrix with
improvement coefficientc, f are pseudofermions an
Sg(b;U) is the standard Wilson gauge action

Sg~b;U !52
b

6 (
h

Re Tr Uh . ~12!

In Eq. ~12! the sum is over all elementary plaquettesUh on
the lattice andb56/g2, whereg is the bare gauge couplin
constant.

In our computations we have employed the technique
even-odd preconditioning which changes the form ofQ̃ and
H̃ somewhat. Each lattice site is labeled with a parityp
which is either even or odd so that any one lattice site ha
opposite parity from all of its neighbors. This allows th
fermion matrix to be block diagonalised and the Hamilton
to be rewritten as

H5
1

2 (
x,m

p21Sg~b;U !22 Tr lnAe1fo
†Q21~k,c;U !fo .

~13!

Here,A is the so calledclover term summed over sites of on
parity ~even in the equation above! and Q is the precondi-
tioned fermion matrixcoupling lattice sites of the opposit
parity ~odd in the equation above! only. ThusQ has half the
rank of Q̃. This leads to some memory saving at the ad
tional expense of having to evaluate Tr lnA directly on sites
of one parity. The precise formulation of the precondition
matrices can be found in Ref.@11#.

We do not expect that splitting the Hamiltonian in th
way will change conclusions regarding reversibility and
lated issues in any significant way. Although there is an ex
force term to be computed to integrate the equations of
tion, the logarithm of the clover term is computed direc
and is independent of the parameters used for the solutio
the system of linear equations. Likewise, for the inversion
the clover term, we use a direct method that is not contro
by algorithmic parameters such as a target relative resi
11450
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Hence we regard the effects of preconditioning as a mi
technicality and shall disregard them for the rest of this
per.

The leapfrog partial update steps for the gauge fields
the momenta are

Uq~dt!@Um~x!,pm~x!#5@exp$ i dt pm~x!%Um~x!,pm~x!#

~14!

Up~dt!@Um~x!,pm~x!#5@Um~x!,pm~x!1dtFm~x!#,

~15!

where

Fm~x!5Fm
g ~x!1Fm

f ~x! ~16!

andFg, F f are the respective gauge and fermionic force c
tributions

Fm
g ~x!52

]Sg~U !

]Um~x!
, ~17!

Fm
f ~x!5@Q21f#†

]Q

]Um~x!
@Q21f#. ~18!

E. Solution of the linear system

Computation of the fermion force requires the quantity

X5Q21f ~19!

which is obtained via the solution of the linear system

QX5f. ~20!

This is normally carried out with a Krylov subspace solv
such as the conjugate gradients~CG! @12# or the stabilized
biconjugate gradients~BiCGStab! @13# algorithm. With the
BiCGStab solver, the solution consists of two solves:

M†~k,c!Y5f, ~21!

M ~k,c!X5Y, ~22!

whereas with CG, one can solve Eq.~20! directly. When
using CG with a Hermitean positive definite matrix such
Q, the solution is guaranteed to converge monotonica
With BiCGStab, one has no such guarantee. Since the
dition number ofQ is the square of the condition numbers
either M or M†, we expect the two stage solution usin
BiCGStab to be faster on the whole than using one CG so
As the convergence of BiCGStab can be erratic, it is prud
to restart the solution process forX with CG using, as an
initial guess, the solution forX from the previous BiCGStab
solve.

The solver residualr i at thei th iteration of a CG solve is
defined as

r i
real5if2QXi i , ~23!

whereXi is the approximate solution at iterationi. The rela-
tive residual at thei th iteration is then defined as
1-3
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r i
real5

r i
real

ifi . ~24!

In solver algorithms,r i is not usually computed using Eq
~23!. Instead,r i is generally defined through some three te
or coupled two term recurrence relation. We will refer to th
latter definition of the residual asr acc, the accumulated re
sidual. The corresponding definition of the relative resid
is

r i
acc5

r i
acc

ifi . ~25!

These two definitions are equivalent in exact arithme
However, computation of the accumulated residual ne
only vector additions and scalar multiplications where
computation of the real residual needs a matrix multipli
tion and so the two can differ in finite arithmetic. In ou
computations we use the accumulated residual. We will
note by r our target relative residual. Hence the iterati
process terminates whenr i

acc,r . In the remainder of this
paper we refer tor as the solver target residual, or just sim
ply the solver residual.

III. REVERSIBILITY

Reversibility and area preservation of the Molecular D
namics step are required for a correct HMC algorithm. T
leapfrog algorithm described in Sec. II, is reversible and a
preserving in exact arithmetic. Computations are of neces
carried out in finite precision and exact reversibility is lost.
is therefore important to verify that implementation of t
fundamental steps of the algorithm are as close to revers
as it is possible to make them.

Ideally, one would like to establish the least level of pr
cision required such that the accumulation of rounding err
does not introduce a significant bias into the end results
calculation. At present, it is not possible to give a fully qua
titative answer to this question. The accumulation of rou
ing errors is a complex phenomenon and, since the unde
ing equations of motion are known to be chaotic, t
potential for introducing large uncontrolled errors is gre
@3,4#. The best one can do is to ensure that the impleme
tion of each algorithmic component is as close to revers
as practical and that the accumulation of errors grow in
expected way and so remain under control. We study
reversibility of gauge and momentum update compone
separately.

A. Gauge update

The gauge update involves the process of exponentia
the conjugate momenta on all lattice links@14,15#. One
wishes to verify here that the exponentiation of the mome
does produces a suitable unitary matrix, and the expone
tion of the momenta is reversible in the sense that

exp@ ipm~x!dt#5exp@2 ipm~x!dt#†. ~26!

To check these properties, we studied
11450
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Dunit5 max
x,m,a,b

u$exp@ ipm~x!dt#exp@ ipm~x!dt#†21%abu
~27!

Drev5 max
x,m,a,b

u$exp@ ipm~x!dt#2exp@2 ipm~x!dt#†%abu,
~28!

wherex, m, a, and b are site, direction, and color indices
respectively. These observables measure the maximum
lations of unitarity and hermiticity on a given lattice.

In tests of the gauge field update reversibility, we us
quenched lattices withV544 sites atb55.4. For the MD
evolution we usedt51 anddt5 1

10 . The maximum values
of both Dunit andDrev along a molecular dynamics traje
tory were found to be

max
traj

Dunit5max
traj

Drev50.5960463531027' 1
2

eSP,
~29!

whereeSP is the single precision unit of least precision. Th
fact that the maxima of the metrics agree to eight decim
places may seem surprising at first, but becomes less my
rious when we recall that we are working at the limits
single precision, where the discrete nature of floating po
numbers on a computer becomes apparent. Hence, the
only a discrete set of values available that the metrics
take of which the figure quoted above is one.

B. Momentum update

In the momentum update there are two possible source
reversibility violation. The first is a lack of associativity i
the additionp(t1dt)5p(t)1F(U)dt required in the up-
date step. The second arises in the computation of the f
F. However, when performing a momentum update forwa
in time for a stepdt followed immediately by a momentum
step backwards in time fordt ~with no gauge field update in
between! the gauge fields, and hence the force, should
main unchanged. Thus, reversibility due to lack of assoc
tivity in the addition can be isolated.

Consider a test where one starts with a set of fie
(U,p,f). First the momentum fields are updated forward
time for a timestepdt to produce fields (U,p8,f) and then
a momentum update is performed backwards in time1 to pro-
duce fields (U,p9,f). We use the same value of the forceF
for both of the updates. One can then define the quantity

Dpm
i ~x!5pm

i ~x!92pm
i ~x! ~30!

as a measure of the reversibility violation incurred by t
momentum update step. To improve statistics, one may
peat this several times, in each case using a new set of in
momenta drawn from a Gaussian distribution.

In the numerical tests, we started from some initial gau
field configuration and performed MD in the ordinary sen
Before every momentum update, we performed 100 forwa

1In practice this is done by flipping the signs of all the momen
integrating the equations of motion forward in time and flipping t
signs of the momenta again.
1-4
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backward steps with newly drawn momenta in each ca
After the test was completed, we restored the original m
menta from the end of the last gauge update step and allo
the MD to continue. Thus we obtained an estimate
^Dpm

i (x)&, the average reversibility violation due to lack
associativity in the addition. At the end of the complete t
jectory, the resulting data was split into eight sets, one c
responding to each of the Lie algebra indicesi. The data in
each set was histogrammed to obtain the distribution of
average reversibility violation for each momentum comp
nent.

The results of these momentum update tests are show
Fig. 1. We show the histograms of all eight momentum co
ponents. The errors on the data points are small and, to
clarity, are not displayed. The lattice volume used for th
tests wasV54338 sites and physical parameters wereb
55.2, c50 andk50.1360. We performed the tests follow
ing each gauge field update along a trajectory consisting
10 timesteps, each of lengthdt50.1. We used 500 bins fo
each momentum component in the histograms. The hi
gramming process itself was carried out in double precis
allowing us to resolve reversibility violations o
O(1021eSP).

Figure 1 shows that the distribution of reversibility viol
tions forms a very narrow, apparently symmetric, distrib
tion around 0 with a width that is ofO(1021eSP). We con-
clude that the momentum update step in itself is as revers
as it is possible to attain. The apparent symmetry of
distribution may possibly be used to make more gene
statements about reversibility and area preservation hol
stochastically@16#.

C. Reversibility of the force computation

Since gauge fields are unchanged along a momentum
date and computation of the force due to gauge fields is

FIG. 1. Distribution of momentum update reversibility viola
tions obtained by histogramming^Dp&. Each plot corresponds to
separate momentum component andeSP is the single precision uni
of least precision.
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entirely deterministic process, one expects that the fo
computation will be reversible. However, the pseudoferm
contribution to the force requires the solution of linear equ
tions, so further scrutiny is required.

It has been pointed out@17# that the solution proces
should be reversible, provided that atime symmetricinitial
guess vector~such as a zero vector or a vector with rando
components! is used to start the solution process. This mak
it tempting to carry out such solves with a large target re
due r, and hence save on the computational workload.
discuss this further in Secs. III G and V.

Another commonly used solver strategy is to use the
lution from the force computation of the previous mome
tum update as an initial guess. This, and variants which u
more elaborate extrapolation of previous solutions, may
duce the computational workload but are inherentlynon-
reversibleunless the solutions are effectively exact.

D. Global reversibility violations

Having discussed the sources of reversibility violation a
microscopic level, we now turn to the problem of their glob
accumulation. Consider an MD trajectory with initial field
(U,p) and a set of pseudofermion fieldsf. The latter remain
unchanged along an MD trajectory. Suppose we perform
MD trajectory forward to obtain fields (U8,p8), then having
reversed the momenta, perform a second~backward! trajec-
tory and a momentum flip to obtain fields (U9,p9). One may
define the following global reversibility violation metrics:

iDdUi5A (
x,m,a,b

uUm
ab~x!92Um

ab~x!u2, ~31!

iDdpi5A(
x,m,i

@pm
i ~x!92pm

i ~x!#2, ~32!

uDdHu5uH~U9,p9,f!2H~U,p,f!u. ~33!

It is also useful to consider these quantities suitably norm
ized by their respective degrees of freedom

iDdUid.o.f5
iDdUi

ANd.o.f
U

, iDdpid.o.f5
iDdpi

ANd.o.f
p

,

and

uDdHud.o.f5
uDdHu

ANd.o.f
H

. ~34!

Here Nd.o.f
U 5Nd.o.f

p 54383V are the respective number o
the gauge and momentum degrees of freedom@4 links per
site and 8 SU~3! generators# andNd.o.f

H is the number of de-
grees of freedom involved in computing the Hamiltonian
In the quenched approximationNd.o.f

H 5Nd.o.f
U 1Nd.o.f

p . When
dynamical fermions are included, there is an additional fac
from the fermions ofNd.o.f

f 5243V ~three color and four Di-
rac complex components per site!. In the even–odd precon
ditioned systems, half of theNd.o.f

f degrees of freedom ar
1-5
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FIG. 2. Volume scaling of re-
versibility metrics, iDdUid.o.f ,
iDdpid.o.f , uDdHud.o.f , and
uDdHu/udHu. The volumes are
normalized by the smallest vol
ume used:V0544 sites.
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represented in the pseudofermion vectors and the remai
absorbed into computing Tr lnA on sites of the opposite
parity.

We also studyuDdHu/udHu, where

dH5H~U8,p8!2H~U,p!. ~35!

This is a measure of the relative error in our energy calcu
tions and is related to the accuracy of the acceptance p
ability. One would like this relative error to be quite sma
certainly no more than a few percent.

E. Volume scaling of global reversibility metrics

According to their definitions,iDdUi andiDdpi should
scale asO(AV), since the metrics require the summation
O(V) positive definite quantities. We therefore expect th
the corresponding normalized~per degree of freedom! met-
rics should volume independent. ForuDdHu, the summation
involves numbers which are not positive-definite, and o
might expect some cancellation. If the numbers are truly r
dom, the cancellations between the terms can be modelle
a random walk and one would expect the sum to scale
O(AV). Hence one would expectuDdHud.o.f to be indepen-
dent of the system volume in a manner similar to t
iDdUid.o.f and iDdpi metrics.

To satisfy ourselves further that our simulation code
performing as well as can be expected, we carried out
versed trajectories~as described in the definition of the me
rics! in the quenched approximation with lattices of differe
volumes. In each case, we used a single configuration as
starting gauge field for the test and the momentum field w
drawn randomly from a heat bath. The trajectory length w
11450
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t51 and the length of the timestep wasdt5 1
180. We used

b55.4 and lattices of volume

VP$44,84,103316,163332%. ~36!

Results of these tests are shown in Fig. 2 where the
umes have been normalized by the smallest one (V0544).
We note that the degree of freedom normalized metric
iDdUid.o.f, iDdpid.o.f, and iDdHid.o.f–are all independen
of the volume as expected. We also note that the rela
error uDdHu/udHu is less than of order 0.1%, showing th
error in computing the acceptance probability is small.

F. Accumulation of rounding errors in MD time

It has been noted by several authors that the MD eq
tions of motion are chaotic@3,4# and so effects of roundof
error are expected to grow exponentially with MD tim
along a trajectory. In particular, if one were to carry o
reversed trajectory tests, as described in the definition of
metricsiDdUi and iDdpi , these would be expected to ex
hibit the leading behavior

iDdUi}enUt and iDdpi}enpt ~37!

as a function of the MD trajectory lengtht. We use this as an
operational definition of the effective leading Liapunov e
ponentsnU andnp . In our computations we measured on
nU and, hence, in future discussion we shall drop the s
script U and refer to it simply asn. We shall also refer ton
simply as the Liapunov exponent.

The authors of Refs.@3–5# all found positive values for
the Liapunov exponents in their studies. In particular it w
shown in Ref.@4# that as the solver target residuer and MD
1-6
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FIG. 3. Fits for the Liapunov exponentn.
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step-sizedt were made smaller, the Liapunov exponents
peared to plateau, indicating that chaos was present in
underlying continuum equations of motion for the syste
and not just a feature of the numerical integration schem

For the leading Liapunov exponentn, the authors of Ref.
@4# found that this plateau came to an end atdt'0.6 in the
quenched approximation and in the case of dynamical
mion simulations with sufficiently heavy quarks. Beyond th
step size, the effective exponent exhibited growth. Howev
in the case of light quarks, this growth was found to set
significantly earlier, atdt'0.08. This sudden growth in Lia
punov exponents could signal the onset of instability in
MD. The subject of integrator instabilities will be taken up
Sec. IV.

The authors of Ref.@4# also studied the behavior of th
Liapunov exponents as a function of the MD solver tar
residuer. They investigated the effects of increasingr ~using
a time symmetric start! as a possible means of improvin
computational efficiency. Their data indicated a sudd
growth in Liapunov exponent asr is increased beyond
critical value. The data covered a limited range ofr, and had
large statistical errors. However, the sudden apparent gro
of the Liapunov exponent coincides with a dramatic drop
acceptance rate, suggesting again that the integrator ha
come unstable.

G. Tuning the solver target residual

The results of Ref.@4# motivated us to measure the Lia
punov exponents of our simulations while varying the tar
residue of a comparatively large volume system, with co
paratively light quarks such as those in current product
runs. For the determination of Liapunov exponents, we u
10 configurations taken from one of our large data sets.
lattice volume used wasV5163332 and the physical param
eters wereb55.2, c52.0171, andk50.1355. The value of
the clover coefficient was calculated using the formula de
11450
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mined by the Alpha Collaboration@10#. These parameter
correspond to pseudoscalar to vector mass ratio ofmp /mr

'0.6 @18# and a lattice spacing ofa50.097 fm @18# where
the physical lattice spacing has been determined using
observabler 0 @19#. By current standards, the dynamical fe
mions are relatively light.

Using the 10 starting configurations, for a given value
r we carried out reversed MD trajectories of varying lengtht
with a constant step-size ofdt5 1

180. This value fordt was
the one used in the production of the dataset from which
ten sample configurations were taken. Our MD solver st
egy was to employ a two stage BiCGStab solution to co
pute the quantityX of Eq. ~19! followed by a restarted CG
solution. Hence the target residue used was the accumu
target residue for the CG solver as described in Sec. II E.
target residues used ranged fromr 51027 to r 51024. The
smallest of these is near the limit of what may be achieved
a single precision~32bit! computation.

In each test we measurediDdUi , udHu andNiters, where
Niters was the total number of solver iterations carried out
both the BiCGStab and CG solves averaged over the forw
and reverse trajectories. For each combination of parame
we also calculated the Metropolis acceptance probab
Pacc.

To evaluate the savings~or losses! in computational cost
we defined the cost metric

cost5
Niters

Pacc
. ~38!

This heuristic measure reflects the fact that a large numbe
iterations along an MD trajectory implies high computation
cost, as does a low Metropolis acceptance rate. We note
an absolute measure of cost should also take into accoun
autocorrelation time of the ensemble produced by an HM
computation. Since we are unable to control or measure
1-7



BÁLINT JOÓ et al. PHYSICAL REVIEW D 62 114501
FIG. 4. ^dH& as a function ofdt for various
values ofr.
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quantity on a sample of ten configurations, we disregard
tocorrelation effects in this study where we are interested
the relative cost with different choices of simulation param
eters.

Figure 3 shows fits used to extract the~effective! Lia-
punov exponents. The system is clearly chaotic as lniDdUi
has a significant positive slope as a function oft. Even with
only ten configurations, the signal for the Liapunov exp
nents is good except for the cases whenr 5531026 and
when r 51025. The data for these latter parameter valu
seem to show a marked break att'0.6 and indeed, it was
not possible to establish a consistent value of the Liapu
exponent for these two values ofr.

In Fig. 4 we shoŵ dH&, the energy change along an M
11450
u-
in

-

s

v

trajectory averaged over ten configurations as a function
trajectory lengtht. One can clearly distinguish three diffe
ent types of behavior for̂dH& depending on the target MD
residualr. For values ofr ,531026, ^dH& shows an oscil-
latory behavior witht, whereas forr .1025 ^dH& diverges
with increasingt, resulting in a corresponding exponenti
drop in acceptance probability. It is interesting to note th
this change in the behavior ofdH occurs at the value ofr
where the data in Fig. 3 also show a change.

A summary of results for tuning the solver residue
shown in Fig. 5. The bottom panel shows the Liapunov
ponentsn. For each value ofr we made several determina
tions of n by fitting to different ranges oft in Fig. 3. We
note that the results of these different fits are consistent w
te
FIG. 5. Liapunov exponents, acceptance ra
and cost as a function ofr.
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each other except for the values ofr 5531026 and r
51025 corresponding to the ‘‘break’’ evident in Fig. 3.

We note that, overall, the Liapunov exponents appea
show a slow growth withr. There is no evidence of a platea
asr is reduced tor 51027. This implies that this manifesta
tion of chaos in the system isnot due to the underlying
equations of motion, but to the integrator. The behavior
the exponents nearr 51025 may perhaps be interpreted a
the effect of the integrator changing from being stable
being unstable.

The second panel in Fig. 5 shows the average accept
rate ^Pacc& for trajectories of lengtht'1. The acceptance
shows a rapid drop forr .1025, which is due to the diver-
gent behavior ofdH for values ofr in this region. The rapid
drop in acceptance rate results in a huge growth in the co
the algorithm as shown in the third panel of Fig. 5 where
display the cost metric~38! normalized by its value for the
simulation withr 51027.

In the top panel of Fig. 5 we show an enlarged view of t
cost function for values ofr ,1025. The cost metrics for
values ofr>1025 are too large to fit onto this enlarged plo
We note that the normalized cost has a shallow minim
whenr 5531026, however, at this minimum value the no
malized cost has a value of about 0.75 implying a saving
only about 25%.

IV. INSTABILITY IN THE MD INTEGRATION

The behavior of the energy changedH, from oscillatory
to divergent, is reminiscent of a known instability in th
leapfrog algorithm when applied to the integration of t
equations of motion for the simple harmonic oscillator.
this section, we review the simple harmonic oscillator ana
sis of Ref.@4# and compare expectations for interacting the
ries with our numerical results.

A. Harmonic oscillator

In what follows we use the notation of Ref.@4#. Consider
a single oscillator with coordinatef. The corresponding
Hamiltonian function is

H5
1

2
~p21v2f2!, ~39!

wherev is the angular frequency of the oscillator andp is
the corresponding fictitious momentum.

The leapfrog update for the coordinate and moment
may be written in the form of a matrixU3(dt) acting on the
phase space vector (f,p)

U3~dt!5S 12 1
2 v2dt2 dt

2v2dt1 1
4 v4dt3 12 1

2 v2dt2D . ~40!

The update matrixU3 can be parameterized as
11450
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U3~dt!5S cos@k~dt!dt#
sin@k~dt!dt#

r~dt!

2r~dt!sin@k~dt!dt# cos@k~dt!dt#
D ,

~41!

where

k~dt!5
cos21@12~1/2!v2dt2#

dt
, ~42!

r~dt!5vA12~1/4!v2dt2. ~43!

Evolution over a whole trajectory of lengtht is then given
by

U3~t!5S cos@k~dt!t#
sin@k~dt!t#

r~dt!

2r~dt!sin@k~dt!t# cos@k~dt!t#
D . ~44!

The nature of the instability in the leapfrog scheme m
be illustrated by examining the phase space trajectorie
this system. The initial phase space vector for an oscilla
released from amplitudeA is @f(0),p(0)#5(A,0). From
Eq. ~44!, the phase space vector at timet is then given by

S f~t!

p~t!
D 5S Acos@k~dt!t#

2Ar~dt!sin@k~dt!t#
D . ~45!

The phase space orbits therefore satisfy

f2~t!

A2
1

p2~t!

A2r2~dt!
51. ~46!

It can then be seen from Eqs.~43! and ~46! that for
vdt,2 the phase space trajectories are elliptical,2 whereas
for vdt.2 they are hyperbolic. The instability atvdt52 is
the abrupt transition from one class of phase space traje
ries to another.

The change in energy

dH5H@f~t!,p~t!#2H@f~0!,p~0!# ~47!

may also be computed. Using the same initial conditions

dH52
1

8
v4A2dt2sin2@k~dt!t#. ~48!

Whenvdt,2, k(dt) is real and sodH oscillates with in-
creasingt, in a manner similar to that observed in the botto
panel of Fig. 4. However, whenvdt.2, k(dt) becomes
purely imaginary causingdH to diverge as sinh2@k(dt)t# in
a manner similar to that seen in the top panel of Fig. 4.

2In the exact solution the orbits are circular, the deformation to
ellipse is an effect of the truncation error in the leapfrog sche
even in exact arithmetic.
1-9
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B. Generalized treatment of instabilities

We now present a more general method of finding ins
bilities in the leapfrog algorithm and in higher order schem
of the type discussed in Refs.@6,7# ~see Sec. II C! when
applied to the case of a harmonic oscillator.

Consider an initial phase space vector (f,p) of the har-
monic oscillator. This is to be evolved through phase sp
by the leapfrog matrixU3(dt) of Eq. ~40!. The area preser
vation property of the integrator implies that det@U3(dt)#
51. All components ofU3(dt) are real, implying that TrU3
is also real.

If

l15u11 iv1 and l25u21 iv2 ~49!

are the two eigenvalues ofU3(dt), the previous conditions
on the trace and the determinant~area preservation! can then
be shown to imply that

v152v2 and u1v21u2v150. ~50!

We conclude that either,~1! u15u2 or, ~2! v15v250.
In case~1!, the determinant condition (l1l251) implies

that u1
21v1

251. The eigenvalues have magnitude uni
l1,25e6 iu with u real, and the update matricesU3(dt) and
U3(t) @5U 3

NMD(dt)# give stable elliptical trajectories in
phase space.

In case~2!, by the same condition on the determinant,
have thatl15h andl251/h for some realh>1. On raising
l1 or l2 to the powerNMD , one of the eigenvalues ofU3(t)
will show an exponential divergence withNMD . This implies
unstable behavior in the integrator.

The condition for the onset of instability is that the eige
values change from being complex to real. This informat
can be deduced from the discriminant of the characteri
polynomial of the update matrixU3(dt). The onset of insta-
bility occurs as the discriminant changes sign from nega
to positive.

For the leapfrog method, the discriminant is given by

D35~vdt!2~vdt22!~vdt12!. ~51!

We note that for 0,vdt,2, the discriminant is negative
indicating a stable integrator, whereas forvdt.2 the dis-
criminant is positive implying an unstable integrator in lin
with the previous discussion.

C. Instability in higher order schemes

Consider the fifth order scheme of Campostrini and Ro
@6#. This can be constructed from three leapfrog integrat
steps as

U5~dt!5U3~dt1!U3~dt2!U3~dt1! ~52!

with dt15dt/(2221/3) and dt25221/3dt/(2221/3). This
corresponds ton53 andi 51 in Eqs.~8! and ~9!.

The discriminantD5 is a twelfth order polynomial invdt
which can easily be found using an algebraic package s
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as Maple. It is not reproduced here but plotted in Fig. 6. T
nonnegative roots of theD550 are found to be

vdtP$0,A1226A3 4%. ~53!

To three decimal places, the positive root is at 1.573. T
discriminant is negative for 0,vdt,1.573 indicating stable
behavior and is positive forvdt.1.573 for the region where
the integrator is unstable.

It is interesting to note that, for the central leapfrog upd
matrix U3(dt2) in the fifth order scheme to become unstab
on its own, requires thatvdt252. This implies that this
central step should go unstable when

vdt52
~2221/3!

21/3
'1.175. ~54!

This suggests that, although the central update itself beco
unstable atdt51.175, the other two updates in the schem
stabilize the system untildt'1.57.

Following a similar calculation, it can be shown that th
discriminantD7 of the characteristic polynomial for the up
date matrix of the seventh order scheme (n55, i 51) has
roots at

vdtP$0,1.595,1.822,1.869% ~55!

with D7 being negative in the intervalsD7P(0,1.595) and
D7P(1.822,1.869) indicating two domains of stability. Th
discriminant is positive forD7P(1.592,1.822) and forD7
.1.869. For the longest constituent fifth order update to
unstable in this scheme requires thatvdt.1.166.

Hence we see that, for the case of the simple harmo
oscillator at least, higher order integration schemes do
help cure the problem of instabilities. Indeed, they beco
unstable at even smaller values ofvdt than the simplest
leapfrog method.

FIG. 6. The discriminantD5 of characteristic polynomial of the
fifth-order Campostrini-Rossi update matrixU5(dt).
1-10
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D. Hypothesis for interacting field theories

Edwards, Horva´th, and Kennedy@4# advanced the hypoth
esis that, since the high frequency modes of an asymp
cally free field theory can be considered as a collection
weakly coupled oscillator modes, the instability just d
scribed in the harmonic oscillator system will also be pres
for interacting field theories. The onset of the instability w
be caused by the mode with highest frequencyvmax, when
vmaxdt52. For a single oscillator mode, the onset of ins
bility is abrupt. In the case of an interacting theory, o
would expect the effects of the interactions to smooth
this transition.

It is argued in Ref.@4# that the instability in lattice QCD
with dynamical fermions can be likened to that of a colle
tion of oscillator modes of the sort just described. Wh
applying leapfrog integration to this system, the role ofv2f
in the harmonic oscillator example is played by the M
forceFm(x). This force can be written as a sum of contrib
tions from the gauge and fermionic pieces of the action
Fm(x)5Fm

g (x)1Fm
f (x), where the labelsg andf indicate the

gauge and fermionic components of the force, respective
The fermion force is expected to be proportional tomf

a ,
where mf is the mass of the lightest species of dynami
fermion anda is somenegativeparameter. In the case o
Wilson ~and Clover! fermions the mass in lattice units
defined as

amf5
1

2 S 1

k
2

1

kc
D , ~56!

wherek now stands for the Wilson hopping parameter, a
kc is the critical value corresponding tomf50. It is argued
that the highest frequency mode~with frequencyvmax) is
proportional to the fermion force which, in turn, is expect
to be proportional tomf

a , and thus ask→kc (mf→0), the
fermion force will diverge and hence the critical value ofdt
will decrease. In the following, we evaluate numerical e
dence for the validity of this hypothesis.

E. Studies of the force

The forces used in the momentum update belong to
Lie algebra su~3!. We define the 2-normiFi in the same
manner as foriDdpi :

iFi5A(
x,m,i

@Fm
i ~x!#2. ~57!

Again, we can define the 2-norm suitably normalized by
relevant degrees of freedom:

iFgid.o.f5
iFgi

ANd.o.f
U

and iF f id.o.f5
iF f i

ANd.o.f
f

~58!

where the subscriptsg and f indicate gauge and fermioni
forces, respectively. We can also define an` –norm for the
forces
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iFi`5max
x,m,i

uFm
i ~x!u. ~59!

The `-norm then is the force component with the max
mum magnitude over the lattice and so can be likened to
force mode with the highest frequency, proportional tovmax

2 ,
in the analogous collection of weakly coupled harmonic
cillators. The~degree of freedom! averaged 2-norm on the
other hand can be likened to the average frequency-squ
of the analogous set of harmonic oscillators.

In our studies we computed the magnitude of the force
all timesteps of an MD trajectory starting from a sing
gauge configuration chosen from the same ten configurat
described in Sec. III G~with volume lattice V5163332
sites, and production parametersb55.2, c52.0171, k
50.1355).

In the first set of tests, we attempted to investigate h
the fermion force behaves with the quark mass. We p
formed MD trajectories consisting ofNMD5175 steps of
length dt5 1

180 for several values of the hopping parame
k. We measured the norms of the gauge and fermion for
on each timestep. The MD solver target residue was se
r 51026. Error bars for the average value of the force we
computed by bootstrapping the 175 samples.

It could be argued that a configuration that has been p
duced in an ensemble equilibrated at some value ofk, will
have very small statistical weight at a different value ofk.
However, our aim was not to study equilibrium properties
the ensemble, but to test the properties of algorithm com
nents as a function of the external parameterk.

The average value ofkc , the critical value ofk corre-
sponding to massless fermions, is known from separate s
troscopy studies for the ensemble from which the configu
tions were drawn. It is approximately 0.1363@18#. Thus, we
were able to associate a value of the lattice fermion m
amf with every value ofk used in our tests through th
formula

amf5
1

2 S 1

k
2

1

kc
D . ~60!

Since we expect the fermion mass to vary in some inve
relation to the norm of the force@4#, we attempted to fit the
results of our tests with the form

F5A~amf !
a5AS 1

2k
2

1

2kc
D a

, ~61!

where the parameters of the fit wereA, kc anda.
Results of this test are shown in Fig. 7. We show both

fits made to thè -norm and the~degree of freedom! aver-
aged 2-norm of the force. We can see that good fits can
made, which reproducekc from the spectroscopic studie
and thata is negative indicating that the magnitudes of t
norms do indeed vary in an inverse manner with the ferm
mass. The fact that the value ofkc is well reproduced and
thata is negative in sign both lend support to the hypothe
of Ref. @4#.
1-11
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FIG. 7. Fits to the fermion force as a functio
of amf using the fitting hypothesis of Eq.~61!.
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F. Dependence ondt and k

To investigate further the onset of instability, we com
puted the averaged forces anddH along an MD trajectory
using the same starting configurations as before. Howe
this time we varied the MD step sizedt. The number of
steps taken along the trajectory was adjusted to keep
trajectory length constant att5175/180. The results ar
plotted in Fig. 8. From the growth ofdH evident in the plot,
one can see that the instability sets in betweendt50.0105
and dt50.0110. We can also see that the rapid growth
dH is accompanied by a growth in the fermionic forces
the system~in both norms! and that thè -norm of the force
11450
r,

he

f

appears to grow more rapidly than the degree of freed
averaged 2-norm. This latter behavior suggests that the o
of instability is driven by a few unstable fermion mode
again in line with the previous hypothesis.

In a further investigation of the MD forces, we carried o
MD trajectories using the same initial gauge configuration
before, this time varyingk for two separate values of th
step size. The values of the step size weredt50.010 and
dt50.012 corresponding to stable and unstable MD ak
50.1355 respectively, as discussed above.

We show thè -norms of the gauge and fermion forces
Fig. 9. This shows that the simulation which was unstable
the
t
r

FIG. 8. The 2-norm and thè -norm of the
average gauge and fermionic components of
MD force along an MD trajectory plotted agains
the MD stepsizedt. The corresponding behavio
of the energy changedH along a trajectory is
shown in the top graph.
1-12
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FIG. 9. The` norms of the gauge and fermi
onic forces, anddH againstk.
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k50.1355 has become stable ask is reduced. Once agai
this seems in line with the hypothesis that the onset of
instability is a function of the combination of the fermion
forces~controlled byk) and the stepsizedt. Recall that the
relevant parameter for the SHO wasvdt.

Overall, our studies of the MD forces lend support to t
hypothesis that the instability is driven by theFdt term in
the momentum update step of the leapfrog algorithm. Si
the fermionic force diverges in some inverse relation w
the fermion mass, we expect the maximum safe stepsizedt
to decrease as the fermion mass is decreased (k is in-
creased!. Also, having observed a faster rise in the`-norm
of the fermionic force than in the degree of freedom av
aged 2-norm, we infer that the instability is driven by a co
paratively small number of unstable fermionic modes.

V. TUNING THE STEPSIZE AND THE SOLVER RESIDUE

The above conjecture, if correct, can serve to explain
tuning results described in Sec. III G. By increasing t
solver residuer, we are modifying the fermionic force whic
could then drive the MD integrator unstable. In order to
vestigate these possibilities, we have carried out a sec
tuning exercise this, time varying both the step sizedt and
the solver target residuer.

We used the ten configurations used when tuningr alone
in Sec. III G. Since at this point we were not computi
Liapunov exponents, our tests consisted of single MD tra
tories in one direction only. For each value ofdt, we chose
the number of steps along the trajectory so as to mainta
constant trajectory length oft5175/180. We also carried ou
a test with a target residue ofr 51029 using double precision
~64bit! floating point numbers, whereas all other tests u
single precision. For each combination of algorithmic para
eters, we measured the energy changedH, the corresponding
acceptance probabilityPaccand the cost function of Eq.~38!.

The results of this tuning exercise are shown in Fig.
First we see in the bottom panel (r 51029 symbols! that
using double precision does not alleviate the problem of
11450
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stability. The calculation in double precision appears
become unstable at a similar value of the step size as d
that in single precision. Second, we see from the data for
5531025 that, if the solver target residue is too large, o
cannot achieve values ofdH of O(1), even if dt is made
very small.

For our simulations, we are able to achieve non-zero
ceptance rates whendt,0.0075 and whenr<1025. For pa-
rameter values smaller than these, we can attempt to tune
simulation for maximum performance. The top two panels
Fig. 10 show the variation of the cost function. In this ca
the cost function is normalized by its value whenr 51026

anddt50.0055. These were the parameters used in the
duction of the dataset from which the configurations we
taken. We see that either by tuning the solver residuer or the
MD step sizedt, the maximum gain we could make in th
cost function is about 25%.

VI. CONCLUSIONS AND DISCUSSION

A. Stability

We have shown that, for the physical parameters use
our production simulations, the molecular dynamics integ
tor used becomes unstable atdt'0.01 for all studied values
of r, and also for any realistic value ofdt when r was in-
creased abover'O(1025). We identify this instability with
the one studied in free field theory for the frequency–st
size combinationvmaxdt52. We have studied numericall
the fermion force and found that its behavior is not incons
tent with the hypothesis of Ref.@4# ~motivated by free field
theory! that the force should grow large ask→kc . We sup-
pose that a critical value exists forFdt when the leapfrog
integrator becomes unstable.

Reducing the value of the MD residual results in an
creasingly inaccurate force calculation. If as a resultiFi is
too large, one may need an extremely small step-size to k
the integrator stable. We found that, forr 5531025 at our
1-13
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FIG. 10. The average energy change^dH&,
acceptance probabilitŷPacc&, and cost function
for the second tuning study, plotted against ste
size dt for several values of the solver targe
residuer. The cost function is normalized by it
value whendt50.0055, andr 51026.
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parameters, one would need a step-size much smaller
dt50.001~see Fig. 10!.

On the safe side of these limits, one may attempt to t
the algorithm. However, our studies show that on this v
ume and with these physical parameters, tuningdt and/orr
is unlikely to produce significant performance gains. W
note that it appears entirely safe to carry out computation
single precision in the safer region of parameter space. H
ever, ask→kc , it may be that the upper limit onr decreases
beyond the limit of single precision. Alternatively, as th
condition number of the fermion matrix increases with
creasingk, the number of iterations in the solver for fixedr
will increase. This may cause rounding errors to accumu
so that the target residualr may not be reached. However,
this latter case, it is only the solve itself that needs to be d
in double precision, or restarted in single precision.

B. Higher order integration schemes

We have demonstrated that, at least for the case o
simple harmonic oscillator, the fifth and seventh ord
schemes of Refs.@6,7# are not immune to instabilities. W
expect that this situation will persist for even higher ord
schemes of this sort. The source of the problem is that, a
bottom level, these schemes are constructed out of sim
leapfrog updates. For any given step-sizedt in an integration
scheme of ordern13, there will always be a subupdate
order n11 which will have a step-sizedt2.dt. This sub-
update, or one of its constituent subupdates, may eventu
drive the whole integration scheme unstable, although
other subupdates may act as a stabilizing factor at first.
note that, in our harmonic oscillator examples, the smal
positive critical value ofvdt was always smaller for the
higher order integrators than for the leapfrog, indicating t
the instability problem is actuallyworsefor the higher order
methods.

As the source of the instability appears to come from
fermionic part of the force, we anticipate that a scheme of
type advocated in Ref.@8# would not assist avoiding the in
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stability either, as it attempts to improve the truncation er
by performing more gauge updates. While this may dr
down the truncation error, it does nothing about the probl
in the fermionic update.

C. Reversibility

Reversibility itself seems not to be strongly affected
changingr. The Liapunov exponents of the system seem
show a slow rise before the instability sets in. In the reg
of transition from stability to instability, the Liapunov expo
nents are difficult to determine. One might speculate that
behavior reflects a transition from the Liapunov expon
characterizing the underlying continuous equations of m
tion to that characterizing the unstable numerical integra

D. Summary

We have investigated the stability and reversibility of t
HMC algorithm with two flavors of light dynamical fermion
on large lattices as a function of the MD step sizedt and the
MD target solver residuer. We have found upper limits on
both of these for a fixed set of physical parameters. Bey
these limits, the leapfrog integrator becomes unstable
one cannot carry out a simulation program, irrespective
the precision of the floating point numbers which one us
On the safe side of the limits, one can carry out simulatio
safely in both single and double precision. Parameter tun
seems to give no major performance gains. Reversib
does not seem to be dangerously affected.
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