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We investigate instability and reversibility within hybrid Monte Carlo simulations using a nonperturbatively
improved Wilson action. We demonstrate the onset of instability as tolerance parameters and molecular dy-
namics step sizes are varied. We compare these findings with theoretical expectations and present limits on
simulation parameters within which a stable and reversible algorithm is obtained for physically relevant
simulations. Results of optimization experiments with respect to tolerance parameters are also presented.

PACS numbsgps): 12.38.Gc, 02.70.Lq, 11.15.Ha

[. INTRODUCTION MD trajectories and hence negligible acceptance rates in the
HMC algorithm.

Hybrid Monte Carlo(HMC) [1] remains the most widely The instability in the leapfrog method has been illustrated
used algorithm for lattice QCD computations with dynamicalin Ref. [4] for the case of free field theory where a mecha-
fermions. In such computations, trial configurations are prohism has been proposed which could explain the onset of
duced by integrating the Hamiltonian equations of motionsuch an instability in lattice QCD. Numerical studies of the
from an initial configuration for some fictitious molecular latter were carried out on small lattices at a variety of cou-
dynamics(MD) time 7. Configurations are then accepted or plings and quark masses. The onset of instability was found
rejected by subjecting the energy chanti¢ along a trajec- to be at smaller step sizes for lighter quark masses.
tory to a Metropolig 2] acceptance test. Edwards, Horvth, and Kennedy4] also investigated an

It has been observd®,4] that the equations of motion in optimization strategy in which reduced wof&nd hence ac-
the MD evolution of such an algorithm are chaotic in thecuracy in the MD calculation was balanced against the re-
case of QCD. This implies that rounding errors induced bysulting reduced acceptance in the Metropolis step. Each MD
the use of finite precision in a digital computer may grow step requires the iterative solution of a system of linear equa-
exponentially. Such growth can be characterized in terms dfions. Since dynamical fermion HMC codes spend a substan-
the leading Liapunov exponent of the system. Furthermore, itial fraction of their execution time performing such solu-
has been showf#] that the most commonly used MD inte- tions, it it clearly important to investigate whether substantial
gration scheme—the leapfrog method—has the potential tefficiency gains can be made without introducing undesirable
become unstable. Instability is a problem for lattice QCDeffects such as the loss of reversibility in the MD. The in-
simulations since it results in large energy changes alongestigation[4] was quite preliminary and the errors quoted

were quite large. This issue was also investigated on small
lattices in Ref.[5]. The present paper investigates many of
*Current address: Department of Physics and Astronomy, Univerthe issues raised in Rd#] and extends the numerical stud-
sity of Kentucky, Lexington, KY 40506-0055. ies to production-scale lattices.
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The paper is organized as follows. In Sec. Il we summaalgorithm, one constructs an approximatitig(57) to the
rize the hybrid Monte Carlo algorithm and give details of thetime evolution operatot/(57) for advancing a phase space
component algorithms used. Section Il contains a discussiogector (q,p) through a step of lengtiér in molecular dy-
of the effects of numerical roundoff errors on reversibility. In namics time. The approximate operm@( 67-) is itself com-
Sec. IV we present results and discussion of our analysis ?osed of a symmetric combination of the symplectic partial

instability in the MD step. In Sec. V we present the results ofcoordinate and momentum update operatbigor) and

an optimization analysis involving reduced accuracy in theup( 87), respectively, for example as
MD step. Finally, in Sec. VI we summarize our results and
conclusions. ST

U3(57')=Up 2

ot
Uq( 67)%( ?) . (4)
IIl. HYBRID MONTE CARLO ALGORITHM

AND LATTICE QCD The partial update operators are themselves defined as

A. HMC algorithm

Consider a system with canonical coordinateand ac-
tion S(g). One wishes to generate configuratiapsith an U(87)(d,p)=(q,p+Fd7), (6)
equilibrium probability distribution in which the statistical
weight of configurationq is proportional toe” 5@, In the  whereF=—3dS/dq is the MD force. Because of its symmet-
hybrid Monte Carlo algorithm, we introduce fictitious mo- ric construction4;(57) is reversible and, due to the sym-
mentap conjugate toq and define a Hamiltonian function plectic nature of its component updates, it is area preserving.
H(q,p) =p?%/2+ (q). The process of iteratively acting on an initial phase space
One may then generate configuratiomsp() distributed  vector with U;(87) is called leapfrog integration. The
according to method is accurate t0(57°) per time step.

Uy(67)(9,p)=(q+pdT,p), ©)

P(q,p)dq dp= % e_H(q'p)dq dp C. Higher order integration schemes

The construction of higher order integration schelfise®,
where for example, Refs[6,7]) is recursive, proceeding from the
leapfrog scheme. Given an approximate time evolution op-
Z:f dq dp eH@P) (1) eratorU, . ,(87) accurate t@(57""1) for some evem, one
' can construct the operator

After the integration over the momenta, we obtain the de- Uns3(87)=Upns 1(871) Un1(87) U4 1(8T1) (7)
sired distribution for the coordinates. Given an initial con-

figuration (,p), a sequence of configurations is generatedwith

by repeated iteration of the following steps.

(1) Momentum refreshmerraw new fictitious momenta P ot 8
p from a Gaussian distribution with zero mean and unit vari- =5 g ®
ance.

(2) Molecular dynamicsintegrate the Hamiltonian equa- Sr
tions of motion for some fictitious time trajectory of length 572=m, 9

from the initial configuration(q(0),p(0))=(q,p) to obtain
the trial configurationq(7),p(7))=(q’,p").

(3) Accept/reject stepThe trial configuration ¢’,p’) is
accepted with probability

wherei is an arbitrary positive integer argk= (2i)Y("+2),
The step size$r, and 67, are chosen to cancel truncation
errors of O(87""1) and symmetry with respect to time en-

P.dq’.p —q,p)=min(1e~ "), (2)  sures that there are no truncation error©¢H7"*2). Hence
such a scheme is accurate@gs7""3).
where Sexton and Weingartef8] have considered the general
o, case where the actioB can be split into two parts &S(q)
SH=H(a',p’)—H(q,p). (3 =s,(q)+S,(q) and constructed a®(873) algorithm in

which the coefficient of leading order truncation error term
may be decreased. The method is advantageous if evaluating
the force corresponding t&; is computationally much
cheaper than the force associated v@h(or vice versa For
example, one may tak®, to be the gauge action arg} to

For the HMC algorithm to satisfy detailed balance, thebe some computationally expensive fermion action. The co-
MD is required to be reversible and measure preserving. Thisfficient of the leading error term could then be decreased by
can be achieved through the use of symmetric symplectiperforming more gauge update steps than momentum up-
integration schemes, such as the leapfrog algorithm. In thidates.

If the trial configuration is rejected the new configuration is
(9,p).

B. Leap-frog integration
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D. Formulation of MD for lattice QCD Hence we regard the effects of preconditioning as a minor

The canonical coordinate variables for lattice QCD are thd€chnicality and shall disregard them for the rest of this pa-

SU(3) link matricesU ,(x) associated with the link emanat- P®" _ ,
ing from sitex of the lattice and ending on neighboring site 1€ leapfrog partial update steps for the gauge fields and

- A . . . the momenta are
X+ u, where p is a unit vector in one of the Euclidean
space-time directions. The conjugate momentum fieldsuq(57)[U#(X),W”(X)]:[exp{i ST, (XU 4(X),7,(x)]
m,(X) are members of the Lie algebra(3u (14)
In general, one can write the fictitious Hamiltonian for a
lattice QCD system with two degenerate flavors of  Uy(67)[U ,(X), 7, (X)]=[U,(X),7,(X)+ 67F ,(X)],

Sheikholeslami-Wohlertclover) improved[9,10] fermions (15)
as
where
~ 1 ~
H=3 2 mAS(BU+oQ Hkeil)e, (10 F () =F50)+F(x) (16)
andF9, F' are the respective gauge and fermionic force con-
where tributions
Q(k,c;U)=MT(k,c;U)M(x,c;U). 11 IS4V
QUr,c;U)=M(x,c;UIM(x,c:U) (11) F9 (= - ﬁug<(x>)' an
HereM (k,c;U) is the clover improved fermion matrix with "
improvement coefficientc, ¢ are pseudofermions and Fle)
S4(B; V) is the standard Wilson gauge action FL(X):[Q*1¢]T(9U 0 [Q 1¢]. (18
y73
u-_bs
Sy(BU)=~7 2 Re TrUg. (12) E. Solution of the linear system

Computation of the fermion force requires the quantity
In Eqg. (12) the sum is over all elementary plaquettés on

the lattice and3=6/g?, whereg is the bare gauge coupling X=Q !¢ (19
constant. . . . . :

In our computations we have employed the technique ofvhich is obtained via the solution of the linear system
even-odd preconditioning which changes the fornQoénd QX= . (20)

H somewhat. Each lattice site is labeled with a papty o _ .
which is either even or odd so that any one lattice site has ahhis is normally carried out with a Krylov subspace solver
opposite parity from all of its neighbors. This allows the such as the conjugate gradieri@G) [12] or the stabilized

fermion matrix to be block diagonalised and the Hamiltonianbiconjugate gradientéBiCGStab [13] algorithm. With the
to be rewritten as BiCGStab solver, the solution consists of two solves:

1 MT(k,c)Y= ¢, (21)
H=3 XE T2+ Sy B;U)—2 TrinAg+ ¢iQ Lk, c;U) ¢, .
y% _

(13) M(k,c)X=Y, (22
whereas with CG, one can solve E@O) directly. When
using CG with a Hermitean positive definite matrix such as
tioned fermion matrixcoupling lattice sites of the opposite Q the solution is guaranteed to converge monotonically.

. . . With BiCGStab, one has no such guarantee. Since the con-
parity (Oijd in the equation aboyenly. ThusQ has half the dition number ofQ is the square of the condition numbers of
rank of Q. This leads to some memory saving at the addi-gjither M or M', we expect the two stage solution using
tional expense of having to evaluate TArdirectly on sites  BjCGStab to be faster on the whole than using one CG solve.
of one parity. The precise formulation of the preconditionedas the convergence of BICGStab can be erratic, it is prudent
matrices can be found in ReffL1]. ~ to restart the solution process far with CG using, as an

We do not expect that splitting the Hamiltonian in this jnitial guess, the solution faX from the previous BiCGStab
way will change conclusions regarding reversibility and re-gg|ye.
lated issues in any significant way. Although there is an extra  Tne solver residual; at theith iteration of a CG solve is
force term to be computed to integrate the equations of Mogefined as
tion, the logarithm of the clover term is computed directly
and is independent of the parameters used for the solution of rie?=|¢— QX (23
the system of linear equations. Likewise, for the inversion of
the clover term, we use a direct method that is not controlledvhereX; is the approximate solution at iterationThe rela-
by algorithmic parameters such as a target relative residué¢ive residual at theth iteration is then defined as

Here,Ais the so calledloverterm summed over sites of one
parity (even in the equation abovand Q is the precondi-
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rreal Aunit=_max |{exd i m,(x) srlexdim,(x) 7] — 1}y
PI= 7 (24) b ’ ’ "2

In solver algorithmsy | is not usually computed using Eq. ~ Arev= max|{exfim,(x)57]—exd —im,(x) o7]"al,
(23). Insteady; is generally defined through some three term (28)

or coupled two term recurrence relation. We will refer to this

latter definiti £ h idual a<e th lated wherex, u, a andb are site, direction, and color indices,
atter definition of the residua as™, the accumulated re- espectively. These observables measure the maximum vio-
sidual. The corresponding definition of the relative re&dua{

ations of unitarity and hermiticity on a given lattice.

IS In tests of the gauge field update reversibility, we used
pacc quenched lattices witV=4* sites at3=>5.4. For the MD
piaccz'__ (25)  evolution we usedr=1 and 87=15. The maximum values
Il of both Aunit andArev along a molecular dynamics trajec-

These two definitions are equivalent in exact arithmetic.tOry were found to be

However, computation of the accumulated residual needs L B .1
only vector additions and scalar multiplications whereas nt]rg]XAumt_ rrt}g}xArev—O.59604635< 1077~ 5 esp,
computation of the real residual needs a matrix multiplica- (29

tion and So the two c?]n differ |n|f|n|(tje ar!ghmlet{/(i/. In _ﬁudr whereegp is the single precision unit of least precision. The
computations we use the accumulated residual. We will A€, ot that the maxima of the metrics agree to eight decimal
note byr our target relatlllce residual. Henge the 'tera_t'veplaces may seem surprising at first, but becomes less myste-
process terminates whesf“’<r. In the remainder of this |i5,s when we recall that we are working at the limits of
paper we refer to as the solver target residual, or just sim- gingle precision, where the discrete nature of floating point

ply the solver residual. numbers on a computer becomes apparent. Hence, there is
only a discrete set of values available that the metrics can
. REVERSIBILITY take of which the figure quoted above is one.

Reversibility and area preservation of the Molecular Dy-
namics step are required for a correct HMC algorithm. The
leapfrog algorithm described in Sec. Il is reversible and area |n the momentum update there are two possible sources of
preserving in exact arithmetic. Computations are of necessitgeversibility violation. The first is a lack of associativity in
carried out in finite precision and exact reversibility is lost. It the additionp(7+ 67) =p(7)+F(U) 87 required in the up-
is therefore important to verify that implementation of the date step. The second arises in the computation of the force
fundamental steps of the algorithm are as close to reversible. However, when performing a momentum update forward
as it is possible to make them. in time for a stepst followed immediately by a momentum

Ideally, one would like to establish the least level of pre-step backwards in time fa#7 (with no gauge field update in
cision required such that the accumulation of rounding errorgetween the gauge fields, and hence the force, should re-
does not introduce a significant bias into the end results of gnain unchanged. Thus, reversibility due to lack of associa-
calculation. At present, it is not possible to give a fully quan-tivity in the addition can be isolated.
titative answer to this question. The accumulation of round- Consider a test where one starts with a set of fields
ing errors is a complex phenomenon and, since the underlyU, 7, ¢). First the momentum fields are updated forward in
ing equations of motion are known to be chaotic, thetime for a timesteps~ to produce fields{, 7', ¢) and then
potential for introducing large uncontrolled errors is greata momentum update is performed backwards in{itnepro—
[3,4]. The best one can do is to ensure that the implementatyce fields U, 7", ¢). We use the same value of the fofée

tion of each algorithmic component is as close to reversiblgor both of the updates. One can then define the quantity
as practical and that the accumulation of errors grow in the ' ' ‘
expected way and so remain under control. We study the Aarl, (x)=,(X)" =, (X) (30
reversibility of gauge and momentum update components
separately. as a measure of the reversibility violation incurred by the
momentum update step. To improve statistics, one may re-
A. Gauge update peat this several times, in each case using a new set of initial
) ~ . momenta drawn from a Gaussian distribution.
The gauge update involves the process of exponentiating |, the numerical tests, we started from some initial gauge
the conjugate momenta on all lattice link&4,15. One  fig|q configuration and performed MD in the ordinary sense.

wishes to verify her@T that the_ exponenj[iation of the momen'FzBefore every momentum update, we performed 100 forward-
does produces a suitable unitary matrix, and the exponentia-

tion of the momenta is reversible in the sense that

B. Momentum update

exgim,(x)or]=exd —i w#(x)ﬁr]T. (26) in practice this is done by flipping the signs of all the momenta,
integrating the equations of motion forward in time and flipping the
To check these properties, we studied signs of the momenta again.
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n
o

guess vectofsuch as a zero vector or a vector with random
componentsis used to start the solution process. This makes
it tempting to carry out such solves with a large target resi-

100 m refreshes, V=4x8,B=5.2, c¢=0, k=0.1360, &t=0.1, 500 bins entirely deterministic process, one expects that the force
© _ ' . . computation will be reversible. However, the pseudofermion
*i=0 <= ti=2 ‘=3 contribution to the force requires the solution of linear equa-
@ 40 t . ; tions, so further scrutiny is required.
£ 3 3 3 It has been pointed outl7] that the solution process
5 4 ¢ H should be reversible, provided thattieme symmetridnitial
£
2

o

L \_/

sg 5 duer, and hence save on the computational workload. We
c o i=4 *i=5 * =6 feic7 discuss this further in Secs. Ill G and V.
§4o . : , . Another commonly used solver strategy is to use the so-
§30 i ; } » lution from the force computation of the previous momen-
5 [ 2 ¢ .‘. tum update as an initial guess. This, and variants which use a
g2 “ !i o more elaborate extr_apolation of previous so!utions, may re-
3, 3 duce the computational workload but are inherenttyn-
Jk JL " reversibleunless the solutions are effectively exact.
-02 0 02 -02 0 02 -02 0 02 -02 0 02
<Am>/egp <An>/egp <AR>/egp <An>/eg,

D. Global reversibility violations

FIG. 1. Distribution of momentum update reversibility viola-  Having discussed the sources of reversibility violation at a
tions obtained by histogrammin@ 7). Each plot corresponds to a microscopic level, we now turn to the problem of their global
separate momentum component aggis the single precision unit accumulation. Consider an MD trajectory with initial fields
of least precision. (U, w) and a set of pseudofermion fielgs The latter remain
backward steps with newly drawn momenta in each casqL\'AnChanQEd along an MD trajectory. Sprp(,)se we perform an
After the test was completed, we restored the original mo D trajectory forward to obtain fieldsl{’, =), then having
menta from the end of the last gauge update step and allowdgversed the momenta, perform a secolm;iick\,{vard trajec-
the MD to continue. Thus we obtained an estimate ofl0"y @hd @ momentum flip to obtain field§(, #"). One may
(Awh(x)), the average reversibility violation due to lack of define the following global reversibility violation metrics:

associativity in the addition. At the end of the complete tra-
M&M=V/Z U5P00" = U0 2,
X, m,a,b

jectory, the resulting data was split into eight sets, one cor-
responding to each of the Lie algebra indice$he data in
each set was histogrammed to obtain the distribution of the
average reversibility violation for each momentum compo-
nent.

The results of these momentum update tests are shown in
Fig. 1. We show the histograms of all eight momentum com-
ponents. The errors on the data points are small and, to aid
clarity, are not displayed. The lattice volume used for theset is also useful to consider these quantities suitably normal-
tests wasV=4>x8 sites and physical parameters wege ized by their respective degrees of freedom
=5.2,¢c=0 andx=0.1360. We performed the tests follow-
ing each gauge field update along a trajectory consisting of AU
10 timesteps, each of leng#fr=0.1. We used 500 bins for [A6U|g.0=
each momentum component in the histograms. The histo-
gramming process itself was carried out in double preC|S|ona d
allowmg us to resolve reversibility violations of
0(10 Esp). |

Figure 1 shows that the distribution of reversibility viola- |ASH |40~ ——-
tions forms a very narrow, apparently symmetric distribu- VNgof
tion around 0 with a width that is dD(10 egp). We con-
clude that the momentum update step in itself is as reversibldere Ny, =Ng,=4Xx8xV are the respective number of
as it is possible to attain. The apparent symmetry of théhe gauge and momentum degrees of freeddntinks per
distribution may possibly be used to make more generaite and 8 S(B) generatorkandNg, is the number of de-
statements about reversibility and area preservation holdingrees of freedom involved in computing the Hamiltonian H.
stochastically{ 16]. In the quenched approximatidd, =Ng, N7 .. When
dynamical fermions are included, there is an additional factor
from the fermions oN{ . /=24xV (three color and four Di-

Since gauge fields are unchanged along a momentum ujfaC complex components per 5)'“*3” the even—odd precon-
date and computation of the force due to gauge fields is aditioned systems, half of thEAIdof degrees of freedom are

(31)

(32

HMﬂ=J2{ﬂMMﬂmW,
X, Myl

[ASH|=|HU",7",¢)—H(U,m, )| (33

|1A &

5= A7gor—T==.
Nd.o.f Nd.o.f

(34)

C. Reversibility of the force computation
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represented in the pseudofermion vectors and the remainder=1 and the length of the timestep was= 55. We used
absorbed into computing TrAnon sites of the opposite B=5.4 and lattices of volume

parity.
We also study A H|/| 8H|, where Ve{4*,8%10°x16,16x32. (36)

Results of these tests are shown in Fig. 2 where the vol-
umes have been normalized by the smallest ong=(4%).
We note that the degree of freedom normalized metrics—
This is a measure of the relative error in our energy CalCU|aHA5UHd.o.f1 |A S| 40r and||ASH| 4, —are all independent
tions and is related to the accuracy of the acceptance prolgf the volume as expected. We also note that the relative
a.b|||ty One would like this relative error to be quite Sma”, error |A6H|/|5H| is less than of order 01%, Showing that

SH=H(U’',7")—H(U,m). (35)

certainly no more than a few percent. error in computing the acceptance probability is smalll.
E. Volume scaling of global reversibility metrics F. Accumulation of rounding errors in MD time
According to their definitiong|A sU| and||A 87| should It has been noted by several authors that the MD equa-

scale a0(yV), since the metrics require the summation oftions of motion are chaotif3,4] and so effects of roundoff

O(V) positive definite quantities. We therefore expect thaterror are expected to grow exponentially with MD time

the corresponding normalizég@er degree of freedonmmet-  along a trajectory. In particular, if one were to carry out

rics should volume independent. AdrSH|, the summation reversed trajectory tests, as described in the definition of the

involves numbers which are not positive-definite, and oneametrics||A sU| and| A 87|, these would be expected to ex-

might expect some cancellation. If the numbers are truly ranhibit the leading behavior

dom, the cancellations between the terms can be modelled as

a random walk and one would expect the sum to scale as |AdU[[=e”  and [|Aom||=e"" (37

O(\V). Hence one would expet¢t SH|4¢ to be indepen-

dent of the system volume in a manner similar to theas a function of the MD trajectory length We use this as an

|ASU|40rand|Adm| metrics. operational definition of the effective leading Liapunov ex-
To satisfy ourselves further that our simulation code isponentsyy, andv,.. In our computations we measured only

performing as well as can be expected, we carried out rer; and, hence, in future discussion we shall drop the sub-

versed trajectorie@s described in the definition of the met- scriptU and refer to it simply ag. We shall also refer to

rics) in the quenched approximation with lattices of different simply as the Liapunov exponent.

volumes. In each case, we used a single configuration as the The authors of Refqd.3-5] all found positive values for

starting gauge field for the test and the momentum field waghe Liapunov exponents in their studies. In particular it was

drawn randomly from a heat bath. The trajectory length washown in Ref[4] that as the solver target residueand MD
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step-sizedsT were made smaller, the Liapunov exponents ap-mined by the Alpha Collaboratiofl0]. These parameters
peared to plateau, indicating that chaos was present in theorrespond to pseudoscalar to vector mass ratimpfm,
underlying continuum equations of motion for the system~0.6[18] and a lattice spacing af=0.097 fm[18] where
and not just a feature of the numerical integration scheme.the physical lattice spacing has been determined using the

For the leading Liapunov exponent the authors of Ref. observable , [19]. By current standards, the dynamical fer-
[4] found that this plateau came to an endSat=0.6 in the  mions are relatively light.
guenched approximation and in the case of dynamical fer- Using the 10 starting configurations, for a given value of
mion simulations with sufficiently heavy quarks. Beyond thisr we carried out reversed MD trajectories of varying length
step size, the effective exponent exhibited growth. Howeverwith a constant step-size @&r= 155. This value forér was
in the case of light quarks, this growth was found to set inthe one used in the production of the dataset from which our
significantly earlier, ab7~0.08. This sudden growth in Lia- ten sample configurations were taken. Our MD solver strat-
punov exponents could signal the onset of instability in theegy was to employ a two stage BiCGStab solution to com-
MD. The subject of integrator instabilities will be taken up in pute the quantityX of Eq. (19) followed by a restarted CG
Sec. IV. solution. Hence the target residue used was the accumulated

The authors of Refl4] also studied the behavior of the target residue for the CG solver as described in Sec. Il E. The
Liapunov exponents as a function of the MD solver targettarget residues used ranged fram 10”7 to r=10"%. The
residuer. They investigated the effects of increasm@sing  smallest of these is near the limit of what may be achieved in
a time symmetric startas a possible means of improving a single precisiort32bit) computation.
computational efficiency. Their data indicated a sudden In each test we measuréd SU||, | SH| andNjes, Where
growth in Liapunov exponent as is increased beyond a N;.was the total number of solver iterations carried out in
critical value. The data covered a limited range aiind had  both the BiCGStab and CG solves averaged over the forward
large statistical errors. However, the sudden apparent growtand reverse trajectories. For each combination of parameters,
of the Liapunov exponent coincides with a dramatic drop inwe also calculated the Metropolis acceptance probability
acceptance rate, suggesting again that the integrator has ey
come unstable. To evaluate the saving®r lossegin computational cost

we defined the cost metric

G. Tuning the solver target residual
Niters

The results of Ref[4] motivated us to measure the Lia- cost= (38
punov exponents of our simulations while varying the target
residue of a comparatively large volume system, with com-
paratively light quarks such as those in current productiorThis heuristic measure reflects the fact that a large number of
runs. For the determination of Liapunov exponents, we usederations along an MD trajectory implies high computational

10 configurations taken from one of our large data sets. Theost, as does a low Metropolis acceptance rate. We note that
lattice volume used wag=16°x 32 and the physical param- an absolute measure of cost should also take into account the
eters wereg3=5.2, c=2.0171, and«=0.1355. The value of autocorrelation time of the ensemble produced by an HMC

the clover coefficient was calculated using the formula detereomputation. Since we are unable to control or measure this

Pacc
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V = 16’32, k=0.1355, B=5.2, C¢,=2.0171
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guantity on a sample of ten configurations, we disregard autrajectory averaged over ten configurations as a function of

tocorrelation effects in this study where we are interested irajectory lengthr. One can clearly distinguish three differ-
the relative cost with different choices of simulation param- ent types of behavior fof6H) depending on the target MD
residualr. For values of <5x10 %, (5H) shows an oscil-

eters.

Figure 3 shows fits used to extract tkeffective Lia-
punov exponents. The system is clearly chaotic #4d0/||
has a significant positive slope as a functionroEven with

latory behavior withr, whereas for >10"° (SH) diverges
with increasingr, resulting in a corresponding exponential
drop in acceptance probability. It is interesting to note that

only ten configurations, the signal for the Liapunov expo-this change in the behavior @éH occurs at the value aof

nents is good except for the cases when5x10 ° and

where the data in Fig. 3 also show a change.

whenr=10"°. The data for these latter parameter values A summary of results for tuning the solver residue is
seem to show a marked break7at0.6 and indeed, it was shown in Fig. 5. The bottom panel shows the Liapunov ex-
not possible to establish a consistent value of the Liapunoponentsy. For each value of we made several determina-
tions of v by fitting to different ranges of in Fig. 3. We

In Fig. 4 we show 5H), the energy change along an MD note that the results of these different fits are consistent with

exponent for these two values of
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each other except for the values of=5x10 % and r Si k(87) 7]
=10"° corresponding to the “break” evident in Fig. 3. _ cog x(67) 7] T o(en

We note that, overall, the Liapunov exponents appear to Us(o7)= ] pret
show a slow growth with. There is no evidence of a plateau —p(o7)sif k(67) 7] cog k(67) 7]
asr is reduced ta =10 ’. This implies that this manifesta- (41)
tion of chaos in the system igot due to the underlying
equations of motion, but to the integrator. The behavior o
the exponents near=10 ° may perhaps be interpreted as cos 11— (1/2) w2672
the effect of the integrator changing from being stable to k(81)= 3 ,
being unstable.

The second panel in Fig. 5 shows the average acceptance
rate (P, for trajectories of lengthr~1. The acceptance p(87)=w\1- (14w 57°. (43
shows a rapid drop for>10"°, which is due to the diver- ) ) . .
gent behavior oBH for values off in this region. The rapid EVvelution over a whole trajectory of lengthis then given
drop in acceptance rate results in a huge growth in the cost
the algorithm as shown in the third panel of Fig. 5 where we

1_where

(42)

display the cost metri¢38) normalized by its value for the cod x(67)7] sin k(67)7]
simulation withr=10"". Us(7)= p(o7) . (44)
In the top panel of Fig. 5 we show an enlarged view of the —p(87)siMk(87)7] cog k(S7)7]

cost function for values of <10 °. The cost metrics for

values ofr=10"° are too large to fit onto this enlarged plot.  The nature of the instability in the leapfrog scheme may
We note that the normalized cost has a shallow minimunbe illustrated by examining the phase space trajectories in
whenr =5x10"°, however, at this minimum value the nor- this system. The initial phase space vector for an oscillator
malized cost has a value of about 0.75 implying a saving ofeleased from amplitudé\ is [ ¢(0),7(0)]=(A,0). From

only about 25%. Eq. (44), the phase space vector at times then given by
o(7) Acog k(67) 7] 45
IV. INSTABILITY IN THE MD INTEGRATION (%) = — Ap(87)sin k(67) 7] . (45
The behavior of the energy changél, from oscillatory _ _

to divergent, is reminiscent of a known instability in the The phase space orbits therefore satisfy

leapfrog algorithm when applied to the integration of the 5 5

equations of motion for the simple harmonic oscillator. In ¢(7) (1) _ (46)

this section, we review the simple harmonic oscillator analy- A2 A202(87)

. . . \ p“(oT)
sis of Ref.[4] and compare expectations for interacting theo-
ries with our numerical results. It can then be seen from Eq#43) and (46) that for

wd7<2 the phase space trajectories are elliptfcahereas

for w 67>2 they are hyperbolic. The instability atd7=2 is

the abrupt transition from one class of phase space trajecto-
In what follows we use the notation of R¢#l]. Consider ries to another.

a single oscillator with coordinateb. The corresponding The change in energy

Hamiltonian function is

A. Harmonic oscillator

H=H[¢(7),m(7)]—H[¢(0),7(0)] (47)

1
T2 242
H= 2(77 Twtd%), (39 may also be computed. Using the same initial conditions

1 .
where w is the angular frequency of the oscillator amdis oH=— §w4A25723|n2[K( oT)7]. (48)
the corresponding fictitious momentum.

The leapfrog update for the coordinate and momentunyhen o 57<2, x(57) is real and soH oscillates with in-
may be written in the form of a matri;(67) acting on the  reasingr, in a manner similar to that observed in the bottom
phase space vectorp() panel of Fig. 4. However, whemwd7>2, «x(87) becomes
purely imaginary causingH to diverge as sirffi k(87) 7] in
1 2a0 a manner similar to that seen in the top panel of Fig. 4.

1-5wdT or
Us(67)= . (40
—w?ST+ %w457'3 1- %wzérz
2In the exact solution the orbits are circular, the deformation to an
ellipse is an effect of the truncation error in the leapfrog scheme
The update matri/; can be parameterized as even in exact arithmetic.
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B. Generalized treatment of instabilities 1

We now present a more general method of finding insta-
bilities in the leapfrog algorithm and in higher order schemes
of the type discussed in Reff6,7] (see Sec. Il € when
applied to the case of a harmonic oscillator.

Consider an initial phase space vecter, ) of the har-
monic oscillator. This is to be evolved through phase space
by the leapfrog matrix/;(57) of Eq. (40). The area preser-
vation property of the integrator implies that [déi(o7)]
=1. All components ot/3(57) are real, implying that Téfg
is also real.

If

Ni=u;+ivy and A,=u,tiv, (49

are the two eigenvalues of;(67), the previous conditions -3
on the trace and the determindatea preservatigrcan then

be shown to imply that FIG. 6. The discriminanD 5 of characteristic polynomial of the

fifth-order Campostrini-Rossi update mattig(57).
vi=—v, and u,+u,v;=0. 50 . -
! 2 1h2nEen 50 as Mapile. It is not reproduced here but plotted in Fig. 6. The

We conclude that eithetl) u,=u, or, (2) v;=v,=0. nonnegative roots of thB;=0 are found to be

In case(1), the determinant conditiom\g\,=1) implies
that u{+vf=1. The eigenvalues have magnitude unity: wdre{0,V12-63/4). (53)
Ny o= e*'? with @ real, and the update matrice(57) and
N . .. . . .
Us(m) [=UZ"P(57)] give stable elliptical trajectories i To three decimal places, the positive root is at 1.573. The
phase space. discriminant is negative for€ o 67<1.573 indicating stable

In case(2), by the same condition on the determinant, webehavior and is positive fap §7>1.573 for the region where
have thain; = » and\ ,= 1/ for some realy=1. On raising  the integrator is unstable.

A1 Or A, to the poweNy,p , one of the eigenvalues ok(7) It is interesting to note that, for the central leapfrog update
will show an exponential divergence will,p . This implies  matrix3(§7,) in the fifth order scheme to become unstable
unstable behavior in the integrator. on its own, requires thatd7,=2. This implies that this

The condition for the onset of instability is that the eigen-central step should go unstable when
values change from being complex to real. This information

can be deduced from the discriminant of the characteristic (2213

polynomial of the update matri¢;(57). The onset of insta- wOT= ZT~1.175. (54
bility occurs as the discriminant changes sign from negative 2

to positive.

For the leapfrog method, the discriminant is given by  This suggests that, although the central update itself becomes
unstable at57=1.175, the other two updates in the scheme
D3=(0d7) 2 (wd7—2)(wdT+2). (51)  stabilize the system untifr~1.57.
Following a similar calculation, it can be shown that the

We note that for & wd7<2, the discriminant is negative discriminantD, of the characteristic polynomial for the up-
indicating a stable integrator, whereas to67>2 the dis- date matrix of the seventh order schemme=(, i=1) has
criminant is positive implying an unstable integrator in line roots at
with the previous discussion.

»w57e{0,1.595,1.822,1.869 (55
C. Instability in higher order schemes

Consider the fifth order scheme of Campostrini and Rossyvith D7 being negative in the intervals; e (0,1.595) and

[6]. This can be constructed from three leapfrog integratiorP7 € (1.822,1.869) indicating two domains of stability. The
steps as discriminant is positive foiD; e (1.592,1.822) and fobD

>1.869. For the longest constituent fifth order update to go
Us(67)=Uz(8T1)U3(ST2)Us(571) (52)  unstable in this scheme requires thadr>1.166.

Hence we see that, for the case of the simple harmonic
with 87,=67/(2—2Y3) and 67,=—2Y357/(2—2%3). This  oscillator at least, higher order integration schemes do not
corresponds tm=3 andi=1 in Egs.(8) and(9). help cure the problem of instabilities. Indeed, they become

The discriminanD5 is a twelfth order polynomial iw 7  unstable at even smaller values @©r than the simplest
which can easily be found using an algebraic package sudeapfrog method.
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D. Hypothesis for interacting field theori - i
ypothesis for interacting field theories ||F||Oc_ma>4FM(x)|, (59

Edwards, Horvth, and Kennedy4] advanced the hypoth- Xl
esis that, since the high frequency modes of an asymptoti- } ] )
cally free field theory can be considered as a collection of The-norm then is the force component with the maxi-
weakly coupled oscillator modes, the instability just de-mum magnitude over the lattice and so can be likened to the
scribed in the harmonic oscillator system will also be presenforce mode with the highest frequency, proportionabfg,.,
for interacting field theories. The onset of the instability will in the analogous collection of weakly coupled harmonic os-
be caused by the mode with highest frequengy,,, when  cillators. The(degree of freedojnaveraged 2-norm on the
wmad7=2. For a single oscillator mode, the onset of insta-0ther hand can be likened to the average frequency-squared
bility is abrupt. In the case of an interacting theory, oneOf the analogous set of harmonic oscillators.
would expect the effects of the interactions to smooth out Inour studies we computed the magnitude of the forces at
this transition. all timesteps of an MD trajectory starting from a single
It is argued in Ref[4] that the instability in lattice QCD gauge configuration chosen from the same ten configurations
with dynamical fermions can be likened to that of a collec-described in Sec. Il Gwith volume lattice V=16>x 32
tion of oscillator modes of the sort just described. Whensites, and production parametefs=5.2, ¢=2.0171, «
applying leapfrog integration to this system, the rolesdfp ~ =0.1355).
in the harmonic oscillator example is played by the MD In the_first set of tests, we _attempted to investigate how
force F ,(x). This force can be written as a sum of contribu-the fermion force behaves with the quark mass. We per-
tions from the gauge and fermionic pieces of the action asormed MD trajectories consisting dflyp=175 steps of
F,.(x)=F9(x)+F',(x), where the labelg andf indicate the length 87= 55 for several values of the hopping parameter
gauge and fermionic components of the force, respectively«. We measured the norms of the gauge and fermion forces
The fermion force is expected to be proportionaitg, ~ ©N eacgl timestep. The MD solver target residue was set at
where m; is the mass of the lightest species of dynamicalrzlo . Error bars for the average value of the force were

fermion anda is somenegativeparameter. In the case of cOmputed by bootstrapping the 175 samples.
Wilson (and Clove) fermions the mass in lattice units is |t could be argued that a configuration that has been pro-
defined as duced in an ensemble equilibrated at some value,ofill

have very small statistical weight at a different valuexof
1/1 1 However, our aim was not to study equilibrium properties of
amfzi ) (56) the ensemble, but to test the properties of algorithm compo-
nents as a function of the external paramater
. . The average value ot;, the critical value ofx corre-
where x now stands for the Wilson hopping parameter, andsponding to massless fermions, is known from separate spec-
is the critical value corresponding to;=0. It is argued . ! . .
Ke : ) . troscopy studies for the ensemble from which the configura-
that the highest frequency modwith frequency wmay) IS

- ) S . tions were drawn. It is approximately 0.13gB33]. Thus, we
proportional tp the ferrlnon force which, in turn, is expectedwere able to associate a value of the lattice fermion mass
to be proportional tanf’, and thus asc— «. (m—0), the

: o " am; with every value ofx used in our tests through the
fermion force will diverge and hence the critical value&af forrgwula y “ ¢
will decrease. In the following, we evaluate numerical evi-
dence for the validity of this hypothesis. 1 ( 1 1 )

amf=§

K K¢

(60)
. K K¢
E. Studies of the force

The forces used in the momentum update belong to th&ince we expect the fermion mass to vary in some inverse
Lie algebra s(B). We define the 2-nornfiF| in the same relation to the norm of the forcl], we attempted to fit the
manner as foflA 5| results of our tests with the form

IF]= \/x%i [FL0T2. (57) F:A(amf)“=A<%—%)a, (61)

Again, we can define the 2-norm suitably normalized by thewhere the parameters of the fit weke k. and a.

relevant degrees of freedom: Results of this test are shown in Fig. 7. We show both the
fits made to thec-norm and the(degree of freedomaver-
IF IF| aged 2-norm of the force. We can see that good fits can be
||Fg||d.0_f=—3 and |Flqgo=—==— (58 made, which reproduc&, from the spectroscopic studies
VNgof VNgof and thata is negative indicating that the magnitudes of the

norms do indeed vary in an inverse manner with the fermion
where the subscriptg and f indicate gauge and fermionic mass. The fact that the value ef is well reproduced and
forces, respectively. We can also definesaanorm for the  thata is negative in sign both lend support to the hypothesis
forces of Ref. [4].
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Fit Ansatz: || F||=C (am)®, am = ('/2)(1/1{ -1/x)
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K, = 0.1360(+4,-2)
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8258 r xd.of=131/5 7
LI.Q
= 248 1
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F. Dependence oot and « appears to grow more rapidly than the degree of freedom
To investigate further the onset of instability, we com- averaged 2-norm. This latter behavior suggests that the onset

puted the averaged forces ad#i along an MD trajectory of ir_15t_abi_|ity is_ driven by_a few unstab_le fermion modes,
using the same starting configurations as before. HoweveRgdain in line with the previous hypothesis.

this time we varied the MD step sizér. The number of In a further investigation of the MD forces, we carried out
steps taken along the trajectory was adjusted to keep th®D trajectories using the same initial gauge configuration as
trajectory length constant at=175/180. The results are before, this time varyinge for two separate values of the
plotted in Fig. 8. From the growth afH evident in the plot, step size. The values of the step size wére=0.010 and
one can see that the instability sets in betwéer 0.0105 67=0.012 corresponding to stable and unstable MDkat
and 67=0.0110. We can also see that the rapid growth of=0.1355 respectively, as discussed above.

6H is accompanied by a growth in the fermionic forces in  We show thec-norms of the gauge and fermion forces in
the system(in both norm$ and that thec-norm of the force  Fig. 9. This shows that the simulation which was unstable at

100 | ®
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10 | ]
10 | e ? b I
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g 10 [ [MWFermion x=0.1355 ] FIG. 8. The 2-norm and the-norm of the
© 8l ® average gauge and fermionic components of the
g ° P P ° ; FS MD force along an MD trajectory plotted against
e S )l the MD stepsizeSr. The corresponding behavior
4 = . of the energy changéH along a trajectory is
5 - » = ! , shown in the top graph.
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520 [ 3 ° ° ° °
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g 16 [ M Fermion, k=0.1355
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41=0.01 and 41=0.012, single configuration
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x=0.1355 has become stable asis reduced. Once again stability. The calculation in double precision appears to
this seems in line with the hypothesis that the onset of thébecome unstable at a similar value of the step size as does
instability is a function of the combination of the fermionic that in single precision. Second, we see from the data for
forces(controlled byx) and the stepsizér. Recall that the =5x10"° that, if the solver target residue is too large, one

relevant parameter for the SHO wasjr. cannot achieve values @fH of O(1), even if 7 is made
Overall, our studies of the MD forces lend support to theyery small.
hypothesis that the instability is driven by tkeSr term in For our simulations, we are able to achieve non-zero ac-

the momentum update step of the leapfrog algorithm. Sinc@eptance rates whesr<0.0075 and when< 105, For pa-

tEe ;‘erm.lonlc force diverges 'r;] Some inverse frelat'on.w'thrameter values smaller than these, we can attempt to tune our
the fermion mass, we expect the maximum safe stepdize  gimjation for maximum performance. The top two panels of

to dec;jeii,e aﬁ' the fetr)mlon (;nasfs ItS d?Cf?aﬁdS('”' Fig. 10 show the variation of the cost function. In this case,
crease S0, Naving ODSEIVED a Taster M€ N teNOrM 0 gt fynction is normalized by its value whes 10 ©

of the fermionic force than in the degree of freedom aver- N ;
aged 2-norm, we infer that the instability is driven by a Com-and 07=0.0055. These were the parameters used in the pro-

: - duction of the dataset from which the configurations were
paratively small number of unstable fermionic modes. taken. We see that either by tuning the solver residaethe
MD step sizedt, the maximum gain we could make in the
cost function is about 25%.

The above conjecture, if correct, can serve to explain the
tuning results described in Sec. Ill G. By increasing the
solver residue, we are modifying the fermionic force which VI. CONCLUSIONS AND DISCUSSION
could then drive the MD integrator unstable. In order to in-

V. TUNING THE STEPSIZE AND THE SOLVER RESIDUE

vestigate these possibilities, we have carried out a second A. Stability
tuning exercise this, time varying both the step sézeand We have shown that, for the physical parameters used in
the solver target residue our production simulations, the molecular dynamics integra-

We used the ten configurations used when tumiadpne  tor used becomes unstabledt~0.01 for all studied values
in Sec. Il G. Since at this point we were not computing of r, and also for any realistic value &r whenr was in-
Liapunov exponents, our tests consisted of single MD trajecereased above~O(10 °). We identify this instability with
tories in one direction only. For each value &, we chose the one studied in free field theory for the frequency—step-
the number of steps along the trajectory so as to maintain size combinationw,,07=2. We have studied numerically
constant trajectory length af=175/180. We also carried out the fermion force and found that its behavior is not inconsis-
a test with a target residue of 10~ ° using double precision tent with the hypothesis of Ref4] (motivated by free field
(64bit) floating point numbers, whereas all other tests usedheory) that the force should grow large as— «.. We sup-
single precision. For each combination of algorithmic param{pose that a critical value exists f6ré7 when the leapfrog
eters, we measured the energy chadige the corresponding integrator becomes unstable.
acceptance probabilitiy ... and the cost function of Eq38). Reducing the value of the MD residual results in an in-

The results of this tuning exercise are shown in Fig. 10creasingly inaccurate force calculation. If as a re$kilt is
First we see in the bottom panet£10"° symbolg that too large, one may need an extremely small step-size to keep
using double precision does not alleviate the problem of inthe integrator stable. We found that, fio=5x10"° at our
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parameters, one would need a step-size much smaller thatability either, as it attempts to improve the truncation error
67=0.001(see Fig. 1D by performing more gauge updates. While this may drive
On the safe side of these limits, one may attempt to tunelown the truncation error, it does nothing about the problem
the algorithm. However, our studies show that on this vol-in the fermionic update.
ume and with these physical parameters, tunigand/orr
is unlikely to produce significant performance gains. We
note that it appears entirely safe to carry out computations in
single precision in the safer region of parameter space. How- Reversibility itself seems not to be strongly affected by
ever, asc— k., it may be that the upper limit ondecreases changingr. The Liapunov exponents of the system seem to
beyond the limit of single precision. Alternatively, as the show a slow rise before the instability sets in. In the region
condition number of the fermion matrix increases with in-of transition from stability to instability, the Liapunov expo-
creasingk, the number of iterations in the solver for fixed nents are difficult to determine. One might speculate that this
will increase. This may cause rounding errors to accumulatgehavior reflects a transition from the Liapunov exponent
so that the target residuaimay not be reached. However, in characterizing the underlying continuous equations of mo-
this latter case, it is only the solve itself that needs to be dongion to that characterizing the unstable numerical integrator.
in double precision, or restarted in single precision.

C. Reversibility

D. Summar
B. Higher order integration schemes y

We have demonstrated that, at least for the case of a YWe have investigated the stability and reversibility of the
simple harmonic oscillator, the fifth and seventh order?MC algorithm with two flavors of light dynamical fermions
schemes of Refg6,7] are not immune to instabilities. We On large lattices as a function of the MD step sizeand the
expect that this situation will persist for even higher orderMD target solver residue. We have found upper limits on
schemes of this sort. The source of the problem is that, at th@oth of these for a fixed set of physical parameters. Beyond
bottom level, these schemes are constructed out of simpi@ese limits, the leapfrog integrator becomes unstable and
leapfrog updates. For any given step-sizein an integration ~ON€ cannot carry out a simulation program, irrespective of
scheme of orden+ 3, there will always be a subupdate of the precision pf the ﬂoat.lng point numbers which one uses.
ordern+1 which will have a step-sizér,> &7. This sub- On the_ safe S|d_e of the limits, one can carry out S|mulat|o.ns
update, or one of its constituent subupdates, may eventual§2fely in both single and double precision. Parameter tuning
drive the whole integration scheme unstable, although th€€€ms to give no major performance gains. Reversibility
other subupdates may act as a stabilizing factor at first. W&O0€S not seem to be dangerously affected.
note that, in our harmonic oscillator examples, the smallest
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