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Longitudinal resolution in a large relativistic nucleus: Adding a dimension
to the McLerran-Venugopalan model
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We extend the McLerran-Venugopalan model for the gluon distribution functions of very large nuclei to
larger values of the longitudinal momentum fraction. Because gluons with larger valuesaf begin to
resolve the longitudinal structure of the nucleus, we find that it is necessary to set up a fully three-dimensional
formalism for performing the calculation. We obtain a relatively compact expression for the gluon number
density provided that the nucleus is sufficiently large and consists of color-neutral nucleons. Our expressions
for the gluon number density saturate at small transverse momenta. The nuclear dependence we obtain is such
that the number of gluons increases more slowly than the number of nucleons as the size of the nucleus is
increased.

PACS numbds): 24.85+p, 12.38.Bx

[. INTRODUCTION longitudinal momentum fractiorg . In this regime, the glu-
ons begin to resolve the longitudinal structure of the nucleus:
The recent construction and commisgioning of thetherefore, we develop a fuIIy three-dimensional framework

Brookhaven Relativistic Heavy lon Collider has led to a re-Using a source that is not quite aligned with the light cone. In
newed interest in the properties of heavy nuclei in recenPrder to deal with the complications which arise as a result,
years. A considerable amount of fruitful work has been dondV€ must rely heavily on the fact that we consider a large

. . . o .~ . nucleus of radiusR>a which consists of color-neutral
on classical and semiclassical descriptions of the physics INsucleons

volved [1-19. In parFicuIar, the McLerran-VenugppaIan The remainder of this paper is organized as follows. In
(MV) model[1-5] provides a framework for calculating the gec. || we present our conventions for writing down the clas-
gluon distribution functions for very large nuclei at very sjcal Yang-Mills equations and describe ttaightly) off-

small values of the longitudinal momentum fractiog.  light-cone source which will be the foundation of our calcu-
What McLerran and Venugopalan realized is that, at suffidation. We show that the naturébrder unity variables to
ciently smallxg, the gluons are unable to resolve the longi- describe the nucleus are essentially those in the nuclear rest
tudinal structure of the nucleus, meaning that many quark§ame, even in the limit3—1. In Sec. Il we set up the
contribute to the color field at each value of tfiensversp ~ framework for determining the gluon number density in the
position x. This large charge per unit are& provides the \Weizs&ker-Williams approximation. In this section we in-
scale at which the strong coupling is evaluatédl Thus, if troduce the two-point charge density correlation function,

25 \2 a classical treatment oudht to provide a reasonf”md review the color-neutrality conditidi®] which it must
K QCD: 9 P satisfy. Section IV contains a discussion of the requirements

able description. _ _ which must be satisfied in order for our approximations to be
Recently, we pointed out that the infrared divergences,a|ig. The meat of our calculation is contained in Sec. V,

which appear in the MV model may be cured by incorporatyyhere we begin with the solution for the vector potential in
ing the effects of confinemeii6]. That is, we observe that the covariant gauge, perform the transformation to light-cone
nucleons display no net color charge: individual quarks argjauge, and determine the gluon number density. Additional
confined inside the nucleons, whose radiues%sAgéD. Asa details of this calculation are found in Appendix A. We il-
consequence, we expect that there should not be long randgigstrate our results for the gluon number density with the
(>a) correlations between quarks. Strong correlations behelp of a power-law model for the correlation function in
tween quarks occur only when we probe at short distanc&ec. VI. The integrals which arise in connection with this
scales. These considerations may be phrased as a mathem&ipdel are presented in Appendix B. Finally, Sec. VII con-
cal constraint on the form of the two-point charge densitytains our conclusions.
correlation function.
The calculations presented in Ref$-6] all assumexg to
be small enough so that the gluons do not probe the longitu-
dinal structure of the Lorentz-contracted nucleus which they In this section we present the conventions which we use
see. Effectively, then, the relevant geometry is two-in writing down the Yang-Mills equations and source for a
dimensional, with the source exactly on the light cone. Innucleus which moves down theaxis with a speeg3<1.
this work we extend the MV model to larger values of the The motivation behind the choices we have made is to en-
sure that all “unknown” quantities are of order unity, with
all powers of the small and large parameters explicitly writ-
*Electronic address: lam@physics.mcgill.ca ten out. This will make the approximations which we will
Electronic address: mahlon@physics.mcgill.ca have to make later on more transparent. It will also make the

II. THE CLASSICAL YANG-MILLS EQUATIONS
AND SOURCE
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B—1 limit which we take at the end obvious.

We begin with the classical Yang-Mills equations, which

we write as

D, F*'=gJ, (2.1)
where we have employed matrix form, i.67=T2J?", etc.
The T? are the normalized Hermitian generators of SlE)(
in the fundamental representation, satisfying 2TPi(°)
= 6%, The covariant derivative is

D, F*'=4d,F*"—ig[A, F*"] (2.2
and the field strength reads
FAY/=gtAY— gV A —ig[ A* A"]. (2.3

The conventions contained in Eq2.1)—(2.3) ensure that all
powers of the strong coupling constaydre explicit, with no
hiddeng-dependence.

We now turn to the source appearing in E2.1), starting
in the rest frame of the nucleus. Using the subscrigt to
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1/1 e e
ey ——yt . -——_ 1+ —
J —8p(8x 2x ,x), J 2J ;o J=0, (2.7
where we have defined
_[2(1-p)
e= —1+,8 ) (2.8

Viewed in the lab frame, the nucleus is Lorentz-contracted to
a thickness of ordeR/y, where, as usualy=(1- %)~ %2

For large boosts the charge density function is non-zero only
whenx™ ~&eR. Hence, the longitudinal argument in E8.7)

is really of orderR, leading us to define the new longitudinal
variable

1 €
X=—X"—5x".
1=

5 (2.9

The current appearing in Eq2.7) is a function of &,x)

=x. The use of the notationX" is suggestive of the fact
that, in terms of the naturdbrder unity variables, the func-

denote rest frame quantities, the current takes on the simpfons describing the nucleus aséll spherical.In fact, x is

form

N=p(=2z,,%); I=3=3=0. (2.4
The color charge densify=T2p? is a spherically symmetric

function which is non-zero over a region of siRethe radius

just the (unboosted longitudinal coordinate from the rest
frame. The advantage of using instead ofx™ should be
obvious: to take th@— 1 (¢—0) limit for quantities written

in terms ofx is trivial, whereas if the same quantities were
written in terms ofx™ instead, we would have to be careful
to hold x™ /¢ fixed.

of the nucleus. Since in the lab frame we want the nucleus to Because of the choice made in Eg.4), we define

be moving along the- z axis, it is convenient to use z, for
the longitudinal coordinate in E¢2.4). The transverse coor-
dinatesx, andy, form a two-vector which we write in bold-
face:x, . In terms of the light-cone coordinates™ = —x-
=(=x3)/2, Eq.(2.4 may be written as

Jh=3 =

r r

1 (1 )
— (X, =% )% |; J=0. (25

s

The net color charge of the nucleus is zero:

.fd;d&”x—axgzo. (2.6)

The nucleus is not a homogeneous sphere of color charge:

(_])-)-()E—C]HXH-FQ-X. (2.10
We will also use the notatiod®x=dxd?x. All of the func-
tions we will be dealing with will depend only on the par-
ticular combination ofx™ and x~ appearing in Eq(2.9.
Thus, we have the replacements

(2.11

The divergence of the current in E@2.7) vanishes:
d,J#=0. In QCD, however, we require that the current be
covariantly conserved ,J#=0. Since we are at weak cou-

pling, we may work iteratively. That is, we first solve the
‘{Iang Mills equations using Eq2.7) for the source. The

has substructure. Because of confinement, there are smallgfsylting solution will violate the covariant conservation con-

regions of sizea~ AQCD within the volume occupied by the

dition by an amount of ordeg?. The value oD, J* which is

nucleus for which the total color charge also vanishes. Thesgptained could, in principle, be used to correct the current to
regions correspond to the nucleons. For a large nucleughis order given the non-Abelian equivalent of the Lorentz

a/R~A 3«1,

force equation to provide information on how the color of

Boosting to the lab frame, where the nucleus moves alonghe quarks making up the source changes upon emission of a

the +z axis with a spee@, Eq. (2.5 becomes

'our metric has the signature—(+,+,+). Thus, the scalar
product in light-cone coordinates rea(dfz‘,‘xlﬁ—q*x’—q’x+
+q-x. We will think of x* as the time, and~ as the longitudinal
distance.

gluon. Since we are assuming thgt<1, we will simply
drop these contributions.

As suggested by Eq2.10, we will use the notatiorg
for the component of momentum conjugatexfo To make
the connection with the longitudinal momentum fractign
let the gluon carry a momentuop” and the nucleon a mo-
mentumQ™. Then,
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q" eqt required to convert into xg and integrate Eq.3.2) over all
XFEF: m (212 transverse momenta less than or equaDto
wherem is the nucleon mass. However, ga(Xg,Q?)= d%q cd%e (3.4)
_ d=q  dxed"q
i
" —id_— ;tﬂﬁ%- (2.13 Our classical approximation to the quantum average rep-
resented by the angled brackets appearing on the right-hand
Thus, we conclude that side of Eq.(3.2) consists of performing an ensemble average
with a Gaussian weight. We parametrize the two-point
q charge density correlation function by
Xg= E . (214)

(p¥(X)pP(X"))= 5abK3S( X+2X )D(i—i'). (3.5

Once more note the advantage of the rest-frame variables
over the light-cone variables: in terms@f, we would have _ S o
to take thee—0 limit with the caveat that the combination The functionsS and D appearing in this definition encode

eq" is held fixed. No such complication arises when we usdwo different aspects of the physics of the nucleus. The
q; instead. color-neutrality condition developed in R¢6] imposes the

following constraint orD:

III. COUNTING GLUONS

3y o) —
Next, we turn to the formula for the gluon number den- f d*xD(x)=0. 36

sity. Recall that the standard expression rd§
dN . In terms of the Fourier-transformed functidp, this con-
dq+d2q:f_773 _wdx‘ f_wdx,_f dzxf 42’ straint reads )
D(0,0)=0. (3.7
X @ 1" 0 X Daia xR (x~ ) AX(X" T, X)),
When the color-neutrality condition is satisfied, the function
3.0 D contains an intrinsic scale, reflecting the minimum size of
the region for which Eq(3.6) is approximately true. Because

x~ andq*, and the light-cone gauge vector potenilal. of confinement, we expect this scale to be roughly the

. _ 71 . .
The light-cone gauge has favored status with respect to th%l.ml.e on radiusa~Aqcp, reflecting the fact that points
intuitive picture of the parton modéR0—23: thus we con- within different nucleons ought toét(éelrgelw uncorrelated.
tinue to use the light-cone gauge even for a source whicfN the other hand, the functiaf(; (x+x')), which depends
moves at less than the speed of light. Based on the discussi®f the center-of-mass coordinate, should be non-negligible

of Sec. I, however, we wish to employ the “new” longitu- Over a region of sizeR~A'a, the radius of the entire
dinal variablesc; andq; therefore, we write nucleus. We choose to normalizeso that its total integral

simply gives the volume of the nucleus:

Equation(3.1) is written in terms of the light-cone variables

q J S*J 3> i (w— ! - >
= d3x | d3x €4 CTOARX)AT(X S

49 el IO X' e (AT(OAT(X")) j BESE)=V. 3.9

:ﬂgj d2XJ d2x’ ela (x=x") We have writterV in Eq. (3.8) rather than thé 7R® pertain-
am ing to a spherical nucleus to maintain generality and to aid in

8 N AL ot making connection to Ref$5,6]. The detailed forms of the

XCAT(a XA apxT), B2 functionss andD depend upon aspects of non-perturbative
Where QCD which are poorly understood. However, the require-

ments specified above account for the relevant physics: we
- have a correlation function which takes on non-trivial values
A(q ;x)EJ’ dx”e“qHXHA(i)_ (3.3  only for points which are close enough together to lie inside
o a single nucleon|§—>2’|sa) and which are centered any-
In the limit e—0, Eq. (3.2) reduces to the previous result, Where inside the nucleu$x(x+x')|<R). The interplay be-
Eq. (3.2). tweenS and D will be crucial in helping us to organize our

Equation(3.2) produces a gluon number density which is calculation in powers 0é/R. _ N
differential not only ingy, but in the transverse momentum  In addition to satisfying the color neutrality condition,
as well. To obtain the usual gluon structure function resolved>(x—x’) should contain a term which goes li&(x—x")
at the scaleQ?, we simply supply the trivial factor om  [1-5,11. The presence of such a contribution leads to a
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pointlike 1k behavior in the gluon number density at large C

o’ [6], consistent with the physics of asymptotic freedom. 103 L

This term arises from the self-correlation of the quarks. Quite

generally, then, we expect the form B{x—x') to be 102 |-
D(x—x')=B(X—x")— C(X—x'), (3.9 ol L A

WhereC(i— >Z’) is a reasonably smooth function parametriz- %
ing the mutual correlations between pairs of quarks. Because & 109

C()?— i’) describes the structure of a color-neutral nucleon,

S E N |||||||| L |||||||I ||||||u| ||||||||| 1 ||||u|| ||||||||I Ly
[=)

it must have unit integral and possess non-trivial values only 107!
when [x—x'|<a~Aglp. In momentum space, Eq3.9)
reads 102
D(q)=1-C(q). (3.10 0-8 Lovvel vl uvid
, N o - 10~4 10~3 102 10-1
The color neutrality conditior(3.7) implies thatC(0)=1. Xp
Furthermore, for asymptotically large C(q)—0, since in @
position spac€ is reasonably smooth and has a finite region L e A mmae st e S A
of support. 3 [ ]
Finally, the only quantity appearing in E(B.5) yet to be 10 3 E
specified iK®. We determind<3 by integrating the trace of i 1
Eq. (3.5 and replacingd(A) by 53(A): the result should be 10° & 3
3ACe for a nucleus containing\ nucleons. Thus E ]
10! = | —3
3AC:1 3A 1 o E A | 3
3:—2— == - (31]) < [ | ]
NZ-1V 2NV 3 100 bmm e  C _
: B i E
IV. REGION OF VALIDITY 10-1 E —
All of the machinery assembled in the previous two sec- F ]
tions has been geared towards performing a classical compu- 107° —
tation of the vector potential associated with a color charge E 3
moving down thez axis with a spee¢B near, but not equal 10-3 Y T Y
to, the speed of light. The vector potential is then translated 10~4 10—3 10—2 10-1 100
into a gluon number density in the spirit of the Weiasar- Xp

Williams approximation. In this subsection we will consider ()
the conditions which must be satisfied in order for this treat- £ 1. Approximate region where the density of color charge is

ment to be valid. large (and henceas weak, and sufficient color charge is being
First, we need the couplings=g°/4m to be weak. When probed to justify a classical approximation to the quantum average

as<1, we have the possibility that the quantum correctionsn Eq. (3.2. (A) Smallx; region of the original MV modef1-5].

will be small, making the classical result a reasonable ap¢B) Additional allowed region at smak- when the effects of con-

proximation to the full result. Several years ago, McLerranfinement are includef6]. (C) Extension to largexg discussed in

and Venugopalafl] observed that for a very large nucleus this paper. The upper plot is for a toy nucleus wAtf®= 250, while

or at very small values of¢ the density of quarks and glu- the lower plot is for uranium-238.

ons per unit area per unit rapidity is large. When this densit)(NhiCh the gluon distribution is being probésee Fig. 1 In

; 2
e large denaiy sFcolor eharge Tacitates e classical™ OfGiNal MYV teatmer€l—g], it as assured tht: was
9 Y 9 ‘]small.” In this case, “small” means that the longitudinal

treatment in a second fashion: when there a large number ale resolved by the gluons is larger than the Lorentz-

charges contributing to the charge density at each point, th@ontracted thickness of the nucleus which they see:
total will (typically) be in a large representation of the gauge '

group. Thus, we may treat the source classically. In addition, 1 A8

the large number of quarks justifies the use of a Gaussian q—z R, or Xg= ma (4.1)
weight for the ensemble average via the central limit |

theorem. All of the quarks at a given transverse positiorontribute

Under what conditions do we see a high color chargeo generating the gluon field measured at the valuesgof
density? And when do a large number of charges contributeldicated in Eq.(4.1). This leads to a color charge per unit
The answers to these questions depend upon the scale aka of
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, 3AC: 3AYC, Taking ma~5, Eq. (4.6) implies an upper limit ofxg
K=o~ 7 - (42 <0.25. At larger values okg, too little of the nucleus is

seen by the gluons in order for the charge density to be large
and the coupling weak, independent of how large we imag-
ine the nucleus to be.
Equation(4.6) is not the final word, however. As noted
- above, wherg? becomes small, the effective charge density
A= ——. (4.3) is reduced since we begin to see color neutral nucleons.
3Cr Thus, we should further redueé by the factor q)? in this

region, leading to the lower limit

Asking that this density bez Ajcp~a ™2 so that the cou-
pling a5 be weak leads to the condition

Reference$2-5] restrict the allowablef to the region

2 mma

A2 cp=P=<3AYCLA3p (4.9 q
QCD FAAQcD - 2
X = 3, Adens 4.7
The lower limit in Eq.(4.4) comes from the requirement that

the gluons probe distances small compared to the nucleona- — v ;
. o - . - valid whenevekg is “large” [i.e., whenxg is larger than the
radius. On the other hand, i is too large, an insufficient F ge” [i.e. F 9

- . . . 2 .
number of quarks will contribute, no matter how big the value given in Eq.(4.1)]. Likewise, wheng® is made too

AR large, not enough charge is probed. The upper limit is re-
color charge density is. Since the amount of transverse ared -4 from the value qiven in E64.4) by a factor of 14,R
probed by a gluon with transverse momentgfis about 9 Sl I

w/g?, we conclude that for the charge per unit area given in
Eq. (4.2), the gluon sees an amount of charge equal to

3AY3CEASc/oP. Asking that this be much greater than one s 3CFA2 9
leads to the upper limit in Eq4.4). The requirements of FA'="ma facor '
Egs.(4.1) and(4.4) restrict the range of validity of the origi-

nal MV model to the region labeled “"A” on Fig. 1. Taken together, the constrain.6), (4.7), and (4.8) allow

Because the strong coupling is evaluateaZtather than

) us to extend the computation of the gluon number density

g, it ought to be possible to relax the lower limit in Ed. it the region labeled “C” on Fig. 1.

(4.4),_ proyided that the thepry is infrared finite. All that is Finally, we note that the eikonal approximation which we
required is a framework which captures the key consequencge sing also tells us that andx. cannot get too large: that
of confinement, namely the fact that when viewed on larggg e are ignoring nuclear recoil effects.

(>a) distance scales, the nucleons are color neutral. This
observation leads to the color neutrality condit{@m®) to be

imposed on the two-point charge density correlation function V. GLUON NUMBER DENSITY
[6]. Not only does the color neutrality condition make the

theory infrared finite, but it also limits the amount of color density within the 3-dimensional framework described in
; . 2. 1/a2 -
charge being probed as-0: beyond aboutr” ~1/a” the net §ecs. Il and IIl. In order to obtain our result, we will have to

charge drops as complete color-neutral nucleons are probe . .
9 b b P rely on both color-neutrality and the large nucleus approxi-

The net effect is to reduce® by the factor @q)® from the mation extensively. Our final expression reduces to the MV
value given in Eq(4.2), leading to the less-stringent lower result of Refs.[5.6] in the limit x.—0, but only if the

We now turn to the computation of the gluon number

limit . R
nucleus is assumed to have cylindrical geometry.
sA-13 Our calculation has three stages: first, we obtain the solu-
= TAéCD' (4.5)  tion for the vector potential in the covariant gauge. Next, we
F transform that solution to the light-cone gauge. Finally, we

use the light-cone gauge solution along with the correlation

The region labeled “B” in Fig. 1 represents the additional ¢,nction (3.5) to obtain the gluon number density from Eq.
range of validity obtained in infrared finite theories by re- (3.2

placing the lower limit of Eq(4.4) with Eq. (4.5).

Now we turn to the main goal of this paper, the relaxation
of the condition(4.1) on xg. At larger values ofxg, the A. Covariant gauge vector potential
gluons are able to probe shorter longitudinal distance scales: The most efficient route in performing our calculation be-
they no longer see the entire thickness of the Lorentzying py imagining the situation in the rest frame of the
contracted nucleus. The fraction of this thickness which they,cleus, where we consider a static distribution of color
do see is roughly #R~1/mx:A'®a. Hence, the value of charge, Eq(2.4). In this frame we have the “obvious” time-
«* obtained in Eq.(4.2) is reduced by this factor, and the independent Coulomb solution for the vector potential. Since

coupling is weak only for only A°#0, we haved,A°=g-A=0, that is, the Coulomb
solution is the same as the covariant gauge solution. When
Ko< 3Ce 46 W€ boost to the lab frame then, it is natural to begin with the
F~ mma’ ' covariant gauge solution.
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The Yang-Mills equations in the covariant gauge fead B. Transformation to the light cone gauge

~ . ~ . ~ At this stage, we are ready to perform the transformation
2_ v__ v v v

(V5=20.0-)A"=gJ"+2ig[ A%, d,A"] ~Ig[ A, ,0"A"] to the light-cone gauge. In a non-Abelian theory, we may
2rA An RV arametrize the gauge transformation as

+g?7[A,, [A*A"]]. sy P gaug

~ i
In order to deal with these equations, we must assume not  A*(x)=U(X)A*(x)U~%(x) — =[d*U(x)JU L(x).
only that the source has the form indicated in E7), but 9

also that we are in the weak-coupling regimges1. In par- 58
ticular, we assume that the commutator terms appearing in
Eq. (5.1) are negligible, leaving the simpler equations Since the potentials we are dealing with are functionx of
- . . only, we expect that U will also depend &mnly. Thus, the
(V2435 A" (x)=gJ"(X). (5.2 requirement that the new gauge be the light-cone gauge be-
m
The operator appearing in E¢.2) is simply the Laplacian comes
in 3-dimensions. These equations are solved in the usual - R
manner by introducing the Greens functiGifx) which sat- AU(x) =igeUX)A™ (x), (5.9

isfies the equation
where we have replaced by J, in accordance with Eq.

(V2+ aﬁ)G(i) = 83(x). (5.3  (2.11). The solution to Eq(5.9) is the path-ordered exponen-
tial
Passing to momentum space, we find that
- = X ~
- -1 U(x)="Pex igf dyjeA"(y),%)
G()=%—- (5.9 p[ e
q q2+qﬁ
. X ~
The Fourier transform used to obtain H§.4) is easily in- =1+ 21 (lg)mj d™y AT (Yjm.X)
verted, producing m= o
L L XA (Yjmo1,X)eAT(y)1,%). (5.10
G(X)=—7— : (5.5
4m VX2+Xﬁ In Eq. (5.10 we have introduced the shorthand notation

Actually, because of the unequal treatment of the longitudi-
nal and transverse variables when we transform to the light- X dmy, = fx\l dyi, y”ldy . fyumfldy
cone gauge, the following mixed representation: R e e —w Im

(5.11
2
G(X)=— f 89 etane-an, (5.6 - . . .
4m* 2q to indicate the ordered integration region=y;;=y|,
=...=y|n>—. Equation(5.7) tells us thatA™ is natu-
rally of order 1£: therefore, all of the terms in the sum on
the right-hand side of Eq45.10 are of order unity. Introduc-

gng the expression foA* into the expression for U?O pro-
duces

which is obtained by inverting only the longitudinal part of
the transform, will prove to be especially useful. Note that in
Eqg. (5.6), as elsewhere in this papermeans|q|.
Independent of how we choose to write down the Green
function, the solution to Eq5.2) with the sourcg2.7) reads

~ - 1 - > - . N — . XH o N
A+(X):ng d3x'G(x—x")p(X"), U(x)=7?ex+ng dny dPEG(y - & .x—Hp()|.
- - ~ - (5.12
A~ (x)=38A"(x),

Inserting this into Eq(5.8), we find that the transverse com-
Al(x)=0. (5.7  ponents of the vector potential réad

2From this point forth, we will use a tilde to distinguish the vector *The longitudinal componen&’(i) turns out to be of ordes. In
potential in the covariant gauge from the vector potential in theany event, it does not contribute to the gluon number density, as it
light-cone gauge. does not represent a physical gluonic polarization state.
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Aj(§)=9f_xude||U(y|| X)

X

J dSErﬂG(y—§|,x—§>p<é>}u-1<y|,x>
oS (—igym [ d'“ymfd%l

m=1 —o0

X PGy —Epix— &)

[1 f d3§|G(y|—§|;x—§|)>
=2

X

X[[p(ENp(&)- - p(Em 1] (5.13

The quantity in the double square brackets appearing in the

last line of Eq.(5.13 is simply a multiple nested commuta-
tor:

[[p(EDp(ED) - - - p(Em]]

=[[[-[p(£),p(ED]p(E3)], - 1,p(Em)]. (5.4

At this stage there are no more explicit factorgappearing

in the vector potential or in the expression for the gluon

number density3.2). Thus, thee—0 limit is trivial to per-
form.

The expression for the gluon number density involves th
partially Fourier-transformed quantiti(q;x). Since the
only dependence ox itself appearing in Eq(5.13 is as the

PHYSICAL REVIEW D 62 114023

_® &)
" /@ ;
112
2 *///lj :
113
i3 “///i?

Siim
. /® ||

Y
-0
FIG. 2. Diagrammatic representation of longitudinal structure of
themth-order term in the expression for the light-cone gauge vector
otential, Eq.(5.17). The circled crosses denote the positions at
hich the sources are being evaluated. The dots represent the or-
dered integrations coming from the gauge transformation into the

upper limit of the outermost of the ordered integrations, we

have

g
iq)
dBE PGy~ €1 x— &)

fm

I1

=2

X[[p(ED)p(&)- - p(Em1].

Al(qy:x)= mzl (—ig)m’lJ’imdmy”lexp(—iq||y”1)
X

X

f d*EG(y)— &) ;x—go)

(5.19

Finally, we insert the mixed representation of the Greens

function presented in Eq5.6). The transverse part of the
resulting ¢ integrations simply Fourier transforms the trans-
verse part of the charge densities:

p(61p)= f A6 p( E). (5.16

Hence, the light-cone gauge vector potential becomes

1 o0
Fa2\m
5%2309)

m=1

light-cone gauge.
Ai(qH;X)I fﬁ dmym

Xf:“ﬂﬂﬁ—wwﬂ

d?p, Py .
Xf A2 2_ple PrXexp( — palyj1— €jal)
m
d?p, i
M T X . _
XIHZ f4772 T exp(—pily— &l

X[[p(&1:p0)p(&2:P2) - - - p(&)m i Pm) 11
(5.17

It is useful to have a diagrammatic representation of the
contributions to Eq(5.17). Because it turns out that the lon-
gitudinal structure is significantly more complicated than the
transverse structure, our diagrams are meant as an aid in
understanding the longitudinal structure. Figure 2 illustrates
the mth term of Eq.(5.17). The vertical line represents the
range of they, integrals, with each of the verticgsloty
being the value of one of thg’s. Because these integrations
are ordered, the dots are not allowed to slide past each other.
The sources, whose longitudinal coordinates are
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(§11.¢)2, - - - §m), are denoted by the circled crosses. The P oo oo oo
lines connecting thg;’s with the £;’s correspond to the lon- Sin & g &,
gitudinal factors of the Greens functions, exlyji—&;)- J SRR J [y S i
Finally, the index labeling they|;-£); line reminds us thatit /®§”2 ®\ My, ’/®§ §,®\< M
is special: not only is the Greens function associated withy2 /®‘\\ &, L
this factor differentiatedproducing the factor opy;), but ' }@———}———(9\ e 5 i
there is a factor expfiqy;.) left over from the longitudinal s /,/ e /®/ \®\
Fourier transform which was performed on the vector y /® Ea Y 8 &is Y
potential. L O N I B NN
Yiis ’/&C:I)S E.(-?B\‘ yﬁ; Y4 '/gi gi\‘ yﬁ4
C. Determining the gluon number density

We now turn to the computation of the gluon number _% (a) oo oo ©) oo
density. Because of the extended longitudinal structure, the
calculation is rather lengthy. Here we will outline the pathto e ) ) oo
the result with the help of our diagrammatic representation. & &, .
The mathematical details appear in Appendix A. - S j . St n

The full calculation of the gluon number density essen- y, /®§ ®\ W /® ------ J ,
tially consists of inserting two copies of E¢6.17) for the N g n & & i
vector potential into the master formu(@.2) for the gluon Yo [ gy o ™~ e | AT ,
number density, and performing all possible pairwise con-, /®‘, ®\, y e e
tractions of the sources in each term of the result. We retair /@yé 2 /®é“_3_“§_’3®\ ,
only the leading terms in powers afR. There are a total of ¥ e B o Y
four longitudinal integrations per contracted pair of sources:y||5 /E.(.?s §®|'|3\~ — /é’i é’i\ "

the (unorderedl position ¢ associated with the inversion of
the Yang-Mills equation(5.2) for each sourcdrepresented
by the circled crosses in Fig) Plus the(ordered integration Y Y
on y| associated with the transformation to the light-cone B (b) } - (d) -

gauge(rep_resente_d by the points on the vertical Jing p_rl- FIG. 3. Some of the contributions to the gluon number density
ori, these integrations could produce afactoRéf(per paiy. at 8th order inp. (a) Diagram containing a non-adjacent self-
However, ;Ne shall now argue t_hat at most they produce %ontraction(b) Diagram containing an adjacent self-contracti@h.
factor of a°R. The key observathns to m{_:lke are that bothDiagram containing a pair of crossed mutual contractiédsDia-

the propagators and the correlation functigip) (through  gram containing only corresponding mutual contractions. Diagrams

D) allow for a longitudinal separation between the points(a) and(c) are suppressed by a powerafR relative to diagrams
they connect which is at most of ordar For the(pp) cor-  (b) and(d).

relator, this property follows immediately from the color
neutrality condition: the confining nature of QCD tells us hems in the point ayjs, preventing it from independently

that D(x—x") should be negligible when the two points be- spanning the full rangeR. On the other hand, the self-
ing compared are separated by more than the nucleorasize.qniraction in Fig. @) does not restrict the range of any
(transversely or longitudinally, since we taketo be spheri-  aqgitionaly;'s: it contains the maximum four powers &
cally symmetrig. In the case of the propagator, the mixed | j ewise, the set of mutual contractions illustrated in Fig.
form (5.6) is particularly illuminating: the longitudinal sepa- 3(c) produce only three powers oR, since the two
ration of the two points must be orderplér less(wherepis  «crossed” contractions cannot slide up and down indepen-
the typical transverse momentum flowing in the propagatoryently. In contrast, Fig. @) contributes the full four powers
to avoid exponential damping of the contribution. However, ¢ R, since all of the “rungs” may move freely through the
the (pp) correlation function limits the transverse momentas| vertical range.

to the regiorp=1/a, again because of color neutrality. Since Thus, the computation in Appendix A includes all dia-
the four points in question are connected via two propagator§rams which contain only uncrossed mutual contractions
and one contraction, three of the four integrations are refjike Fig. 3(d)] or any combination of self-contractions be-
stricted to have range, while the remaining integration has tween adjacent sources plus uncrossed mutual contractions

the potential to roam freely over the full range of order  [jike Fig. 3(c)]. This produces the leading behavior in the
Nevertheless, not all combinations of contractions proqimit a/R<1. The final result reads

duces the maximum facta®R for all pairs. Figure 3 illus-

trates some of the possible contributions at 8th ordes.in dN 204 1 A nia A _ )
From the previous paragraph we know that each of these ddezngACF? ;j d°Ae'™ 2L(Xg 1 A)E(w7L(A)),
diagrams could, at most, contribute four powerRoHow- (5.18

ever, the contribution in Fig.(8) contains only three powers
of R the self-contraction connecting), with &, effectively
forcesy|, andyj, to be at most a distanaapart. But this  where
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1(0dp . PZTD(XFm,p) surprising is the fact that the functidn(A) turns out to be
L(Xg;A)= —J —e A o————- (519 identical to its 2D counterpart: it depends only on the value
2) Am [P+ (xgm)“] ¢ atx.=0
0 al XF= .
and
dzp @(0 0) D. General properties of the gluon number density
L(A)EJ 1.2 IO4, [e"PA-1]. (5.20 Because of the similarity of Eq$5.18—(5.24) to the re-

sult obtained in Ref[6], the properties of the gluon number

Despite their superficial appearance, these functions are -rq_ensity which were described in Sec. IV of that paper con-
P! " superticial app Hnet Itinue to hold. In particular, th— 0 behavior of Eq(5.19

frared finite for a spherically symmetric correlation function ; h df he behavior of i .
which satisfies the color neutrality conditiaB.7). In the IS Unchanged from the behavior of its counterpart in Ref.

Abelian limit (a§A1’3—>O), the gluon number density is sim- Thus, we still have the transverse momentum sum rule

ply f i dN
dN 2« q dXFdzq

c 1o
ACk ?X—Fﬁ(XF;Q)-

dN |
all dXFdzq‘ lowest =0, (5'23
_ orders order
ddezq lowest
order
o even whenxg#0. Equation(5.25 states that the nuclear
as 1 q"D(Xem,q) (5.27)  corrections have no effect on the total number of gluons at
7 Xe [P+ (xgm)?]?" each value okg: we could have obtained the same number
of gluons by ignoring the non-linear terms in the light-cone
The nuclear correction functiofi encodes the non-Abelian gauge vector potential. What these corrections actually do is
effects and depends on the geometry and size of the nucleug move gluons from one value of the transverse momentum
to another. Thus, the total energy in the gluon field at a given

=3ACk

1 — value ofxg is affected by the non-Abelian terms. The gluon

Z(el— | F .

z(e 1 (cylindrical, structure function resolved at the scal¥ is obtained by
&z)= 3 (5.22  integrating the fully differential number density over trans-

—[1-3z2+e%(z—1)] (spherical. verse momenta satisfyinfg|<Q [see Eq.(3.4)]. Conse-

z

quently, the transverse momentum sum rule tells us that for
large values 0f)?, the non-Abelian effects die off, reflecting
the expected asymptotic freedom of the theory. We should
caution, however, that unlesg is very small, the maximum
Q? for which our treatment is valid is not very lar¢see Fig.

1). Thus, we conclude that at such valuesxef the non-

Finally, the magnitude 062 governs the relative importance APelian terms are always important at trmallish values

In either case, we have

lim&(z)=1. (5.23

z—0

of the nuclear corrections: of Q2 for which our approximation; hold. '

The overall shape of the fully differential gluon number
3A0 o 1seo o distribution is insensitive to the detailed nucleon structure
52~ 24masA A g (cylindrical), incorporated inD. Instead, it is fixed only by the confine-

v2= . (5.24 ~ ment scalea~A5éD plus the relative importance of the
9Ag nuclear corrections, governed by. Recall that according to

pp ~36maiAYASc, (spherical.

the discussion of Eqg5.18—(5.24), the nuclear corrections
are contained in the functiof(v?L(A)). To understand how
These corrections are enhanced for very large nuclei. In writ€ behaves, we need to know two facts abb(f). Firstly,
ing down Egs.(5.22—(5.24 we have assumed that the according to Eq(5.20, L(0)=0. Therefore, at largg?, the
nucleons are uniformly distributed within the volume of the all-orders distribution is identical to the lowest-order result.
nucleus. (This is one of the observations used in Héi.to derive the
The result presented in Ref®,6] is recovered in theg transverse momentum sum ryl&econd, for a wide range of
—0 limit by usingcylindrical geometry, since these papers physically reasonable choices f@(i_i’), L(A)=<O0, and
assume that (i.e. the part of the correlation function which decreases d4\| increase§6]. Thus, we are interested in the
corresponds ta in the present pappis a function of the  pehavior of¢ for negative values of its argument, which we
longitudinal coordinate only. This is only true for a cylindri- have displayed in Fig. 4. From the figure it is easy to see that
cal nucleus. Actually, the difference between the two func+he |ong-distance contributions to the integrand of GqL
tions in Eq.(5.22 is very small when the different values of are damped by the presenceffThis behavior is consistent
v? indicated in Eq(5.24 are taken into account. with the confining nature of QCD, which we incorporated
Away from xg=0 there are two distinct sources of finite into the form chosen fob by requiring it to obey the color-
Xg corrections: the correlation functioR(xgm,p), and the neutrality condition. Independent of the other detailsIpf
propagator appearing in the Abelian result. What is perhapwe find that
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where w is an arbitrary positive integer, arm,=a/\3w.
This function obviously satisfies the color neutrality condi-
tion (3.7). In terms of the Kovchegov modEl1], the choice

1.0

0.8 -] made in Eq(6.1) corresponds to a Yukawa-like distribution
- . of quarks within the nucleofisee Sec. VIR The value of
0.6 _ a, has been chosen so that the root-mean-square radius of
= i ] the nucleon in preciselg. Equation(6.1) is also convenient
® L i in that we are able to perform the integrals in E§19 and
0.4 ] (5.20 analytically (see Appendix R
L ] »
0.2~ . E(XF;A):_E(XFmaw)ZKO(XFmA)
AP AP B B w—1 - . 2
0.0 "N+(0—
o 1 2 3 4 5 L s 1A )it(e J)(XFrT;a%)
—z 47 o j'\2a,/ [1+(xgma,) ]!
FIG. 4. Plot of the nuclear correction functiéz) for negative A
values ofz and a spherical nucleus. XK a—\/1+ (Xgm aw)z), (6.2
i dN _ ) - and
m:) x,:m Ly —const, (5.26 ,
a- orders a, A
L(A)I—z—a) Ko a— +In g + Ye
that is, the distribution saturates g5is lowered! Further- . ® ®
more, since increasing the size of the nucleus increases a2 @t 1 1/ AV (A
which in turn increases the amount of damping provided by +2—'” E (w—j)[?—7 o K; .
£ for the same value i, the constant on the right hand side st Ioea, @
of Eq. (5.26 decreases aA'® is increased. Because the 6.3

largeq part of the distribution does not change, we conclude .
that in order to satisfy the sum rulé.25, the number of In Fig. 5 we have plotted the integrand of the gluon number

gluons at intermediate momenta must increase. Heuristicallyfi€nsity (5.18 (omitting the expig- A) factop for various
the position space width of the non-Abelian factorvafes ofw:aaccordmg to Eq(3.2) this is just proportional to
£(w2L(A)) goes likev 1. This width provides a second (AV(d):X)A7(—d);x")). We see from the plots that the non-
length scale in addition to the scaleydp, characteristic of Abelian corrections become more importantaasncreases:
the lowest-order result. Thus, we might expect that momenti€ range of théposition spaceintegrand decreases. Thus,
of orderc?~v2 would play an important role in the resulting e would expect to find fewer soft gluons in a model with

all-orders distribution. According to Eq5.24), we expect |arger . Overall, however, the dependence enis rather
UZOCAlBA(ZDCD. This is, in fact, what we observe in our nu- weak. Therefore, we have chosen to present plots only for

merical calculations: an enhancement in the number of glu'Ehe w=1 case for the rest of this discussion.
Figure 6 contains plots of the fully differential gluon

ons with transverse momenta of ordér (see Fig. 8 in Sec. ; .
( g number density as a function gf atxz=0.0 and 0.2. Three

VI). Although the idea that a new scale proportional to' 2 A 1/3
Al/SAéCD should emerge and play an important role for |arged|fferent values ofagA™* have been used, namely 0.0, 0.5,

enough nuclei is not neyd,2,5-9,17,24,2Four results lend and 2.0, corresponding to the Abelian limit, (eoughly
further support to this concept. uranium-sized nucleus, and a very lafg®y) nucleus. In all

cases the distributions saturategis-~0, with the turnover
occurring at a few time&\éCD. This turnover is very much
like the one which Mueller sees in his calculation based upon
A. Power-law model for D(q) onium-scattering9,17]. In each plot, the maximum value
reached by-dN/dxd?q decreases a&'? is increased. At
large ¢?, the distributions exhibit the 47 fall-off character-
_ . ~ = Sstic of individual point charges. Figure 7 illustrates the same
ing a specific form forD(q), namely fully differential gluon number densities, but multiplied by a
factor of . These plots are useful because the visual area
— ————, (6.1)  under the curvedusing logarithmic horizontal and linear
[1+ag(g™+qj)]” vertical scalefaithfully reproduces the result of the integra-
tion defining the gluon structure functid®.4): what-you-see

VI. ILLUSTRATION OF OUR RESULTS

In this section we will illustrate the features of the gluon
number density described in the previous section by choo

D(qj;9)=1

“The lowest order resul{5.21) actually vanishes ai?=0 when
xg=0. This may be viewed as an accidental cancellation in the 5By x;=0.0 we really mean some value xf in the MV region,
integrand of Eq(5.18 when&=1. xe<A~Y¥(ma).
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0.4 [ | AR | IR ] 0.2000 T AL B
= . w=1 - 0.1000
3 K w=2 A
g D —— w=8 1 0.0500
S 03 —
E - -
5 L 1 o 0.0200
o r T z |0
S F E o & 0.0100
o2 — 5
% - . & 0.0050
= I i S 0.0020
= o1l —
sy L - 0.0010
i L il
% | oA =00 1 0.0005
~ L %z =0.1 ]
0.0
Lol 1l 0.000g Lorunl sl s ial sl sl
0.01 0.02 0.04 0.10 0.20 0.40 1.00 2.00 107 107° 107° 10 . 10-  10° 10
[x-x'|/a @ (a/h)
(@
0.2000 —rrrm—r-rrm—r T
0.4 T T T o
-1 ] 0.1000 LA
w _ _
3 z g | 0.0500
=} N
b 0.3 —_
g ] zm:, 0.0200
2 ] B| & 0.0100
\lﬂ/ T o
~ 02 N & 0.0050
> ] |<
- ~— o
T 1 ¥ 0.0020
= il
-1
% 01 n 0.0010 | -=---~ alAY® = 0.0 =
) | 0.0005 - oga'" = 05
b 1 T ——— AV =20 :
S J - .
-~ s vvd e vl il
0.0 = 0.0002
[ I P 1073 107° 1071 100 10! 10® 103
0.01 0.02 0.04 0.10 0.20 0.40 1.00 2.00 (a/N)?
[x-x'|/a (b)

b
® FIG. 6. The fully differential gluon number density EG:.18
FIG. 5. Position space correlation functions used to determinevaluated in the power-law model with=1. The three curves on
the fully differential gluon number density from E¢.18 evalu- each plot represent the Abelian Iimita§A1’3=0), uranium
ated using the power-law model f@(q) given in Eq.(6.1). The  (22A*=0.5), and a large toy nucleus with~15000 @A™
three curves compare the results using 1, 2, and 8 at fixecke ~ =2.0). The upper plot illustrates the results fgr—0, whereas the
=0.1 in the Abelian limit @2AY3=0) and for uranium ?AY®  lower plot has been drawn fos==0.1.

=0.5).
) In Fig. 9 we plot the gluon structure function per nucleon

is what-you-get. From these plots, we see that the very smadls a function ofxg for various values of?. Although we

o? region makes very little contribution tga(xg,Q%). At have drawn all of these curves over the entire range from
very largeq? all of the curves converge to the same result, axg=0 to x=0.25, we remind the reader that the maximum
required by the transverse momentum sum rule. We also seg value for which our calculation can be trusted decreases
a pile-up of gluons in the region of a few tmé%w As asQ?is increasedsee Fig. 1L Away from the very smalkg

the size of the nucleus is increased, this peak shifts to largeegion, we see that as increasesxgga(Xg ,Q?) decreases,

o? and increases in size. In Fig. 8 we track the location ofindicating a fall off which is more rapid than . The

this peak as a function @f?. This plot clearly shows that for degree of dependence o1"® goes down a®? is increased:
large-enough nuclei, our heuristic argument of Sec. V DatQ?=1000\2 acp there is very little nuclear dependence be-
claiming thatQpeak ought to be proportional to? is very  yond the tr|V|aI scaling with the number of nucleons.

nearly correct, with a proportionality constant close to unity. In Fig. 10 we further explore the nuclear dependence of
When A2 is too small, however, this relation breaks downour result, by plotting the gluon structure function per
as the scale associated wiftv2L(A)) no longer dominates nucleon as a function af?A*° at fixedxz=0.1 and several
the result. different values ofQ?. At low Q?, we see a marked depar-
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ture from the naive expectation: the number of gluons is not
simply proportional to the number of nucleons. Instead, our
gluon structure function grows more slowly th&nas the
number of nucleons is increased. At larger valuesQdf
however, the nuclear dependence is reduced as the non-
Abelian corrections become less important.

B. Connection to the Kovchegov model

In this subsection we put our power-law model into the
context of the Kovchegov model of Rgfl1]. In this model
we imagine a nucleus of radilswhich containsA nucleons,
each of radiu5a~A5éD. Each of the “nucleons” is made
up of a quark-antiquark pair. Under these assumptions, Ref.

06— ------ aZAV? = ~
- ofAY® = 05 // \
o ———aa =20 \
05— \
a2 oa LT =
e} - ]
o L ]
ey o 4
X 03 —
- 4., : :
<3 - ]
. C ]
o 02 — -]
01f -
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400

300

le)eak / Az

200

100

100

200 300 400
vi /A2

] FIG. 8. Value of the momentum-squared at the peak of the

] gq?dN/dxgd?q distribution as a function of the scale set by the non-

- Abelian correctionsy?cA¥A% . These curves have been gener-
\\: ated within thew=1 power-law model.

[11] provides a means for computing the two-point charge
density correlation function. The correlation function derived
in Ref. [11] is applicable to the 2-dimensional case. How-
ever, since the 2-dimensional form was arrived at from a
3-dimensional one by integrating over the longitudinal vari-
ables, it is not difficult to modify the derivation of RgfL1]

to cover the 3-dimensional case we are studying here. Param-
etrizing the correlation function as in E(B.5) we find that

0.0 =
1072 1071 109 10! 10 103 10% 1 [ x+x'
2 "_ > — >0 _ e
@ (a/8) VS 5 D(X=X")=ZsngX,X") = Zsmi X, X" ),
(6.9
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FIG. 7. The fully differential gluon number density E¢.18 0.001 L1t [P SIS B B
multiplied by ¢? and evaluated in theo=1 power-law model. 0.00 005 010 015 020 025
These plots accurately reflect the relative contributions to the gluon Xr
structure functionga(xg ,Q?) coming from each value af?. The FIG. 9. Gluon distribution functiorga(xg,Q?) in the w=1
three curves on each plot represent the Abelian lim#A**=0),  power-law model plotted versuge for Q?=AZcp, 10A%cp,

uranium @2AY*=0.5), and a large toy nucleus with~15000  100A%cp, and 1000 3cp. The three curves at ea€? value are

(a2
whereas the lower plot has been drawnxXgr=0.1.
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2,000 T T 1T 71 | T T T T I LB | T T T T S(S):Vl(ﬁ(i)lz, (6.7)
1.000 . . I - S
D(A>=é\3(A>—f d3§|¢(§)|2fd3§'lw(§'>|2
0.500 )
X 83(E—E —A). (6.9
%;'_ 0.200 The separation of the right-hand side of E6.4) into S and
‘2 D has been uniquely fixed by imposing the normalization for
W 0.100 S specified in Eq(3.8).
% To make the connection with our power-law model, we
| 0.050 first Fourier transform Eq(6.8) to obtain
[+
2
—Pa)= 32aI0- X,/ 2|2
0.020 1 G5~ ——— 1-D(q) f dxe' I X (x)]?| . (6.9
0.010 - STl - For a spherically-symmetric nucleud(q) is real. Thus, Eq.
F xr = 0.1 (6.9 is telling us that the square root of-1D is given by the
ooos e I v by v w101 Fourier transform of|2. Consequently
0.0 0.5 1.0 1.5 2.0
aZAl® N &g - =
|¢<x>|2=fﬁe"“v1—1>(q>. (6.10

FIG. 10. Nuclear dependence of the gluon distribution function
ga(xe,Q?) in the w=1 power-law model for fixec=0.1 and
Q*=Adcp, 25M3cp, 10A3cp, 25A%c,, 100A5c,, and
1OOO\ZQCD. These functions grow more slowly th@nas the num-
ber of nucleons is increased.

For the power-law modgl6.1), the integral in Eq(6.10 is
easily performed using the methods outlined in Appendix B,
with the result

1 1 [xxp| e
here X)|2=
" O = 1 a2 T (wi) | 222
vivia g el - o2 1
Tod 5= | @100 [ PEUBFS G- TN ) 611
XX —r=¢) (6.5 Equation (6.11) describes a Yukawa-like distribution of
quarks within the nucleons in the sense that the long-distance
and behavior of the modified Bessel function is a dying exponen-
tial:
Isng<xii’>=f d3F|¢(F>|2f d35|w<§>|zj d* [y(€)[? w21 X2 x2) @14
S, WO = o) | 2a2
X B(X—r—§&)83(x —r—¢&"). (6.6) x| e
1
In Egs.(6.5) and(6.6) the position of the nucleon relative to Xexp{ Ta X2+Xﬁ . (6.12
the center of the nucleus is denotedrbyhile the position of
the (antjquark relative to the center of the nucleon is de-At the origin, we have
noted by £&’). In additon to making the result fully f et
3-dimensional, we have allowed for the possibility that the 47T)22|¢()-(*)|2 . const, w=1, (6.13
guarks and nucleons have some distribution other than uni- -0 0, w=2.

form: the function|4(r)|? gives the probability distribution

for nucleons within the nucleus Whi|e'/(§)|2 does the same
for the (antjquarks within the nucleons. Both functions are
normalized to unit total integral. If we compute them exactly VIl. CONCLUSIONS

from Egs. (6.5 and (6.6), the functionsZs,(x,x") and We have extended the McLerran-Venugopalan model for
ZsmiX,X") do not factorize on the sum and difference vari- the gluon distribution of a very large nucleus to larger values
ables as implied by the left-hand side of £6.4). However, of Xg. The classical computation contained in this paper, like
if we approximate the integrals by assuming th&R (the  those in Refs[1-6], is based on the premise that the quan-
large nucleus approximatignthen they do factorize as ad- tum corrections may be ignored since we are working in a
vertised, and we obtain regime whereng<1. However, at smalk; there are quan-

These distributions are plotted in Fig. 11 o1, 2, and 8.
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— o=
s 08 — APPENDIX A: EXPLICIT COMPUTATION OF GLUON
T\g i NUMBER DENSITY
= 08 —
. ] In this appendix we will present the details of the deriva-
S 0.4 ] tion leading to the expression for the gluon number density
’ ] presented in Eqgs(5.18—(5.24). Our starting point is the
02 ] light-cone gauge expression for the vector potential:
: L0 | [ R |\|\r sk ol L: A]( — f dm
0.0 ap;x)= y
0 1 2 3 4 a |gq‘ "
Fl/a

" .
FIG. 11. Quark probability distributions as determined in the X f_md gjexp—=iqyyj)

context of the Kovchegov modgl 1] for the power-law correlation

function (6.2). The three curves compare the results dor 1, 2, d? pl pll —ipyx
and 8. 472 2p, S—e Pr¥exp(—pq|yj— &pal)

tum corrections to the distribution functions of the MV d’p 1 ip-x

model which are proportional ta n(1/xg) [4,26]. For fixed f 472 Ee exp(— iy =&l
q2~AéCD, it can be shown that g n(1/xg) is of order 1 in

region C of Fig. 1, and that furthermore,In(1/xg) increases X[[p(&1:P)p(&2:P2) - - - p(&)m s Pm) 1]-
asXxg is decreased into regions A and B. This suggests that (A1)

the quantum corrections may be more manageable in region

C: a leading-log calculation to resum these contributionsSimply inserting two copies of EqA1) into the master for-

might suffice. Considerable effof6,24,27—3] has already mula(3.2) leaves us with a bewildering array of contractions

been made with the goal of dealing with the quantum corwhich must be performed. A more efficient way to proceed is

rections in the very smaky region whereagn(1/xg)>1. to organize the computation in two stages, as was done in
The values ok we have considered in this paper are in Ref.[5]. First, we consider all of the ways in which pairs of

the regime where the gluons begin to probe the longitudinap’s within a smgIeA'(q” X) may be contracted. We will see

structure of the nucleus. A description of the physics in thisthat these self-contractions exponentiate provided iRt

situation must begin with a fully three-dimensional frame-<1. Afterwards, we will deal with the mutual contractions,

work and a source which is slightly off of the light cone. We where onep comes from each factor wﬂ(q” X). In the end,

have solved the Yang-Mills equations for such a source irwe retain exactly the same terms as were retained in[BEf.

the covariant gauge to lowest order g8, and then trans- However, the justification for keeping only these terms is

formed that solution for the vector potential to the light-conevery different from the one in Ref5], and relies heavily on

gauge, where the connection to the gluon number density ithe large nucleus approximatioa/R<1.

to be made. The determination of the gluon number density Since Eq.(Al) contains charge densities which have been

itself relies heavily on the fact that we are considering a largd-ourier-transformed on the transverse variables, it is conve-

nucleus R>a) which consists of color-neutral nucleons. nient to do the same to the two point correlation function. It

We have obtained a relatively compact expression in thigs straightforward to show that the corresponding transform

Iir?it, which sums the non-Abelian effects to all orders in of Eq. (3.5) reads

a2AY3, Forxz—0, our results match smoothly onto the pre- ., ) ,

vious treatment§s,6]. Our results for the gluon number den- (P*(&:P)P°(§] )= "KSG (£1+ €[)ip+p')

sity exhibit saturation at smatj’: instead of diverging as At ,

o°—0, the distributions approach a finite constant, as illus- XD(g=§j2(p=p"). (A2)

trated in Fig. 6. The nuclear corrections induce a pile-up of

gluons atg?~v?, where v?xA¥AZ . In addition, the 1. Self-contractions

gluon structure functions which we obtain grow Iess rapidly In th|s subsection, we W||| show that the various non-
in Fig. 10. arranged into an exponential factor. We will use the normal-
ordered notation-:- -: as a bookkeeping device to indicate
which factors are not to undergo further self-contractions.
We begin with the observation that the contraction be-
This research is supported in part by the Natural Sciencesveen p(§1;p1) and p(§2;p,) vanishes identically: Eg.
and Engineering Research Council of Canada and the Fond82) is symmetric in the color indices, whereas the factors

ACKNOWLEDGMENTS
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being contracted are antisymmetric, appearing in the inner3(b)]. Suppose we consider a term in which we contract the
most commutator. non-adjacent factorg(&;;p) with p(&);;p;), where j>i

Next, we show that in the lim#/R<1 (i.e.,A¥3>>1), the  +1: an example of such a contraction is illustrated in Fig.
only non-vanishing self-contractions are between adjacer(a). The relevant longitudinal factors coming from this type
factors ofp [such as the self-contraction illustrated in Fig. of contribution reafl

f_mdyni f_xdyuj@(y\\i—l_Y||i)®(y\|i_yHi+1)®(y||j—1_Y|\j)®(y||j_ij+1)

X f:dfui f:d§||jexlﬂ( —pilyji— &l exp(—psly) — €DSG(&i+ &)ipi+PIDEi— €552 (Bi—p)),  (A3)

where the® functions encode the ordering required in §hentegrations. To see how this contribution is subleading when we
make the large nucleus approximation, we first introduce

Yii=yi—€is Y=Y~ &; (A4)
in favor of §;; and§;, followed by
D=2y Yty =Y Ay Yy Y (A5)

to replacey); andy); . The Jacobians of both transformations are unity. Hence(A&zR). becomes

f_wdz\\f_di\lj_deHif_deIIiG)(yHi—l_Ell_%AH_YHiW(EH"'%AH"'YIH_y\|i+1)®(ylli—1_2|\+%AH_YHJ)

XO(Z= 381+ Y =y D exp —pil Yl = p | YD SE 5 pi+p) DA 3(p— 1), (A6)

Recall that the functiod(Z) is nonvanishing provided that The ®-functions in this expression tell us tha should lie
I$|=R. Likewise, the functionD(4) is dominated by the ~Detweenyj;_, andyj;., on one hand, antsimultaneously
region wherd A|<a. Therefore, as far as the transverse in-lie betweeny);_, andy;, on the other. However, thy's
tegrations are concerned, the integrand in @®) is domi- &€ ordered, and since we are considering non-adjacent fac-

nated by the regio;>A;. Neglect ofA relative to3 in ~ t0rS, j>i+1, these two ranges do not overlap. Thus, Eg.
the ®-functions will result in errors of ordea/R. Further- (A7) vanishes, and we conclude that the contributions from

more, the exponential factor restricts the valuesYgf and contraction between non-adjaceris are suppressed by one

Y|; for which the integrand is significant to/;,Y ; or more powers oB/R relative to contributions from con-
=Pi.p;j- So unless the region wherg or p; is =l/ais tractions between adjacepts.
important, we may also dropY; and Y|; from the Now that we know which self-contractions may be ig-

©-function arguments. However, we know that the typicalnored, let us begin a term-by-term examination of the series
momenta assocu:;tted With(X:pi+p) are |pi+pj|~}/R' in Eg. (A1). We will denote themth term in the sum by
whereas the typical momenta associated Wil ;3(p; AJ(m)(q”;x), The first term,AJ(l)(qH;x), has only a single

-p)) are%[pi—pjhl/a_l. Together, these constraints imply factor of p. Thus, we trivially obtain
that the main contributions to the integral occur wipeiand

p; are back-to-back to within an amount of ordeRl/and

they each possess a magnitude of order Trhus we con- i . Al oL

clude thatY|; and Y|; are indeed of ordes, and may be Ay (1) = Ag)(Q)x)+- (A8)

dropped from thé -functions. Making these approximations

in Eq. (A6) yields o _ _ ] )
Likewise, since the only possible self-contraction which we

o) o] oo oo . . J . .
f_ dz”f_ dA”J: dYHiJ_ dY ;O (y)_1—3)) g;);lion&der extracting from,,(q;x) vanishes, we have

XOZ=Y)i+)OY)j-1=2POE|~Y)j+1)

Xexp( = pil Yyl = pjl Y ;DS ip+p) DA 3(pi—P)))-
PPl =P DSy m+p) DA 2 (mi—py) ®The additional factor of expfigjy;) which would also be
(A7) present ifi=1 does not affect the outcome of our argument.

114023-15



C. S. LAM AND GREGORY MAHLON PHYSICAL REVIEW D62 114023

2)(q‘| X)—: A(z)(q” X):. (A9) For a spherically symmetric nucleuB, is an even function
of Aj. Thus, we conclude that tha integration simply

At third order, in addition to the contribution where we completes the Fourier transform 2, with the longitudi-
choose to do no contractions, we have a term which is gemal momentum evaluated at zero:

erated from contracting(£),;p.) with p(&3;ps). The color
algebra associated with this contraction is straightforward:

2 %
P [p(&1:p0), T2 T°I=Nep(£j1;p1).  (A10) WD(O,Z(pZ p3))f HldEHS(EH ‘Pt ps). (Al4)
The interesting longitudinal factors read
© o o o Applying the results in Eq9A10) and (A14), we find that
f dY\\zf dstf dfuzj d&s0 Y~y
X O(y2—Yjz)exp — PalYj2— &2 exp( — pa|y|s— &j3l) ) d?p, Py ooy
Al () 3%)— Al (G :%): +@( g )f 277 2p, PL
XSG (&2t &13)i P2+ Pa)D(Ej2— €13 3(P2—P3)). (All)
We again make the variable changes indicated in E$) X fw dyjexp( —idyj.)
and (A5), producing —o
f dznf dA”f dYHZJ dYH3 X fﬁxdgﬂlexq_p1|y\|1_§|\1|)
X @(yHl—EH— %A”— YH2)®(AH+YH2_YH3) X:[[p(&; pl)]]:{_ %Ncg‘lKaF(yHl ;X,X)}'
X exp(— pa| Y2l —ps| Yyal) (A15)

. .1
X S(Z:P2+Pa) D(A) 2 (P2~ Pa)). AL2) Eq. (A15) we have introduced the function
We may apply the large nucleus approximation to digp
and Y, relative to in the first ®-function appearing in
Eqg. (A12). However, the same arguments which allow us to 2K 42K e ikx @ik X’
do so also tell us thad, Y|,, andY; are all of ordera. T (x: %X )_J I dEHJ J -
Hence, the secon®-function cannot be simplified. Never-
theless, droppind/'|, and A from the first ®-function is

sufficient to allow the integrations oxij, andY |3 to proceed X S(X);k+k)D(0,5(k—k")), (Al6)
easily, yielding
4 . . . _
W dEH@(yHl 3)S(3 P2+ Pa) Y;gg: will prove to be useful as we proceed with the calcu
At fourth order, there are two different non-vanishing
> foodA”D(A” 1(po—pa)). (A13) contractions. Their contributions differ only in the range of
0 the X integration, and combine neatly to produce

z)zfdplfdpzple 'P1 X g~ P2

P1

Alay(G)33) =1 Algy(g) X )+—(Ig f d?yy exp(—iqy)

19q

X fﬁwdzfuexq —Palyj— &l = Palyj2— &2D): [ p(&11;P0) p(€12;P2) 11:{ = NG K3T (y)1;%,%)}.

(AL7)

Finally, at fifth order, in addition to the three different ways to perform a single contraction, we encounter a contribution
containing two contractions. The result of a straightforward computation is
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Al X ‘Al )+ ——(i
(| )— 5)(a) ;X ngl(g

2)3j dzplj dzsz &°p; py e""lxe"p2x R

d3y) exp(—i
T J )1 €XP(=id)Y)a)

3
Xfiwdséu ex;{ _;1 p||Y||—§||||)1[[P(§||1;pl)p(§|2;pz)p(§3;p3)]]1{—%Ncg4K3F(Y|1;X,X)}

Dy Py * . *
+—(i 2f — "F’l"‘f dyj.exp( —i f déjexp(— -
ng”( 9% | 7.2 Ty _dypexp(—iayy) | déexpl PalYj1— &pl)

1 1
X (L& 1157 = 2Neg* KET (a5 %, )32, (A18)

At this stage we can see the pattern which is emerging. When we choose to do no contractions, we get back the series for
A'(qH X), but normal-ordered. Starting at third order, we have the option of doing at least one contraction. Choosing to do
exactly one contraction at each order produces a series which is nearly the wd(ecfgrx) but with an extra factor

= 2Ng* K3 (y)1:%,%) (A19)
inserted into the integrand of each term. At fifth order, we may elect to do at least two contractions. Doing exactly two

contractions in each term again nearly reproduces the serie¥ (far;x), but this time with an extra factor

1 413
27 —3Ng*K3T (y)1;%,%)} (A20)

in the integrand. In like manner, all of the terms in which we do exgotigntractions sum up tnearly produce the series
for Al(q);x), but with the extra factor

(= BN KT (y 0} (A21)

Thus, we conclude that systematically accounting for all possible self-contractions results in

pl P1j d?p e 'PrX
= 2ym Y a-ipge -
Al(q;x ng‘ 2 (ig*) 72 2p, 5 € {HZ a2 2p,

J_wdmymexp( —iqpyp)

X fidmﬁexf{ —21 Pi|Yi—§i|) [Lp(&2:P0)p(&12:P2) - - - p(&jmiPm) 11:€XB{ — 3NG*KET (y)15%, %)}
(A22)

2. Mutual contractions

We now insert the required two copies of E§22) into Eq.(3.2), the formula for the gluon number density. Because all
of the self-contractions have already been accounted for, we may only multiply terms which contain the same ngisper of
leading to a single surtrather than a double symrThus, we obtain

2
dN d2 jdleelq (x— X)E fdzplf d pl Py pl —lpl-X—ipi-X'
dgd’q 797 q) 4m® 4p;p;
d2p, [ d?p e P x| e . , _ ,
8 .=Hz fﬁ 472 " 4pp| f_xdmymf_xdmymexli—'qn(ynl—wl)]

Xf dm&\\f dmg)’ exp{ —21 (pi|y|i_§||i|+pi,|yi,_gi,|)}

X(Tr(T2:[[p(€j1;P0) - - - p(Ejm:Pm) 11D Tr(TE[[p(&11:PD) - - - (& P 110))
X exp{ — 3 Neg*K3[ T (y)1;%,%) + T (yj1;x",x") 1} (A23)
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Using an argument exactly analogous to the one in E&R)—(A7) it can be shown that the only non-vanishing contribution
to leading order in powers @f/R is obtained by performing “corresponding” contractidi&e the contractions in Fig.(d)],
that is, p(§);;p;) with p(§\\j’ ;pj/) for all j. “Crossed” contractionglike Fig. 3(c)] are suppressed by one or more factors of

a/R.
The color algebra associated with the corresponding contractions involves the expression

T=Tr(T3[TaTl2 .. T Y Tr(T[[T'1T'2. . . T'm]]). (A24)
The required sums are easily evaluated by beginning with the innermost commutator:
[T, T2] [ T2, T'2] 5= 122 (T0) i £ 112 TY) 5= = Ne(T) 1p(TD) 5. (A25)

The result of inserting EqUA25) into Eq. (A24) has the same structure as we started with, but with one less commutator.
Repeating this process until just two color matrices remain in each trace and doing those traces yields

= 3 (NZ=1)(=Ny™ L, (A26)

Now let us consider the longitudinal integrations. The relevant factors are

fxdmyfxdmy’fwdm§|fwdm§|’exp[—iq(yl—yni)]exp{ —Izl (pilyp—&pl+o/lyy —&il)

m

X exp — %Ncg4K3[F(y”1;x,x)+F(y||1;x’,x’)]}j[[l Oy 1= YO - 1= Y )SG (& + &P+ )

XD(E— & 52(p—p)), (A27)

where we have defineg|,=y|o=2 for convenience. We perform variable changes which are completely analogous to those
in Egs.(A4) and (A5) and once again apply the large nucle&(a) approximation:

f deHJ dmA”J d YHJ de” EXF[—IqH(AHl+Y”1 Y||1)]6X4 _I:E]_ (p||YH||+p|/|YH|,|)

m

XGXP{—%Nc94K3[F(E||1:X,X)+F(2\|1;X'.X’)]}Jﬂl O 1= ZPSEyp+p) DA 2(p—p))).  (A28)
The necessarY andYH’ integrations are all easily performed using
o Zp
J dY” exr(—quY||—p|YH|) + (A29)
_ q|
The 6 integrals simply finish Fourier-transformirig on the longitudinal coordinate:
| asjexa—iaa i o-p) =By - p). (A30)
Applying these considerations {828) produces

f 2”1p1+q| ,2+q25(2||1,p1+P1)D(Q||,z(Pl p1))

4
X exp = ENg KT (S)2:%, )+ T(S % X)) f d"- %H oo SCE1 PP DO~ (A3D

Notice that theX, | integrations have inherited the ordering associated with the gauge transformation. When we inge&1Eq.
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back into Eq(A23), the portion of the resulting ordered integrand involving, . . . ,%|, is symmetric, allowing us to do the
sum onm to obtain an exponential. Including the color factor contained in(Eg6) we arrive at
d2 d2 e~ ipy-x— |p1
5 =K3( d2x szx’e'q (x—x )f dzHlf pl pzl( Py Py
dqyd°q "7 (pi+af)(pi+af)

XS(Z1;p1t pi)@(qu 3 (P PD)EXPING KT (Z1:%,X) = 3T (Z1:%,%) = 3T (Zy0ix' x) 1. (A32)

To proceed further requires us to apply the consequences of the large nucleus approximation to the transverse coordinates.
To see how this works, let us examine the functidm bit more closely. From EqA16) we may write

d2p e—ip-(x—x’)@(o'p)
2 t
47 (p+30)%(p—30)?

where we have changed variablesgee k+k’ andp=3(k—k’). Recall from the discussion in the paragraph following Eq.
(A6) that the values of the momenta associated Witdreg~ 1/R whereas those associated withare p~ 1/a. This suggests
that we may negled in the two denominators of EgA33), the error being suppressed by a factoatR. However, we must

be careful. The combination appearing in the square brackets ¢fABg) can be shown to be infrared finite provided tiat

is rotationally invariant and satisfies the color neutrality condition. This is true to all ordex&RinWhen dropping terms
which are higher order i@/R, we should avoid introducing an infrared divergence, since none was present in the original
expression. Therefore we write

C(Zxx) = 20 (2 15%x) = 3T (Z1;x ,x)

s d? d%p D(O, a
Hldz\lf 4 7|q(x+x)/28(2”, )f47Tp ( p)[ —ip-(x=x") _ ]+O ﬁ

d?
F(EH]_;X,X,): Hldznf q 7|q (x+x’ )/ZS(EH q)f (A33)

) , (A34)

that is, when we drog from the denominators we should
simultaneously adjust the exponential multiplyisgto be =K3(N? 1)—2—— d?x fdzx’e'q (x=x")
identical in all three terms. The advantage of the form condqlld q q

tained in Eq.(A34) is the decoupling of the two momentum o

integrations. The integral apjust convertsS(S;q) back to Xf denlﬁ(qH;x_x’)$(2\|1,%(x+xf))
a purely position-space quantity. Tipeintegral defines the
function

X exp{ N.g*K3L(x—x")

2 21
L(x )_f dp D(p4 p)[ —ip PX_1], (A35) X B dEHS(EH ,%(X+X’))], (A37)
where we have introduced the quantity
Thus, %p p*D(qy, p)
L(qy;x J’ —— e PX A38
(qp:x)= yp ) (A38)
N ) .y Finally, we apply the chain rule to do the integral ogy,
F(EjixX) =3 0(E %) =30 (3%, X") and switch to sum and difference variables for thandx’
integrations:
L( ')F'ldz S(S1 (XX )+ 0 a) a1
=L(X=x [S(2 2 (X+X R/ —K3(N2 anzi.A .Jz
—w =K°(NZ—-1 — [ d*Ae'Y2L(q;A) | d°Z
dqd% (Ne=1)—= a (q;4)
(A36) x
exp| g4NCK3L(A)f d>S(2 ,):)} -1
X .
Treating thep, and p; integrals of Eq.(A32) in a similar g*NKL(A)
manner and applying E¢A36) yields the expression (A39)
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3. Geometric dependence

In order to perform the¥ integration appearing in Eq.

(A39), it is necessary to specify the geometry of the nucleus.

We will consider two cases, cylindrical and spherical.
A cylindrical nucleus is described by the function

S(£)=0(R*~3%)0((3h)*~=f), (A40)

where R is the radius of the cylinder and is its height.
Actually, the height will drop out of the final result, since Eq.
(A39) depends on

stjo dEHS(EH 2)=K3hO(R?*-3?)

3A

1 2 2
:Z_NCW_Rz@(R —E ) (A41)

The X integral which results from inserting E¢A41) into
Eq. (A39) is trivial, producing

dN
dgd®q

2a 1 .
=3ACe ?a; q—”f d’Ae'T4L(q);A)

exp{[3Ag*27R?]L(A)} -1
[3Ag*27R?]L(A) ’

(A42)

which is equivalent to the portions of Eq5.18—(5.24) per-
taining to cylindrical geometry.

Turning to the more realistic case of a spherical nucleus,

we have
fjo d2||3(2\\,2)=fjc dE\\@(RZ—EZ—Eﬁ)

=2/R?-X%0(R?~32),

so that Eq(A39) becomes

(A43)

dN
dagd?q

204 lf .
— | d?Ae'%AL(q;;A deE
7 q (q;;4)

=K3(NZ-1)

exp{2g*NK3L(A) VR*— 2?0 (R*—322)1 -1
X 9°NK3L(A) '
(A44)

Thus, theX integral hinges upon the form

Z= f RdEE[exr(Q\/Rz—EZ)—l]. (A45)
0

This integral is easily performed by the change of variables

s=0JR?°-3% sds=—-Q%3d3. (A46)

Then

PHYSICAL REVIEW D62 114023

— 1 ar S__ — 1 _1 2 QR _
Z= ds 65— 1)=—[1—- L (QR)2+e*R(QR-1)].
0Z), 0?2
(A47)

Applying Eq. (A47) to Eq. (A44) leads to the result

dN
dgd?q

2a4 1 .
:3AC|: ﬂ__azs q—”j dZAelq.AE(qH A)

X 2L(A)?+[v2L(A)—1]

3 1
Pt

X exdv?L(A)]}, (A48)

wherev?=9Ag*/47R?.

APPENDIX B: CALCULATIONAL DETAILS
FOR THE POWER-LAW MODEL

1. Useful integrals

All of the integrals required to compute the functions
L(q);x) and L(x) which appear in the integrand for the
gluon number density for the power-laWyukawa-like
model introduced in Sec. VI may be derived from the forms

Z1,= qui 7 7 e_lq:z 7w (BD)
7 (q°+agp)[1+b(g°+qj)]
and
Izwzf dzi > 229_'q: o, (B2
Am® (q°+q)T1+b (9" +qj)]”

Since thew— 0 limits of Egs.(B1) and(B2) are smooth, we
may simply setw=0 to obtain the necessary single-
denominator integrals. Because the procedure for performing
both integrals is essentially the same, we will describe the
computation forZ,, and simply quote the result far,, .

The computation ofZ,, begins by introducing a single
Feynman parameter to combine the two denominators:

w(wtl) 1 4
IZ(UZTJQ dz z (1-2)

|

In order to deal with theq integration, we introduce a
Schwinger parameter to promote the denominator into the

exponential;
f dAX o+l f
0 0

dzq e—iq~x

472 (P+ qﬁ+ zIb%)e*?”

(B3)

1

1
- - -1 _
=57 (o= D) dzz Y1-2)

IZw

d? .
X f 4_;qze—|q~xe—)\(q2+qﬁ+zlb2)_ (B4)

The g integration is now Gaussian, and may be performed in
the usual fashion, with the result
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T, = 1 ;fwd)\)\“’ex _EX_Z_)\ 2 1 o 1 21-112
20" 2702 (0—1)1 Jo x4 M Tio=5_1 Kolxq) = Z r o7 [1+(qu) I
1
171 _ >\ a—2\/b? X
X JO dzz’ (1 Z)e . (B5) XK, E 1+(bq”)2)] (BlO)
The z integration is straightforward, yielding 2. Computation of £(q;x) and L(x)

Equation(5.19 defines the function which governs the

R Y 1 x? Abelian portion of the integrand for the gluon number den-
~\/b
Tow= d)\ l-e 20 m p XNz )\QH sity. For the power law model, it is helpful to rewrite the
numerator using?=p®+qf—qf :
1 =d\ 1 1[N )
L[ aew 1] e [0
4 o A <6 11\ b? L(g);X)= f e P -
a: 472 |l (PP ad)’
X p{ L -\ } (B6) 1
ex qH
N4 X|1— B11
[T (P DT (B

It is convenient at this stage to introduce the dimensionlesf terms of the integraléB1) and(B2) introduced in the first
integration variable&=\/b?. Doing so and performing a bit part of this appendix, we have simply
of algebra we arrive at

£(0)20=3T10- 301 To0~ 371+ 37T, (BL2)

b2 [« 1/ x\?
Iszﬁj dgex;{——(%) —g(bq”)z} A straightforward substitution of the results contained in
7 Jo & Egs.(B9) and(B10) leads to
oo, on—Els) —evar
———w| —exg— z|5z| — @
a2 ) €N " Elm) TP £(a)0= = 7—(2,0)*Ko(xp)
b2 w— 1 w— B .
e fd&"l LIS Y X )@
4mish jt2a,) [1+(a,q)?]"™
1 x)2 b )? X
xexp — ¢| 5p| —EL1+(bap’l). XKj| ——V1+(a,q)) ) (B13)
®7) ’

The determination of (x) from Eq. (5.20 is a bit more
dmvolved The difficulty lies in the fact that it is not possible
to integrate Eq(5.20 term-by-term, as the individual bits
are infrared divergent. To work around this difficulty, let us
define the auxiliary function

The ¢ integrals may be performed to produce modifie
Bessel functions, as seen from Eg§.471.9 of Ref.[32]:

Fd M—lexp(—é— )=2<§)M2K (2\By)
L ayy y W S K ),

(B8)

e—IpX

2
Ls(qH:X)EJAm (p2+q‘)2 D(qy.,p). (B14)

Then, the integral we seek may be determined from the re-

which is valid for all values oju, provided tha{3 andy are lation

positive. Thus, we arrive at

L(x)= lim [Lg(ay;x)—Ls(qy;0)]. (B15)
b? 1 to-lx) 90
Tow=5_ 2b bay K1(Xq)) — wKo(xq)) + Z TR
I ' The computation ofLz(q;;x) is straightforward: inserting
the power-law form ofD given in Eq.(6.1) we see that

X
X[1+(bQ|)2]_”2K|(BV1+(bQ||)2)]- (B9)
L3(q) ;%) =Zo0— L5, - (B16)
The analogous treatment of E@1) yields Thus, the application of EqB9) gives
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&’
L3(qH;x)=—2— Ko( \/1+(awq||)) Ko(xq))
azw—I !
2—21 |\ 2a, [1+(a,q)?] "
XK V1+(aMQ|)z) (B17)

To determinel (¢ ;0) from Eq. (B17) we require the fol-

lowing forms of the modified Bessel functions for small val-
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2

- 1+(a,q;)?
La(qy;00=7— (2.9 }

w—| 1

[1+(a,ap’]" (B19

Subtracting Eq.(B19) from Eq. (B17) and taking theq
—0 limit gives the final result

ues of the argument: a2 X X
=— +In| -—| +
L(X) 2 KO a, In Zaw YE
|ﬂ(§) ye, M=0;
K, (z) — (B19) a2 1 1/ x\'" [x
#0, "on 2 11\ 2a a,
where v is Euler's constant. Consequently, (B20)
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