
PHYSICAL REVIEW D, VOLUME 62, 114023
Longitudinal resolution in a large relativistic nucleus: Adding a dimension
to the McLerran-Venugopalan model

C. S. Lam* and Gregory Mahlon†

Department of Physics, McGill University, 3600 University Street, Montre´al, Québec H3A 2T8 Canada
~Received 14 July 2000; published 9 November 2000!

We extend the McLerran-Venugopalan model for the gluon distribution functions of very large nuclei to
larger values of the longitudinal momentum fractionxF . Because gluons with larger values ofxF begin to
resolve the longitudinal structure of the nucleus, we find that it is necessary to set up a fully three-dimensional
formalism for performing the calculation. We obtain a relatively compact expression for the gluon number
density provided that the nucleus is sufficiently large and consists of color-neutral nucleons. Our expressions
for the gluon number density saturate at small transverse momenta. The nuclear dependence we obtain is such
that the number of gluons increases more slowly than the number of nucleons as the size of the nucleus is
increased.

PACS number~s!: 24.85.1p, 12.38.Bx
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I. INTRODUCTION

The recent construction and commissioning of t
Brookhaven Relativistic Heavy Ion Collider has led to a
newed interest in the properties of heavy nuclei in rec
years. A considerable amount of fruitful work has been do
on classical and semiclassical descriptions of the physics
volved @1–19#. In particular, the McLerran-Venugopala
~MV ! model@1–5# provides a framework for calculating th
gluon distribution functions for very large nuclei at ve
small values of the longitudinal momentum fractionxF .
What McLerran and Venugopalan realized is that, at su
ciently smallxF , the gluons are unable to resolve the lon
tudinal structure of the nucleus, meaning that many qua
contribute to the color field at each value of the~transverse!
position x. This large charge per unit areak2 provides the
scale at which the strong coupling is evaluated@1#. Thus, if
k2@LQCD

2 , a classical treatment ought to provide a reas
able description.

Recently, we pointed out that the infrared divergenc
which appear in the MV model may be cured by incorpor
ing the effects of confinement@6#. That is, we observe tha
nucleons display no net color charge: individual quarks
confined inside the nucleons, whose radius isa;LQCD

21 . As a
consequence, we expect that there should not be long r
(@a) correlations between quarks. Strong correlations
tween quarks occur only when we probe at short dista
scales. These considerations may be phrased as a mathe
cal constraint on the form of the two-point charge dens
correlation function.

The calculations presented in Refs.@1–6# all assumexF to
be small enough so that the gluons do not probe the long
dinal structure of the Lorentz-contracted nucleus which th
see. Effectively, then, the relevant geometry is tw
dimensional, with the source exactly on the light cone.
this work we extend the MV model to larger values of t
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longitudinal momentum fractionxF . In this regime, the glu-
ons begin to resolve the longitudinal structure of the nucle
therefore, we develop a fully three-dimensional framewo
using a source that is not quite aligned with the light cone
order to deal with the complications which arise as a res
we must rely heavily on the fact that we consider a lar
nucleus of radiusR@a which consists of color-neutra
nucleons.

The remainder of this paper is organized as follows.
Sec. II we present our conventions for writing down the cla
sical Yang-Mills equations and describe the~slightly! off-
light-cone source which will be the foundation of our calc
lation. We show that the natural~order unity! variables to
describe the nucleus are essentially those in the nuclear
frame, even in the limitb→1. In Sec. III we set up the
framework for determining the gluon number density in t
Weizsäcker-Williams approximation. In this section we in
troduce the two-point charge density correlation functio
and review the color-neutrality condition@6# which it must
satisfy. Section IV contains a discussion of the requireme
which must be satisfied in order for our approximations to
valid. The meat of our calculation is contained in Sec.
where we begin with the solution for the vector potential
the covariant gauge, perform the transformation to light-co
gauge, and determine the gluon number density. Additio
details of this calculation are found in Appendix A. We i
lustrate our results for the gluon number density with t
help of a power-law model for the correlation function
Sec. VI. The integrals which arise in connection with th
model are presented in Appendix B. Finally, Sec. VII co
tains our conclusions.

II. THE CLASSICAL YANG-MILLS EQUATIONS
AND SOURCE

In this section we present the conventions which we
in writing down the Yang-Mills equations and source for
nucleus which moves down thez axis with a speedb,1.
The motivation behind the choices we have made is to
sure that all ‘‘unknown’’ quantities are of order unity, wit
all powers of the small and large parameters explicitly w
ten out. This will make the approximations which we w
have to make later on more transparent. It will also make
©2000 The American Physical Society23-1
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b→1 limit which we take at the end obvious.
We begin with the classical Yang-Mills equations, whi

we write as

DmFmn5gJn, ~2.1!

where we have employed matrix form, i.e.,Jn[TaJan, etc.
The Ta are the normalized Hermitian generators of SU(Nc)
in the fundamental representation, satisfying 2 Tr(TaTb)
5dab. The covariant derivative is

DmFmn[]mFmn2 ig@Am ,Fmn# ~2.2!

and the field strength reads

Fmn[]mAn2]nAm2 ig@Am,An#. ~2.3!

The conventions contained in Eqs.~2.1!–~2.3! ensure that all
powers of the strong coupling constantg are explicit, with no
hiddeng-dependence.

We now turn to the source appearing in Eq.~2.1!, starting
in the rest frame of the nucleus. Using the subscript ‘‘r ’’ to
denote rest frame quantities, the current takes on the sim
form

Jr
05r~2zr ,xr !; Jr

15Jr
25Jr

350. ~2.4!

The color charge densityr[Tara is a spherically symmetric
function which is non-zero over a region of sizeR, the radius
of the nucleus. Since in the lab frame we want the nucleu
be moving along the1z axis, it is convenient to use2zr for
the longitudinal coordinate in Eq.~2.4!. The transverse coor
dinatesxr andyr form a two-vector which we write in bold
face: xr . In terms of the light-cone coordinates1 x652x7

5(x06x3)/A2, Eq. ~2.4! may be written as

Jr
15Jr

25
1

A2
rS 1

A2
~xr

22xr
1!,xr D ; Jr50. ~2.5!

The net color charge of the nucleus is zero:

E dzrd
2xr r~2zr ,xr !50. ~2.6!

The nucleus is not a homogeneous sphere of color charg
has substructure. Because of confinement, there are sm
regions of sizea;LQCD

21 within the volume occupied by the
nucleus for which the total color charge also vanishes. Th
regions correspond to the nucleons. For a large nucl
a/R'A21/3!1.

Boosting to the lab frame, where the nucleus moves al
the 1z axis with a speedb, Eq. ~2.5! becomes

1Our metric has the signature (2,1,1,1). Thus, the scalar
product in light-cone coordinates readsqmxm52q1x22q2x1

1q•x. We will think of x1 as the time, andx2 as the longitudinal
distance.
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J15
1

«
rS 1

«
x22

«

2
x1,xD ; J25

«

2
J1; J50, ~2.7!

where we have defined

«[A2~12b!

11b
. ~2.8!

Viewed in the lab frame, the nucleus is Lorentz-contracted
a thickness of orderR/g, where, as usual,g[(12b2)21/2.
For large boosts the charge density function is non-zero o
whenx2;«R. Hence, the longitudinal argument in Eq.~2.7!
is really of orderR, leading us to define the new longitudin
variable

xi[
1

«
x22

«

2
x1. ~2.9!

The current appearing in Eq.~2.7! is a function of (xi ,x)
[xW . The use of the notation ‘‘xW ’’ is suggestive of the fact
that, in terms of the natural~order unity! variables, the func-
tions describing the nucleus arestill spherical. In fact, xi is
just the ~unboosted! longitudinal coordinate from the res
frame. The advantage of usingxi instead ofx2 should be
obvious: to take theb→1 («→0) limit for quantities written
in terms ofxi is trivial, whereas if the same quantities we
written in terms ofx2 instead, we would have to be caref
to hold x2/« fixed.

Because of the choice made in Eq.~2.4!, we define

qW •xW[2qixi1q•x. ~2.10!

We will also use the notationd3xW[dxid
2x. All of the func-

tions we will be dealing with will depend only on the pa
ticular combination ofx1 and x2 appearing in Eq.~2.9!.
Thus, we have the replacements

]1→2
«

2

]

]xi
[2

«

2
] i ; ]2→ 1

«
] i . ~2.11!

The divergence of the current in Eq.~2.7! vanishes:
]mJm50. In QCD, however, we require that the current
covariantly conserved:DmJm50. Since we are at weak cou
pling, we may work iteratively. That is, we first solve th
Yang-Mills equations using Eq.~2.7! for the source. The
resulting solution will violate the covariant conservation co
dition by an amount of orderg2. The value ofDmJm which is
obtained could, in principle, be used to correct the curren
this order given the non-Abelian equivalent of the Loren
force equation to provide information on how the color
the quarks making up the source changes upon emission
gluon. Since we are assuming thatg2!1, we will simply
drop these contributions.

As suggested by Eq.~2.10!, we will use the notationqi
for the component of momentum conjugate toxi . To make
the connection with the longitudinal momentum fractionxF ,
let the gluon carry a momentumq1 and the nucleon a mo
mentumQ1. Then,
3-2
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LONGITUDINAL RESOLUTION IN A LARGE . . . PHYSICAL REVIEW D 62 114023
xF[
q1

Q1 5
«q1

m
, ~2.12!

wherem is the nucleon mass. However,

q1↔ i ]2↔ i

«
] i↔

qi

«
. ~2.13!

Thus, we conclude that

xF[
qi

m
. ~2.14!

Once more note the advantage of the rest-frame varia
over the light-cone variables: in terms ofq1, we would have
to take the«→0 limit with the caveat that the combinatio
«q1 is held fixed. No such complication arises when we u
qi instead.

III. COUNTING GLUONS

Next, we turn to the formula for the gluon number de
sity. Recall that the standard expression reads@20#

dN

dq1d2q
5

q1

4p3E
2`

`

dx2E
2`

`

dx82E d2xE d2x8

3e2 iq1(x22x82)eiq•(x2x8)^Ai
a~x2,x!Ai

a~x82,x8!&.

~3.1!

Equation~3.1! is written in terms of the light-cone variable
x2 and q1, and the light-cone gauge vector potentialAi .
The light-cone gauge has favored status with respect to
intuitive picture of the parton model@20–23#: thus we con-
tinue to use the light-cone gauge even for a source wh
moves at less than the speed of light. Based on the discus
of Sec. II, however, we wish to employ the ‘‘new’’ longitu
dinal variablesxi andqi ; therefore, we write

dN

dqid
2q

[
qi

4p3E d3xWE d3xW8eiqW •(xW2xW8)^Ai
a~xW !Ai

a~xW8!&

5
qi

4p3E d2xE d2x8eiq•(x2x8)

3^Ai
a~qi ;x!Ai

a~2qi ;x8!&, ~3.2!

where

A~qi ;x![E
2`

`

dxie
2 iq ixiA~xW !. ~3.3!

In the limit «→0, Eq. ~3.2! reduces to the previous resu
Eq. ~3.1!.

Equation~3.2! produces a gluon number density which
differential not only inqi , but in the transverse momentu
as well. To obtain the usual gluon structure function resolv
at the scaleQ2, we simply supply the trivial factor ofm
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required to convertqi into xF and integrate Eq.~3.2! over all
transverse momenta less than or equal toQ:

gA~xF ,Q2![E
uqu<Q

d2q
dN

dxFd2q
. ~3.4!

Our classical approximation to the quantum average r
resented by the angled brackets appearing on the right-h
side of Eq.~3.2! consists of performing an ensemble avera
with a Gaussian weight. We parametrize the two-po
charge density correlation function by

^ra~xW !rb~xW8!&[dabK3SS xW1xW8

2
DD~xW2xW8!. ~3.5!

The functionsS and D appearing in this definition encod
two different aspects of the physics of the nucleus. T
color-neutrality condition developed in Ref.@6# imposes the
following constraint onD:

E d3xWD~xW !50. ~3.6!

In terms of the Fourier-transformed functionD̃, this con-
straint reads

D̃~0,0!50. ~3.7!

When the color-neutrality condition is satisfied, the functi
D contains an intrinsic scale, reflecting the minimum size
the region for which Eq.~3.6! is approximately true. Becaus
of confinement, we expect this scale to be roughly
nucleon radiusa;LQCD

21 , reflecting the fact that points
within different nucleons ought to be~largely! uncorrelated.

On the other hand, the functionS( 1
2 (xW1xW8)), which depends

on the center-of-mass coordinate, should be non-neglig
over a region of sizeR;A1/3a, the radius of the entire
nucleus. We choose to normalizeS so that its total integral
simply gives the volume of the nucleus:

E d3SW S~SW ![V. ~3.8!

We have writtenV in Eq. ~3.8! rather than the43 pR3 pertain-
ing to a spherical nucleus to maintain generality and to aid
making connection to Refs.@5,6#. The detailed forms of the
functionsS andD depend upon aspects of non-perturbat
QCD which are poorly understood. However, the requi
ments specified above account for the relevant physics:
have a correlation function which takes on non-trivial valu
only for points which are close enough together to lie ins
a single nucleon (uxW2xW8u&a) and which are centered any

where inside the nucleus (u 1
2 (xW1xW8)u&R). The interplay be-

tweenS andD will be crucial in helping us to organize ou
calculation in powers ofa/R.

In addition to satisfying the color neutrality condition
D(xW2xW8) should contain a term which goes liked3(xW2xW8)
@1–5,11#. The presence of such a contribution leads to
3-3
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C. S. LAM AND GREGORY MAHLON PHYSICAL REVIEW D62 114023
pointlike 1/q2 behavior in the gluon number density at lar
q2 @6#, consistent with the physics of asymptotic freedo
This term arises from the self-correlation of the quarks. Qu
generally, then, we expect the form ofD(xW2xW8) to be

D~xW2xW8!5d3~xW2xW8!2C~xW2xW8!, ~3.9!

whereC(xW2xW8) is a reasonably smooth function parametr
ing the mutual correlations between pairs of quarks. Beca
C(xW2xW8) describes the structure of a color-neutral nucle
it must have unit integral and possess non-trivial values o
when uxW2xW8u&a;LQCD

21 . In momentum space, Eq.~3.9!
reads

D̃~qW !512C̃~qW !. ~3.10!

The color neutrality condition~3.7! implies thatC̃(0W )51.
Furthermore, for asymptotically largeqW , C̃(qW )→0, since in
position spaceC is reasonably smooth and has a finite reg
of support.

Finally, the only quantity appearing in Eq.~3.5! yet to be
specified isK3. We determineK3 by integrating the trace o
Eq. ~3.5! and replacingD(DW ) by d3(DW ): the result should be
3ACF for a nucleus containingA nucleons. Thus

K35
3ACF

Nc
221

1

V
5

3A

2Nc

1

V
. ~3.11!

IV. REGION OF VALIDITY

All of the machinery assembled in the previous two s
tions has been geared towards performing a classical com
tation of the vector potential associated with a color cha
moving down thez axis with a speedb near, but not equa
to, the speed of light. The vector potential is then transla
into a gluon number density in the spirit of the Weizsa¨cker-
Williams approximation. In this subsection we will consid
the conditions which must be satisfied in order for this tre
ment to be valid.

First, we need the couplingas5g2/4p to be weak. When
as!1, we have the possibility that the quantum correctio
will be small, making the classical result a reasonable
proximation to the full result. Several years ago, McLerr
and Venugopalan@1# observed that for a very large nucleu
or at very small values ofxF the density of quarks and glu
ons per unit area per unit rapidity is large. When this den
is much larger thanLQCD

2 , we expectas to be weak@7–9#.
The large density of color charge facilitates the class

treatment in a second fashion: when there a large numbe
charges contributing to the charge density at each point,
total will ~typically! be in a large representation of the gau
group. Thus, we may treat the source classically. In addit
the large number of quarks justifies the use of a Gaus
weight for the ensemble average via the central lim
theorem.

Under what conditions do we see a high color cha
density? And when do a large number of charges contribu
The answers to these questions depend upon the sca
11402
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which the gluon distribution is being probed~see Fig. 1!. In
the original MV treatment@1–5#, it was assumed thatxF was
‘‘small.’’ In this case, ‘‘small’’ means that the longitudina
scale resolved by the gluons is larger than the Loren
contracted thickness of the nucleus which they see:

1

qi
*R, or xF&

A21/3

ma
. ~4.1!

All of the quarks at a given transverse positionx contribute
to generating the gluon field measured at the values ofxF
indicated in Eq.~4.1!. This leads to a color charge per un
area of

FIG. 1. Approximate region where the density of color charge
large ~and henceas weak!, and sufficient color charge is bein
probed to justify a classical approximation to the quantum aver
in Eq. ~3.2!. ~A! Small-xF region of the original MV model@1–5#.
~B! Additional allowed region at smallxF when the effects of con-
finement are included@6#. ~C! Extension to largerxF discussed in
this paper. The upper plot is for a toy nucleus withA1/35250, while
the lower plot is for uranium-238.
3-4
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LONGITUDINAL RESOLUTION IN A LARGE . . . PHYSICAL REVIEW D 62 114023
k2[
3ACF

pR2 '
3A1/3CF

pa2 . ~4.2!

Asking that this density be*LQCD
2 ;a22 so that the cou-

pling as be weak leads to the condition

A1/3*
p

3CF
. ~4.3!

References@2–5# restrict the allowableq2 to the region

LQCD
2 &q2&3A1/3CFLQCD

2 . ~4.4!

The lower limit in Eq.~4.4! comes from the requirement tha
the gluons probe distances small compared to the nuc
radius. On the other hand, ifq2 is too large, an insufficien
number of quarks will contribute, no matter how big th
color charge density is. Since the amount of transverse
probed by a gluon with transverse momentumq2 is about
p/q2, we conclude that for the charge per unit area given
Eq. ~4.2!, the gluon sees an amount of charge equal
3A1/3CFLQCD

2 /q2. Asking that this be much greater than o
leads to the upper limit in Eq.~4.4!. The requirements o
Eqs.~4.1! and~4.4! restrict the range of validity of the origi
nal MV model to the region labeled ‘‘A’’ on Fig. 1.

Because the strong coupling is evaluated atk2 rather than
q2, it ought to be possible to relax the lower limit in E
~4.4!, provided that the theory is infrared finite. All that
required is a framework which captures the key conseque
of confinement, namely the fact that when viewed on la
(@a) distance scales, the nucleons are color neutral. T
observation leads to the color neutrality condition~3.6! to be
imposed on the two-point charge density correlation funct
@6#. Not only does the color neutrality condition make t
theory infrared finite, but it also limits the amount of col
charge being probed asq→0: beyond aboutq2;1/a2 the net
charge drops as complete color-neutral nucleons are pro
The net effect is to reducek2 by the factor (aq)2 from the
value given in Eq.~4.2!, leading to the less-stringent lowe
limit

q2*
pA21/3

3CF
LQCD

2 . ~4.5!

The region labeled ‘‘B’’ in Fig. 1 represents the addition
range of validity obtained in infrared finite theories by r
placing the lower limit of Eq.~4.4! with Eq. ~4.5!.

Now we turn to the main goal of this paper, the relaxati
of the condition~4.1! on xF . At larger values ofxF , the
gluons are able to probe shorter longitudinal distance sca
they no longer see the entire thickness of the Loren
contracted nucleus. The fraction of this thickness which th
do see is roughly 1/qiR;1/mxFA1/3a. Hence, the value o
k2 obtained in Eq.~4.2! is reduced by this factor, and th
coupling is weak only for

xF&
3CF

pma
. ~4.6!
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Taking ma'5, Eq. ~4.6! implies an upper limit ofxF
&0.25. At larger values ofxF , too little of the nucleus is
seen by the gluons in order for the charge density to be la
and the coupling weak, independent of how large we im
ine the nucleus to be.

Equation~4.6! is not the final word, however. As note
above, whenq2 becomes small, the effective charge dens
is reduced since we begin to see color neutral nucleo
Thus, we should further reducek2 by the factor (aq)2 in this
region, leading to the lower limit

q2

xF
*

pma

3CF
LQCD

2 , ~4.7!

valid wheneverxF is ‘‘large’’ @i.e., whenxF is larger than the
value given in Eq.~4.1!#. Likewise, whenq2 is made too
large, not enough charge is probed. The upper limit is
duced from the value given in Eq.~4.4! by a factor of 1/qiR,
to

xFq2&
3CF

ma
LQCD

2 . ~4.8!

Taken together, the constraints~4.6!, ~4.7!, and ~4.8! allow
us to extend the computation of the gluon number den
into the region labeled ‘‘C’’ on Fig. 1.

Finally, we note that the eikonal approximation which w
are using also tells us thatq2 andxF cannot get too large: tha
is, we are ignoring nuclear recoil effects.

V. GLUON NUMBER DENSITY

We now turn to the computation of the gluon numb
density within the 3-dimensional framework described
Secs. II and III. In order to obtain our result, we will have
rely on both color-neutrality and the large nucleus appro
mation extensively. Our final expression reduces to the M
result of Refs.@5,6# in the limit xF→0, but only if the
nucleus is assumed to have cylindrical geometry.

Our calculation has three stages: first, we obtain the s
tion for the vector potential in the covariant gauge. Next,
transform that solution to the light-cone gauge. Finally,
use the light-cone gauge solution along with the correlat
function ~3.5! to obtain the gluon number density from E
~3.2!.

A. Covariant gauge vector potential

The most efficient route in performing our calculation b
gins by imagining the situation in the rest frame of t
nucleus, where we consider a static distribution of co
charge, Eq.~2.4!. In this frame we have the ‘‘obvious’’ time-
independent Coulomb solution for the vector potential. Sin
only A0Þ0, we have]0A05]•A50, that is, the Coulomb
solution is the same as the covariant gauge solution. W
we boost to the lab frame then, it is natural to begin with t
covariant gauge solution.
3-5
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C. S. LAM AND GREGORY MAHLON PHYSICAL REVIEW D62 114023
The Yang-Mills equations in the covariant gauge read2

~“222]1]2!Ãn5gJn12ig@Ãm,]mÃn#2 ig@Ãm ,]nÃm#

1g2@Ãm , @Ãm,Ãn##. ~5.1!

In order to deal with these equations, we must assume
only that the source has the form indicated in Eq.~2.7!, but
also that we are in the weak-coupling regime,g!1. In par-
ticular, we assume that the commutator terms appearin
Eq. ~5.1! are negligible, leaving the simpler equations

~“21] i
2!Ãn~xW !5gJn~xW !. ~5.2!

The operator appearing in Eq.~5.2! is simply the Laplacian
in 3-dimensions. These equations are solved in the u
manner by introducing the Greens functionG(xW ) which sat-
isfies the equation

~“21] i
2!G~xW !5d3~xW !. ~5.3!

Passing to momentum space, we find that

G~qW !5
21

q21qi
2 . ~5.4!

The Fourier transform used to obtain Eq.~5.4! is easily in-
verted, producing

G~xW !52
1

4p

1

Ax21xi
2

. ~5.5!

Actually, because of the unequal treatment of the longitu
nal and transverse variables when we transform to the li
cone gauge, the following mixed representation:

G~xW !52E d2q

4p2

1

2q
e2 iq•xe2quxiu, ~5.6!

which is obtained by inverting only the longitudinal part
the transform, will prove to be especially useful. Note that
Eq. ~5.6!, as elsewhere in this paper,q meansuqu.

Independent of how we choose to write down the Gre
function, the solution to Eq.~5.2! with the source~2.7! reads

Ã1~xW !5
1

«
gE d3xW8G~xW2xW8!r~xW8!,

Ã2~xW !5 1
2 «2Ã1~xW !,

Ãj~xW !50. ~5.7!

2From this point forth, we will use a tilde to distinguish the vect
potential in the covariant gauge from the vector potential in
light-cone gauge.
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B. Transformation to the light cone gauge

At this stage, we are ready to perform the transformat
to the light-cone gauge. In a non-Abelian theory, we m
parametrize the gauge transformation as

Am~x!5U~x!Ãm~x!U21~x!2
i

g
@]mU~x!#U21~x!.

~5.8!

Since the potentials we are dealing with are functions oxW

only, we expect that U will also depend onxW only. Thus, the
requirement that the new gauge be the light-cone gauge
comes

] iU~xW !5 ig«U~xW !Ã1~xW !, ~5.9!

where we have replaced]2 by ] i in accordance with Eq.
~2.11!. The solution to Eq.~5.9! is the path-ordered exponen
tial

U~xW ![PexpF igE
2`

xi
dyi«Ã1~yi ,x!G

511 (
m51

`

~ ig !mE
2`

xi
dmyi↓«Ã1~yim ,x!

3«Ã1~yim21 ,x!¯«Ã1~yi1 ,x!. ~5.10!

In Eq. ~5.10! we have introduced the shorthand notation

E
2`

xi
dmyi↓[E

2`

xi
dyi1E

2`

yi1
dyi2•••E

2`

yim21
dyim

~5.11!

to indicate the ordered integration regionxi>yi1>yi2

>•••>yim.2`. Equation~5.7! tells us thatÃ1 is natu-
rally of order 1/«: therefore, all of the terms in the sum o
the right-hand side of Eq.~5.10! are of order unity. Introduc-
ing the expression forÃ1 into the expression for U(xW ) pro-
duces

U~xW !5PexpF ig2E
2`

xi
dyi E d3jWG~yi2j i ,x2j!r~jW !G .

~5.12!

Inserting this into Eq.~5.8!, we find that the transverse com
ponents of the vector potential read3

e

3The longitudinal component,A2(xW ) turns out to be of order«. In
any event, it does not contribute to the gluon number density, a
does not represent a physical gluonic polarization state.
3-6
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Aj~xW !5gE
2`

xi
dyiU~yi ,x!

3F E d3jW] jG~yi2j i ,x2j!r~jW !GU21~yi ,x!

5g (
m51

`

~2 ig2!m21E
2`

xi
dmyi↓E d3jW1

3] jG~yi12j i1 ;x2j1!

3S )
l 52

m E d3jW lG~yi l2j i l ;x2jl !D
3@@r~jW1!r~jW2!•••r~jWm!##. ~5.13!

The quantity in the double square brackets appearing in
last line of Eq.~5.13! is simply a multiple nested commuta
tor:

@@r~jW1!r~jW2!•••r~jWm!##

[@@@•••@r~jW1!,r~jW2!#,r~jW3!#,•••#,r~jWm!#. ~5.14!

At this stage there are no more explicit factors of« appearing
in the vector potential or in the expression for the glu
number density~3.2!. Thus, the«→0 limit is trivial to per-
form.

The expression for the gluon number density involves
partially Fourier-transformed quantityA(qi ;x). Since the
only dependence onxi itself appearing in Eq.~5.13! is as the
upper limit of the outermost of the ordered integrations,
have

Aj~qi ;x!5
g

iq i
(

m51

`

~2 ig !m21E
2`

`

dmyi↓exp~2 iq iyi1!

3E d3jW1] jG~yi12j i1 ;x2j1!

3S )
l 52

m E d3jW lG~yi l2j i l ;x2jl !D
3@@r~jW1!r~jW2!•••r~jWm!##. ~5.15!

Finally, we insert the mixed representation of the Gree
function presented in Eq.~5.6!. The transverse part of th
resultingj integrations simply Fourier transforms the tran
verse part of the charge densities:

r~j i ;p![E d2jeip•jr~jW !. ~5.16!

Hence, the light-cone gauge vector potential becomes
11402
e
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Aj~qi ;x!5
1

igqi
(

m51

`

~ ig2!mE
2`

`

dmyi↓

3E
2`

`

dmj iexp~2 iq iyi1!

3E d2p1

4p2

p1 j

2p1
e2 ip1•xexp~2p1uyi12j i1u!

3)
l 52

m E d2pl

4p2

1

2pl
e2 ipl•xexp~2pl uyi l2j i l u!

3@@r~j i1 ;p1!r~j i2 ;p2!•••r~j im ;pm!##.

~5.17!

It is useful to have a diagrammatic representation of
contributions to Eq.~5.17!. Because it turns out that the lon
gitudinal structure is significantly more complicated than t
transverse structure, our diagrams are meant as an a
understanding the longitudinal structure. Figure 2 illustra
the mth term of Eq.~5.17!. The vertical line represents th
range of theyi integrals, with each of the vertices~dots!
being the value of one of theyi’s. Because these integration
are ordered, the dots are not allowed to slide past each o
The sources, whose longitudinal coordinates

FIG. 2. Diagrammatic representation of longitudinal structure
themth-order term in the expression for the light-cone gauge vec
potential, Eq.~5.17!. The circled crosses denote the positions
which the sources are being evaluated. The dots represent th
dered integrations coming from the gauge transformation into
light-cone gauge.
3-7
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C. S. LAM AND GREGORY MAHLON PHYSICAL REVIEW D62 114023
(j i1 ,j i2 , . . . ,j im), are denoted by the circled crosses. T
lines connecting theyi’s with thej i’s correspond to the lon
gitudinal factors of the Greens functions, exp(2piuyii2jiiu).
Finally, the indexj labeling theyi1-j i1 line reminds us that it
is special: not only is the Greens function associated w
this factor differentiated~producing the factor ofp1 j ), but
there is a factor exp(2iqiyi1) left over from the longitudinal
Fourier transform which was performed on the vec
potential.

C. Determining the gluon number density

We now turn to the computation of the gluon numb
density. Because of the extended longitudinal structure,
calculation is rather lengthy. Here we will outline the path
the result with the help of our diagrammatic representati
The mathematical details appear in Appendix A.

The full calculation of the gluon number density esse
tially consists of inserting two copies of Eq.~5.17! for the
vector potential into the master formula~3.2! for the gluon
number density, and performing all possible pairwise c
tractions of the sources in each term of the result. We re
only the leading terms in powers ofa/R. There are a total of
four longitudinal integrations per contracted pair of sourc
the ~unordered! position j i associated with the inversion o
the Yang-Mills equation~5.2! for each source~represented
by the circled crosses in Fig. 2! plus the~ordered! integration
on yi associated with the transformation to the light-co
gauge~represented by the points on the vertical line!. A pri-
ori, these integrations could produce a factor ofR4 ~per pair!.
However, we shall now argue that at most they produc
factor of a3R. The key observations to make are that bo
the propagators and the correlation function^rr& ~through
D) allow for a longitudinal separation between the poin
they connect which is at most of ordera. For the^rr& cor-
relator, this property follows immediately from the colo
neutrality condition: the confining nature of QCD tells
that D(xW2xW8) should be negligible when the two points b
ing compared are separated by more than the nucleon sa
~transversely or longitudinally, since we takeD to be spheri-
cally symmetric!. In the case of the propagator, the mix
form ~5.6! is particularly illuminating: the longitudinal sepa
ration of the two points must be order 1/p or less~wherep is
the typical transverse momentum flowing in the propaga!
to avoid exponential damping of the contribution. Howev
the ^rr& correlation function limits the transverse momen
to the regionp*1/a, again because of color neutrality. Sin
the four points in question are connected via two propaga
and one contraction, three of the four integrations are
stricted to have rangea, while the remaining integration ha
the potential to roam freely over the full range of orderR.

Nevertheless, not all combinations of contractions p
duces the maximum factora3R for all pairs. Figure 3 illus-
trates some of the possible contributions at 8th order inr.
From the previous paragraph we know that each of th
diagrams could, at most, contribute four powers ofR. How-
ever, the contribution in Fig. 3~a! contains only three power
of R: the self-contraction connectingj i2 with j i4 effectively
forcesyi2 andyi4 to be at most a distancea apart. But this
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hems in the point atyi3, preventing it from independently
spanning the full rangeR. On the other hand, the self
contraction in Fig. 3~b! does not restrict the range of an
additionalyi’s: it contains the maximum four powers ofR.
Likewise, the set of mutual contractions illustrated in F
3~c! produce only three powers ofR, since the two
‘‘crossed’’ contractions cannot slide up and down indepe
dently. In contrast, Fig. 3~d! contributes the full four powers
of R, since all of the ‘‘rungs’’ may move freely through th
full vertical range.

Thus, the computation in Appendix A includes all di
grams which contain only uncrossed mutual contractio
@like Fig. 3~d!# or any combination of self-contractions be
tween adjacent sources plus uncrossed mutual contrac
@like Fig. 3~c!#. This produces the leading behavior in th
limit a/R!1. The final result reads

dN

dxFd2q
53ACF

2as

p2

1

xF
E d2Deiq•DL~xF ;D!E„v2L~D!…,

~5.18!

where

FIG. 3. Some of the contributions to the gluon number dens
at 8th order inr. ~a! Diagram containing a non-adjacent se
contraction.~b! Diagram containing an adjacent self-contraction.~c!
Diagram containing a pair of crossed mutual contractions.~d! Dia-
gram containing only corresponding mutual contractions. Diagra
~a! and ~c! are suppressed by a power ofa/R relative to diagrams
~b! and ~d!.
3-8
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L~xF ;D![
1

2E d2p

4p2 e2 ip•D
p2D̃~xFm,p!

@p21~xFm!2#2 , ~5.19!

and

L~D![E d2p

4p2

D̃~0,p!

p4 @e2 ip•D21#. ~5.20!

Despite their superficial appearance, these functions are
frared finite for a spherically symmetric correlation functio
which satisfies the color neutrality condition~3.7!. In the
Abelian limit (as

2A1/3→0), the gluon number density is sim
ply

dN

dxFd2qU lowest
order

53ACF

2as

p2

1

xF
L̃~xF ;q!.

53ACF

as

p2

1

xF

q2D̃~xFm,q!

@q21~xFm!2#2 . ~5.21!

The nuclear correction functionE encodes the non-Abelia
effects and depends on the geometry and size of the nuc

E~z!5H 1

z
~ez21! ~cylindrical!,

3

z3@12 1
2 z21ez~z21!# ~spherical!.

~5.22!

In either case, we have

lim
z→0

E~z!51. ~5.23!

Finally, the magnitude ofv2 governs the relative importanc
of the nuclear corrections:

v25H 3Ag4

2pR2 '24pas
2A1/3LQCD

2 ~cylindrical!,

9Ag4

4pR2 '36pas
2A1/3LQCD

2 ~spherical!.

~5.24!

These corrections are enhanced for very large nuclei. In w
ing down Eqs. ~5.22!–~5.24! we have assumed that th
nucleons are uniformly distributed within the volume of t
nucleus.

The result presented in Refs.@5,6# is recovered in thexF
→0 limit by usingcylindrical geometry, since these pape
assume thatm2 ~i.e. the part of the correlation function whic
corresponds toS in the present paper! is a function of the
longitudinal coordinate only. This is only true for a cylindr
cal nucleus. Actually, the difference between the two fu
tions in Eq.~5.22! is very small when the different values o
v2 indicated in Eq.~5.24! are taken into account.

Away from xF50 there are two distinct sources of fini
xF corrections: the correlation functionD̃(xFm,p), and the
propagator appearing in the Abelian result. What is perh
11402
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surprising is the fact that the functionL(D) turns out to be
identical to its 2D counterpart: it depends only on the va
of D̃ at xF50.

D. General properties of the gluon number density

Because of the similarity of Eqs.~5.18!–~5.24! to the re-
sult obtained in Ref.@6#, the properties of the gluon numbe
density which were described in Sec. IV of that paper co
tinue to hold. In particular, theD→0 behavior of Eq.~5.19!
is unchanged from the behavior of its counterpart in Ref.@6#.
Thus, we still have the transverse momentum sum rule

E d2qH dN

dxFd2qU all
orders

2
dN

dxFd2qU lowest
order

J 50, ~5.25!

even whenxFÞ0. Equation~5.25! states that the nuclea
corrections have no effect on the total number of gluons
each value ofxF : we could have obtained the same numb
of gluons by ignoring the non-linear terms in the light-co
gauge vector potential. What these corrections actually d
to move gluons from one value of the transverse momen
to another. Thus, the total energy in the gluon field at a giv
value ofxF is affected by the non-Abelian terms. The gluo
structure function resolved at the scaleQ2 is obtained by
integrating the fully differential number density over tran
verse momenta satisfyinguqu<Q @see Eq.~3.4!#. Conse-
quently, the transverse momentum sum rule tells us that
large values ofQ2, the non-Abelian effects die off, reflectin
the expected asymptotic freedom of the theory. We sho
caution, however, that unlessxF is very small, the maximum
Q2 for which our treatment is valid is not very large~see Fig.
1!. Thus, we conclude that at such values ofxF the non-
Abelian terms are always important at the~smallish! values
of Q2 for which our approximations hold.

The overall shape of the fully differential gluon numb
distribution is insensitive to the detailed nucleon structu
incorporated inD. Instead, it is fixed only by the confine
ment scalea;LQCD

21 plus the relative importance of th
nuclear corrections, governed byv2. Recall that according to
the discussion of Eqs.~5.18!–~5.24!, the nuclear corrections
are contained in the functionE„v2L(D)…. To understand how
E behaves, we need to know two facts aboutL(D). Firstly,
according to Eq.~5.20!, L(0)50. Therefore, at largeq2, the
all-orders distribution is identical to the lowest-order resu
~This is one of the observations used in Ref.@6# to derive the
transverse momentum sum rule.! Second, for a wide range o
physically reasonable choices forD(xW2xW8), L(D)<0, and
decreases asuDu increases@6#. Thus, we are interested in th
behavior ofE for negative values of its argument, which w
have displayed in Fig. 4. From the figure it is easy to see
the long-distance contributions to the integrand of Eq.~5.18!
are damped by the presence ofE. This behavior is consisten
with the confining nature of QCD, which we incorporate
into the form chosen forD by requiring it to obey the color-
neutrality condition. Independent of the other details ofD,
we find that
3-9
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lim
q→0

xF

dN

dxFd2qU all
orders

5const, ~5.26!

that is, the distribution saturates asq2 is lowered.4 Further-
more, since increasing the size of the nucleus increasesv2,
which in turn increases the amount of damping provided
E for the same value ofD, the constant on the right hand sid
of Eq. ~5.26! decreases asA1/3 is increased. Because th
large-q part of the distribution does not change, we conclu
that in order to satisfy the sum rule~5.25!, the number of
gluons at intermediate momenta must increase. Heuristic
the position space width of the non-Abelian fact
E„v2L(D)… goes like v21. This width provides a secon
length scale in addition to the scaleLQCD

21 characteristic of
the lowest-order result. Thus, we might expect that mome
of orderq2;v2 would play an important role in the resultin
all-orders distribution. According to Eq.~5.24!, we expect
v2}A1/3LQCD

2 . This is, in fact, what we observe in our nu
merical calculations: an enhancement in the number of
ons with transverse momenta of orderv2 ~see Fig. 8 in Sec
VI !. Although the idea that a new scale proportional
A1/3LQCD

2 should emerge and play an important role for lar
enough nuclei is not new@1,2,5–9,17,24,25# our results lend
further support to this concept.

VI. ILLUSTRATION OF OUR RESULTS

A. Power-law model for D̃„q¢ …

In this section we will illustrate the features of the gluo
number density described in the previous section by cho
ing a specific form forD̃(qW ), namely

D̃~qi ;q![12
1

@11av
2 ~q21qi

2!#v , ~6.1!

4The lowest order result~5.21! actually vanishes atq250 when
xF50. This may be viewed as an accidental cancellation in
integrand of Eq.~5.18! whenE[1.

FIG. 4. Plot of the nuclear correction functionE(z) for negative
values ofz and a spherical nucleus.
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where v is an arbitrary positive integer, andav[a/A3v.
This function obviously satisfies the color neutrality cond
tion ~3.7!. In terms of the Kovchegov model@11#, the choice
made in Eq.~6.1! corresponds to a Yukawa-like distributio
of quarks within the nucleon~see Sec. VI B!. The value of
av has been chosen so that the root-mean-square radiu
the nucleon in preciselya. Equation~6.1! is also convenient
in that we are able to perform the integrals in Eq.~5.19! and
~5.20! analytically ~see Appendix B!:

L~xF ;D!52
v

4p
~xFmav!2K0~xFmD!

1
1

4p (
j 50

v21
1

j ! S D

2av
D j11~v2 j !~xFmav!2

@11~xFmav!2# j /2

3K j S D

av
A11~xFmav!2D , ~6.2!

and

L~D!52
av

2

2p
vFK0S D

av
D1 lnS D

2av
D1gEG

1
av

2

2p (
j 51

v21

~v2 j !F 1

2 j
2

1

j ! S D

2av
D j

K j S D

av
D G .

~6.3!

In Fig. 5 we have plotted the integrand of the gluon numb
density ~5.18! ~omitting the exp(iq•D) factor! for various
values ofv: according to Eq.~3.2! this is just proportional to
^Ai

a(qi ;x)Ai
a(2qi ;x8)&. We see from the plots that the non

Abelian corrections become more important asv increases:
the range of the~position space! integrand decreases. Thu
we would expect to find fewer soft gluons in a model wi
larger v. Overall, however, the dependence onv is rather
weak. Therefore, we have chosen to present plots only
the v51 case for the rest of this discussion.

Figure 6 contains plots of the fully differential gluo
number density as a function ofq2 at xF50.0 and 0.1.5 Three
different values ofas

2A1/3 have been used, namely 0.0, 0.
and 2.0, corresponding to the Abelian limit, a~roughly!
uranium-sized nucleus, and a very large~toy! nucleus. In all
cases the distributions saturate asq2→0, with the turnover
occurring at a few timesLQCD

2 . This turnover is very much
like the one which Mueller sees in his calculation based up
onium-scattering@9,17#. In each plot, the maximum valu
reached byxFdN/dxFd2q decreases asA1/3 is increased. At
largeq2, the distributions exhibit the 1/q2 fall-off character-
istic of individual point charges. Figure 7 illustrates the sa
fully differential gluon number densities, but multiplied by
factor of q2. These plots are useful because the visual a
under the curves~using logarithmic horizontal and linea
vertical scales! faithfully reproduces the result of the integra
tion defining the gluon structure function~3.4!: what-you-see

e 5By xF50.0 we really mean some value ofxF in the MV region,
xF!A21/3/(ma).
3-10
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is what-you-get. From these plots, we see that the very s
q2 region makes very little contribution togA(xF ,Q2). At
very largeq2 all of the curves converge to the same result,
required by the transverse momentum sum rule. We also
a pile-up of gluons in the region of a few timesLQCD

2 . As
the size of the nucleus is increased, this peak shifts to la
q2 and increases in size. In Fig. 8 we track the location
this peak as a function ofv2. This plot clearly shows that fo
large-enough nuclei, our heuristic argument of Sec. V
claiming thatQpeak

2 ought to be proportional tov2 is very
nearly correct, with a proportionality constant close to un
WhenA1/3 is too small, however, this relation breaks dow
as the scale associated withE„v2L(D)… no longer dominates
the result.

FIG. 5. Position space correlation functions used to determ
the fully differential gluon number density from Eq.~5.18! evalu-

ated using the power-law model forD̃(qW ) given in Eq.~6.1!. The
three curves compare the results usingv51, 2, and 8 at fixedxF

50.1 in the Abelian limit (as
2A1/350) and for uranium (as

2A1/3

50.5).
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In Fig. 9 we plot the gluon structure function per nucle
as a function ofxF for various values ofQ2. Although we
have drawn all of these curves over the entire range fr
xF50 to xF50.25, we remind the reader that the maximu
xF value for which our calculation can be trusted decrea
asQ2 is increased~see Fig. 1!. Away from the very smallxF
region, we see that asxF increases,xFgA(xF ,Q2) decreases,
indicating a fall off which is more rapid than 1/xF . The
degree of dependence onA1/3 goes down asQ2 is increased:
at Q251000LQCD

2 there is very little nuclear dependence b
yond the trivial scaling with the number of nucleons.

In Fig. 10 we further explore the nuclear dependence
our result, by plotting the gluon structure function p
nucleon as a function ofas

2A1/3 at fixedxF50.1 and several
different values ofQ2. At low Q2, we see a marked depa

e
FIG. 6. The fully differential gluon number density Eq.~5.18!

evaluated in the power-law model withv51. The three curves on
each plot represent the Abelian limit (as

2A1/350), uranium
(as

2A1/350.5), and a large toy nucleus withA;15 000 (as
2A1/3

52.0). The upper plot illustrates the results forxF→0, whereas the
lower plot has been drawn forxF50.1.
3-11
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ture from the naive expectation: the number of gluons is
simply proportional to the number of nucleons. Instead,
gluon structure function grows more slowly thanA as the
number of nucleons is increased. At larger values ofQ2,
however, the nuclear dependence is reduced as the
Abelian corrections become less important.

B. Connection to the Kovchegov model

In this subsection we put our power-law model into t
context of the Kovchegov model of Ref.@11#. In this model
we imagine a nucleus of radiusR which containsA nucleons,
each of radiusa;LQCD

21 . Each of the ‘‘nucleons’’ is made
up of a quark-antiquark pair. Under these assumptions,

FIG. 7. The fully differential gluon number density Eq.~5.18!
multiplied by q2 and evaluated in thev51 power-law model.
These plots accurately reflect the relative contributions to the gl
structure functiongA(xF ,Q2) coming from each value ofq2. The
three curves on each plot represent the Abelian limit (as

2A1/350),
uranium (as

2A1/350.5), and a large toy nucleus withA;15 000
(as

2A1/352.0). The upper plot illustrates the results forxF→0,
whereas the lower plot has been drawn forxF50.1.
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@11# provides a means for computing the two-point char
density correlation function. The correlation function deriv
in Ref. @11# is applicable to the 2-dimensional case. Ho
ever, since the 2-dimensional form was arrived at from
3-dimensional one by integrating over the longitudinal va
ables, it is not difficult to modify the derivation of Ref.@11#
to cover the 3-dimensional case we are studying here. Pa
etrizing the correlation function as in Eq.~3.5! we find that

1

V
SS xW1xW8

2
DD~xW2xW8![Isng~xW ,xW8!2Ismth~xW ,xW8!,

~6.4!

n

FIG. 8. Value of the momentum-squared at the peak of
q2dN/dxFd2q distribution as a function of the scale set by the no
Abelian corrections,v2}A1/3LQCD

2 . These curves have been gene
ated within thev51 power-law model.

FIG. 9. Gluon distribution functiongA(xF ,Q2) in the v51
power-law model plotted versusxF for Q25LQCD

2 , 10LQCD
2 ,

100LQCD
2 , and 1000LQCD

2 . The three curves at eachQ2 value are
for the Abelian limit (as

2A1/350), uranium (as
2A1/350.5), and a

large toy nucleus withA;15 000 (as
2A1/352.0).
3-12
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where

Isng~xW ,xW8!5E d3rWuf~rW !u2E d3jW uc~jW !u2d3~xW2rW2jW !

3d3~xW82rW2jW ! ~6.5!

and

Isng~xW ,xW8!5E d3rWuf~rW !u2E d3jW uc~jW !u2E d3jW8uc~jW8!u2

3d3~xW2rW2jW !d3~xW82rW2jW8!. ~6.6!

In Eqs.~6.5! and~6.6! the position of the nucleon relative t
the center of the nucleus is denoted byrW while the position of
the ~anti!quark relative to the center of the nucleon is d
noted by jW (8). In addition to making the result fully
3-dimensional, we have allowed for the possibility that t
quarks and nucleons have some distribution other than
form: the functionuf(rW)u2 gives the probability distribution
for nucleons within the nucleus whileuc(jW )u2 does the same
for the ~anti!quarks within the nucleons. Both functions a
normalized to unit total integral. If we compute them exac
from Eqs. ~6.5! and ~6.6!, the functionsIsng(xW ,xW8) and
Ismth(xW ,xW8) do not factorize on the sum and difference va
ables as implied by the left-hand side of Eq.~6.4!. However,
if we approximate the integrals by assuming thata!R ~the
large nucleus approximation!, then they do factorize as ad
vertised, and we obtain

FIG. 10. Nuclear dependence of the gluon distribution funct
gA(xF ,Q2) in the v51 power-law model for fixedxF50.1 and
Q25LQCD

2 , 2.5LQCD
2 , 10LQCD

2 , 25LQCD
2 , 100LQCD

2 , and
1000LQCD

2 . These functions grow more slowly thanA as the num-
ber of nucleons is increased.
11402
-

i-

S~SW !5Vuf~SW !u2; ~6.7!

D~DW !5d3~DW !2E d3jW uc~jW !u2E d3jW8uc~jW8!u2

3d3~jW2jW82DW !. ~6.8!

The separation of the right-hand side of Eq.~6.4! into S and
D has been uniquely fixed by imposing the normalization
S specified in Eq.~3.8!.

To make the connection with our power-law model, w
first Fourier transform Eq.~6.8! to obtain

12D̃~qW !5U E d3xWeiqW •xWuc~xW !u2U2

. ~6.9!

For a spherically-symmetric nucleus,D̃(qW ) is real. Thus, Eq.
~6.9! is telling us that the square root of 12D̃ is given by the
Fourier transform ofucu2. Consequently

uc~xW !u25E d3qW

8p3 e2 iqW •xWA12D̃~qW !. ~6.10!

For the power-law model~6.1!, the integral in Eq.~6.10! is
easily performed using the methods outlined in Appendix
with the result

uc~xW !u25
1

4~pav
2 !3/2

1

G~v/2! S x21xi
2

4av
2 D ~v23!/4

3K (v23)/2S 1

av
Ax21xi

2D . ~6.11!

Equation ~6.11! describes a Yukawa-like distribution o
quarks within the nucleons in the sense that the long-dista
behavior of the modified Bessel function is a dying expon
tial:

4pxW2uc~xW !u2 →
uxW u→`

2

av

1

G~v/2! S x21xi
2

4av
2 D v/4

3expS 2
1

av
Ax21xi

2D . ~6.12!

At the origin, we have

4pxW2uc~xW !u2 →
uxW u→0

H const, v51;

0, v>2.
~6.13!

These distributions are plotted in Fig. 11 forv51, 2, and 8.

VII. CONCLUSIONS

We have extended the McLerran-Venugopalan model
the gluon distribution of a very large nucleus to larger valu
of xF . The classical computation contained in this paper, l
those in Refs.@1–6#, is based on the premise that the qua
tum corrections may be ignored since we are working in
regime whereas!1. However, at smallxF there are quan-

n
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tum corrections to the distribution functions of the M
model which are proportional toasln(1/xF) @4,26#. For fixed
q2;LQCD

2 , it can be shown thatasln(1/xF) is of order 1 in
region C of Fig. 1, and that furthermore,asln(1/xF) increases
asxF is decreased into regions A and B. This suggests
the quantum corrections may be more manageable in re
C: a leading-log calculation to resum these contributio
might suffice. Considerable effort@5,24,27–31# has already
been made with the goal of dealing with the quantum c
rections in the very smallxF region whereasln(1/xF)@1.

The values ofxF we have considered in this paper are
the regime where the gluons begin to probe the longitud
structure of the nucleus. A description of the physics in t
situation must begin with a fully three-dimensional fram
work and a source which is slightly off of the light cone. W
have solved the Yang-Mills equations for such a source
the covariant gauge to lowest order ing2, and then trans-
formed that solution for the vector potential to the light-co
gauge, where the connection to the gluon number densi
to be made. The determination of the gluon number den
itself relies heavily on the fact that we are considering a la
nucleus (R@a) which consists of color-neutral nucleon
We have obtained a relatively compact expression in
limit, which sums the non-Abelian effects to all orders
as

2A1/3. ForxF→0, our results match smoothly onto the pr
vious treatments@5,6#. Our results for the gluon number den
sity exhibit saturation at smallq2: instead of diverging as
q2→0, the distributions approach a finite constant, as ill
trated in Fig. 6. The nuclear corrections induce a pile-up
gluons at q2;v2, where v2}A1/3LQCD

2 . In addition, the
gluon structure functions which we obtain grow less rapi
thanA as the number of nucleons is increased, as illustra
in Fig. 10.
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APPENDIX A: EXPLICIT COMPUTATION OF GLUON
NUMBER DENSITY

In this appendix we will present the details of the deriv
tion leading to the expression for the gluon number den
presented in Eqs.~5.18!–~5.24!. Our starting point is the
light-cone gauge expression for the vector potential:

Aj~qi ;x!5
1

igqi
(

m51

`

~ ig2!mE
2`

`

dmyi↓

3E
2`

`

dmj iexp~2 iq iyi1!

3E d2p1

4p2

p1 j

2p1
e2 ip1•xexp~2p1uyi12j i1u!

3)
l 52

m E d2pl

4p2

1

2pl
e2 ipl•xexp~2pl uyi l2j i l u!

3@@r~j i1 ;p1!r~j i2 ;p2!•••r~j im ;pm!##.

~A1!

Simply inserting two copies of Eq.~A1! into the master for-
mula ~3.2! leaves us with a bewildering array of contractio
which must be performed. A more efficient way to proceed
to organize the computation in two stages, as was don
Ref. @5#. First, we consider all of the ways in which pairs
r ’s within a singleAj (qi ;x) may be contracted. We will se
that these self-contractions exponentiate provided thata/R
!1. Afterwards, we will deal with the mutual contraction
where oner comes from each factor ofAj (qi ;x). In the end,
we retain exactly the same terms as were retained in Ref.@5#.
However, the justification for keeping only these terms
very different from the one in Ref.@5#, and relies heavily on
the large nucleus approximation,a/R!1.

Since Eq.~A1! contains charge densities which have be
Fourier-transformed on the transverse variables, it is con
nient to do the same to the two point correlation function
is straightforward to show that the corresponding transfo
of Eq. ~3.5! reads

^ra~j i ;p!rb~j i8 ;p8!&[dabK3S„1
2 ~j i1j i8!;p1p8…

3D„j i2j i8 ; 1
2 ~p2p8!…. ~A2!

1. Self-contractions

In this subsection, we will show that the various no
vanishing self-contractions within a singleAj (qi ;x) may be
arranged into an exponential factor. We will use the norm
ordered notation :•••: as a bookkeeping device to indica
which factors are not to undergo further self-contractions

We begin with the observation that the contraction b
tween r(j i1 ;p1) and r(j i2 ;p2) vanishes identically: Eq.
~A2! is symmetric in the color indices, whereas the facto
3-14
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being contracted are antisymmetric, appearing in the inn
most commutator.

Next, we show that in the limita/R!1 ~i.e.,A1/3@1), the
only non-vanishing self-contractions are between adjac
factors ofr @such as the self-contraction illustrated in Fi
t

in

a

ly

s

11402
r-

nt

3~b!#. Suppose we consider a term in which we contract
non-adjacent factorsr(j i i ;pi) with r(j i j ;pj ), where j . i
11: an example of such a contraction is illustrated in F
3~a!. The relevant longitudinal factors coming from this typ
of contribution read6
we
E
2`

`

dyi iE
2`

`

dyi jQ~yi i 212yi i !Q~yi i2yi i 11!Q~yi j 212yi j !Q~yi j2yi j 11!

3E
2`

`

dj i iE
2`

`

dj i jexp~2pi uyi i2j i i u!exp~2pj uyi j2j i j u!S„1
2 ~j i i1j i j !;pi1pj…D„j i i2j i j ; 1

2 ~pi2pj !…, ~A3!

where theQ functions encode the ordering required in theyi integrations. To see how this contribution is subleading when
make the large nucleus approximation, we first introduce

Y i i[yi i2j i i ; Y i j[yi j2j i j ~A4!

in favor of j i i andj i j , followed by

S i[
1
2 ~yi i2Y i i1yi j2Y i j !; D i[yi i2Y i i2yi j1Y i j ~A5!

to replaceyi i andyi j . The Jacobians of both transformations are unity. Hence, Eq.~A3! becomes

E
2`

`

dS i E
2`

`

dD i E
2`

`

dY i iE
2`

`

dY i jQ~yi i 212S i2
1
2 D i2Y i i !Q~S i1

1
2 D i1Y i i2yi i 11!Q~yi j 212S i1

1
2 D i2Y i j !

3Q~S i2
1
2 D i1Y i j2yi j 11!exp~2pi uY i i u2pj uY i j u!S~S i ;pi1pj !D„D i ; 1

2 ~pi2pj !…, ~A6!
fac-
q.

om
e
-

g-
ries

e

Recall that the functionS(SW ) is nonvanishing provided tha
uSW u&R. Likewise, the functionD(DW ) is dominated by the
region whereuDW u&a. Therefore, as far as the transverse
tegrations are concerned, the integrand in Eq.~A6! is domi-
nated by the regionS i@D i . Neglect ofD i relative toS i in
the Q-functions will result in errors of ordera/R. Further-
more, the exponential factor restricts the values ofY i i and
Y i j for which the integrand is significant toY i i ,Y i j
&pi ,pj . So unless the region wherepi or pj is &1/a is
important, we may also dropY i i and Y i j from the
Q-function arguments. However, we know that the typic
momenta associated withS(S i ;pi1pj ) are upi1pj u;1/R,
whereas the typical momenta associated withD„D i ; 1

2 (pi

2pj )… are 1
2 upi2pj u;1/a. Together, these constraints imp

that the main contributions to the integral occur whenpi and
pj are back-to-back to within an amount of order 1/R, and
they each possess a magnitude of order 1/a. Thus we con-
clude thatY i i and Y i j are indeed of ordera, and may be
dropped from theQ-functions. Making these approximation
in Eq. ~A6! yields

E
2`

`

dS i E
2`

`

dD i E
2`

`

dY i iE
2`

`

dY i jQ~yi i 212S i!

3Q~S i2yi i 11!Q~yi j 212S i!Q~S i2yi j 11!

3exp~2pi uY i i u2pj uY i j u!S~S i ;pi1pj !D„D i ; 1
2 ~pi2pj !….

~A7!
-

l

The Q-functions in this expression tell us thatS i should lie
betweenyi i 21 andyi i 11 on one hand, and~simultaneously!
lie betweenyi j 21 andyi j 11 on the other. However, theyi’s
are ordered, and since we are considering non-adjacent
tors, j . i 11, these two ranges do not overlap. Thus, E
~A7! vanishes, and we conclude that the contributions fr
contraction between non-adjacentr ’s are suppressed by on
or more powers ofa/R relative to contributions from con
tractions between adjacentr ’s.

Now that we know which self-contractions may be i
nored, let us begin a term-by-term examination of the se
in Eq. ~A1!. We will denote themth term in the sum by
A(m)

j (qi ;x). The first term,A(1)
j (qi ;x), has only a single

factor of r. Thus, we trivially obtain

A(1)
j ~qi ;x!→:A(1)

j ~qi ;x!:. ~A8!

Likewise, since the only possible self-contraction which w
may consider extracting fromA(2)

j (qi ;x) vanishes, we have
simply

6The additional factor of exp(2iqiyi1) which would also be
present ifi 51 does not affect the outcome of our argument.
3-15
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A(2)
j ~qi ;x!→:A(2)

j ~qi ;x!:. ~A9!

At third order, in addition to the contribution where w
choose to do no contractions, we have a term which is g
erated from contractingr(j i2 ;p2) with r(j i3 ;p3). The color
algebra associated with this contraction is straightforwar

dab@@r~j i1 ;p1!,Ta#,Tb#5Ncr~j i1 ;p1!. ~A10!

The interesting longitudinal factors read

E
2`

`

dyi2E
2`

`

dyi3E
2`

`

dj i2E
2`

`

dj i3Q~yi12yi2!

3Q~yi22yi3!exp~2p2uyi22j i2u!exp~2p3uyi32j i3u!

3S„1
2 ~j i21j i3!;p21p3…D„j i22j i3 ; 1

2 ~p22p3!…. ~A11!

We again make the variable changes indicated in Eqs.~A4!
and ~A5!, producing

E
2`

`

dS i E
2`

`

dD i E
2`

`

dY i2E
2`

`

dY i3

3Q~yi12S i2
1
2 D i2Y i2!Q~D i1Y i22Y i3!

3exp~2p2uY i2u2p3uY i3u!

3S~S i ;p21p3!D„D i ; 1
2 ~p22p3!…. ~A12!

We may apply the large nucleus approximation to dropD i
and Y i2 relative toS i in the first Q-function appearing in
Eq. ~A12!. However, the same arguments which allow us
do so also tell us thatD i , Y i2, andY i3 are all of ordera.
Hence, the secondQ-function cannot be simplified. Never
theless, droppingY i2 and D i from the first Q-function is
sufficient to allow the integrations onY i2 andY i3 to proceed
easily, yielding

4

p2p3
E

2`

`

dS iQ~yi12S i!S~S i ;p21p3!

3E
0

`

dD iD„D i ; 1
2 ~p22p3!…. ~A13!
11402
n-

For a spherically symmetric nucleus,D is an even function
of D i . Thus, we conclude that theD i integration simply
completes the Fourier transform ofD/2, with the longitudi-
nal momentum evaluated at zero:

2

p2p3
D̃„0,1

2 ~p22p3!…E
2`

yi1
dS iS~S i ;p21p3!. ~A14!

Applying the results in Eqs.~A10! and ~A14!, we find that

A(3)
j ~qi ;x!→:A(3)

j ~qi ;x!:1
1

igqi
~ ig2!E d2p1

4p2

p1 j

2p1
e2 ip1•x

3E
2`

`

dyi1exp~2 iq iyi1!

3E
2`

`

dj i1exp~2p1uyi12j i1u!

3:@@r~j1 ;p1!##:$2 1
2 Ncg

4K3G~yi1 ;x,x!%.

~A15!

In Eq. ~A15! we have introduced the function

G~xi ;x,x8![E
2`

xi
dS i E d2k

4p2E d2k8

4p2

e2 ik•x

k2

e2 ik8•x8

k82

3S~S i ;k1k8!D̃„0,1
2 ~k2k8!…, ~A16!

which will prove to be useful as we proceed with the calc
lation.

At fourth order, there are two different non-vanishin
contractions. Their contributions differ only in the range
the S i integration, and combine neatly to produce
ibution
A(4)
j ~qi ;x!→:A(4)

j ~qi ;x!:1
1

igqi
~ ig2!2E d2p1

4p2E d2p2

4p2

p1 je
2 ip1•x

2p1

e2 ip2•x

2p2
E

2`

`

d2yi↓exp~2 iq iyi1!

3E
2`

`

d2j iexp~2p1uyi12j i1u2p2uyi22j i2u!:@@r~j i1 ;p1!r~j i2 ;p2!##:$2 1
2 Ncg

4K3G~yi1 ;x,x!%.

~A17!

Finally, at fifth order, in addition to the three different ways to perform a single contraction, we encounter a contr
containing two contractions. The result of a straightforward computation is
3-16
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A(5)
j ~qi ;x!→:A(5)

j ~qi ;x!:1
1

igqi
~ ig2!3E d2p1

4p2E d2p2

4p2E d2p3

4p3

p1 je
2 ip1•x

2p1

e2 ip2•x

2p2

e2 ip3•x

2p3
E

2`

`

d3yi↓exp~2 iq iyi1!

3E
2`

`

d3j i expS 2(
l 51

3

pl uyi l2j i l u D :@@r~j i1 ;p1!r~j i2 ;p2!r~j i3 ;p3!##:$2 1
2 Ncg

4K3G~yi1 ;x,x!%

1
1

igqi
~ ig2!E d2p1

4p2

p1 j

2p1
e2 ip1•xE

2`

`

dyi1exp~2 iq iyi1!E
2`

`

dj i1exp~2p1uyi12j i1u!

3:@@r~j i1 ;p1!##:
1

2!
$2 1

2 Ncg
4K3G~yi1 ;x,x!%2. ~A18!

At this stage we can see the pattern which is emerging. When we choose to do no contractions, we get back the
Aj (qi ;x), but normal-ordered. Starting at third order, we have the option of doing at least one contraction. Choosin
exactly one contraction at each order produces a series which is nearly the one forAj (qi ;x), but with an extra factor

2 1
2 Ncg

4K3G~yi1 ;x,x! ~A19!

inserted into the integrand of each term. At fifth order, we may elect to do at least two contractions. Doing exac
contractions in each term again nearly reproduces the series forAj (qi ;x), but this time with an extra factor

1

2!
$2 1

2 Ncg
4K3G~yi1 ;x,x!%2 ~A20!

in the integrand. In like manner, all of the terms in which we do exactlyj contractions sum up to~nearly! produce the series
for Aj (qi ;x), but with the extra factor

1

j !
$2 1

2 Ncg
4K3G~yi1 ;x,x!% j . ~A21!

Thus, we conclude that systematically accounting for all possible self-contractions results in

Aj~qi ;x!→ 1

igqi
(

m51

`

~ ig2!mE d2p1

4p2

p1 j

2p1
e2 ip1•xF)

l 52

m E d2pl

4p2

e2 ipl•x

2pl
G E

2`

`

dmyi↓exp~2 iq iyi1!

3E
2`

`

dmj iexpS 2(
i 51

m

pi uyi i2j i i u D :@@r~j i1 ;p1!r~j i2 ;p2!•••r~j im ;pm!##:exp$2 1
2 Ncg

4K3G~yi1 ;x,x!%.

~A22!

2. Mutual contractions

We now insert the required two copies of Eq.~A22! into Eq. ~3.2!, the formula for the gluon number density. Because
of the self-contractions have already been accounted for, we may only multiply terms which contain the same number ’s,
leading to a single sum~rather than a double sum!. Thus, we obtain

dN

dqid
2q

5
1

p3g2

1

qi
E d2xE d2x8eiq•(x2x8) (

m51

`

~2g4!mE d2p1

4p2E d2p18

4p2

p1•p18

4p1p18
e2 ip1•x2 ip18•x8

3F)
l 52

m E d2pl

4p2E d2pl8

4p2

e2 ipl•x2 ipl8•x8

4plpl8
G E

2`

`

dmyi↓E
2`

`

dmyi↓8exp@2 iq i~yi12yi18!#

3E
2`

`

dmj i E
2`

`

dmj i8expH 2(
i 51

m

~pi uyi i2j i i u1pi8uyi i82j i i8u!J
3^Tr~Ta:@@r~j i1 ;p1!•••r~j im ;pm!##: !Tr~Ta:@@r~j i18 ;p18!•••r~j im8 ;pm8 !##: !&

3exp$2 1
2 Ncg

4K3@G~yi1 ;x,x!1G~yi18 ;x8,x8!#%. ~A23!
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Using an argument exactly analogous to the one in Eqs.~A3!–~A7! it can be shown that the only non-vanishing contributi
to leading order in powers ofa/R is obtained by performing ‘‘corresponding’’ contractions@like the contractions in Fig. 3~d!#,
that is,r(j i j ;pj ) with r(j i j8 ;pj8) for all j. ‘‘Crossed’’ contractions@like Fig. 3~c!# are suppressed by one or more factors
a/R.

The color algebra associated with the corresponding contractions involves the expression

T [Tr~Ta@@Ti 1Ti 2
•••Ti m## !Tr~Ta@@Ti 1Ti 2

•••Ti m## !. ~A24!

The required sums are easily evaluated by beginning with the innermost commutator:

@Ti 1,Ti 2#ab@Ti 1,Ti 2#gd5 i f i 1i 2 j~Tj !abi f i 1i 2k~Tk!gd52Nc~Tj !ab~Tj !gd . ~A25!

The result of inserting Eq.~A25! into Eq. ~A24! has the same structure as we started with, but with one less commu
Repeating this process until just two color matrices remain in each trace and doing those traces yields

T5 1
4 ~Nc

221!~2Nc!
m21. ~A26!

Now let us consider the longitudinal integrations. The relevant factors are

E
2`

`

dmyi E
2`

`

dmyi8E
2`

`

dmj i E
2`

`

dmj i8exp@2 iq i~yi12yi18!#expH 2(
l 51

m

~pl uyi l2j i l u1pl8uyi l82j i l8u!J
3exp$2 1

2 Ncg
4K3@G~yi1 ;x,x!1G~yi18 ;x8,x8!#%)

j 51

m

Q~yi j 212yi j !Q~yi j 218 2yi j8!S„1
2 ~j i j1j i j8!;pj1pj8…

3D„j i j2j i j8 ; 1
2 ~pj2pj8!…, ~A27!

where we have definedyi05yi085` for convenience. We perform variable changes which are completely analogous to
in Eqs.~A4! and ~A5! and once again apply the large nucleus (R@a) approximation:

E
2`

`

dmS i E
2`

`

dmD i E
2`

`

dmY i E
2`

`

dmY i8exp@2 iq i~D i11Y i12Y i18!#expH 2(
l 51

m

~pl uY i l u1pl8uY i l8u!J
3exp$2 1

2 Ncg
4K3@G~S i1 ;x,x!1G~S i1 ;x8,x8!#%)

j 51

m

Q~S i j 212S i j !S~S i j ;pj1pj8!D„D i j ; 1
2 ~pj2pj8!…. ~A28!

The necessaryY i andY i8 integrations are all easily performed using

E
2`

`

dY i exp~2 iq iY i2puY iu!5
2p

p21qi
2 . ~A29!

The d integrals simply finish Fourier-transformingD on the longitudinal coordinate:

E
2`

`

dD i exp~2 iq iD i!D„D i ; 1
2 ~p2p8!…5D̃„qi , 1

2 ~p2p8!…. ~A30!

Applying these considerations to~A28! produces

E
2`

`

dS i1
2p1

p1
21qi

2

2p18

p81
21qi

2S~S i1 ;p11p18!D̃„qi , 1
2 ~p12p18!…

3exp$2 1
2 Ncg

4K3@G~S i1 ;x,x!1G~S i1 ;x8,x8!#%E
2`

S i1
dm21S i↓)

j 52

m
4

pj pj8
S~S i j ;pj1pj8!D̃„0,1

2 ~pj2pj8!…. ~A31!

Notice that theS i integrations have inherited the ordering associated with the gauge transformation. When we insert Eq~A31!
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back into Eq.~A23!, the portion of the resulting ordered integrand involvingS i2 , . . . ,S im is symmetric, allowing us to do the
sum onm to obtain an exponential. Including the color factor contained in Eq.~A26! we arrive at

dN

dqid
2q

5K3~Nc
221!

as

p2

1

qi
E d2xE d2x8eiq•(x2x8)E

2`

`

dS i1E d2p1

4p2E d2p18

4p2

~2p1•p18!e2 ip1•x2 ip18•x8

~p1
21qi

2!~p18
21qi

2!

3S~S i1 ;p11p18!D̃„qi , 1
2 ~p12p18!…exp$Ncg

4K3@G~S i1 ;x,x8!2 1
2 G~S i1 ;x,x!2 1

2 G~S i1 ;x8,x8!#%. ~A32!

To proceed further requires us to apply the consequences of the large nucleus approximation to the transverse co
To see how this works, let us examine the functionG a bit more closely. From Eq.~A16! we may write

G~S i1 ;x,x8!5E
2`

S i1
dS i E d2q

4p2 e2 iq•(x1x8)/2S~S i ;q!E d2p

4p2

e2 ip•(x2x8)D̃~0,p!

~p1 1
2 q!2~p2 1

2 q!2
, ~A33!

where we have changed variables toq[k1k8 andp[ 1
2 (k2k8). Recall from the discussion in the paragraph following E

~A6! that the values of the momenta associated withS areq;1/R whereas those associated withD arep;1/a. This suggests
that we may neglectq in the two denominators of Eq.~A33!, the error being suppressed by a factor ofa/R. However, we must
be careful. The combination appearing in the square brackets of Eq.~A32! can be shown to be infrared finite provided thatD̃
is rotationally invariant and satisfies the color neutrality condition. This is true to all orders ina/R. When dropping terms
which are higher order ina/R, we should avoid introducing an infrared divergence, since none was present in the o
expression. Therefore we write

G~S i1 ;x,x8!2 1
2 G~S i1 ;x,x!2 1

2 G~S i1 ;x8,x8!

5E
2`

S i1
dS i E d2q

4p2 e2 iq•(x1x8)/2S~S i ;q!E d2p

4p2

D̃~0,p!

p4 @e2 ip•(x2x8)21#1OS a

RD , ~A34!
d

on
that is, when we dropq from the denominators we shoul
simultaneously adjust the exponential multiplyingS to be
identical in all three terms. The advantage of the form c
tained in Eq.~A34! is the decoupling of the two momentum
integrations. The integral onq just convertsS(S i ;q) back to
a purely position-space quantity. Thep integral defines the
function

L~x![E d2p

4p2

D̃~0,p!

p4 @e2 ip•x21#. ~A35!

Thus,

G~S i1 ;x,x8!2 1
2 G~S i1 ;x,x!2 1

2 G~S i1 ;x8,x8!

5L~x2x8!E
2`

S i1
dS iS~S i , 1

2 ~x1x8!!1OS a

RD .

~A36!

Treating thep1 and p18 integrals of Eq.~A32! in a similar
manner and applying Eq.~A36! yields the expression
11402
-

dN

dqid
2q

5K3~Nc
221!

2as

p2

1

qi
E d2xE d2x8eiq•(x2x8)

3E
2`

`

dS i1L~qi ;x2x8!S„S i1 , 1
2 ~x1x8!…

3expH Ncg
4K3L~x2x8!

3E
2`

S i1
dS iS„S i , 1

2 ~x1x8!…J , ~A37!

where we have introduced the quantity

L~qi ;x![
1

2E d2p

4p2 e2 ip•x
p2D̃~qi ,p!

~p21qi
2!2 . ~A38!

Finally, we apply the chain rule to do the integral overS i1,
and switch to sum and difference variables for thex andx8
integrations:

dN

dqid
2q

5K3~Nc
221!

2as

p2

1

qi
E d2Deiq•DL~qi ;D!E d2S

3

expH g4NcK
3L~D!E

2`

`

dS iS~S i ,S!J 21

g4NcK
3L~D!

.

~A39!
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3. Geometric dependence

In order to perform theS integration appearing in Eq
~A39!, it is necessary to specify the geometry of the nucle
We will consider two cases, cylindrical and spherical.

A cylindrical nucleus is described by the function

S~SW !5Q~R22S2!Q~~ 1
2 h!22S i

2!, ~A40!

where R is the radius of the cylinder andh is its height.
Actually, the height will drop out of the final result, since E
~A39! depends on

K3E
2`

`

dS iS~S i ,S!5K3hQ~R22S2!

5
3A

2Nc

1

pR2 Q~R22S2!. ~A41!

The S integral which results from inserting Eq.~A41! into
Eq. ~A39! is trivial, producing

dN

dqid
2q

53ACF

2as

p2

1

qi
E d2Deiq•DL~qi ;D!

3
exp$@3Ag4/2pR2#L~D!%21

@3Ag4/2pR2#L~D!
, ~A42!

which is equivalent to the portions of Eqs.~5.18!–~5.24! per-
taining to cylindrical geometry.

Turning to the more realistic case of a spherical nucle
we have

E
2`

`

dS iS~S i ,S!5E
2`

`

dS iQ~R22S22S i
2!

52AR22S2Q~R22S2!, ~A43!

so that Eq.~A39! becomes

dN

dqid
2q

5K3~Nc
221!

2as

p2

1

qi
E d2Deiq•DL~qi ;D!E d2S

3
exp$2g4NcK

3L~D!AR22S2Q~R22S2!%21

g4NcK
3L~D!

.

~A44!

Thus, theS integral hinges upon the form

Z[E
0

R

dSS@exp~VAR22S2!21#. ~A45!

This integral is easily performed by the change of variab

s5VAR22S2; sds52V2SdS. ~A46!

Then
11402
s.

s,

s

Z5
1

V2E
0

VR

ds s~es21!5
1

V2@12 1
2 ~VR!21eVR~VR21!#.

~A47!

Applying Eq. ~A47! to Eq. ~A44! leads to the result

dN

dqid
2q

53ACF

2as

p2

1

qi
E d2Deiq•DL~qi ;D!

3
3

@v2L~D!#3 $12 1
2 @v2L~D!#21@v2L~D!21#

3exp@v2L~D!#%, ~A48!

wherev259Ag4/4pR2.

APPENDIX B: CALCULATIONAL DETAILS
FOR THE POWER-LAW MODEL

1. Useful integrals

All of the integrals required to compute the function
L(qi ;x) and L(x) which appear in the integrand for th
gluon number density for the power-law~Yukawa-like!
model introduced in Sec. VI may be derived from the form

I 1v[E d2q

4p2

e2 iq•x

~q21qi
2!@11b2~q21qi

2!#v , ~B1!

and

I 2v[E d2q

4p2

e2 iq•x

~q21qi
2!2@11b2~q21qi

2!#v . ~B2!

Since thev→0 limits of Eqs.~B1! and~B2! are smooth, we
may simply set v50 to obtain the necessary single
denominator integrals. Because the procedure for perform
both integrals is essentially the same, we will describe
computation forI2v and simply quote the result forI1v .

The computation ofI2v begins by introducing a single
Feynman parameter to combine the two denominators:

I2v5
v~v11!

b2v E
0

1

dz zv21~12z!

3E d2q

4p2

e2 iq•x

~q21qi
21z/b2!v12 . ~B3!

In order to deal with theq integration, we introduce a
Schwinger parameter to promote the denominator into
exponential:

I2v5
1

b2v

1

~v21!! E0

`

dllv11E
0

1

dzzv21~12z!

3E d2q

4p2 e2 iq•xe2l(q21qi
2
1z/b2). ~B4!

Theq integration is now Gaussian, and may be performed
the usual fashion, with the result
3-20



les
t

ed

e
n-
e

in

le

s

re-

LONGITUDINAL RESOLUTION IN A LARGE . . . PHYSICAL REVIEW D 62 114023
I2v5
1

4pb2v

1

~v21!! E0

`

dllvexpF2
1

l

x2

4
2lqi

2G
3E

0

1

dzzv21~12z!e2zl/b2
. ~B5!

The z integration is straightforward, yielding

I2v5
1

4pE0

`

dlF12e2l/b2

(
l 50

v21
1

l ! S l

b2D l GexpF2
1

l

x2

4
2lqi

2G
2

1

4p
vb2E

0

`dl

l F12e2l/b2

(
l 50

v
1

l ! S l

b2D l G
3expF2

1

l

x2

4
2lqi

2G . ~B6!

It is convenient at this stage to introduce the dimension
integration variablej[l/b2. Doing so and performing a bi
of algebra we arrive at

I2v5
b2

4p2E
0

`

djexpF2
1

j S x

2bD 2

2j~bqi!
2G

2
b2

4p2 vE
0

`dj

j
expF2

1

j S x

2bD 2

2j~bqi!
2G

1
b2

4p2 (
l 50

v21
v2 l

l ! E
0

`

djj l 21

3expH 2
1

j S x

2bD 2

2j@11~bqi!
2#J .

~B7!

The j integrals may be performed to produce modifi
Bessel functions, as seen from Eq.~3.471.9! of Ref. @32#:

E
0

`

dy ym21expS 2
b

y
2gyD52S b

g D m/2

Km~2Abg!,

~B8!

which is valid for all values ofm, provided thatb andg are
positive. Thus, we arrive at

I2v5
b2

2pH x

2b

1

bqi
K1~xqi!2vK0~xqi!1 (

l 50

v21
v2 l

l ! S x

2bD l

3@11~bqi!
2#2 l /2Kl S x

b
A11~bqi!

2D J . ~B9!

The analogous treatment of Eq.~B1! yields
11402
s

I1v5
1

2p H K0~xqi!2 (
l 50

v21
1

l ! S x

2bD l

@11~bqi!
2#2 l /2

3Kl S x

b
A11~bqi!

2D J . ~B10!

2. Computation of L„qi ;x… and L „x…

Equation ~5.19! defines the function which governs th
Abelian portion of the integrand for the gluon number de
sity. For the power law model, it is helpful to rewrite th
numerator usingp2[p21qi

22qi
2 :

L~qi ;x!5
1

2E d2p

4p2 e2 ip•xF 1

p21qi
2 2

qi
2

~p21qi
2!2G

3F12
1

@11av
2 ~p21qi

2!#vG . ~B11!

In terms of the integrals~B1! and~B2! introduced in the first
part of this appendix, we have simply

L~qi ;x!5 1
2 I102

1
2 qi

2I202
1
2 I1v1 1

2 qi
2I2v . ~B12!

A straightforward substitution of the results contained
Eqs.~B9! and ~B10! leads to

L~qi ;x!52
v

4p
~avqi!

2K0~xqi!

1
1

4p (
j 50

v21
1

j ! S x

2av
D j11~v2 j !~avqi!

2

@11~avqi!
2# j /2

3K j S x

av
A11~avqi!

2D . ~B13!

The determination ofL(x) from Eq. ~5.20! is a bit more
involved. The difficulty lies in the fact that it is not possib
to integrate Eq.~5.20! term-by-term, as the individual bits
are infrared divergent. To work around this difficulty, let u
define the auxiliary function

L3~qi ;x![E d2p

4p2

e2 ip•x

~p21qi
2!2D̃~qi ,p!. ~B14!

Then, the integral we seek may be determined from the
lation

L~x!5 lim
qi→0

@L3~qi ;x!2L3~qi ;0!#. ~B15!

The computation ofL3(qi ;x) is straightforward: inserting
the power-law form ofD̃ given in Eq.~6.1! we see that

L3~qi ;x!5I202I2v . ~B16!

Thus, the application of Eq.~B9! gives
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L3~qi ;x!52
av

2

2p
vFK0S x

av
A11~avqi!

2D2K0~xqi!G
2

av
2

2p (
l 51

v21
v2 l

l ! S x

2av
D l

@11~avqi!
2#2 l /2

3Kl S x

av
A11~avqi!

2D . ~B17!

To determineL3(qi ;0) from Eq. ~B17! we require the fol-
lowing forms of the modified Bessel functions for small va
ues of the argument:

Km~z! →
z→0H 2 lnS z

2D2gE , m50;

G~m!

2 S 2

zD m

, mÞ0,

~B18!

wheregE is Euler’s constant. Consequently,
-

t,

cl.

le
’
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L3~qi ;0!5
av

2

4p
v lnF11~avqi!

2

~avqi!
2 G

2
av

2

4p (
l 51

v21
v2 l

l

1

@11~avqi!
2# l . ~B19!

Subtracting Eq.~B19! from Eq. ~B17! and taking theqi
→0 limit gives the final result

L~x!52
av

2

2p
vFK0S x

av
D1 lnS x

2av
D1gEG

1
av

2

2p (
l 51

v21

~v2 l !F 1

2l
2

1

l ! S x

2av
D l

Kl S x

av
D G .

~B20!
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