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For the one-loop contribution to the QCD vacuum tunneling amplitude by quarks of generic mass value, we
make use of a calculational scheme exploiting a large mass expansion together with a small mass expansion.
The large mass expansion for the effective action is given by a series involving higher-order Seeley-DeWitt
coefficients, and we carry this expansion up to ordemp)€, wherem denotes mass of the quark apdhe
instanton size parameter. For the small mass expansion, we use the known exact expression for the particle
propagation functions in an instanton background and evaluate explicitly the effective action toropdér (

A smooth interpolation of the results from both expansions suggests that the quark contribution to the instanton
tunneling amplitude have a relatively simpigp-dependent behavior.

PACS numbdps): 12.38.Aw, 11.15.Tk

I. INTRODUCTION Schwinger-DeWitt proper-time algorithi,7]; they are en-

tirely given by the second Seeley-DeWitt coefficiems

Instantond 1,2], as localized finite-action solutions of the [7,9,10 in four-dimensional space-timgFor recent litera-
Euclidean Yang-Mills field equations, describe vacuum tunture discussing this method, see Rdfl].) But the evalua-
neling and are believed to have important nonperturbativeéion of the full finite part of the one-loop effective action in
roles in low-energy QCD. For an excellent review on instan-any nontrivial background field corresponds to a formidable
tons in QCD and general gauge theories, see R&f4]. For  mathematical problem in general. For an approximate calcu-
actual instanton calculations, one needs to know above altion (in a slowly varying backgroundhe so-called deriva-
the one-loop tunneling amplitude or the Euclidean onedtive expansion of the effective action has been utilized by
loop effective action in the background field of a single various author$12,13.
(anti-) instanton. The latter quantity is thus of fundamental As for the contribution to the instanton one-loop effective
importance in instanton physics, and in the zero mass limit ofiction by spin-0 or spin-1/2 matter fields of, say, massve
scalar or quark fields 't Hooff5] was able to calculate the shall consider both the approximation applicable for rela-
appropriate one-loop contribution exactly. But, with finite tively large mp (p is the instanton sizei.e., large mass
qguark mass, such an exact calculation does not look feasibkxpansion and the mass perturbation scheme useful for rela-
and one has to be satisfied with approximate res(iete  tively smallmp. Note that the nature of the approximation is
that, aside from up and down quarks, all other quarks posseg®verned by the dimensionless parameter. (Dependence
sizable mass In this paper we shall describe our approach toon the renormalization mass scale can be treated sepa-
determine the quark mass dependence in the one-loamtely) The large mass expansion is essentially a series in-
vacuum tunneling amplitude, and report some new resultgolving higher-order Seeley-DeWitt coefficients, for which a
from this analysis. simple computer algorithm has been developed recgbdly

By studying the field-theoretic effective action one canl6]. We then make a smooth interpolation of the results
take the quantum nature of the fields into account systematfound in those two different regimes, with the expectation
cally, and already at the one-loop level it has provided ughat some general pattern, which is meaningful over a wide
with certain relevant information on various physically sig- range of mass values, may emerge. This information should
nificant effectd 6]. In particular, the leading-order renormal- be valuable in phenomenological studies related to instanton
ization group coefficients in field theories are encoded in theeffects. To connect the amplitude given for different mass
divergences of the corresponding bare one-loop effective ascales, one should be careful about possible large finite-
tion. These divergent terms can be found most simply withrenormalization effects and renormalization schemes used. In
the help of the background field methdd,8] and the this paper we treat various issues related to this general idea

in a reasonably self-contained manner.
In Sec. Il we present a concise review on the Schwinger

*Electronic address: kok@phya.snu.ac.kr proper-time representation of the effective action, various
"Electronic address: cklee@phya.snu.ac.kr renormalization schemes, and the large mass expansion. Also
*Electronic address: hsmin@dirac.uos.ac.kr discussed are finite renormalization effects specific to renor-
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malization prescriptions chosen, since they can introduce addere,A=1 (—3) for scalar(spinop fields, A is the large
ditional masgas well as renormalization scaléependences regulator massG ! stands for the appropriate quadratic dif-
into the effective action. This understanding will become im-ferential operator, viz.,
portant when one has to change the results obtained in one
renormalization prescription to that in another prescription. —D?  (for scalay,
In Sec. Ill the one-loop effective action for a massive “l= D)2 (for spinop
scalar field in a constant Yang-Mills field background is con- (y P '
sidered to see how our general scheme would fit in for this _ B
simple case. Here we make a detailed comparison betwed'd Go =G 1|Af0:_‘72' (Also, D*=D,D, and yD
the known, exact, effective actigigiven in a single integral = 7,D,, with the covariant derivativ®,=d,—iAST*=4,
form) and the corresponding result based on the large massiA, (T? denote the group generators in the matter repre-
expansion. sentation satisfying the commutation relatiofig?, T?]
In Sec. IV the spin-0 one-loop effective action in a Yang- =if 4,cT°), and oury matrices, which are antihermitian, sat-
Mills instanton background is studied on the basis of thesfy the relationsy, ,y,}=—26,,.
large mass expansiofContributions due to fields of differ- In the proper-time representatidi®,7], one represents
ent spin can be related to this spin-0 amplityde consider I'(A) by
up to the sixth Seeley-DeWitt coefficient. Here our finding is

(2.2

that, formp=1.8, the large mass expansion appears to give a »ds a2 11
good approximation to the effective action. I'(A)= _)\fo Se"me i) Tre G T —e %%,
In Sec. V we study the spin-0 instanton effective action 2.3

for smallmp, utilizing the known expressions for the mass-

less propagato_rﬁl?] _in an insta}nton background 'a”d the \where Tr denotes the trace over space-time coordinates and
mass perturbation. Since the naive mass perturbation leads 19 jiher discrete indices. More explicitly, writing Tr

a logarithmically divergent integrdlL8], a suitably modified = [d*tr and introducing the proper-time Green function
perturbation method must be employed to obtain a well- _ gl
defined small-mass correction term. We here reconfirm théxsly}—(x|e |¥), T'(A) can be expressed as
O[(mp)?In mp] term previously found in Ref18], and pro-
vide for the first time the full®[ (mp)?] contribution to the T'(A)= _)\fm d_s(e—mzs_ e—AZS)
instanton effective action. S

In Sec. VI we consider an interpolation of our amplitude
to intermediqte values ahp, given the results qf the previ- . Xf d*x tr[ (xS|x) = (x|} —ol. (2.4)
ous two sections. Here we also make appropriate changes in ”
our results so that they may describe the spin-1/2 instanton
effective action; this result is directly relevant for quarks The full effective action is thus determined if the coincidence
with nonzero mass. Note that, due to the hidden supersyndimit (i.e.,y=Xx) of the proper-time Green function is known.
metry in an instanton background, one can utilize the resulfhe expressior(2.4) diverges logarithmically as we let
for the spin-0 case to find the contribution due to spin-1/2—; to isolate such divergent pieces, we may exploit the
fields[5]. asymptotic expansiofi7,9]

In Sec. VII we conclude with some remarks. In Appendix
A some explicit expressions for higher-order Seeley-DeWitt 1 5 *
coefficients can be found. Appendix B contains an analysis S—0+: (xsly)= @ S)ze_(x_y) /45[ > S”an(X,y)],
of a certain function which figures in our small-mass expan- & n=0 5
sion of Sec. V. 29

where the leading coefficient has the coincidence limit

Il. THE ONE-LOOP EFFECTIVE ACTION ap(x,x)=1. Using this expansion in E¢2.4), we then see
RENORMALIZATION. AND THE LARGE that the divergences ir(A) as A—o are related to the
MASS EXPANSION coincidence limitsa;(x)=tra;(x,x) anda,(x)=tra,(x,x),

. i . . . which correspond to the first and second Seeley-DeWitt co-
To be definite, we will consider a four-dimensional, Eu- efficients, respectively. Simple calculations yield

clidean, Yang-Mills theory with matter described tymplex
scalar or Dirac spinor fields of mass Then, in any given
Yang-Mills background fieldﬁi(x), one may represent the
(Pauli-Villars regularized one-loop effective action due to
matter fields by

a,(x)=0 (for both scalar and spinr (2.6)

- - %tr[Fuv(X)FW(X)] (for scalay,
ax(x)=
Det(G~ 1+ m?) Det(G, '+ A?) §tr[FW(x)FW(x)] (for spinop,

. @
Det( G, '+ m?) Det(G 1+ A?) D (2.7

T(A)=\In
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where FMVEFZVTazi[D#,DV]. (The tr here refers to the C
trace over gauge group representation indices pigsed (4)—2><12
on these, we may now write the above effective action for .

uv' oy

(In 47T—y)f d*x F2 F@ (2.13

m?#0 as wherey=0.5772 - - is the Euler constant. In the thus found
A2 - expression ofl"s(A) the mass parameter, which enters
F(A)zY( In —2) f d*x F3 F5,+T(A) (2.8  the expression through,.(A), describes the normalization
m mass conventionally introduced in the minimal subtraction
with scheme. As for the expression I6f;s(A) in the spinor case,
the finite renormalization term to be added to that'gf(A)
1 C turns out to be
— ———— (for scalay,
v={ 207 (2.9 C  (nam- J d*x F2 F3 2.1
1 C o en (477)—2X3(n777) XFLF - (2.14
§ (47)2 (for Spanf),

(This is the case when the spinor trace of 1 is taken to be 4.
(C is defined by trT3TP) = 6,,C), and then the contribution In another often-used prescription, one specifies the renor-
malization counterterm via the momentum-space subtraction

T(A) = =ds mis [ 4 d scheme, i.e., by imposing a normalization condition at cer-
(A)=—A 0 $° X 1= 1+S£ tain external momentum valyeg = x?. Then the correspond-
ing renormalized expressioh,,(A) is given by that of
1, 92 ) I'e(A) plus the finite renormalization term
+-5°— tr(s“(xs|x)) (2.10
27 97|,
?ec%)mes well defineldzas2 Ionzg |a$2 is nonzero.(In Eq. C 8 m2 m2 m2\ 3/2
2.10), [1+s(d/ds)+55°(971957) ]|s=0 f(S)=TF(0)+sf'(0) ———| —=+In—-8—=+|1+4—
+ %Szf"(O).) ’ ° (47T)2X 12 3 /'LZ lu’z ,U,2
The logarithmic divergence ili'(A) is canceled by the
renormalization counterterm associated with the coupling >
constant renormalization of the classicébare action m
(1/4g?,)fd4fowFZV. But the resulting renormalized one- V 1+4?+1
loop amplitude depends on the renormalization prescription XIn| ———
chosen. From the very structure exhibited in E28), our /1 4m2 1
amplitudeI"(A) can be considered as definiagrenormal- * F_
ized one-loop effective action; but, this prescription cannot
be used for the strictly massless case. Instead, one may here J 4. —a ra
consider adding t@'(A) the counterterm X | X FLF, (for scalay (219
AZ 4 a a or
AT (A)=-Y InF d*x F,,FL, (2.11
(wm is an arbitrarily introduced renormalization mags ob- 2 2 2 2
. : . - C 5 m m m
tain the renormalized one-loop effective action ————| —-+tIn5+4—5+|1-2— 1+4—
. (4m)"x3| 3  u®  u M M
m _
IeA)=-Y |nF)fd4x Fo P+ T(A), (212
— m2
whereTl'(A) is defined by Eq(2.10. It should be remarked 1+4?+l
thatI' ¢ (A), given by Eq.(2.12), is expected to have a well- «In f d* E? E2  (for spino
defined limit form?—0 (i.e., does not exhibit infrared sin- m2 wFun pinoy
gularitie9, if the operatorG~! does not allow any normal- 1+4—-1
izable zero eigenmode. s
Other renormalization prescriptions may also be chosen. (2.1

Let I'yis(A) denote the renormalized amplitude in the so-

called minimal subtraction scheni&9] associated with the with the corresponding reinterpretation of the parameter
dimensional regularization. Then, to obtain the expressioThese renormalization-prescription dependences of the one-
for I'ys(A) in the scalar case, one should add to that ofloop effective action are of course explained by the fact that
I'ei(A) the following finite renormalization term: the tree-level contribution involves, as a multiplicative fac-
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tor, the renormalized couplingd% (whose value may vary large-mass expansion, which is obtained by inserting the
with renormalization prescriptions asymptotic expansiofR.5), say, into the formuld2.10 for
Thanks to the exact connection formulas we have deﬂA)_ This assumes the form

scribed above, knowledge on the one-loop effective action in
one renormalization prescription can immediately be
changed into that in another prescription. In fact, in theories
containing several matter fields of different mass sc@es,
QCD with quarks of very different masge®ne may well
adopt different renormalization prescriptions for different
matter field loops. We here note that use of the minimal [a,(X)=tra,(x,x)]. (2.17
subtraction for a heavy-quark loop is rather unnatural, due to

the lack of manifest decouplif@0]. But this is not an issue )
in our discussions. That is, for large enough mass, we have the one-loop effec-

The next task is to find the actual full expression for thetive action(in any renormalization prescriptiprexpressed
one-loop effective action—at present, this is possible onlyPy & Series involving higher-order Seeley-DeWitt coeffi-
with a background field of very special character. But, if thecientsa,(x) (n=3), the calculation of which may be per-
mass parameter is sufficiently large, it can be studied foformed using a computéf4—16. If only the leading term is
generic smooth background fields by utilizing a systematikept with the serie$2.17), one finds, explicitly,

[

) 5 (n—3)!

C(4m)? & (m)n2

T(A)= fd&%u»

1 1 1fd4t
1672 m2 180) ¢ XV

1 12 , ,
WWISJ d4xtr[—3(DMFM)(DMFM)+13|FWFV>\FM] (for spinop,

3
5 (DLF)(DF o) —4iF L F Py (for scalay,

m—oo; F(A)Z (2.18

where D,F,,=[D,.,F,\]. If the background fields property of trace that fd*x tr{(D,F.\)(D.F.)]
under consideration satisfy the classical Yang-Mills fieId=4ifd4xtr[FM,,FVAFM]. Hence, for theon-shell effective
equations, one can show using the Bianchi identities and thaction, Eq.(2.18 can be further simplified as

1 1 i
_ _Wﬁ%f d*x tr(F ,,F,\Fy,) (for scalay
moe: T(A)=) | (2.19
16’7T2W4_5] d*xtr(F ,,F,\F\,) (for spinop.

For some explicit expressions of the higher-order Seeleyegy, such as the small-mass expansion if its exact expression
DeWitt coefficients, see Sec. IV and Appendix A. Also notein the massless limit has been found by some other methods.
that the large mass expansion for the effective action in othein the next section, we shall first see how good the large-

renormalization schemes can be obtained from the expansidnass expansion can be for the much studied case of the
one-loop effective action in the constant Yang-Mills field

(2.17 for F(A) and the exact connection formulas. . i :
N . . _background. Also considered is its small-mass expansion
The large-mass expansion is only an asymptotic series

. Which may serve, together with the result of the large mass
a_nd the useful range of the seri@s17) (as regards the mag- expansion, as a basis to infer the behavior of the effective
nitude of m) will depend much on the nature of the back- action for arbitrary mass.
ground field and also on some characteristic $satntering
the background. For a sufficiently smooth background, this
large-mass expansion may be used to obtain a reliable aPj| THE SPIN-0 EEEECTIVE ACTION IN A CONSTANT
proximation to the effective action even for moderately large  gr| - hUAL YANG-MILLS FIELD BACKGROUND
values ofm. But the serieg2.17) is bound to lose the pre-
dictive power for “small” values ofm, and for the smalim In this section, various approximation schemes to be used
effective action one should employ a totally different strat-later will be tested against the exact result, choosing a rather
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simple background field. In non-Abelian gauge theories, a 0 .
constant field strength is realized either by an Abelian vectorT /v H)
potential which varies linearly witlk* or by a constant vec-
tor potential whose components do not comnj@ts. In this
paper we only consider the case of the Abelian vector poten-

- == Large mass expansion up to ae
— — Large mass expansion up to a,

components may be specified by settihg=f3,=H with
the constant “magnetic” fieldH.

In this Abelian constant self-dual field, let us consider the
one-loop effective action due to an isospin-1/2, spin-0
(complex-valuell matter field, taking the mass of our . ‘

tial. Assuming the S(2) gauge group, an Abelian vector 010" r /4 1
potential can be Written a8, =—zf,,x,7 (with the field H
strength tensofF ,,=f,,7°/2), wherefr3 is the third Pauli l/
matrix. If we further restrlct our attention to that with the i
self-dual field strengtfii.e., F,,=3€,,,sF)s), its nonzero | A f;‘fgﬁ’nf:::expans,onupm% |
|
[
[
I

spin-0 field to be relatively large so that the large mass ex- 0 0o 20
pansion(2.17 may be used. For this case, some leading mH
Seeley-DeWitt coefficients are easily evaluateding the FIG. 1. Plot of the effective actioli(H:m).

formulas given in Appendix A, for instange

~ 2 , ~ 2 4 of the former. From the plots in Fig. 1, it should be evident
a;=—3(H2)%, a,=7=(H/2)7, (3D that for mass values in the rangéH=1, summing only a

few leading terms in the serid8.2) already produces the
4 6~ 2 o results which are very close to the exact one. The large mass
1g9(/2)°  ag=g7c(H/2)". expansion is useful ifn=H.

Now suppose that the exact expressi@¥) were not

Note that we get zero for all odd coefficients here. Usingavailable to us. For mass value not larger tha, the large
these values, we then find that, for relatively lamgethe  mass expansiofB.2) fails to give useful information. Nev-

a6=

effective action is given by the series ertheless, if one happens to know the one-loop effective ac-
tion for smallmass, this additional information and the large
— VH?[ 1 [H\? 1 [H mass expansion might be used to infer the behavior of the
I'(Him)= 1672 120\ m? @(_2 effective action for general, small or large, mad¢ote that,

in an instanton background, this becomes a real issue since
the full m-dependence of the effective action is not known

wlrel
~oonl 2| T - — . .

720\ m there) In exhibiting this,T'(H;m) will not be convenient

) ) _ since it becomes ill defined as— 0. So, based on the rela-

whereV denotes the four-dimensional Euclidean volume.  ion (2.12, we may consider the renormalized action

For this case, it is actually not difficult to find trexact 1 (H:m, 4) given by
expression for the one-loop effective action, following
closely Schwinger’'s original analysis in QE[B]. After
some algebras, one finds the trace of the proper-time Green VH?2

-, (3.2

i . ) m?| — )
function to be given by22] edH;m,p) = (477)—2><6| —2 +I'(H;m), (3.5
2 (Hs/2)?
tXSX) = Trs)2 Sin(HS2) | 33

which is well behaved for smath. Large mass expansion for
I'e(H;m, ) results once if the expansiai.2) is substi-
tuted in the right hand side of E¢3.5).

To find the smallm expansion, we find it convenient to
consider the quantity

One can easily check that the expressions given in(E®)
are correct ones by considering a snsafleries of this exact
expression. Inserting Eq3.3) into the formula(2.10 then
yields the exact expression

N L CI G LT,
F(H,m)——ZVL s° (4ms)dsintt(Hs2)

@ . d _
Q(Hm)zfo AP~ T e Hi, 1)

1
+3(Hs/2)? 3.4 =Te(H;m u)—TreH;m=0). (3.6

Comparing the result of large mass expansion in B®R)
against this exact result, we can investigate the validity rangén Eq. (3.6), from Egs.(3.4) and(3.5),
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Exact result
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0 0.5 1 1.5 2
X (=m/H")

FIG. 2. Plot of Q(H;m).

2

Fren(H;mZO,,u)Zm s (37)

A
gm(ﬁ) —2¢ (—1)

where ' (s) is the first derivative of Riemann zeta function

and{'(—1)~—0.165421. Notice tha®(H;m) is indepen-

dent of the normalization mags and is well behaved in the

small mass limit. Explicitly, it is given by the expression

2
—m
e S

(Hs/2)?
sinff(Hs/2) |’
(3.8

Q(H;m)=2VJOm dEZJ:ds(Ams)z

and in the small mass limit, this leads to

VH? m?/H — — —
Q(HIm) = 35— . dm?[— 1/2—m?(logm?+ y)+ - - -]

2

1672

[—m?/H—(m?/H)?(log(m?/H)—1/2+ )

+--] (3.9

PHYSICAL REVIEW D62 114022

[this formula is obtained from Eq$3.2), (3.5, and (3.6)]

can be trusted in the rangé=1. In the intermediate region
0.4<X=1 the large-mass expansion curfee long dashed
line in Fig. 2 may then be smoothly connected to that given
from the smallm expansion(3.9), assuming a monotonic
behavior(as should be reasonable for a simple background
field). Evidently, with this interpolation, one could have ac-
quired a nice overall fit over the entire mass range even if the
exact curve were not known. We also see from Fig. 2 the
typical behaviors which are shown by the small-mass or
large-mass expansion curves.

IV. LARGE MASS EXPANSION FOR THE SPIN-0
INSTANTON EFFECTIVE ACTION

We now turn to the case of a BPST instanton background
[1], i.e., a self-dual solution of Yang-Mills field equations
given by

a
77,uvaT XV

g 4.1

Ta
AM(X)EAZ(X)EZ

where 7,,,, (2a=1,2,3) are the so-called 't Hooft symbols
[5] and p denotes the size of the instanton. The associated
field strengthF,, is

P’ Nyra™
v (<t p?)? 4.2
In this instanton background, the exact expression for the
one-loop effective action due to a spin-0 or spin-1/2 matter
field of nonzero mass is not known; only the result in the
massless limit is knowi5]. This quantity will be studied
with the help of approximation schemes in this paper. Spe-
cifically, taking the matter field to be that of an isospin-1/2,
spin-0 particle, the corresponding effective action is studied
using the large mass expansion in this section and by the
small mass expansion in the next section. In Sec. VI, we then
use these results for a spin-0 matter field to obtain the cor-
responding results appropriate to a spin-1/2 matter fiedd
quark. Note that, in the case of a spin-1/2 matter field, a

In Fig. 2, graphs forQ(H;m), the exact one and those (jrect application of the small mass expansion can be very
based on approximation schemes, are given as functions gfjhtle due to the presence of normalizable zero modes for the
X=m/\H. The exact result, i.e., that based on the expresmassless Dirac equati¢aa).

sion (3.8) is represented by a solid line, which exhibits a

The large mass expansion for the spin-0 effective action is

monotonically decreasing behavior starting from the maxi-described by our formul&2.17). To use this formula, one
mum at X=0. Clearly the small mass expansion up toneeds to know some higher-order coefficients in the series

O(m*/H?) provides a reliable approximation fox=<0.4,
while the large mass expansion fQ(H;m),

H _ VH? 1 m?
QM= 12| 5 T
H\* 1
m?| 720

1 (H)\?
+2§,(—1)—1—20(F)

H 6
W) +} (3.10

(2.5, with G~*=—D? and the instanton background given
above. Calculations of these higher-order Seeley-DeWitt co-
efficients are straightforward in principle, but get very in-
volved as the order increases. Fortunately, thanks to the rap-
idly growing computer capacity to handle a large number of
terms in the symbolic calculations, the explicit expressions
for the Seeley-DeWitt coefficients in general background
fields have been found recently up to the sixth ofdd—16.

We will utilize these results for our calculations below.
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In the instanton backgroun@.l) the renormalized one-

loop effective actiol’(A), defined by Eq(2.10, will be a
function of mp only. Hence our large mass expansion is
really an expansion in ?p?. Also the expressions for the f Iy By (X) = J' dixtrl =
Seeley-DeWitt coefficients are simplified considerably if we

take into account the fact that our background field satisfies 1
the classical Yang-Mills equations of motion. For such on-

shell background fields, the space-time integral of the 35FMF bt 105FWFV’JF’NF
Seeley-DeWitt coefficient®,(x), n=3,4,5 (for a spin-0 1

matter fleld are given a$16] + EOFMVFPUFMVFPO'

~ i
J d*x ag(x)= % f d*xt{F ,,F,,F,.] 4.3

210 nv ,U,VF)\KF)\K

, (4.9

1 47 1
945F#proFmprFor 126F#,,F#,,FPGFMF +i 126F#proFnyarF

4 4
fdxa5 =120 d*xtr|i

1 11 37 4
63FM,,F,,,JFM,,F o 189F;LVFpO'FO'VF,uTFTp+I945F;LVFVpra'F0'TF +189erFm(DM vp)

2 2 4
(D,quo) 3F)\K(D/.L Vp)F (D,U,F)\K) 189F)\0'(D;L Vp)F (D;LFV)\)+63 oT O'T(D/.L Vp)(D/,l, Vp)

4
/.L'T T(T(D,U,F )(D(TFVP)+ FTV(DM Vp)(D ) . (4'5)

63 189 T

Note that the on-shell expressions for the space-time integralo the necessary trace calculations as well as tensor algebra.

of ag(x) anda,(x) involve only the field strength, while that From the expression for thas coefficient, we obtain the

for as(x) involves the derivatives of the field strength also. result

For the expression ofig(x), which occupies more than a

page, see Ref15]. In Appendix A, the expressions valid o~ 4. 51235¢%p®—39"°) 1856 72

without using the classical equations of moti@nd before f d"x ag(x :f d*x 315x2+ p?) 10 ~ T 2835p°"

the space-time integratiprcan also be found. P 4.9
Inserting the expressio@.2) for the field strength into the '

formulas(4.3) and(4.4) and carrying out tensor algebra and

trace calculations, we find

- 64p° 16 72
f d*x a3(X)=fd4X15(X2—+p2)6=%F, (4.6 f d4x~a6(x)=—f d*x 2%

while, for theag(x) term,

51975 p%+x?)*?
4 . 544" 272 7 X[3977168p*— 76527°p®+ 40496 X*p®
dxa4(x) dX35(X +p?) ﬁS?
@7 —8641&°p1%+ 287617

- 2
The next coefficientis involves the covariant derivative of :% 77_. (4.10
field strength 444675 8

D\F,,= (x2+ 2)3[277,uvax)\ X TavaXs Based pn the explicit calculatpns given above, we obtain
p the following large-mass expansion fb{mp):
+ 5}\/.L NvoaXe ™ 5}\1/77,11.0'.’:1)(0'] . (48)
— 1 1 17 1 232 1

Calculations of higher-order Seeley-DeWitt coefficients with I'(mp)=—-=¢ 2,2 735 m4p4+ 2835mPp0
the instanton background can be very laborious. Together
with the formulas given above and that in R¢L5] for 7916 1 N il
ag(x), we have thus used theMATHEMATICA ™ program to 148225m°®p® 4.1
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- 0 ' m?, i.e., dI'en/ dIM?, which is independent of the normaliza-
) tion massu. The latter, being equal to the? derivative of
our regularized effective actiofi(A), will have the proper-
time representation
e mMp, ) ”
re—2= lim f ds e ms
(?m n;}oi’ 7
,' -~ Large mass expansion up 'toﬁ3
) om- targe mass expansion upto§4 X f d4X tr[(xs|x)—<xs|x)A :o],
1 ——- Large mass expansion up to & "
] ! —— Large mass expansion up to a,
-0.01 | [ 1 (5.2
' where we have used Eq2.4). Here note that(xs|x)
=lim,_(xsly) is nonsingular as long a&>0. Paying due
0 2 . attention to variougsingulay limits involved, it is possible
mp to recast the formuléb.2) into that involving ordinary spin-0
propagators
FIG. 3. Plot ofl'(mp) for the instanton background.
2\ —
G(X!yvm )_<X| _ D2+m2 |y>'

In Fig. 3 we have given the plots based on this expression

(first keeping only theas term, then including the, term L
also, etg¢. This is a useful approximation whemp is large, Ga(X.V:m2)=(x 5.3
say,mp=K. What would be the lower-end vallhere ? In o(ys M) =X =y ©.3

the absence of the exact expression fgmp), a possible . . .
criterion for telling the validity range of the serié$.12) will The explicit formula, which can be derived from H.2),

be as follows. IfA, denotes thed[1/(mp)?'] term in the reads{24]

series andl'|)==]_,A,, we may demand that the series T oM )

(4.1 remainstablein the sense that the relative importance ren TP 1 =f d*x lim tr[ G(x,y;m?)
of each newly added term decreases, i.e5|A;/T| gm? y—x

>|ALIT 5| >|A5IT 5| >|A4IT4|>---. As this criterion is
used, we obtain théconservative value K=1.8. The result

of large mass expansion may thus be trusted in the range . . .
g P y gwhere ap(x,y) is the zeroth order coefficient in the

iven bymp=1.8.
g ymp asymptotic serieg2.5). For small k—y),, ag(x,y) has the
following expression:

—ap(X,y)Go(X,y;m?)], (5.9

V. SMALL MASS EXPANSION FOR THE SPIN-0

INSTANTON EFFECTIVE ACTION i
ag(X,y)=1+i(x—-y), A +—(X— X=Y),
For smallmp, that is,mp significantly below 1, the one- o(X.) (XY A+ Z (=) u(x=y)

loop effective action in the instanton backgrou@dl) can .
be studied with the help of the small mass expansion or mass X[3uALY) ALY FHALY)ALY
perturbation, since its exact expression in the massless limit +0O[(x—Yy)3]. (5.5

is known. Here we shall denote the corresponding spin-0
effective actionI’,.,, which is defined by Eq(2.12, as The presence of tha,G, term in Eg.(5.4) guarantees a
[rei(M,p, ). Form=0 we have, from the computations of finite result fordl" ,o(m,p, )/ dm?.
't Hooft [5], For smallm, one may then try to evaluate the right-hand
side of Eq.(5.4) by 2exploiting the appropriate expansion of
1 the propagators im“~ and the known exact massless propa-
Lredm=0p,1)=gIn up+a(1/2) (5. gati(l)an fltamgction in the instanton background. We shall%er?ote

the latter byG(x,y)=(x|1/—(D?)|y). But a naive expan-

with a(1/2)= 2 y+ tIn 7— (172 (2)— $%=0.145873. Our sion of the form
goal in this section is to compute explicitly tli&(m?) term
of I'iel(M,p, ). Note that this smalin approximation for G(x,y;m2)=§(x,y)—m2f d%z E(X,z)a(z,y)
I'er(m,p, ) contains a nonanalytic piece m and so it is
not a trivial task to extract the desired term. . . .
Our first task is to develop a small mass expansion for +m4j d*z d*'w G(x,2)G(z,w)G(W,y)+ - - -
I'ved(m, p, 1), which is finite at every order. For the purpose
it is convenient to consider its derivative with respective to (5.6)

114022-8
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is not valid since, aside from the leading term, all other terms 1 1

of this series involve logarithmically divergent integrals. <X|[(_—Dzj—m](—072)|w

[Note thatG(x,z)=O(1/|z|?) as |z|]—=.] Moreover, the

m?=0 limit of JI',.,/dm? does not exist in the instanton —0 (sufficiently fas}, as [x—y[—. (5.1]
background since, according to explicit calculatipsse the
comment after Eq(5.22 below], the integral in the right-
hand side of Eq(5.4) for m?*=0 diverges logarithmically.
This indicates that, as*—0, I',.{(m,p, ) approaches the
't Hooft result(5.1) in a nonanalytic manner. To resolve this
problem, we shall below describe an alternative expansion

In the case of the instanton background, this means that we
have to work with the expression given in the singular gauge,

scheme(which utilizes the idea of Carlitz and Creanjé8| 027, vaTaX,
in a suitable form ALX)=— (5.12
The expansion we shall use has the form X5 (X"+p%)
1 [ % 1 (Here,;Wa differs from #,,,, only by the sign in the com-
. > (— %) —— E ( [ — ponents withu or v equal to 4). This is allowed by the gauge
—D*+m’ " (-D?) — o+ S (=D invariance of the effective action.
; If only the leading term of Eq(5.7) is used in Eq(5.4),
1 (— P)—— (5.7) we now find that
(=) -+ m? '
Il rer(M,p, 1) 4 1
This can be derived in the following way. First observe that  — -5~ — d* lim tr <X|( D?)
m y—X
1 1 1 X( 52)—1 ly)
_ Y ) 2 lY
pZrme - —Zrme TP Tpre gwrm
1
1 1 —ag(X,Y)(X| =z |y) |+ O(m?).
_ _ 2 olX, — 2 m2
X (_DZ) (_072)]( (7)_0—)2+m2' Jd m
51
(5.9 .13
. . . This is not yet in the convenient form for actual computa-
Then, using the identity tions. So, based on the following observations:
5 _ 5 1 1 5 1
(D) gz~ 1M g (5.9 Mm(—ﬁ)wm
1 1 ’
it is not difficult to see that Eq(5.8) can be rewritten as = (x| (—D? lyy+(X (- D?)(_’? )
X - - | (5.19
1 _ 1 —?) 1 —P+m? (=P y), .
-D?+m? (-D? T— 92+ m?
) 1 1 1 1 1
M BT | (CD9) (=P 20 Y)(X —Zz 2 [Y) =20 y)(X] (——az)|y>
=
X a)_a2+m2- (5.10 +(x| —a2+m2_(—a2) ly)

+ (terms vanishing agy/—Xx),
This last equation may be solved for #D2+m?) in an (5.1
iterative manner, and the result is the expang®@i). Evi- '
dently, Eq.(5.7) is an expansion in powers ofi?{1/(—D?)
—1/(—d*)}(— %) 1I(—9*>+m?), and we expect that this we make suitable rearrangements in the right-hand side of
will yield a convergent series for smath if the background Eq. (5.13 to obtain the following formulato be used for
field is such that computations
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I (M, p, ) _ . 1 _ _
—&mz —f d%x )|/ILT1XII’(<X|m|y> G(x,y)=(X| _D2|y>
1 Z(X‘y+i_ vaXuYv a)
_ao(X,y)<X|m|y>]—J(x) +0(m?), 147 TuvaZpdvT

1 x2y2
(5.16 4% (x—y)? p? p?
, o Vit 5\/ 1+
where the function(x) is given by X y?

4 L L (5.18
J(X)Z—f d*ztr <X| (_—DZ)—(_—az))|Z>

<5 1 1
X (—d,)(zZ| —Zrm (— ) 1x) .

Then, writingx=y+ €, we find after some straightforward
calculations

(5.17 1 1
(x| —D2|y>_477262

( pi(y- €)= pzyz(y2+pz)62)
2(y%)4(y*+p%)*

But for theJ(x) term, what we have in the right-hand side of

Eq. (5.16 is just the(logarithmically divergentexpression

representingl’ e (M, p, )/ IM?| 12— [se€ Eq(5.4)]. As we + ( 1—

shall see below, this divergence is tamed by the additional

term J(x). The very structure ofi(x) given in Eq.(5.17)

also ensures that it is free of any short-distance divergence.
The first term inside the integrand of E&.16 is evalu-

ated as follows. The spin{@&nd isospin-1/2massless propa- On the other hand, if Eq5.12) is inserted into the expres-

(2y%+p?)(y- e))ipzZﬂyaTaeﬂyy
yA(y?+p?) y2(y2+p?)
+0(e). (5.19

gator in the instanton backgrourd.12 is given by[17] sion (5.5), we have
|
2 40\,2 A 2 2\
: P NuvaTayy 1 P (Y6, =Y,Y,) T 2ip (2Y°+ p*) mnaTay Ya 3
(X, Y)=I+i(X=y),—— = 5 (X=y)u(X=Y), +O[(x—y)~]
“yAy ) 2 . (Y2)2(y*+p?)?
(5.20
|
and therefore < |( 1 1 )| > ZJ dp e P @
z - X)=-—m ,
1 P4y2€2_p4()/' €)2 —9?+m? (=3 (2m)* p2(p2+m?)
= - 5.2
t"‘ ao(X,Y)<X|(_(92) |y>] 277262(1 20y92(y%+ p2) ) (5.23
+O(e). (5.21) Eqg. (5.17 may be rewritten as
: . d*p elPx
From Eqs.(5.19) and (5.21), we thus obtain the following J(x)=m? PR ey F(x,p) (5.24)
expression: (2m)" p?(p?+m?)
' 1 1 with F(x,p) given by
lim tr[<x| (_—Dz—)|Y>—ao(X.Y)<X| (_—023|Y>]
y—X f . [ ( 1 1 ) . )
F(x,p)=| d*ze P2t (X|| —==— ——||2)(— 0
p2 ( p) < | (_DZ) (_(92) | >( Z)
AT 22 e
=2f d‘ze P~ )
[We here remark that the resui.22 is unchanged even if 5
one takes the regular-gauge instanton solutibd) as the 1+P X-Z
background field.Clearly, with this term alone, the remain- 1 X272
;nug?tx integration would yield a logarithmically divergent re 47 (x—2)2 VT4 21+ A 22
We now turn to the evaluation df(x). Noting that (5.25
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In Eqg. (5.25 we have used the expressi¢h.18 and the Now, inserting the thus evaluatét{x,p=0) for F(x,p) in
factor 2 at front arose from the isospin trace. We are her&q. (5.24), we obtain the following contribution td(x):
interested inO(1) or O(logm?) contribution to the right

2
hand side of Eq(5.16. Let us see when and where such J(x)=0(|x|—L)f d“p(iz— —— eip-X( - p_z)
contribution can arise, based on our formul&?24) and pT+m X
(5.25. For any finitex value, the functionF(x,p) is well +O(m?)
behaved for alp. Due to the overall multiplicative factan?
in Eq. (5.24), J(x) for finite x (or, more precisely, fox* p?
satisfying the conditiofx|<1/m) would then be?(m?) and == m[l— m[x|Ky(m|x])]
hence no desired contribution. It is thus sufficient to study
J(x) for large x, i.e., x* in the region|x|>L with p<L X O(|x|— L)+ O(m?). (5.30

<m~ L. Now, due to the factoe'P */p?(p?+ m?) within the o
integrand of Eq(5.24, we further conclude that the smail-  (Note that we have assumetl.<1.) On the other hand, it is
region of F(x,p), with [x|>L, can be the source for the Possible to showsee Appendix BthatC(x,p) in Eq.(5.26
desired contribution; if the contribution from the regigp] 1S at mostO[|p|L(p?/x%)] or O(p*/x°L) or O(p*/x*), when
<m is excluded from the right hand side of E§.24), J(x)  |X|>L and|p|=m. With this finding used in Eq5.24), it is
becomesd(m?). easy to see that n@(1) or O(logm) contribution results

To study the functionF(x,p) for |x|>L (with p<L  fromtheC(x,p) part ofF(x,p). Thus, to the order we want,
<m~1) and|p|=m, we writeF(x,p) as the sum of its value OUr formula(5.30 has no further correction.

atp=0 plus the correction term, viz., Evidently, if the contribution in Eq(5_.30) is considered
together with that in Eq(5.22, the x integration in Eq.
F(x,p)=F(x,p=0)+C(x,p). (5.26  (5.16 will give a finite result. Furthermore, since the func-
tion F(x,p) does not involve mass at all, the scald we
Then, from Eq«(5.29, introduced can be chosen, fanp—0, such thatp<lL

<1/m. With this understanding, we may now perform the
integral in the right-hand side of Eq5.16) to secure the
unambiguous result

F(X p 0) Zf d4Z( (9 ) 2(X 2)2 (91_‘ n( )
rerl M, P, 1

2

2
_P p 1 _ 2 4
. p pe —2In(mp)+ 5 'y+2 In2]+0O(mp®).
1 (5.3)
212 2
V1+p%/x \/1+P 12* Then, based on this formula and the 't Hooft re<6ltl), we
1 7 immediately obtain the desired small-mass expansion for
=-lim5— cORZ oM, p, 1)
R— o [zZ=R
m2 — T e M, p, 1)
1+p2X~Z LredM,p, ) =T'refm=0,p, M)*’f dm ZreaT
2(x=2), X272 1
)2 1 2
627\ Vir e i 72 = gln(up)+a(1/2)+( ) in(mp) + v
(5.273
—In 2]+ O[(mp)“]. (5.32
p°x-z
1 9 1+ X272 The O[ (mp)? In(mp)] term in this formula was first found in
+ (x—2)2 9z, VLt 211 ol 2 Ref.. [18], while the O[ (mp)?] term without the Infp) fac-
# P p tor is new.
(5.27h
where we used Gauss’s lafiNote that, for very largéz|, the VI. MASS INTERPOLATION AND THE SPIN-1 /2
integrand in Eq(5.27a behaves a®)(1/|z|°)]. Evaluating INSTANTON EFFECTIVE ACTION
the surface integral in Ed5.27h immediately gives In the previous two sections the spin-0 instanton effective

action were computed for relatively largep and for small

F(x,p=0)=2 (5.2  Mp. The result can be summarized by

1
—_1 ,
V14 p2Ix? )

1
and hence [redm,p,p) = gln(ﬂp)+a(1/2)+Q(mP) (6.9)

2

F(x,p=0)=— 7+O with the quantityQ, a function ofmp(=X) only, behaving

as

p_4) for |x|>L. (5.29
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1 1
Ex2 InX+5(y=In 2)X%+ ... (X=<0.5),

Q(X)= (6.2

75X2 735X% T 2835X°  148225XF

1 11 171 2321 7916 1
( ) - (X=1.9).

[Note that, in the instanton background, E8.12 implies >0 which meets this requirement. With the plausible curve
thatT o (M, p, ) = :In(/m)+T(mp).] In the indicated valid- for Q(X) taken by that given in Fig. 4, we.have foutafter

ity ranges ofX, the functionQ(X) is plotted in Fig. 4. We SOme trial and errojsthat it may be described by the func-
have here assumed that our small mass expansion in Efon of the form

(5.32 can be used reliably foX=<0.5; this estimate is based 1

on measuring the effect of thenp)* term[with the numeri- QX)~—=InX—a

cal coefficient taken to b&(1)] against the terms which 6
appear explicitly in Eq(5.32. 1 1

Now, what could be said on the behavior of the function —InX+ a_(3a+5)x2_ — x4
Q(X) in the intermediate region 05X=<1.8? Since the +6 (for all X>0)
background field under consideration has a smooth profile, 1—3X2+20X*+ 15%8 '
one naturally expects th(X) also be a smooth function of 6.3

X; that is,Q(X) would be represented by a smooth interpo-

lating curve connecting the known forms of the curve in the, ;i a=a(1/2)=0.145873 andB=1(In2—+)=0.05797.
regionsX=1.8 andX=<0.5. Let us further assume that the 1is form incorporates correctly the small-and leading

region for interpolation, 0.5X<1.8, can be viewed as be- 5,46 % hehaviors shown in Eq6.2). For the tunneling am-
ing reasonably small. Then, looking at hd@(X) actually plitude which is more directly related ® "ren, this amounts
behaves foiX=1.8 andX=<0.5 (see Fig. 4, it appears to be using the expressiof6.3) with

quite plausible to suppose th@i(X) is a monotonically de-

creasingfunction of X for all X>0. But, since we have in no e TredMpi) = (4 )~ VB~ (/2= Qmp)

way proved this monotonic behavior in the presence of the

instanton background, one may regard this as a conjecture. (for arbitrary massm). (6.4
[For instance, the possibility th&(X) may develop a local . ] ) i

maximum or minimum within the range 6s5X=<1.8 is not Various results obtained for the spin-0 field case can be

excluded. Incidentally, such monotonic behavior was als¢!Sed to derive the corresponding results appropriate to the
observed in the case of a self-dual constant field stre(sgéa ~ SPiN-1/2 one-loop instanton effective action. The latter will
Fig. 2.] Accepting the conjecture, it might be usefespe- Pe needed if one wishes to consider the loop correction to the
cially for phenomenological analysis of instanton effe¢es ~ vacuum tunneling amplitude in QCD due to quark fields. In a
have a certain smooth functia@(X) in the entire rangex  Self-dual Yang-Mills background, the hidden supersymmetry
of the system allows one to express the spin-1/2 proper-time
Green function(xsy)“2=(x|e"S"®’|y) in terms of the
corresponding spin-0 function(xsly)(©=(x|e~ -2y}
(with the same isospin representation assumgdplicitly,

QX)

0 ---- Small mass expansion

— —- Large mass expansion up to 3 this is described by the operator relatii@#]
—— A plausible form for Q(x)

1

1+
e S’ g=s(-DH 75 | YD—5z

1_
x e S(-DY,p 275+P, (6.5)

whereP is the projection operator into the zero mode sub-
space of yD and can be expressed by=[1—yD(1/
—D?)yD][(1— ys5)/2] [17]. Using the relation(6.5) with
the definition ofl",.(A) (see Sec. )l it is then possible to
derive a simple relationship between the spin-1/2 and spin-0
-03 05 ; 5 5 one-loop effective actions. I Z2(A) [T(0(A)] denotes
| _ ' the one-loop effective action as defined by E2.12 for a
X(=mp) X ; ) .
spin-1/2 (complex spin-0 field of massm in a self-dual
FIG. 4. Plot ofQ(mp). Yang-Mills background, we have in fact
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w2 1 m? ©) VII. DISCUSSIONS

r A)=—=n In( )—21’ A) (6.6) ) ] ) o

ren ( 2 Pl u? ren In this work we studied the massive quark contribution to

. I . .., the one-loop instanton effective action in QCD. For this pur-

or, for the respective contributions to the tunneling amplltudepose, we made use of the approximation scheme valid for
. relatively large mass as well as the small-mass expansion.

m\F 21O These considerations provide a reliable approximation to the

—| e eV (6.7 . ST . -

o one-loop effective action if the magnitude mp is such that

_ ) ) mp=1.8 ormp=0.5. The expression for the effective action

whereng is the number of normalizable spinor zero modescontains a functiorQ(mp), the magnitude of which is un-

in the given backgrounf23]. Now, using the result6.1) for  certain in the range 05mp=<1.8. Based on the known be-

e TardA) =

I'{e)(A), we have the spin-1/2 instanton effective action ex-haviors ofQ(mp) in the rangesnp=<1.8 andmp=<0.5, we
pressed aswith ng=1) suggested tha®(mp) be a smooth, monotonically decreas-

ing function ofmp. If the latter turns out to be true, a simple
(1/2) m 1 interpolation formula forQ(mp) [as we considered in Eq.
Uten (m,P,M)Z—ln;—gm up—2a(1/2)—2Q(mp), (6.3)] suffice for considerations in most phenomenological
(6.9 analyses.
What can be done to reduce the uncertainty in the func-
or, for the tunneling amplitude, tion Q(mp) for 0.5=mp=<1.8? With the explicit calculation
of the O[ (mp)*] term in the small mass expansion, it should
w2 m be possible to push the lower end of the uncertain range to a
e Tren (Mps) = —(y p)W32a(12)+2Q(me) - (6,9)  slightly higher value. On the other hand, we expect that in-
K cluding the next higher Seeley-DeWitt coefficient in the
whereQ(mp) is the function specified in E46.2) (and rep- Iarge—r_nass expansion wo_uld not bri_ng a significant new in-
resented in Fig. % format!on. More L_Jseful dlrect|on_ might be totry a Q|rect
The expression in EG6.8) or (6.9) describes the one-loop numerical evaluathn of the functlonal 'determmant, yvnh the
contribution to the vacuum tunneling by an isospin-1/2 quark€lp of the scattering theory in a radially symmetric back-
field of massm. If one accepts our conjecture, the function 9round field.(Some related techniques are discussed in Ref.
Q(mp) may be taken as a monotonically decreasing function26l) Perhaps, by some mathematical argument, it might
of mp which has the limiting behaviors as given in E6.2).  lSO be possible to actually prove that the funct@(mp),
The renormalization prescription appropriate to the expreshich is equal toT e(m,p,u) —T'e{m=0,,u) (for a
sion (6.8 is that specified by Eq(2.12. If one wishes to spin-0 flglc) in an instanton background, is a monotonically
obtain the corresponding amplitude in the minimal subtracdecreasing function aflp. These are left for further study.
tion in the dimensional regularization scheme, the finite
renormalization counterterfisee Eq.(2.14)]
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m e2a(1/2)+2Q(mp).

e—l"f\,,léz)(mvp,u) R
)7

wp
4oe Y

(6.11) APPENDIX A

With Q(mp) set to zero, this reduces to the result of 't Hooft In the I|tera?ture[14—1.q, the Seeley_—DeW|tt coefficients
[5]. For applications to the real QCD with the &Y gauge a,(x) for a spin-0 or spin-1/2 matter field have been_ calcu-
group, one must also take into account the well-known grougatéd up ton=6. Here, for the case of @ompley spin-0
theoretical factor associated with various ways of embeddindjeld, we shall give the explicit expressions fag(x) up to
the SU2) instanton solutior25]. n=5 in a general off-shell background field. They read

- 1] 2 1
a3(X):_6tr Il_FK)\F)\MFMK_ %(DKF)\M)(DKF)\M) ’ (Al)
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1 1 11 2 4 6
a4(X) 24 ﬁFK)\F)\}LF/.LvF +420 K)\F/.LVF)\KF +35FK)\F}\KF;LVF +35FK)\F)\;LFKVF +ige 35 K}\(D F)\V)

E‘5(X)= -

whereD, F

LY
756 °”

8
X(D,F )+ 1oz Far(DyF ) (D,F )+ 75(D,D,F ) (DyD,F (A2)
1 2 8 16
@tr 945FK}\FMF o 63FK)\FWFK,,FMPFP,,+|945 NP o W !

.22 31 53 1
+1 EQFK)\F}\,MFKVFV,JF,OM_I—I 378 K}\F)\MFVpF;LKFpV+I 378 K}\F)\KF,LLVFVpr/.L+ 9 FK)\F)\,U,(DVFKP)(DVFp,u)

1 1 1
+|1_8FK)\(D)\DM Vp)(D DKF ) ﬁgFK)\F)\M(DKFVp)(DMFpV) 252(D D D,u Vp)(D D DKF )

1 2
a7al uxF FK)\(D)\D,u. Vp)+| 1(DKF)\;L)(DKDV ,u,p)(DVFp)\) 63FK)\( N Vp)F)\K(D;L pv)

HEC IS

4 5 5
+1 @FK)\(D/LDVFXP)(DVD[LFPK)_ ESFK)\F}\/L(DVF/L[])(DVFPK)—’_ 6_3FK)\(DIU,F)\V)FKP(D[LFPV)

D pr)(D F)\//,)(D D pr) D}\F,U.I/)FVP(D F

oF )

189 K}\(

5
(D Fl/p)Fp)\(D )+I126(

5
63 K)\

8 5 10
_ﬁngMFK}\(D}\FMV)(DV Kp)+| 126(D F}\;/,)(D,u,l:vp)(D DKFpV) 189 K)\(D F)\V)F p(DKFpV)
11 11 11
+E9FK)\(DMF>\K)FVP(D,M pv)+ 189 K)\(D}L Vp)F (D,LLF)\K)_3_78FPVFK)\F)\[.L(DMDKFVp)

13 16 16
+2_52FK)\F)\K(D/.LFVp)(D,quV)_6_3FK)\(D)\F,u,V)FVp(DK p,u) 189 K)\F)\M Vp(D DKFpV)

(D\F ) F p(DF (D.Fr)(DLF )

5
)F (DKFpV) 189 pv K)\

756 K)\ v ) 756 K)\(D,u vp

26 34 41
- @FPVFK)\(D/LF)\V)(DPF/LK) - @FPILFK)\(D)\F,U,V)(DPFVK) - 3_78FK)\F)\/L(D,LLFV[))(DKFpV)

61
FK)\(DIU.F)\K)(D va)+

756 K)\F,LLV(DPF)\K)(D[)FVILL) ’ (A3)

w=[Dx\,F,,] andD ,D,\F, =[D,,[D,,F,]], etc.

APPENDIX B

The functionC(x,p) in Eqg. (5.26) is given by

p°x-z

X272
472(x=2)%\ 1+ o2 1+ pUZ2

1+

C(x,p)=2f d*z(e P 7—1)(—4?) (B1)

and we are here interested in its behavior|fgr> L (with p<L<m~1) andp=<m. We divide this quantity into two parts, i.e.,
C(x,p)=C-(x,p)+C~(x,p), whereC_(x,p) denotes the contribution with the region of integration restrictefkftssL,
(with p<L;<L) andC-(x,p) that from the regiofz|>L;. (We takeL to be of the same order &s) Then, forC_(x,p),
it will be safe to make an approximati@1'? ?— 1=—ip-z[i.e., O(|p|L) at mosi inside the integrand of E¢B1) and so we
find immediately
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2
C-em=0|IplL %) (for x>0 2

On the other hand, fo€-(x,p), we may expand the factor {(1+ p?/x?)\/(1+ p?/z?) in the integrand of B1) as a power
series inp/|x| andp/|z|, and then

p°X-z
1 1+ S L p? . p? 3(x?)2+3(Z2%)%+ 2x°Z%— 4x- 2(x?+ Z%)
1l
472 (x—2)\ 1+ p2Ix2\1+ p2I22 8mx°z*  4m’(x—2)° 8(x)%(z°)*

(B3)

As the differential operator 5§ acts on this expression, the first term in the right hand side offE).can be dropped. Thus,
we may write

) 4 2)2 224 94252 2, 52
C>(x,p)=2f d“z(e’ip'z—l)(—&ﬁ) p 3(X%)+3(Z2°) 7+ 2x 25— 4x X z(X*+ Z°) (B4)

+..0,
l2>L, 4m%(x—2)* 8(x%)%(z%)*

and, for|x|>L and|p|=m, it is not difficult to show that this can only lead to terms@f|p|L(p*/x3L?)] or O(p*/x3L) or
O(p*Ix*). Hence,C(x,p) is at mostO[ |p|L(p?/x?)] or O[p*/x3L] or O(p*/x%).
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