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Massive field contributions to the QCD vacuum tunneling amplitude
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For the one-loop contribution to the QCD vacuum tunneling amplitude by quarks of generic mass value, we
make use of a calculational scheme exploiting a large mass expansion together with a small mass expansion.
The large mass expansion for the effective action is given by a series involving higher-order Seeley-DeWitt
coefficients, and we carry this expansion up to order 1/(mr)8, wherem denotes mass of the quark andr the
instanton size parameter. For the small mass expansion, we use the known exact expression for the particle
propagation functions in an instanton background and evaluate explicitly the effective action to order (mr)2.
A smooth interpolation of the results from both expansions suggests that the quark contribution to the instanton
tunneling amplitude have a relatively simplemr-dependent behavior.

PACS number~s!: 12.38.Aw, 11.15.Tk
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I. INTRODUCTION

Instantons@1,2#, as localized finite-action solutions of th
Euclidean Yang-Mills field equations, describe vacuum tu
neling and are believed to have important nonperturba
roles in low-energy QCD. For an excellent review on insta
tons in QCD and general gauge theories, see Refs.@3,4#. For
actual instanton calculations, one needs to know above
the one-loop tunneling amplitude or the Euclidean o
loop effective action in the background field of a sing
~anti-! instanton. The latter quantity is thus of fundamen
importance in instanton physics, and in the zero mass lim
scalar or quark fields ’t Hooft@5# was able to calculate th
appropriate one-loop contribution exactly. But, with fini
quark mass, such an exact calculation does not look feas
and one has to be satisfied with approximate results.~Note
that, aside from up and down quarks, all other quarks pos
sizable mass!. In this paper we shall describe our approach
determine the quark mass dependence in the one-
vacuum tunneling amplitude, and report some new res
from this analysis.

By studying the field-theoretic effective action one c
take the quantum nature of the fields into account system
cally, and already at the one-loop level it has provided
with certain relevant information on various physically si
nificant effects@6#. In particular, the leading-order renorma
ization group coefficients in field theories are encoded in
divergences of the corresponding bare one-loop effective
tion. These divergent terms can be found most simply w
the help of the background field method@7,8# and the

*Electronic address: kok@phya.snu.ac.kr
†Electronic address: cklee@phya.snu.ac.kr
‡Electronic address: hsmin@dirac.uos.ac.kr
0556-2821/2000/62~11!/114022~15!/$15.00 62 1140
-
e
-

all
-

l
f

le

ss
o
op
ts

ti-
s

e
c-
h

Schwinger-DeWitt proper-time algorithm@6,7#; they are en-
tirely given by the second Seeley-DeWitt coefficientã2
@7,9,10# in four-dimensional space-time.~For recent litera-
ture discussing this method, see Ref.@11#.! But the evalua-
tion of the full finite part of the one-loop effective action i
any nontrivial background field corresponds to a formida
mathematical problem in general. For an approximate ca
lation ~in a slowly varying background! the so-called deriva-
tive expansion of the effective action has been utilized
various authors@12,13#.

As for the contribution to the instanton one-loop effecti
action by spin-0 or spin-1/2 matter fields of, say, massm, we
shall consider both the approximation applicable for re
tively large mr (r is the instanton size!, i.e., large mass
expansion and the mass perturbation scheme useful for
tively smallmr. Note that the nature of the approximation
governed by the dimensionless parametermr. ~Dependence
on the renormalization mass scalem can be treated sepa
rately.! The large mass expansion is essentially a series
volving higher-order Seeley-DeWitt coefficients, for which
simple computer algorithm has been developed recently@14–
16#. We then make a smooth interpolation of the resu
found in those two different regimes, with the expectati
that some general pattern, which is meaningful over a w
range of mass values, may emerge. This information sho
be valuable in phenomenological studies related to instan
effects. To connect the amplitude given for different ma
scales, one should be careful about possible large fin
renormalization effects and renormalization schemes use
this paper we treat various issues related to this general
in a reasonably self-contained manner.

In Sec. II we present a concise review on the Schwin
proper-time representation of the effective action, vario
renormalization schemes, and the large mass expansion.
discussed are finite renormalization effects specific to ren
©2000 The American Physical Society22-1
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malization prescriptions chosen, since they can introduce
ditional mass~as well as renormalization scale! dependences
into the effective action. This understanding will become i
portant when one has to change the results obtained in
renormalization prescription to that in another prescriptio

In Sec. III the one-loop effective action for a massi
scalar field in a constant Yang-Mills field background is co
sidered to see how our general scheme would fit in for
simple case. Here we make a detailed comparison betw
the known, exact, effective action~given in a single integra
form! and the corresponding result based on the large m
expansion.

In Sec. IV the spin-0 one-loop effective action in a Yan
Mills instanton background is studied on the basis of
large mass expansion.~Contributions due to fields of differ
ent spin can be related to this spin-0 amplitude.! We consider
up to the sixth Seeley-DeWitt coefficient. Here our finding
that, formr*1.8, the large mass expansion appears to giv
good approximation to the effective action.

In Sec. V we study the spin-0 instanton effective acti
for small mr, utilizing the known expressions for the mas
less propagators@17# in an instanton background and th
mass perturbation. Since the naive mass perturbation lea
a logarithmically divergent integral@18#, a suitably modified
perturbation method must be employed to obtain a w
defined small-mass correction term. We here reconfirm
O@(mr)2 ln mr# term previously found in Ref.@18#, and pro-
vide for the first time the fullO@(mr)2# contribution to the
instanton effective action.

In Sec. VI we consider an interpolation of our amplitu
to intermediate values ofmr, given the results of the previ
ous two sections. Here we also make appropriate chang
our results so that they may describe the spin-1/2 instan
effective action; this result is directly relevant for quar
with nonzero mass. Note that, due to the hidden supers
metry in an instanton background, one can utilize the re
for the spin-0 case to find the contribution due to spin-
fields @5#.

In Sec. VII we conclude with some remarks. In Append
A some explicit expressions for higher-order Seeley-DeW
coefficients can be found. Appendix B contains an analy
of a certain function which figures in our small-mass exp
sion of Sec. V.

II. THE ONE-LOOP EFFECTIVE ACTION,
RENORMALIZATION, AND THE LARGE

MASS EXPANSION

To be definite, we will consider a four-dimensional, E
clidean, Yang-Mills theory with matter described bycomplex
scalar or Dirac spinor fields of massm. Then, in any given
Yang-Mills background fieldsAm

a (x), one may represent th
~Pauli-Villars regularized! one-loop effective action due t
matter fields by

G~A!5l lnFDet~G211m2!

Det~G0
211m2!

Det~G0
211L2!

Det~G211L2!
G . ~2.1!
11402
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Here, l51 (2 1
2 ) for scalar~spinor! fields, L is the large

regulator mass,G21 stands for the appropriate quadratic d
ferential operator, viz.,

G215H 2D2 ~for scalar!,

~gD !2 ~for spinor!,
~2.2!

and G0
215G21uAm5052]2. „Also, D25DmDm and gD

5gmDm with the covariant derivativeDm5]m2 iAm
a Ta[]m

2 iAm (Ta denote the group generators in the matter rep
sentation satisfying the commutation relations@Ta,Tb#
5 i f abcT

c), and ourg matrices, which are antihermitian, sa
isfy the relations$gm ,gn%522dmn.

In the proper-time representation@6,7#, one represents
G(A) by

G~A!52lE
0

` ds

s
~e2m2s2e2L2s!Tr@e2sG21

2e2sG0
21

#,

~2.3!

where Tr denotes the trace over space-time coordinates
all other discrete indices. More explicitly, writing T
5*d4x tr and introducing the proper-time Green functio

^xsuy&5^xue2sG21
uy&, G(A) can be expressed as

G~A!52lE
0

` ds

s
~e2m2s2e2L2s!

3E d4x tr@^xsux&2^xsux&uAm50#. ~2.4!

The full effective action is thus determined if the coinciden
limit ~i.e.,y5x) of the proper-time Green function is known
The expression~2.4! diverges logarithmically as we letL
→`; to isolate such divergent pieces, we may exploit t
asymptotic expansion@7,9#

s→01: ^xsuy&5
1

~4ps!2e2(x2y)2/4sH (
n50

`

snan~x,y!J ,

~2.5!

where the leading coefficient has the coincidence lim
a0(x,x)51. Using this expansion in Eq.~2.4!, we then see
that the divergences inG(A) as L→` are related to the
coincidence limitsã1(x)[tr a1(x,x) and ã2(x)[tr a2(x,x),
which correspond to the first and second Seeley-DeWitt
efficients, respectively. Simple calculations yield

ã1~x!50 ~for both scalar and spinor!, ~2.6!

ã2~x!5H 2
1

12
tr@Fmn~x!Fmn~x!# ~for scalar!,

2

3
tr@Fmn~x!Fmn~x!# ~for spinor!,

~2.7!
2-2
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where Fmn[Fmn
a Ta5 i @Dm ,Dn#. ~The tr here refers to the

trace over gauge group representation indices only.! Based
on these, we may now write the above effective action
m2Þ0 as

G~A!5YS ln
L2

m2D E d4x Fmn
a Fmn

a 1Ḡ~A! ~2.8!

with

Y5H 1

12

C

~4p!2 ~for scalar!,

1

3

C

~4p!2 ~for spinor!,

~2.9!

(C is defined by tr(TaTb)5dabC), and then the contribution

Ḡ~A!52lE
0

`ds

s3 e2m2sE d4xF12S 11s
]

]s

1
1

2
s2

]2

]s2D U
s50

G tr~s2^xsux&! ~2.10!

becomes well defined as long asm2 is nonzero.„In Eq.
~2.10!, @11s(]/]s)1 1

2 s2(]2/]s2)#us50 f (s)[ f (0)1s f8(0)

1 1
2 s2f 9(0).…
The logarithmic divergence inG(A) is canceled by the

renormalization counterterm associated with the coup
constant renormalization of the classical~bare! action
(1/4g0

2)*d4xFmn
a Fmn

a . But the resulting renormalized one
loop amplitude depends on the renormalization prescrip
chosen. From the very structure exhibited in Eq.~2.8!, our
amplitudeḠ(A) can be considered as defininga renormal-
ized one-loop effective action; but, this prescription can
be used for the strictly massless case. Instead, one may
consider adding toG(A) the counterterm

DG~A!52YS ln
L2

m2D E d4x Fmn
a Fmn

a ~2.11!

(m is an arbitrarily introduced renormalization mass! to ob-
tain the renormalized one-loop effective action

G ren~A!52YS ln
m2

m2D E d4x Fmn
a Fmn

a 1Ḡ~A!, ~2.12!

whereḠ(A) is defined by Eq.~2.10!. It should be remarked
thatG ren(A), given by Eq.~2.12!, is expected to have a well
defined limit for m2→0 ~i.e., does not exhibit infrared sin
gularities!, if the operatorG21 does not allow any normal
izable zero eigenmode.

Other renormalization prescriptions may also be chos
Let GMS(A) denote the renormalized amplitude in the s
called minimal subtraction scheme@19# associated with the
dimensional regularization. Then, to obtain the express
for GMS(A) in the scalar case, one should add to that
G ren(A) the following finite renormalization term:
11402
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C

~4p!2312
~ ln 4p2g!E d4x Fmn

a Fmn
a , ~2.13!

whereg50.5772••• is the Euler constant. In the thus foun
expression ofGMS(A) the mass parameterm, which enters
the expression throughG ren(A), describes the normalizatio
mass conventionally introduced in the minimal subtract
scheme. As for the expression ofGMS(A) in the spinor case,
the finite renormalization term to be added to that ofG ren(A)
turns out to be

C

~4p!233
~ ln 4p2g!E d4x Fmn

a Fmn
a . ~2.14!

~This is the case when the spinor trace of 1 is taken to be!
In another often-used prescription, one specifies the re
malization counterterm via the momentum-space subtrac
scheme, i.e., by imposing a normalization condition at c
tain external momentum valuep25m2. Then the correspond
ing renormalized expressionGmom(A) is given by that of
G ren(A) plus the finite renormalization term

C

~4p!2312F 2
8

3
1 ln

m2

m2 28
m2

m21S 114
m2

m2D 3/2

3 lnS A114
m2

m211

A114
m2

m2 21
D G

3E d4x Fmn
a Fmn

a ~for scalar! ~2.15!

or

C

~4p!233F 2
5

3
1 ln

m2

m2 14
m2

m21S 122
m2

m2DA114
m2

m2

3 lnSA114
m2

m211

A114
m2

m221
D G E d4x Fmn

a Fmn
a ~for spinor!

~2.16!

with the corresponding reinterpretation of the parameterm.
These renormalization-prescription dependences of the
loop effective action are of course explained by the fact t
the tree-level contribution involves, as a multiplicative fa
2-3
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tor, the renormalized coupling 1/gR
2 ~whose value may vary

with renormalization prescriptions!.
Thanks to the exact connection formulas we have

scribed above, knowledge on the one-loop effective actio
one renormalization prescription can immediately
changed into that in another prescription. In fact, in theor
containing several matter fields of different mass scales~e.g.,
QCD with quarks of very different masses!, one may well
adopt different renormalization prescriptions for differe
matter field loops. We here note that use of the minim
subtraction for a heavy-quark loop is rather unnatural, du
the lack of manifest decoupling@20#. But this is not an issue
in our discussions.

The next task is to find the actual full expression for t
one-loop effective action—at present, this is possible o
with a background field of very special character. But, if t
mass parameter is sufficiently large, it can be studied
generic smooth background fields by utilizing a systema
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large-mass expansion, which is obtained by inserting
asymptotic expansion~2.5!, say, into the formula~2.10! for

Ḡ(A). This assumes the form

Ḡ~A!52
l

~4p!2 (
n53

`
~n23!!

~m2!n22E d4x ãn~x!,

@ ãn~x![tr an~x,x!#. ~2.17!

That is, for large enough mass, we have the one-loop ef
tive action ~in any renormalization prescription! expressed
by a series involving higher-order Seeley-DeWitt coef
cients ãn(x) (n>3), the calculation of which may be per
formed using a computer@14–16#. If only the leading term is
kept with the series~2.17!, one finds, explicitly,
m→`: Ḡ~A!5H 2
1

16p2

1

m2

1

180E d4x trF3

2
~DmFnl!~DmFnl!24iF mnFnlFlmG ~for scalar!,

1

32p2

1

m2

2

45E d4x tr@23~DmFnl!~DmFnl!113iF mnFnlFlm# ~for spinor!,

~2.18!
where DmFnl[@Dm ,Fnl#. If the background fields
under consideration satisfy the classical Yang-Mills fie
equations, one can show using the Bianchi identities and
 he

property of trace that *d4x tr@(DmFnl)(DmFnl)#
54i *d4x tr@FmnFnlFlm#. Hence, for theon-shelleffective
action, Eq.~2.18! can be further simplified as
m→`: Ḡ~A!5H 2
1

16p2

1

m2

i

90E d4x tr~FmnFnlFlm! ~for scalar!

1

16p2

1

m2

i

45E d4x tr~FmnFnlFlm! ~for spinor!.

~2.19!
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For some explicit expressions of the higher-order See
DeWitt coefficients, see Sec. IV and Appendix A. Also no
that the large mass expansion for the effective action in o
renormalization schemes can be obtained from the expan

~2.17! for Ḡ(A) and the exact connection formulas.
The large-mass expansion is only an asymptotic ser

and the useful range of the series~2.17! ~as regards the mag
nitude of m) will depend much on the nature of the bac
ground field and also on some characteristic scale~s! entering
the background. For a sufficiently smooth background,
large-mass expansion may be used to obtain a reliable
proximation to the effective action even for moderately lar
values ofm. But the series~2.17! is bound to lose the pre
dictive power for ‘‘small’’ values ofm, and for the small-m
effective action one should employ a totally different str
y-

er
on

s,

is
p-

e

-

egy, such as the small-mass expansion if its exact expres
in the massless limit has been found by some other meth
In the next section, we shall first see how good the lar
mass expansion can be for the much studied case of
one-loop effective action in the constant Yang-Mills fie
background. Also considered is its small-mass expans
which may serve, together with the result of the large m
expansion, as a basis to infer the behavior of the effec
action for arbitrary mass.

III. THE SPIN-0 EFFECTIVE ACTION IN A CONSTANT
SELF-DUAL YANG-MILLS FIELD BACKGROUND

In this section, various approximation schemes to be u
later will be tested against the exact result, choosing a ra
2-4
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simple background field. In non-Abelian gauge theories
constant field strength is realized either by an Abelian vec
potential which varies linearly withxm or by a constant vec
tor potential whose components do not commute@21#. In this
paper we only consider the case of the Abelian vector po
tial. Assuming the SU~2! gauge group, an Abelian vecto
potential can be written asAm52 1

4 f mn xnt3 ~with the field
strength tensorFmn5 f mnt3/2), wheret3 is the third Pauli
matrix. If we further restrict our attention to that with th
self-dual field strength~i.e., Fmn5 1

2 emnldFld), its nonzero
components may be specified by settingf 125 f 345H with
the constant ‘‘magnetic’’ fieldH.

In this Abelian constant self-dual field, let us consider t
one-loop effective action due to an isospin-1/2, spin
~complex-valued! matter field, taking the massm of our
spin-0 field to be relatively large so that the large mass
pansion ~2.17! may be used. For this case, some lead
Seeley-DeWitt coefficients are easily evaluated~using the
formulas given in Appendix A, for instance!,

ã252
2

3
~H/2!2, ã45

2

15
~H/2!4, ~3.1!

ã652
4

189
~H/2!6, ã85

2

675
~H/2!8.

Note that we get zero for all odd coefficients here. Us
these values, we then find that, for relatively largem, the
effective action is given by the series

Ḡ~H;m!5
VH2

16p2F2
1

120S H

m2D 2

1
1

504S H

m2D 4

2
1

720S H

m2D 6

1•••G , ~3.2!

whereV denotes the four-dimensional Euclidean volume.
For this case, it is actually not difficult to find theexact

expression for the one-loop effective action, followin
closely Schwinger’s original analysis in QED@6#. After
some algebras, one finds the trace of the proper-time G
function to be given by@22#

tr^xsux&5
2

~4ps!2F ~Hs/2!2

sinh2~Hs/2!G . ~3.3!

One can easily check that the expressions given in Eq.~3.1!
are correct ones by considering a small-s series of this exac
expression. Inserting Eq.~3.3! into the formula~2.10! then
yields the exact expression

Ḡ~H;m!522VE
0

` ds

s
e2m2s

1

~4ps!2F ~Hs/2!2

sinh2~Hs/2!
21

1
1

3
~Hs/2!2G . ~3.4!

Comparing the result of large mass expansion in Eq.~3.2!
against this exact result, we can investigate the validity ra
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of the former. From the plots in Fig. 1, it should be evide
that for mass values in the rangem/AH*1, summing only a
few leading terms in the series~3.2! already produces the
results which are very close to the exact one. The large m
expansion is useful ifm*AH.

Now suppose that the exact expression~3.4! were not
available to us. For mass value not larger thanAH, the large
mass expansion~3.2! fails to give useful information. Nev-
ertheless, if one happens to know the one-loop effective
tion for smallmass, this additional information and the larg
mass expansion might be used to infer the behavior of
effective action for general, small or large, mass.~Note that,
in an instanton background, this becomes a real issue s
the full m-dependence of the effective action is not know
there.! In exhibiting this, Ḡ(H;m) will not be convenient
since it becomes ill defined asm→0. So, based on the rela
tion ~2.12!, we may consider the renormalized actio
G ren(H;m,m) given by

G ren~H;m,m!52
VH2

~4p!236
lnS m2

m2D1Ḡ~H;m!, ~3.5!

which is well behaved for smallm. Large mass expansion fo
G ren(H;m,m) results once if the expansion~3.2! is substi-
tuted in the right hand side of Eq.~3.5!.

To find the small-m expansion, we find it convenient t
consider the quantity

Q~H;m![E
0

m2

dm̄2
]

]m̄2
G ren~H;m̄,m!

5G ren~H;m,m!2G ren~H;m50,m!. ~3.6!

In Eq. ~3.6!, from Eqs.~3.4! and ~3.5!,

FIG. 1. Plot of the effective actionḠ(H;m).
2-5
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G ren~H;m50,m!5
VH2

16p2F1

6
lnS m2

H D22z8~21!G , ~3.7!

wherez8(s) is the first derivative of Riemann zeta functio
and z8(21)'20.165421. Notice thatQ(H;m) is indepen-
dent of the normalization massm and is well behaved in the
small mass limit. Explicitly, it is given by the expression

Q~H;m!52VE
0

m2

dm̄2E
0

`

ds
e2m̄2s

~4ps!2 F ~Hs/2!2

sinh2~Hs/2!
21G ,

~3.8!

and in the small mass limit, this leads to

Q~H;m!5
VH2

8p2E
0

m2/H
dm̄2@21/22m̄2~ logm̄21g!1•••#

5
VH2

16p2@2m2/H2~m2/H !2
„log~m2/H !21/21g…

1•••#. ~3.9!

In Fig. 2, graphs forQ(H;m), the exact one and thos
based on approximation schemes, are given as function
X[m/AH. The exact result, i.e., that based on the expr
sion ~3.8! is represented by a solid line, which exhibits
monotonically decreasing behavior starting from the ma
mum at X50. Clearly the small mass expansion up
O(m4/H2) provides a reliable approximation forX&0.4,
while the large mass expansion forQ(H;m),

Q~H;m!5
VH2

16p2 F2
1

6
lnS m2

H D12z8~21!2
1

120S H

m2D 2

1
1

504S H

m2D 4

2
1

720S H

m2D 6

1•••G ~3.10!

FIG. 2. Plot ofQ(H;m).
11402
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@this formula is obtained from Eqs.~3.2!, ~3.5!, and ~3.6!#
can be trusted in the rangeX*1. In the intermediate region
0.4&X&1 the large-mass expansion curve~a long dashed
line in Fig. 2! may then be smoothly connected to that giv
from the small-m expansion~3.9!, assuming a monotonic
behavior~as should be reasonable for a simple backgrou
field!. Evidently, with this interpolation, one could have a
quired a nice overall fit over the entire mass range even if
exact curve were not known. We also see from Fig. 2
typical behaviors which are shown by the small-mass
large-mass expansion curves.

IV. LARGE MASS EXPANSION FOR THE SPIN-0
INSTANTON EFFECTIVE ACTION

We now turn to the case of a BPST instanton backgrou
@1#, i.e., a self-dual solution of Yang-Mills field equation
given by

Am~x![Am
a ~x!

ta

2
5

hmnataxn

x21r2
, ~4.1!

where hmna (a51,2,3) are the so-called ’t Hooft symbo
@5# and r denotes the size of the instanton. The associa
field strengthFmn is

Fmn522
r2hmnata

~x21r2!2
. ~4.2!

In this instanton background, the exact expression for
one-loop effective action due to a spin-0 or spin-1/2 ma
field of nonzero mass is not known; only the result in t
massless limit is known@5#. This quantity will be studied
with the help of approximation schemes in this paper. S
cifically, taking the matter field to be that of an isospin-1
spin-0 particle, the corresponding effective action is stud
using the large mass expansion in this section and by
small mass expansion in the next section. In Sec. VI, we t
use these results for a spin-0 matter field to obtain the c
responding results appropriate to a spin-1/2 matter field~i.e.,
quark!. Note that, in the case of a spin-1/2 matter field,
direct application of the small mass expansion can be v
subtle due to the presence of normalizable zero modes fo
massless Dirac equation@23#.

The large mass expansion for the spin-0 effective actio
described by our formula~2.17!. To use this formula, one
needs to know some higher-order coefficients in the se
~2.5!, with G2152D2 and the instanton background give
above. Calculations of these higher-order Seeley-DeWitt
efficients are straightforward in principle, but get very i
volved as the order increases. Fortunately, thanks to the
idly growing computer capacity to handle a large number
terms in the symbolic calculations, the explicit expressio
for the Seeley-DeWitt coefficients in general backgrou
fields have been found recently up to the sixth order@14–16#.
We will utilize these results for our calculations below.
2-6
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In the instanton background~4.1! the renormalized one

loop effective actionḠ(A), defined by Eq.~2.10!, will be a
function of mr only. Hence our large mass expansion
really an expansion in 1/m2r2. Also the expressions for th
Seeley-DeWitt coefficients are simplified considerably if w
take into account the fact that our background field satis
the classical Yang-Mills equations of motion. For such o
shell background fields, the space-time integral of

Seeley-DeWitt coefficientsãn(x), n53,4,5 ~for a spin-0
matter field! are given as@16#
gr
t
o
a
d

d

f

ith
th

11402
s
-
e

E d4x ã3~x!5
i

90E d4x tr@FmnFnrFrm#, ~4.3!

E d4x ã4~x!5
1

24E d4x trF 17

210
FmnFmnFlkFlk

1
2

35
FmnFnrFmlFlr1

1

105
FmnFnrFrsFsm

1
1

420
FmnFrsFmnFrsG , ~4.4!
E d4x ã5~x!5
1

120E d4x trF i
1

945
FmnFrsFtmFnrFst2 i

47

126
FmnFmnFrsFstFtr1 i

1

126
FmnFrsFmnFstFtr

1 i
1

63
FmnFnrFmsFstFtr2 i

11

189
FmnFrsFsnFmtFtr1 i

37

945
FmnFnrFrsFstFtm1

4

189
FntFts~DmFnr!

3~DmFrs!2
2

63
Flk~DmFnr!Fnr~DmFlk!2

2

189
Fls~DmFnr!Frs~DmFnl!1

4

63
FstFst~DmFnr!~DmFnr!

1
2

63
FmtFts~DmFnr!~DsFnr!1

4

189
FstFtn~DmFnr!~DmFrs!G . ~4.5!
ebra.

ain
Note that the on-shell expressions for the space-time inte
of ã3(x) andã4(x) involve only the field strength, while tha
for ã5(x) involves the derivatives of the field strength als
For the expression ofã6(x), which occupies more than
page, see Ref.@15#. In Appendix A, the expressions vali
without using the classical equations of motion~and before
the space-time integration! can also be found.

Inserting the expression~4.2! for the field strength into the
formulas~4.3! and~4.4! and carrying out tensor algebra an
trace calculations, we find

E d4x ã3~x!5E d4x
64r6

15~x21r2!65
16

75

p2

r2 , ~4.6!

E d4x ã4~x!5E d4x
544r8

35~x21r2!85
272

735

p2

r4 .

~4.7!

The next coefficientã5 involves the covariant derivative o
field strength

DlFmn5
4r2ta

~x21r2!3@2hmnaxl2hlmaxn1hlnaxm

1dlmhnsaxs2dlnhmsaxs#. ~4.8!

Calculations of higher-order Seeley-DeWitt coefficients w
the instanton background can be very laborious. Toge
with the formulas given above and that in Ref.@15# for
ã6(x), we have thus used the ‘‘MATHEMATICA ’’ program to
al

.

er

do the necessary trace calculations as well as tensor alg
From the expression for theã5 coefficient, we obtain the
result

E d4x ã5~x!5E d4x
512~35x2r8239r10!

315~x21r2!10
52

1856

2835

p2

r6 ,

~4.9!

while, for theã6(x) term,

E d4x ã6~x!52E d4x
256

51975~r21x2!12

3@397710x8r42765270x6r61404961x4r8

286418x2r1012876r12#

5
63328

444675

p2

r8
. ~4.10!

Based on the explicit calculations given above, we obt

the following large-mass expansion forḠ(mr):

Ḡ~mr!52
1

75

1

m2r22
17

735

1

m4r41
232

2835

1

m6r6

2
7916

148225

1

m8r81•••. ~4.11!
2-7
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In Fig. 3 we have given the plots based on this express
~first keeping only theã3 term, then including theã4 term
also, etc!. This is a useful approximation whenmr is large,
say,mr*K. What would be the lower-end valueK here ? In

the absence of the exact expression forḠ(mr), a possible
criterion for telling the validity range of the series~4.11! will
be as follows. IfAl denotes theO@1/(mr)2l # term in the
series andG l[(n51

l An , we may demand that the serie
~4.11! remainstablein the sense that the relative importan
of each newly added term decreases, i.e., 15uA1 /G1u
.uA2 /G2u.uA3 /G3u.uA4 /G4u.•••. As this criterion is
used, we obtain the~conservative! valueK.1.8. The result
of large mass expansion may thus be trusted in the ra
given bymr*1.8.

V. SMALL MASS EXPANSION FOR THE SPIN-0
INSTANTON EFFECTIVE ACTION

For smallmr, that is,mr significantly below 1, the one
loop effective action in the instanton background~4.1! can
be studied with the help of the small mass expansion or m
perturbation, since its exact expression in the massless
is known. Here we shall denote the corresponding spi
effective actionG ren, which is defined by Eq.~2.12!, as
G ren(m,r,m). For m50 we have, from the computations o
’t Hooft @5#,

G ren~m50,r,m!5
1

6
ln mr1a~1/2! ~5.1!

with a(1/2)5 1
6 g1 1

6 ln p2(1/p2)z8(2)2 17
72.0.145873. Our

goal in this section is to compute explicitly theO(m2) term
of G ren(m,r,m). Note that this small-m approximation for
G ren(m,r,m) contains a nonanalytic piece inm and so it is
not a trivial task to extract the desired term.

Our first task is to develop a small mass expansion
G ren(m,r,m), which is finite at every order. For the purpo
it is convenient to consider its derivative with respective

FIG. 3. Plot ofḠ(mr) for the instanton background.
11402
n

ge

ss
it
0

r

m2, i.e., ]G ren/]m2, which is independent of the normaliza
tion massm. The latter, being equal to them2 derivative of
our regularized effective actionG(A), will have the proper-
time representation

]G ren~m,r,m!

]m2
5 lim

h→01

E
h

`

ds e2m2s

3E d4x tr@^xsux&2^xsux&Am50#,

~5.2!

where we have used Eq.~2.4!. Here note that^xsux&
[ limy→x^xsuy& is nonsingular as long ass.0. Paying due
attention to various~singular! limits involved, it is possible
to recast the formula~5.2! into that involving ordinary spin-0
propagators

G~x,y;m2![^xu
1

2D21m2 uy&,

G0~x,y;m2![^xu
1

2]21m2uy&. ~5.3!

The explicit formula, which can be derived from Eq.~5.2!,
reads@24#

]G ren~m,r,m!

]m2
5E d4x lim

y→x
tr@G~x,y;m2!

2a0~x,y!G0~x,y;m2!#, ~5.4!

where a0(x,y) is the zeroth order coefficient in th
asymptotic series~2.5!. For small (x2y)m , a0(x,y) has the
following expression:

a0~x,y!5I 1 i ~x2y!mAm~y!1
i

4
~x2y!m~x2y!n

3@]mAn~y!1]nAm~y!1 i $Am~y!,An~y!%#

1O@~x2y!3#. ~5.5!

The presence of thea0G0 term in Eq. ~5.4! guarantees a
finite result for]G ren(m,r,m)/]m2.

For smallm, one may then try to evaluate the right-han
side of Eq.~5.4! by exploiting the appropriate expansion
the propagators inm2 and the known exact massless prop
gation function in the instanton background. We shall den
the latter byḠ(x,y)[^xu1/2(D2)uy&. But a naive expan-
sion of the form

G~x,y;m2!5Ḡ~x,y!2m2E d4z Ḡ~x,z!Ḡ~z,y!

1m4E d4z d4w Ḡ~x,z!Ḡ~z,w!Ḡ~w,y!1•••

~5.6!
2-8
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is not valid since, aside from the leading term, all other ter
of this series involve logarithmically divergent integra
@Note that Ḡ(x,z)5O(1/uzu2) as uzu→`.] Moreover, the
m250 limit of ]G ren/]m2 does not exist in the instanto
background since, according to explicit calculations@see the
comment after Eq.~5.22! below#, the integral in the right-
hand side of Eq.~5.4! for m250 diverges logarithmically.
This indicates that, asm2→0, G ren(m,r,m) approaches the
’t Hooft result ~5.1! in a nonanalytic manner. To resolve th
problem, we shall below describe an alternative expans
scheme~which utilizes the idea of Carlitz and Creamer@18#
in a suitable form!.

The expansion we shall use has the form

1

2D21m2 5
1

~2D2!
~2]2!

1

2]21m2F (
r 50

` S 2m2H 1

~2D2!

2
1

~2]2!J ~2]2!
1

2]21m2D r G . ~5.7!

This can be derived in the following way. First observe th

1

2D21m2 5
1

2]21m2 1~2D2!
1

2D21m2

3H 1

~2D2!
2

1

~2]2!J ~2]2!
1

2]21m2 .

~5.8!

Then, using the identity

~2D2!
1

2D21m2 512m2
1

2D21m2 , ~5.9!

it is not difficult to see that Eq.~5.8! can be rewritten as

1

2D21m2 5
1

~2D2!
~2]2!

1

2]21m2

2m2
1

2D21m2 H 1

~2D2!
2

1

~2]2!J
3~2]2!

1

2]21m2 . ~5.10!

This last equation may be solved for 1/(2D21m2) in an
iterative manner, and the result is the expansion~5.7!. Evi-
dently, Eq.~5.7! is an expansion in powers ofm2$1/(2D2)
21/(2]2)%(2]2)1/(2]21m2), and we expect that this
will yield a convergent series for smallm if the background
field is such that
11402
s

n

t

^xu H 1

~2D2!
2

1

~2]2!J ~2]2!uy&

→0 ~sufficiently fast!, as ux2yu→`. ~5.11!

In the case of the instanton background, this means tha
have to work with the expression given in the singular gau
i.e.,

Am~x!5
r2h̄mnataxn

x2~x21r2!
. ~5.12!

~Here,h̄mna differs from hmna only by the sign in the com-
ponents withm or n equal to 4.! This is allowed by the gauge
invariance of the effective action.

If only the leading term of Eq.~5.7! is used in Eq.~5.4!,
we now find that

]G ren~m,r,m!

]m2
5E d4x lim

y→x
trF ^xu

1

~2D2!

3~2]2!
1

2]21m2 uy&

2a0~x,y!^xu
1

2]21m2 uy&G1O~m2!.

~5.13!

This is not yet in the convenient form for actual compu
tions. So, based on the following observations:

^xu
1

~2D2!
~2]2!

1

2]21m2 uy&

5^xu
1

~2D2!
uy&1^xu

1

~2D2!
~2]2!

3H 1

2]21m2 2
1

~2]2!J uy&, ~5.14!

a0~x,y!^xu
1

2]21m2 uy&5a0~x,y!^xu
1

~2]2!
uy&

1^xu H 1

2]21m2 2
1

~2]2!J uy&

1~ terms vanishing asy→x!,

~5.15!

we make suitable rearrangements in the right-hand side
Eq. ~5.13! to obtain the following formula~to be used for
computations!:
2-9
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]G ren~m,r,m!

]m2
5E d4xF lim

y→x
trH ^xu

1

~2D2!
uy&

2a0~x,y!^xu
1

~2]2!
uy&J 2J~x!G1O~m2!,

~5.16!

where the functionJ(x) is given by

J~x!52E d4z trH ^xuS 1

~2D2!
2

1

~2]2! D uz&

3~2]Q z
2!^zuS 1

2]21m22
1

~2]2! D ux&J .

~5.17!

But for theJ(x) term, what we have in the right-hand side
Eq. ~5.16! is just the~logarithmically divergent! expression
representing]G ren(m,r,m)/]m2um250 @see Eq.~5.4!#. As we
shall see below, this divergence is tamed by the additio
term J(x). The very structure ofJ(x) given in Eq. ~5.17!
also ensures that it is free of any short-distance divergen

The first term inside the integrand of Eq.~5.16! is evalu-
ated as follows. The spin-0~and isospin-1/2! massless propa
gator in the instanton background~5.12! is given by@17#
f

-
-

11402
al

e.

Ḡ~x,y![^xu
1

2D2 uy&

5
1

4p2~x2y!2

11
r2~x•y1 i h̄mnaxmynta!

x2y2

A11
r2

x2A11
r2

y2

.

~5.18!

Then, writing x5y1e, we find after some straightforwar
calculations

^xu
1

2D2 uy&5
1

4p2e2 F S 11
r4~y•e!22r2y2~y21r2!e2

2~y2!2~y21r2!2 D
1S 12

~2y21r2!~y•e!

y2~y21r2! D ir2h̄mnataemyn

y2~y21r2!
G

1O~e!. ~5.19!

On the other hand, if Eq.~5.12! is inserted into the expres
sion ~5.5!, we have
a0~x,y!5I 1 i ~x2y!m

r2h̄mnatayn

y2~y21r2!
2

1

2
~x2y!m~x2y!n

r4~y2dmn2ymyn!12ir2~2y21r2!h̄mlataynyl

~y2!2~y21r2!2
1O@~x2y!3#

~5.20!
and therefore

trH a0~x,y!^xu
1

~2]2!
uy&J 5

1

2p2e2 S 12
r4y2e22r4~y•e!2

2~y2!2~y21r2! D
1O~e!. ~5.21!

From Eqs.~5.19! and ~5.21!, we thus obtain the following
expression:

lim
y→x

trH ^xu
1

~2D2!
uy&2a0~x,y!^xu

1

~2]2!
uy&J

52
r2

4p2~x21r2!2 . ~5.22!

@We here remark that the result~5.22! is unchanged even i
one takes the regular-gauge instanton solution~4.1! as the
background field.# Clearly, with this term alone, the remain
ing x integration would yield a logarithmically divergent re
sult.

We now turn to the evaluation ofJ(x). Noting that
^zuS 1

2]21m2 2
1

~2]2! D ux&52m2E d4p

~2p!4

e2 ip•(z2x)

p2~p21m2!
,

~5.23!

Eq. ~5.17! may be rewritten as

J~x!5m2E d4p

~2p!4

eip•x

p2~p21m2!
F~x,p! ~5.24!

with F(x,p) given by

F~x,p!5E d4z e2 ip•z trH ^xuS 1

~2D2!
2

1

~2]2! D uz&~2]z
Q 2!J

52E d4z e2 ip•z~2]W z
2!

3F 1

4p2~x2z!2
S 11

r2x•z

x2z2

A11r2/x2A11r2/z2
21D G .

~5.25!
2-10
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In Eq. ~5.25! we have used the expression~5.18! and the
factor 2 at front arose from the isospin trace. We are h
interested inO(1) or O(logm2) contribution to the right
hand side of Eq.~5.16!. Let us see when and where su
contribution can arise, based on our formulas~5.24! and
~5.25!. For any finitex value, the functionF(x,p) is well
behaved for allp. Due to the overall multiplicative factorm2

in Eq. ~5.24!, J(x) for finite x ~or, more precisely, forxm

satisfying the conditionuxu!1/m) would then beO(m2) and
hence no desired contribution. It is thus sufficient to stu
J(x) for large x, i.e., xm in the regionuxu.L with r!L
!m21. Now, due to the factoreip•x/p2(p21m2) within the
integrand of Eq.~5.24!, we further conclude that the small-p
region of F(x,p), with uxu.L, can be the source for th
desired contribution; if the contribution from the regionupu
&m is excluded from the right hand side of Eq.~5.24!, J(x)
becomesO(m2).

To study the functionF(x,p) for uxu.L ~with r!L
!m21) andupu&m, we writeF(x,p) as the sum of its value
at p50 plus the correction term, viz.,

F~x,p!5F~x,p50!1C~x,p!. ~5.26!

Then, from Eq.~5.25!,

F~x,p50!52E d4z~2]W z
2!F 1

4p2~x2z!2

3S 11
r2x•z

x2z2

A11r2/x2A11r2/z2
21D G

52 lim
R→`

1

2p2 R
uzu5R

d3V R3
zm

R

3F 2~x2z!m

@~x2z!2#2
S 11

r2x•z

x2z2

A11r2/x2A11r2/z2
21D
~5.27a!

1
1

~x2z!2

]

]zm

S 11
r2x•z

x2z2

A11r2/x2A11r2/z2
D G ,

~5.27b!

where we used Gauss’s law.@Note that, for very largeuzu, the
integrand in Eq.~5.27a! behaves asO(1/uzu5)]. Evaluating
the surface integral in Eq.~5.27b! immediately gives

F~x,p50!52S 1

A11r2/x2
21D , ~5.28!

and hence

F~x,p50!52
r2

x2 1OS r4

x4D , for uxu.L. ~5.29!
11402
re
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Now, inserting the thus evaluatedF(x,p50) for F(x,p) in
Eq. ~5.24!, we obtain the following contribution toJ(x):

J~x!5u~ uxu2L !E d4pS 1

p2 2
1

p21m2Deip•xS 2
r2

x2D
1O~m2!

52
r2

4p2~x2!2 @12muxuK1~muxu!#

3u~ uxu2L !1O~m2!. ~5.30!

~Note that we have assumedmL!1.) On the other hand, it is
possible to show~see Appendix B! thatC(x,p) in Eq. ~5.26!
is at mostO@ upuL(r2/x2)# or O(r4/x3L) or O(r4/x4), when
uxu.L andupu&m. With this finding used in Eq.~5.24!, it is
easy to see that noO(1) or O(logm) contribution results
from theC(x,p) part ofF(x,p). Thus, to the order we want
our formula~5.30! has no further correction.

Evidently, if the contribution in Eq.~5.30! is considered
together with that in Eq.~5.22!, the x integration in Eq.
~5.16! will give a finite result. Furthermore, since the fun
tion F(x,p) does not involve massm at all, the scaleL we
introduced can be chosen, formr→0, such thatr!L
!1/m. With this understanding, we may now perform th
integral in the right-hand side of Eq.~5.16! to secure the
unambiguous result

]G ren~m,r,m!

]m2
5

r2

2
ln~mr!1

r2

2 S g1
1

2
2 ln 2D1O~m2r4!.

~5.31!

Then, based on this formula and the ’t Hooft result~5.1!, we
immediately obtain the desired small-mass expansion
G ren(m,r,m):

G ren~m,r,m!5G ren~m50,r,m!1E
0

m2

dm̄2
]G ren~m̄,r,m!

]m̄2

5
1

6
ln~mr!1a~1/2!1

~mr!2

2
@ ln~mr!1g

2 ln 2#1O@~mr!4#. ~5.32!

TheO@(mr)2 ln(mr)# term in this formula was first found in
Ref. @18#, while theO@(mr)2# term without the ln(mr) fac-
tor is new.

VI. MASS INTERPOLATION AND THE SPIN-1 Õ2
INSTANTON EFFECTIVE ACTION

In the previous two sections the spin-0 instanton effect
action were computed for relatively largemr and for small
mr. The result can be summarized by

G ren~m,r,m!5
1

6
ln~mr!1a~1/2!1Q~mr! ~6.1!

with the quantityQ, a function ofmr([X) only, behaving
as
2-11
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Q~X!5H 1

2
X2 ln X1

1

2
~g2 ln 2!X21••• ~X&0.5!,

2
1

6
ln X2aS 1

2D2
1

75

1

X22
17

735

1

X4 1
232

2835

1

X62
7916

148225

1

X8 1••• ~X*1.8!.

~6.2!
E
d
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@Note that, in the instanton background, Eq.~2.12! implies

thatG ren(m,r,m)5 1
6 ln(m/m)1Ḡ(mr).] In the indicated valid-

ity ranges ofX, the functionQ(X) is plotted in Fig. 4. We
have here assumed that our small mass expansion in
~5.32! can be used reliably forX&0.5; this estimate is base
on measuring the effect of the (mr)4 term @with the numeri-
cal coefficient taken to beO(1)] against the terms which
appear explicitly in Eq.~5.32!.

Now, what could be said on the behavior of the functi
Q(X) in the intermediate region 0.5&X&1.8? Since the
background field under consideration has a smooth pro
one naturally expects thatQ(X) also be a smooth function o
X; that is,Q(X) would be represented by a smooth interp
lating curve connecting the known forms of the curve in t
regionsX*1.8 andX&0.5. Let us further assume that th
region for interpolation, 0.5&X&1.8, can be viewed as be
ing reasonably small. Then, looking at howQ(X) actually
behaves forX*1.8 andX&0.5 ~see Fig. 4!, it appears to be
quite plausible to suppose thatQ(X) is a monotonically de-
creasingfunction ofX for all X.0. But, since we have in no
way proved this monotonic behavior in the presence of
instanton background, one may regard this as a conjec
@For instance, the possibility thatQ(X) may develop a loca
maximum or minimum within the range 0.5&X&1.8 is not
excluded. Incidentally, such monotonic behavior was a
observed in the case of a self-dual constant field strength~see
Fig. 2!.# Accepting the conjecture, it might be useful~espe-
cially for phenomenological analysis of instanton effects! to
have a certain smooth functionQ(X) in the entire rangeX

FIG. 4. Plot ofQ(mr).
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.0 which meets this requirement. With the plausible cur
for Q(X) taken by that given in Fig. 4, we have found~after
some trial and errors! that it may be described by the func
tion of the form

Q~X!;2
1

6
ln X2a

1

1

6
ln X1a2~3a1b!X22

1

5
X4

123X2120X4115X6
~ for all X.0!,

~6.3!

with a[a(1/2).0.145873 andb5 1
2 (ln 22g).0.05797.

This form incorporates correctly the small-X and leading
large-X behaviors shown in Eq.~6.2!. For the tunneling am-
plitude which is more directly related toe2Gren, this amounts
to using the expression~6.3! with

e2Gren(m,r,m)5~mr!21/6e2a(1/2)2Q(mr)

~ for arbitrary massm!. ~6.4!

Various results obtained for the spin-0 field case can
used to derive the corresponding results appropriate to
spin-1/2 one-loop instanton effective action. The latter w
be needed if one wishes to consider the loop correction to
vacuum tunneling amplitude in QCD due to quark fields. In
self-dual Yang-Mills background, the hidden supersymme
of the system allows one to express the spin-1/2 proper-t
Green function^xsuy& (1/2)[^xue2s(gD)2

uy& in terms of the
corresponding spin-0 function̂ xsuy& (0)[^xue2s(2D2)uy&
~with the same isospin representation assumed!. Explicitly,
this is described by the operator relation@24#

e2s(gD)2
5e2s(2D2)

11g5

2
1gD

1

2D2

3e2s(2D2)gD
12g5

2
1P, ~6.5!

whereP is the projection operator into the zero mode su
space of gD and can be expressed byP5@12gD(1/
2D2)gD#@(12g5 )/2# @17#. Using the relation~6.5! with
the definition ofG ren(A) ~see Sec. II!, it is then possible to
derive a simple relationship between the spin-1/2 and sp
one-loop effective actions. IfG ren

(1/2)(A) @G ren
(0)(A)# denotes

the one-loop effective action as defined by Eq.~2.12! for a
spin-1/2 ~complex spin-0! field of massm in a self-dual
Yang-Mills background, we have in fact
2-12
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G ren
(1/2)~A!52

1

2
nF lnS m2

m2D22G ren
(0)~A! ~6.6!

or, for the respective contributions to the tunneling amplitu

e2Gren
(1/2)(A)5S m

m D nF

e2Gren
(0)(A), ~6.7!

wherenF is the number of normalizable spinor zero mod
in the given background@23#. Now, using the result~6.1! for
G ren

(0)(A), we have the spin-1/2 instanton effective action e
pressed as~with nF51)

G ren
(1/2)~m,r,m!52 ln

m

m
2

1

3
ln mr22a~1/2!22Q~mr!,

~6.8!

or, for the tunneling amplitude,

e2Gren
(1/2)(m,r,m)5

m

m
~mr!1/3e2a(1/2)12Q(mr), ~6.9!

whereQ(mr) is the function specified in Eq.~6.2! ~and rep-
resented in Fig. 4!.

The expression in Eq.~6.8! or ~6.9! describes the one-loo
contribution to the vacuum tunneling by an isospin-1/2 qu
field of massm. If one accepts our conjecture, the functio
Q(mr) may be taken as a monotonically decreasing funct
of mr which has the limiting behaviors as given in Eq.~6.2!.
The renormalization prescription appropriate to the expr
sion ~6.8! is that specified by Eq.~2.12!. If one wishes to
obtain the corresponding amplitude in the minimal subtr
tion in the dimensional regularization scheme, the fin
renormalization counterterm@see Eq.~2.14!#

1

~4p!236
~ ln 4p2g!E d4x Fmn

a Fmn
a 5

1

3
~ ln 4p2g!

~6.10!

must be added to the expression~6.8!. Thus, in the minimal
subtraction scheme, the amplitude due to a spin-1/2 quar
massm reads

e2GMS
(1/2)(m,r,m)5

m

m S mr

4pe2gD 1/3

e2a(1/2)12Q(mr).

~6.11!

With Q(mr) set to zero, this reduces to the result of ’t Hoo
@5#. For applications to the real QCD with the SU~3! gauge
group, one must also take into account the well-known gro
theoretical factor associated with various ways of embedd
the SU~2! instanton solution@25#.
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VII. DISCUSSIONS

In this work we studied the massive quark contribution
the one-loop instanton effective action in QCD. For this p
pose, we made use of the approximation scheme valid
relatively large mass as well as the small-mass expans
These considerations provide a reliable approximation to
one-loop effective action if the magnitude ofmr is such that
mr*1.8 ormr&0.5. The expression for the effective actio
contains a functionQ(mr), the magnitude of which is un
certain in the range 0.5&mr&1.8. Based on the known be
haviors ofQ(mr) in the rangesmr&1.8 andmr&0.5, we
suggested thatQ(mr) be a smooth, monotonically decrea
ing function ofmr. If the latter turns out to be true, a simp
interpolation formula forQ(mr) @as we considered in Eq
~6.3!# suffice for considerations in most phenomenologi
analyses.

What can be done to reduce the uncertainty in the fu
tion Q(mr) for 0.5&mr&1.8? With the explicit calculation
of theO@(mr)4# term in the small mass expansion, it shou
be possible to push the lower end of the uncertain range
slightly higher value. On the other hand, we expect that
cluding the next higher Seeley-DeWitt coefficient in th
large-mass expansion would not bring a significant new
formation. More useful direction might be to try a dire
numerical evaluation of the functional determinant, with t
help of the scattering theory in a radially symmetric bac
ground field.~Some related techniques are discussed in R
@26#.! Perhaps, by some mathematical argument, it mi
also be possible to actually prove that the functionQ(mr),
which is equal to G ren(m,r,m)2G ren(m50,r,m) ~for a
spin-0 field! in an instanton background, is a monotonica
decreasing function ofmr. These are left for further study.
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APPENDIX A

In the literature@14–16#, the Seeley-DeWitt coefficients
ãn(x) for a spin-0 or spin-1/2 matter field have been calc
lated up ton56. Here, for the case of a~complex! spin-0
field, we shall give the explicit expressions forãn(x) up to
n55 in a general off-shell background field. They read
ã3~x!52
1

6
trF i

2

15
FklFlmFmk2

1

20
~DkFlm!~DkFlm!G , ~A1!
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ã4~x!5
1

24
trF2

1

21
FklFlmFmnFnk1

11

420
FklFmnFlkFnm1

2

35
FklFlkFmnFnm1

4

35
FklFlmFknFnm1 i

6

35
Fkl~DmFln!

3~DmFnk!1 i
8

105
Fkl~DlFmn!~DkFnm!1

1

70
~DkDlFmn!~DlDkFnm!G , ~A2!

ã5~x!52
1

120
trF2 i

2

945
FklFlmFmnFnrFrk2 i

8

63
FklFlmFknFmrFrn1 i

16

945
FklFmnFlrFnkFrm

1 i
22

189
FklFlmFknFnrFrm1 i

31

378
FklFlmFnrFmkFrn1 i

53

378
FklFlkFmnFnrFrm1

1

9
FklFlm~DnFkr!~DnFrm!

1 i
1

18
Fkl~DlDmFnr!~DmDkFrn!2

1

189
FklFlm~DkFnr!~DmFrn!1

1

252
~DkDlDmFnr!~DmDlDkFrn!

1
1

378
FmkFrnFkl~DlDmFnr!1 i

2

21
~DkFlm!~DkDnFmr!~DnFrl!1

2

63
Fkl~DmFnr!Flk~DmFrn!

1 i
4

63
Fkl~DmDnFlr!~DnDmFrk!2

5

63
FklFlm~DnFmr!~DnFrk!1

5

63
Fkl~DmFln!Fkr~DmFrn!

1
5

63
Fkl~DmFnr!Frl~DmFnk!1 i

5

126
~DlFrn!~DkFlm!~DmDkFnr!2

10

189
Fkl~DlFmn!Fnr~DrFmk!

2
8

189
FrmFkl~DlFmn!~DnFkr!1 i

5

126
~DkFlm!~DmFnr!~DlDkFrn!2

10

189
Fkl~DmFln!Fmr~DkFrn!

1
11

189
Fkl~DmFlk!Fnr~DmFrn!1

11

189
Fkl~DmFnr!Frn~DmFlk!2

11

378
FrnFklFlm~DmDkFnr!

1
13

252
FklFlk~DmFnr!~DmFrn!2

16

63
Fkl~DlFmn!Fnr~DkFrm!2

16

189
FklFlmFnr~DmDkFrn!

2
19

756
Fkl~DlFmn!Fkr~DrFnm!2

19

756
Fkl~DmFnr!Fml~DkFrn!1

25

189
FrnFkl~DmFln!~DmFkr!

2
26

189
FrnFkl~DmFln!~DrFmk!2

34

189
FrmFkl~DlFmn!~DrFnk!2

41

378
FklFlm~DmFnr!~DkFrn!

1
61

756
FrnFkl~DmFlk!~DmFnr!1

61

756
FklFmn~DrFlk!~DrFnm!G , ~A3!

whereDlFmn[@Dl ,Fmn# andDkDlFmn[@Dk ,@Dl ,Fmn##, etc.

APPENDIX B

The functionC(x,p) in Eq. ~5.26! is given by

C~x,p!52E d4z~e2 ip•z21!~2]W z
2!F 1

4p2~x2z!2
S 11

r2x•z

x2z2

A11r2/x2A11r2/z2
21D G , ~B1!

and we are here interested in its behavior foruxu.L ~with r!L!m21) andp&m. We divide this quantity into two parts, i.e
C(x,p)5C,(x,p)1C.(x,p), whereC,(x,p) denotes the contribution with the region of integration restricted touzu<L1
~with r!L1,L) andC.(x,p) that from the regionuzu.L1. ~We takeL1 to be of the same order asL.! Then, forC,(x,p),
it will be safe to make an approximatione2 ip•z21.2 ip•z @i.e.,O(upuL) at most# inside the integrand of Eq.~B1! and so we
find immediately
114022-14
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C,~x,p!5OS upuL
r2

x2D ~ for uxu.L !. ~B2!

On the other hand, forC.(x,p), we may expand the factor 1/A(11r2/x2)A(11r2/z2) in the integrand of~B1! as a power
series inr/uxu andr/uzu, and then

1

4p2~x2z!2
S 11

r2x•z

x2z2

A11r2/x2A11r2/z2
21D →2

r2

8p2x2z2 1
r4

4p2~x2z!2

3~x2!213~z2!212x2z224x•z~x21z2!

8~x2!2~z2!2 1•••.

~B3!

As the differential operator2]W z
2 acts on this expression, the first term in the right hand side of Eq.~B3! can be dropped. Thus

we may write

C.~x,p!52E
uzu.L1

d4z~e2 ip•z21!~2]W z
2!F r4

4p2~x2z!2

3~x2!213~z2!212x2z224x3z~x21z2!

8~x2!2~z2!2 1•••G , ~B4!

and, foruxu.L and upu&m, it is not difficult to show that this can only lead to terms ofO@ upuL(r4/x2L2)# or O(r4/x3L) or
O(r4/x4). Hence,C(x,p) is at mostO@ upuL(r2/x2)# or O@r4/x3L# or O(r4/x4).
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