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Recalculation of proton Compton scattering in perturbative QCD
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At very high energy and wide angles, Compton scattering on the protprs(yp) is described by pertur-
bative QCD. The perturbative QCD calculation has been performed several times previously, at leading twist
and at leading order img, with mutually inconsistent results, even when the same light-cone distribution
amplitudes have been employed. We have recalculated the helicity amplitudes for this process, using contour
deformations to evaluate the singular integrals over the light-cone momentum fractions. We do not obtain
complete agreement with any previous result. Our results are closest to those of the most recent previous
computation, differing significantly for just one of the three independent helicity amplitudes, and only for
backward scattering angles. We present results for the unpolarized cross section, and for three different
polarization asymmetries. We compare the perturbative QCD predictions for these observables with those of
the handbag and diquark models. In order to reduce uncertainties associated aith the three-quark wave
function normalization, we have normalized the Compton cross section using the proton elastic form factor.
The theoretical predictions for this ratio are about an order of magnitude below existing experimental data.

PACS numbds): 12.38.Bx, 13.40.Gp, 13.60.Fz

I. INTRODUCTION soft subprocessegelative to\/s) can reorient quarks with

Exclusive real Compton scattering on the protorp Zwiiié;rom the initial proton direction to the final proton

— P, is a promising arena for studying the short-distance Despite all these caveats, it is still useful to know the
structure of the proton. In the limit of large energ% and - P .
. . . PQCD predictions foryp— yp, if nothing else as an
fixed scattering angl@ in the center-of-mass frame, the real L

g . . asymptotic limit. There have already been four separate cal-
Compton amplitude should factorize as the convolution of a

. : . : lation Born leve[16—19. However, no two resul
perturbative hard scattering matrix element W|thanonpertur9u ations at Born leve[16-19. However, no two results

bative light-cone distribution amplitudd]. The distribution  29r€€ With each other, even when the same proton distribu-
tion amplitudes are assumed. Given this discrepancy in the

amplitude is for the three valence quarks in the proton; i iterature, and the need for consistent predictions from the

describes how their longitudinal momentum is partitionedPQCD mechanism, we undertook an independent recalcula-
when their transverse separation is very small. Contribution'tsIon of this process'. Our resuilts in fact differ from all previ-

of Fock space st'ates with more partons in the prqtpn’s Iight'ous work, although we find reasonable agreement with Ref.
cone wave function should be supprgsseq by addltlon_al pomflS] for a subset of the helicity amplitudes, and excellent
Sir(ftig];&ol:ogﬁc\lﬁ;,zig\]/z %‘gg%s&gh'g:cg]rfezszgigt?gcng{e'agreement with Ref.19] for forward scattering angles.

Knowna prl?ori. Soft mechanisms such as the soft ovefap Our results are timely in view of the experiment.al situa-
handbay model[2—4] and the diquark modéb,6] could be tion. For over twenty years, the highest energy wide-angle

comparable to, or even dominant over, the PQCD mechaSompton data available have been from an experiment at

nism at the presently accessible center-of-mass energies §°rell [20] which investigated the energy range 4.6 Gev
2_4 GeV. <s<12.1GeV\ . These data appear to obey an approximate
The PQCD prediction foryp— yp contains a number of do/dtxs™® scaling law, as predicted by PQCD, although
uncertainties. First, only the Born level has been computednore precise data would be useful to confirm or refute this
next-to-leading-order corrections are likely to be large. Rebehavior. An experiment now underway at Jefferson Lab
lated to this, the Born level prediction is proportional to a[21] should soon improve the errors on the unpolarized cross
high power of the running strong coupling constant,section and its9- and s-dependence, in the same kinematic
[ag(u)]% and its renormalization-scaléu) dependence range as the Cornell experiment. This experiment also plans
leads to a large normalization uncertainty on the cross sedo measure a polarization asymmetry, the transfer of longitu-
tion. Second, the form of the proton distribution amplitude isdinal polarization from the incoming photon to the outgoing
not well understood. Several groups have produced modgiroton, for at least one angle. We shall discuss this asymme-
distribution amplitudes based primarily on QCD sum ruletry further in Sec. Ill. An upgrade of the Jefferson Lab elec-
analyseg7-13. These distribution amplitudes can lead to tron beam to 12 GeV22] would allow for the very impor-
quite different predictions for the Compton helicity ampli- tant extension of this experiment to higher energies. The
tudes. Most of the proposed distribution amplitudes tend tgroposed ELFE facilityf 23] with a 25 GeV electron beam
peak in a region where two of the three quarks carry relawould also be a natural place to perform higher energy
tively small fractionsx of the proton longitudinal momen- Compton measurements.
tum. This has led to scepticism about the applicability of The remainder of this paper is organized as follows. In
PQCD at accessible energigst,15,2,3, because relatively Sec. Il we outline the calculation. In Sec. Ill we present
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results for the unpolarized cross section and for some differin addition to neglecting evolution of the distribution ampli-
ent polarization asymmetries. Section IV contains our contude, we shall also take, to be fixed. The Born-level cross
clusions. section then scales ag X f.
The hard scattering amplitude is computed for three col-
Il. CALCULATION linear incoming and outgoing quarks. The color and electric

] ) charge dependence can be factored off of each diagram as
Since the general PQCD calculational framework for the

Compton process has been described previously, e.g., in Ref. TR h AV h N )=COG*ZDFD (% d-h X h' N’
[18], we will be brief here. The leading-twist PQCD factor- (ARG g4 (X.y:h.A, b7, )’(5)
ization of the helicity amplitude\/lﬁﬁ,’ for incoming (outgo-
ing) photon helicityx(A") and proton helicityh(h’) is given ~ whereC(@ is the color factorg is the strong coupling con-
by stant, andZ(? is the appropriate product of quark electric
) charges, whilé @ is color and flavor independent.
Mm’zz f dx, dx, dxg dy; dy, dys The helicities of the quarks in th_e hard _scattering ampli-
di Jo tude are conserved by the gauge interactions; therefore the
3 3 proton helicity is conserved, arytﬂﬁﬁ,’:O forh#h'. Parity
1_2 Xj) 5( 1— E yk) and time-reversal invariance further reduce the number of
i=1 k=1 independent helicity amplitudes to three, which we take to be

X0

XHXTVXNTR NS (), (D) ML, Ml and M ()

where the vectorg=(xy,X,,X3) andy=(y,Y,,y3) repre-
sent the quark longitudinal momentum fractiongbels the
independent three-valence-quark Fock states of the proto
with distribution amplitudesp;(X); andd represents the sum

over the diagrams that contribute to the hard-scattering a We adopted the technique in REL8] of using the parity

litude T; . . : :
P The oiistribution amplitude represents the three-valenceSYMMetry(denotedt therein between certain classes of dia-

quark component of the proton’s light-cone wave function,?rzg\sliao rtehdeu?i(ran ?—?er\]/:gg(larsthma:ni?rd tgsbz CC%rzglgtesl’l v&/gl_e
after the latter is integrated over transverse momenta up to grams V\Q/]ere computed b tw{) inde yendent com .uter ro-
factorization scalet. (Moments of the distribution amplitude 9 P y P P P

can also be defined via the matrix elements of appropriat%ams’ both bf_"SEd on ﬂ;e fo(;TaIkiJsmdou:_linelz? i'?h Rea]. di
local three-quark operatoys.The distribution amplitude €S€ EXpressions Were found 1o be identical 7o those Used n

evolves logarithmically withu, but (as was also done in ::Z?nthgteTOSt'tLegzeer};[Cl%ml%ﬂgg(m%%al% sTchtjt?a r\',\f Z%r]e?_
Refs.[16—19) we shall neglect this evolution here. The full P ywl ' Ing ampll

. . . . . L. tudeT. .
distribution amplitude for a positive-helicity proton is, in the ! . . . .
notation of Ref[18], The next step is to perform the four-dimensional integra-

tion in Eq. (1) over the independent quark momentum frac-
f N 3 3 tions. For the various model distribution amplitud&s-10|

py)= _Nf dx; dx, dxs 5( 1_2 xj) 2 Hi(R)]i; %), we used the coefficients @ Ilstepl in Tabl_e | of Ref[18] _
8\6 Jo =1 )i=1 [and Eq.(6) of Ref.[11]]. Many diagrams include denomi-

(2)  nators that vanish inside thé,§) integration region, due to
the presence of an internal quark and/or gluon that can go on
shell. This is not a true long-distance singularity, and all the
integrals are finite, diagram by diagram, but it is a technical
obstacle to obtaining a reliable value for the integral. In the
notation of Ref.[18], the Feynmane prescription leads to
singular denominators of the form

In principle, 378 diagrams contribute to the hard scattering
ﬁtmplitude. However, 42 of them contain three-gluon vertices
ahd have a vanishing color factor. Many others vanish for
nindividual helicity configurations.

where

|1;%)=|uj(xpu (x2d(X3)),

|2§i>:|UT(X1)d1(X2)UT(X3)>,

13;%) =d; (X)) u | (X2)U; (X3)). ()
The normalization constarfif, can be determined from QCD  'We compared our results for each diagram to the formulas
sum rules or lattice QCD. We choo$g=5.2x10 3Ge\?  given in Tables Il and IV of Ref[18]. These tables contain

(as in Refs[18,19)). Fermi-Dirac statistics, isospin and spin three errorsfound by Vanderhaeghel25] as well as usin addi-
symmetry result in only one independent distribution ampli-tion to one in diagram A71 that was published in an erratum.

tude, ¢, ; the other two are given by However, _all these errors are typographical and do not affect
the numerical results in that papg26]. The errors are: In the
¢2(X17X21X3): - ¢1(X17X21X3)_ ¢1(X37X21Xl)1 denominator Oﬁ-(A44)(XIT:l;ylel)! (Y?uxl) should be Yayh)i
TC™(x,1,1:y.1.1) should be multiplied by  and the diagram
D3(X1,X2,X3) = 1(Xg,X2,X1). (4)  related toC77 by 75€ should beF11, notF33.
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1 1 [27]. Two independent versions of the contour integration
Xy)Fie P xy) imo((X,Y)), (7)  were implemented numerically, with two different choices of
' ' contour(piecewise linear vs semicircujaand we also var-

where P stands for principal part andx(y)=x(1—ys?) ied the deformation parametey obtaining stable results.
—yc2, with s=sin(4/2) andc=cos@?2). Diagrams can be A third version of the integration program was con-
classified by the number of singular factors found in the deStructed, which employed the Gauss-Legendre formalism
nominator; for the Compton process this number can be 0, 128] With ten points per integration variable, instead of
2 or 3. The presence of on-shell partons in the Born-leveVEGAS Although the Gauss-Legendre errors were larger than
hard scattering amplitudgfor particular values of X,¥)] the VEGAS errors, the two sets of result; Were_complgtely
leads to large phases in the PQCD amplityd@,16,18. consistent with e{:\ch othéand were both inconsistent with
This is in contrast to the handbag model, which predicts af€Sults from previous work; see Sec. II.A

imaginary part that is small and beyond the accuracy of the W€ carried out further checks on our integration routines.
model. For diagrams with only one singular factor in the denomina-

At least four different numerical methods have previously!ef, One can integrate the imaginary part analytically. Using
been applied to handle the singular integrations. Referend®iS procedure we checked the imaginary part of all diagrams
[16] performed a Taylor expansion of the numerators of theVith one singularity. One can also check the diagrams with
integrand symmetrically about each singularity. Referencd© Singularities in the same manner. A second check em-
[17] kept thee in Eq. (7) explicit, and evaluated the integrals Ployed the identity
for a sequence of values tending to zero, looking for stable
results. Referencgl8] handled the imaginary parts of the 1 B 1-ys 1-z¢
_singular inte_grals by solving thé_—function co_nstraint explic- (X,¥)(x,2)  c2(y—2)(X,y) N cA(y—z)(x,2)" ©
itly, and carried out the real, principal-part integrals by fold-
ing the region of integration over at the singularity, so that

the integrand is manifestly finite. Finally, R¢19] deformed to two singularities(These expressions can be reduced no

the (X,y) integration contour into the complex plane, an eI'further, though, because the four remaining singular vari-

egant techniqug that requires relatively little bookkeeping foryp e are gl differentOne can also reduce all diagrams that
its implementation.

. . initially had two singularities to one-singularity diagrams,
_ We adopted a variation of the contour deformation tech+qing their imaginary parts to be computed analytically.
nique[19]. We first let Our integration techniques were robust against all of these
tests.
Finally, Table V of Ref.[18] gives detailed results for
_ _ . ® diagramA51, which has two denominator singularities. We
Yi=m, Yo=(1=n)(A=n2), ya=(1=m) 72, agree completely with these results, for both the real and
imaginary parts. We note that Rdfl8] also attempted to
evaluate this diagram by implementing the explieit-0
method of Ref[17], but they obtained very different results
for the imaginary part, compared with the results of their
folding method. Referencgl8] claims that the explicite
—0 method is not numerically stable. Since we agree with
their results for diagram A51, we do not have cause to dis-
agree with this claim.

Using EqQ.(9) one can reduce all three-singularity diagrams

X1=&1, Xo=(1-§6)(1-&), Xx3=(1—¢&1)&,,

so that the four independent variables (&, , 71, 7,) were
integrated on the interv@0,1]. We then deformed the single
variable n, into the complex plane, so that it ran either over
the piecewise linear contour-@ie—1+ie—1, or over a
semicircular contour extending from 0 to 1. Note that this
simultaneously deforms boty, andy;, towards opposite
sides of the real axis, whibe; andx; remain real. Inspection
of the denominator factors in Tables Il and IV of RELS]
shows that this deformation is sufficient to correctly bypass
the singularities in every Compton diagram. For example, Ill. RESULTS
the denominator of diagram A16 includes the factors
[(x1,y1) +iell(X3,y1) +iell(ys,x3s) +ie], where x=1
—X;,Yi=1-y;. Using the identity X,y) =(y,X), the singu- We computed the Compton helicity amplitudes for a va-
lar factors can be rewritten a$(l—y;,X;)+ie][(1  riety of distribution amplitudes, which we refer to as
—Vy1.X3)+ie][(ys,X3)+ie], which shows thaty; andy;  Chernyak-Zhitnitsk)CZ2) [7], Gari-StefanigGS9) [8], King-
should indeed be deformed in opposite directions. If the diaSachrajda(KS) [9], Chernyak-Oglobin-Zhitnitsky(COZ2)
gram happens to contain denominators of the foxny;)  [10], heterotic(HET) [11], and ASY/[the distribution ampli-
or (y3,x), instead of y;1,%;) or (xi,ys), as does diagram tude for asymptotically large energy scales,(X;,Xz,X3)
A16, then the imaginary part should be multiplied by an=120x;X,x3]. The CZ, KS and COZ distribution amplitudes,
overall minus sign(or equivalently, the contour should be which satisfy the constraints imposed by QCD sum rules
deformed in the opposite direction with respect to the real7,9], are qualitatively similar. They feature a peakgn for
axis). x1~1, X, z~0; that is, theu quark with the same helicity as
After making these contour deformations, the real andhe proton carries most of the momentum. The GS distribu-
imaginary parts of the complex integrals were performedion amplitude has a peak i, for x; 3~1/2, x,~0; thus it
separately using the Monte Carlo integration routtesAs  splits the momentum more equitably between the two quarks

A. Comparison with previous work
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FIG. 1. Four different calculations of the polarization asymme- F|G. 2. The cross section foy;p;— y,p; for five different
try A defined in Eq(10), for the COZ distribution amplitude. The distribution amplitudes; CZ, COZ, KS, GS, and ASY. The results

dotted line is from Ref[17], the dashed line from Refl18], the  for the asymptotic distribution amplitud@SY) have been multi-
dot-dash line from Ref.19], and the solid line from this work. plied by 100.

carrying the proton’s helicity. The HET distribution ampli- discrepancy with Ref.19] is predominantly from the single
tude is intermediate in shape between GS andi@# KS, helicity amplitude| | .
COZ} class. The curve from Ref[17] has the same general shape as
Before discussing our full results, we present a compariours, but is offset from it. The phases of the dominant helic-
son of results in the literature. Here we choose the COZty amplitudes given in Ref[17] actually agree quite well
distribution amplitude, since it was employed in four of the with our results in Figs. 5-7 below; the magnitudes are off-
five existing calculationgOnly the earliest calculatiofi6], ~ set by relatively angle-independent factors.
which was later supersedéti7], did not use the COZ distri- Reference[18] finds a very large asymmetry. We have
bution amplitude. The overall cross-section normalizations made a detailed comparison of our COZ results with those of
in the literature are sometimes difficult to determine, due forRef.[18], for the real and imaginary parts of the three inde-
example to unspecified choices feg. Therefore we choose pendent helicity amplitudes. Each amplitude has been further
to compare results for the following(normalization-  Split into four piece$26], according to the number of singu-

independentinitial-state helicity correlatiofi19], lar propagators in the diagrafas determined from Tables IlI
and IV of Ref.[18]). The zero propagator terng@hich were
doi do integrated analytically by both groupagree to high preci-
dt  dt sion (6 digits). The one propagator terms agree to within
A= (100  vEGAs errors, except for the imaginary part of one helicity

f,
doy  do, amplitude (M}1) which is within 10%. For the two propa-
dat ~ dt gator terms, we are in agreement on the real partfof and

MH but have a large discrepancy in the imaginary part.

wheredo}/dt is the differential cross section for a helicty
proton scattering off a heliciti}x photon. [T T T T ]
Figure 1 shows that none of the four calculationsApf e \\_ Py > D
agrees completely with any other. The only two results that o e RS
are very close are ours and that of REI9]. These two ’ ’
curves are in excellent agreement #x110°; however, we
do not reproduce the prominent dip of REE9] in the back-
ward region. This statement is true for the four distribution
amplitudes we have compared: KS, COZ, CZ and ASY
[19,25. Figure 14 of the second reference ir®] shows that

the dip in A, derives from doi/dt)(mp]—wp)
| M2 +|MJH2, and not from (o’ /dt)(y pi— ¥p)
OCIMH|2+|.MH|2. Indeed, we agree with theiy p;— yp
cross section for all angles to better than 10%, up to an
overall normalization factor which can be accounted for by

different choices fors. We agree with they,p,— yp cross
section only for§<110°, however. This suggests that the FIG. 3. The cross section for;p;— v,p; .

el ]
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FIG. 4. The cross section foy,p;— y,p; FIG. 6. Phase of the helicity amplitude forp;— v,p; .
) ) for the three independent helicity configurations. Each figure

Strangely enough, faM;{ we agree on the imaginary part piots the results for five different distribution amplitudes.
but disagree on the real part! For the three propagator termg-or HET we shall only plot the unpolarized cross secion.
both the real and imaginary parts disagree for all three helicthese plots were made far,,}=137.036,a5=0.3 andfy
ity amplitudes. The bulk of our overall numerical disagree-_g o« 1093 Ge\?, so they can be compared directly with
ment comes from the two propagator terms contributing tQRef.[18]. The phases of the helicity amplitudes are plotted in
the imaginary part of\}]. The two propagator terms are Figs. 5—7; the GS distribution amplitude has a much differ-
often 100 times larger than ours, and they drive Re8]'s  ent behavior and is therefore plotted separately, in Fig. 8.
values for ||'T1A/1TTTT to be roughly a factor of 10 Iarger than The phases are genera"y |arge; mde’@rd% is almost pure
ours. imaginary (except for the GS distribution amplitudeFor

We also calculated\ | for the COZ distribution ampli-  reference, we also provide in Table | our numerical results
tude using Gauss-Legendre integration insteadvBEAS. — for the real and imaginary part of1}!, for the COZ distri-
The result agrees with OWEGAS result shown in Fig. 1 pytion amplitude, including errors from the VEGAS integra-
(albeit with larger errors and it disagrees with the other o,
results, in particular that of Ref19] for §>110°. Figure 9 shows our predictions for the unpolarized differ-

ential Compton cross section, given by
B. Helicity amplitudes and unpolarized cross section

In Figs. 2—4 we display our results for the polarized dif- gdo 1 Gdam,
ferential cross sections: S dt 4 dt (12
t )\,)\,,h,h, t
AN
SedUhh/ —S—4|M“"|2 (11) along with the experimental data from R¢R0]. For the
dt 167" NN values usedy,=0.3, fy=5.2x10 3Ge\?, the predictions

lie at least an order of magnitude below the data. Since the

_ A S S S B S S RN
L 325 — o ]
— 250 — N TPy > 7Pt . coz
& - i
z £ 300 [~
(3 E B
E 200 — 03 L
& L 8 25|
[ =] L
° Q4
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< L . o
5 i
F 7 g
225 |— /_/.'/ . ]
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ool —— 1, by Ly A [ -
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.. . 8 (deg)
FIG. 5. Phase of the helicity amplitude forp;— y,p; for the
distribution amplitudes CZ, COZ, KS, and ASY. FIG. 7. Phase of the helicity amplitude forp;— v,p; .
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the GS distribution amplitude. The arrows correspond to the photogjjstribution amplitudes, forag=0.3 and fy=5.2x10" 3 Ge\?,

helicities, \' in the amplitudes\t}} . compared with experimefi20].

PQCD cross section scales liké, accommodating a factor Uncertainty infy also contributes. Both of these uncertain-
of 10 by changingxs would requireas~0.5. While this is  ties can be removed at Born level by considering the dimen-
not out of the question, and while some variatiorfjncould  sionless ratid29]

be considered as well, this may be pushing the validity of

perturbation theory. On the other hand, the shape of the Sad‘fyp
curves(i.e., ignoring the overall normalizatipmatches the dt
data quite well for the KS, COZ, CZ, and HET distribution —[Q“FE(QZ)]Z’ (13

amplitudes.

o oy 2 whereF?(Q?) is the elastic Dirac form factor for the proton
C. Normalization by F3(Q%) at spacelike momentum transf@ One might also imagine

As mentioned in the introduction, thei(u) scaling of nhormalizing the Compton cross section by the timelike pro-
the proton Compton cross section at Born level introduces #n form factor. At leading order i, the PQCD predic-
large normalization uncertainty into the PQCD prediction.tions in the spacelike and time-like regions are identjal

however, experimentally the timelike form factor is larger by

TABLE I. The real and imaginary parts of the helicity amplitude @ factor of about twd30,31. Higher order PQCD correc-
M{] for the COZ distribution amplitudémultiplied bys? in units ~ tions can in principle account for this factor, as Sudakov
of GeV?). The errors are from theecas numerical integration. The  effects are different in the two region82]. The Compton
values used fofy, a.y,, andag are the same as in the rest of the scattering kinematics are much closer to those of the space-
paper. The normalization is the same as in Table V of RES]

(which we found quite usefl 10! ¢
6 (deg 10°s? Rem})) 10° s? Im(M 1)
20 — 74920t 240 29200-230 w100
30 —15720+ 110 5133-46 B
40 —5255+15 130t-14 k4
50 —2371.2:8.0 348.6:5.8 D w0t
60 —1273.6:4.3 42235 < g
70 —768.8-2.3 —72.1+2.3 gﬁ
80 —511.2+3.1 —115.4-1.4 ©,  10-2 k-
90 —369.8-1.2 —139.0+1.0 ]
100 —278.3+1.0 —152.03:0.91 ; R 1
110 —222.4-1.2 —165.53-0.90 S N U T B
120 —179.54-0.70 —183.15-0.95 50 0 (de;‘;" 150
130 —144.2-1.0 -211.6-1.0
140 —107.80£0.91 —257.1x1.3 FIG. 10. The scaled unpolarized Compton cross section, nor-
150 —52.9+2.7 —324.9:2.6 malized by the scaled elastic proton form factor, as in #8), for
160 75.9-3.1 —4155+5.0 five distribution amplitudes, compared with the experimental data
[20,31.
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like proton form factor than the timelike one, at least as far ror
as the proton is concerned. Therefore Sudakov and relatec L
higher-order effects are best cancelled by normalizing with r
the spacelike form factor. 050

At leading twist,F}(Q?) is predicted to be the same as ]
the magnetic form factdBf,(Q?). Experimentally, these are F
close but not identicdl31]. To normalize the experimental 3 ook
Compton points, we use the experimental form factor values, i

Q*FP(Q)~Q*GR(QY)~1.0 GeV, Q?~7-15 GeV, i
(14) -0.5 -—

which are representative of the region where both scaled
form factors flatten out, and are also similar to the highest ol
experimental values o available in Compton scatterirfg.

To normalize the theoretical Compton curves, we recalcu-

lated the proton form factor at leading order in PQCD, ob- F|G. 11. The initial state helicity correlatio, in perturbative

50 100 150
8 (deg)

taining QCD for five distribution amplitudes. Also plotted is the handbag
4 f)2 model prediction forlE =4 GeV (GRV) [4], and a diquark model
ey icti
arp A2y - TTSINS prediction[5].

magnitude below the data at the widest scattering angles.
where (The HET distribution amplitude does slightly better than
this) Thus it seems unlikely that the elastic proton form

2500<10°  (C2), factor and the Compton scattering amplitude are both de-
2.505<10° (G9), scribed by PQCD at presently accessible energies, unless
. 3.653<10°  (KS), 15 'Eihoenrse. are large higher-order and process-dependent correc-
F] 2.897x10° (C0OZ),
3.303x10° (HET), D. Asymmetries
0 (ASY). Various polarization asymmetries can be constructed from

' the helicity amplitudes. These observables may provide ad-

These results, using the wave functi@) which is equiva-  ditional diagnostic power for uncovering the Compton scat-
lent to that in Ref[10], are precisely a factor of two smaller tering mechanism, beyond what the unpolarized cross sec-
than several previous calculations using the same wave fungon provides.
tions[33]. We do not understand the origin of this discrep-  Figure 11 presents the perturbative QCD results for the
ancy. We do agree with the normalization of the hard scatinitjal state helicity correlatiod , defined in Eq(10). Also
tering amplitude and the form factor in ReB4] [which  shown is the handbag model predictigh for E, =4 GeV,
uses, however, a different representation of the proton wav@nere the form factorRy » were evaluated using the parton
function than Eq(2)]. _ ~distribution functions of GR[35]. In leading-twist PQCD,
Figure 10 shows the Compton cross section, normalizeghe proton helicity is conserved. The handbag model does
according to Eq(13), for both PQCD and the experimental not inherently require proton helicity conservation, but it has
data. We omit the ASY distribution amplitude, since thepeen assumed in Ref4]. Thus the PQCD and handbag
leading order ASY form factor vanishes. Compared with thecyryves forA, | in Fig. 11 can be equated to the longitudinal
bution amplitudes, KS, COZ and CZ, has become muchpcoming experimeni21]. The diquark model analyzed in
smaller. The theoretical curves also lie a factor of 2 to 5Refs. [5], [6] has nonvanishing proton helicity-flip ampli-
closer to the data. However, they still fall about an order oftudes at finites, making A, and the polarization transfer
into distinct asymmetries. We plot the diquark prediction for
A, from Ref.[5]. Figure 11 shows that PQCD gives quite
2If one equates the four-momentum transfer to the proton in thediff‘:"“:"nt qualitative behavior from both the h?‘”‘?'bag and di-
two processes-Q? in the form factor and—t in Compton ql_Jark models forA | , _and they shoul_d be distinguishable
scattering—then the corresponding Compten 2Q%/(1—cosg) ~ With the help of experimental data at just a couple of back-
should actually be considerably bigger th@3. At 90°, for ex- ~ Ward scattering angles. A caveat is that the GS curve is
ample,s=2Q?. Unfortunately, there are no experimental Compton SOmewhat oscillatory, so one might wonder whether a distri-
data withs this large(all have —t<5.3 Ge\?), so there is not a bution amplitude “between” GS and thfCZ, COZ, Kg
good overlap with the regiofil4) where the elastic form factor is class of amplitudes could produce behavior similar to the
beginning to scale properly. handbag model.

114021-7



T. BROOKS AND L. DIXON

1.00
0.75 —

0.50 —

Du,

0.25 —

0.00

I I |
50 100 150
0 (deg)

FIG. 12. The photon spin transfer coefficiddt, in perturba-
tive QCD for five distribution amplitudes. Also plotted is the di-
quark model prediction folE,=4 GeV (standard DA [6]. The
handbag model predic3, | =1.

One can also defingg] a photon spin transfer coefficient

do™t dot™

dt  dt
Du=g 7 g 17
dt T dt

where nowds™ '/dt is the differential cross section for ini-
tial and final state photon helicitiésand\’, and unpolarized

PHYSICAL REVIEW D62 114021

diquark

[ I B

50 100 150
8 (deg)

FIG. 13. The photon asymmety in perturbative QCD for five
distribution amplitudes. Also plotted is the diquark model predic-
tion for E, =4 GeV (standard DA[6]. The handbag model predicts
>=0.

IV. CONCLUSIONS

Motivated by conflicting results in the literature, we have
recalculated the fixed-order, Born level predictions of pertur-
bative QCD for proton Compton scattering, for five different
distribution amplitudes. While our results do not agree with
those of any previous group, they do agree very well with
those of Ref[19] for §<110°, and the differences fof
>1&0° seem to be dominated by a single helicity amplitude,
Mt

incoming and outgoing protons. Figure 12 gives the PQCD From the helicity amplitudes we computed three separate
predictions for this asymmetry, as well as that of the diquarkpolarization asymmetries. Experimental measurements of

model forE,=4 GeV and a “standard” distribution ampli-
tude[6]. The handbag model predid; | =1, basically be-
cause the helicity-flip quark Compton amplitugleq— 1y, q
vanishes at Born level for massless quarks.

The final asymmetry we plot is the photon asymmé6iy

do, doy
dt o dt

%= do, doy’ (18)
drdt

these asymmetries could be used in conjunction with the
unpolarized differential cross section in order to help shed
light on the mechanism involved in the Compton scattering
process.

We also have attempted to reduce the uncertainty in the
overall normalization of the Compton cross section by nor-
malizing it by the square of the elastic proton form factor.
This exercise reduces the spread in the theoretical predic-
tions, but it leaves them an order of magnitude below the
data. Unfortunately, this result makes it difficult to simulta-
neously explain the current data on the elastic proton form
factor and on Compton scattering in terms of perturbative

wheredo, /dt andda, /dt are the differential cross sections QCD, without appealing to large uncalculated higher-order
for linearly polarized photons, with the polarization planeand process-dependent corrections.

perpendicular or parallelrespectively to the scattering

plane. Generation of this asymmetry requires a nonzero pho-
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