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Recalculation of proton Compton scattering in perturbative QCD

T. Brooks and L. Dixon
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

~Received 21 April 2000; published 8 November 2000!

At very high energy and wide angles, Compton scattering on the proton (gp→gp) is described by pertur-
bative QCD. The perturbative QCD calculation has been performed several times previously, at leading twist
and at leading order inas , with mutually inconsistent results, even when the same light-cone distribution
amplitudes have been employed. We have recalculated the helicity amplitudes for this process, using contour
deformations to evaluate the singular integrals over the light-cone momentum fractions. We do not obtain
complete agreement with any previous result. Our results are closest to those of the most recent previous
computation, differing significantly for just one of the three independent helicity amplitudes, and only for
backward scattering angles. We present results for the unpolarized cross section, and for three different
polarization asymmetries. We compare the perturbative QCD predictions for these observables with those of
the handbag and diquark models. In order to reduce uncertainties associated withas and the three-quark wave
function normalization, we have normalized the Compton cross section using the proton elastic form factor.
The theoretical predictions for this ratio are about an order of magnitude below existing experimental data.

PACS number~s!: 12.38.Bx, 13.40.Gp, 13.60.Fz
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I. INTRODUCTION

Exclusive real Compton scattering on the proton,gp
→gp, is a promising arena for studying the short-distan
structure of the proton. In the limit of large energyAs and
fixed scattering angleu in the center-of-mass frame, the re
Compton amplitude should factorize as the convolution o
perturbative hard scattering matrix element with a nonper
bative light-cone distribution amplitude@1#. The distribution
amplitude is for the three valence quarks in the proton
describes how their longitudinal momentum is partition
when their transverse separation is very small. Contributi
of Fock space states with more partons in the proton’s lig
cone wave function should be suppressed by additional p
ers ofs. However, the energy at which this asymptotic p
diction of perturbative QCD~PQCD! becomes valid is no
knowna priori. Soft mechanisms such as the soft overlap~or
handbag! model@2–4# and the diquark model@5,6# could be
comparable to, or even dominant over, the PQCD mec
nism at the presently accessible center-of-mass energie
2–4 GeV.

The PQCD prediction forgp→gp contains a number o
uncertainties. First, only the Born level has been compu
next-to-leading-order corrections are likely to be large. R
lated to this, the Born level prediction is proportional to
high power of the running strong coupling consta
@as(m)#4, and its renormalization-scale~m! dependence
leads to a large normalization uncertainty on the cross
tion. Second, the form of the proton distribution amplitude
not well understood. Several groups have produced mo
distribution amplitudes based primarily on QCD sum ru
analyses@7–13#. These distribution amplitudes can lead
quite different predictions for the Compton helicity amp
tudes. Most of the proposed distribution amplitudes tend
peak in a region where two of the three quarks carry re
tively small fractionsx of the proton longitudinal momen
tum. This has led to scepticism about the applicability
PQCD at accessible energies@14,15,2,3#, because relatively
0556-2821/2000/62~11!/114021~9!/$15.00 62 1140
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soft subprocesses~relative toAs! can reorient quarks with
small x from the initial proton direction to the final proto
direction.

Despite all these caveats, it is still useful to know t
PQCD predictions forgp→gp, if nothing else as an
asymptotic limit. There have already been four separate
culations at Born level@16–19#. However, no two results
agree with each other, even when the same proton distr
tion amplitudes are assumed. Given this discrepancy in
literature, and the need for consistent predictions from
PQCD mechanism, we undertook an independent recalc
tion of this process. Our results in fact differ from all prev
ous work, although we find reasonable agreement with R
@18# for a subset of the helicity amplitudes, and excelle
agreement with Ref.@19# for forward scattering angles.

Our results are timely in view of the experimental situ
tion. For over twenty years, the highest energy wide-an
Compton data available have been from an experimen
Cornell @20# which investigated the energy range 4.6 Ge2

,s,12.1 GeV2. These data appear to obey an approxim
ds/dt}s26 scaling law, as predicted by PQCD, althoug
more precise data would be useful to confirm or refute t
behavior. An experiment now underway at Jefferson L
@21# should soon improve the errors on the unpolarized cr
section and itsu- and s-dependence, in the same kinema
range as the Cornell experiment. This experiment also p
to measure a polarization asymmetry, the transfer of long
dinal polarization from the incoming photon to the outgoi
proton, for at least one angle. We shall discuss this asym
try further in Sec. III. An upgrade of the Jefferson Lab ele
tron beam to 12 GeV@22# would allow for the very impor-
tant extension of this experiment to higher energies. T
proposed ELFE facility@23# with a 25 GeV electron beam
would also be a natural place to perform higher ene
Compton measurements.

The remainder of this paper is organized as follows.
Sec. II we outline the calculation. In Sec. III we prese
©2000 The American Physical Society21-1
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T. BROOKS AND L. DIXON PHYSICAL REVIEW D62 114021
results for the unpolarized cross section and for some dif
ent polarization asymmetries. Section IV contains our c
clusions.

II. CALCULATION

Since the general PQCD calculational framework for
Compton process has been described previously, e.g., in
@18#, we will be brief here. The leading-twist PQCD facto

ization of the helicity amplitudeMhh8
ll8 for incoming~outgo-

ing! photon helicityl(l8) and proton helicityh(h8) is given
by

Mhh8
ll85(

d,i
E

0

1

dx1 dx2 dx3 dy1 dy2 dy3

3dS 12(
j 51

3

xj D dS 12 (
k51

3

ykD
3f i~xW !Ti

~d!~xW ,h,l;yW ,h8,l8!f i* ~yW !, ~1!

where the vectorsxW[(x1 ,x2 ,x3) and yW[(y1 ,y2 ,y3) repre-
sent the quark longitudinal momentum fractions;i labels the
independent three-valence-quark Fock states of the pro
with distribution amplitudesf i(xW ); andd represents the sum
over the diagrams that contribute to the hard-scattering
plitude Ti .

The distribution amplitude represents the three-valen
quark component of the proton’s light-cone wave functio
after the latter is integrated over transverse momenta up
factorization scalem. ~Moments of the distribution amplitud
can also be defined via the matrix elements of appropr
local three-quark operators.! The distribution amplitude
evolves logarithmically withm, but ~as was also done in
Refs.@16–19#! we shall neglect this evolution here. The fu
distribution amplitude for a positive-helicity proton is, in th
notation of Ref.@18#,

up↑&5
f N

8A6
E

0

1

dx1 dx2 dx3 dS 12(
j 51

3

xj D (
i 51

3

f i~xW !u i ;xW &,

~2!

where

u1;xW &5uu↑~x1!u↓~x2d↑~x3!&,

u2;xW &5uu↑~x1!d↓~x2!u↑~x3!&,

u3;xW &5ud↑~x1!u↓~x2!u↑~x3!&. ~3!

The normalization constantf N can be determined from QCD
sum rules or lattice QCD. We choosef N55.231023 GeV2

~as in Refs.@18,19#!. Fermi-Dirac statistics, isospin and sp
symmetry result in only one independent distribution amp
tude,f1 ; the other two are given by

f2~x1 ,x2 ,x3!52f1~x1 ,x2 ,x3!2f1~x3 ,x2 ,x1!,

f3~x1 ,x2 ,x3!5f1~x3 ,x2 ,x1!. ~4!
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In addition to neglecting evolution of the distribution amp
tude, we shall also takeas to be fixed. The Born-level cros
section then scales asas

43 f N
4 .

The hard scattering amplitude is computed for three c
linear incoming and outgoing quarks. The color and elec
charge dependence can be factored off of each diagram

Ti
~d!~xW ,h,l;yW ,h8,l8!5C~d!g4Zi

~d!T̃~d!~xW ,yW ;h,l,h8,l8!,
~5!

whereC(d) is the color factor,g is the strong coupling con
stant, andZi

(d) is the appropriate product of quark electr

charges, whileT̃(d) is color and flavor independent.
The helicities of the quarks in the hard scattering amp

tude are conserved by the gauge interactions; therefore

proton helicity is conserved, andMhh8
ll850 for hÞh8. Parity

and time-reversal invariance further reduce the numbe
independent helicity amplitudes to three, which we take to

M↑↑
↑↑ , M↑↑

↑↓ , and M↑↑
↓↓ . ~6!

In principle, 378 diagrams contribute to the hard scatter
amplitude. However, 42 of them contain three-gluon vertic
and have a vanishing color factor. Many others vanish
individual helicity configurations.

We adopted the technique in Ref.@18# of using the parity
symmetry~denotedE therein! between certain classes of dia
grams to reduce the number that had to be computed, w
reserving the time-reversal symmetry as a check. All d
grams were computed by two independent computer p
grams, both based on the formalism outlined in Ref.@24#.
These expressions were found to be identical to those use
the two most recent computations1 @18,19#. Thus we agree
completely with Refs.@18,19# on the hard scattering ampli
tudeTi .

The next step is to perform the four-dimensional integ
tion in Eq. ~1! over the independent quark momentum fra
tions. For the various model distribution amplitudes@7–10#
we used the coefficients off1 listed in Table I of Ref.@18#
@and Eq.~6! of Ref. @11##. Many diagrams include denomi
nators that vanish inside the (xW ,yW ) integration region, due to
the presence of an internal quark and/or gluon that can go
shell. This is not a true long-distance singularity, and all
integrals are finite, diagram by diagram, but it is a techni
obstacle to obtaining a reliable value for the integral. In t
notation of Ref.@18#, the Feynmani« prescription leads to
singular denominators of the form

1We compared our results for each diagram to the formu
given in Tables III and IV of Ref.@18#. These tables contain
three errors~found by Vanderhaeghen@25# as well as us! in addi-
tion to one in diagram A71 that was published in an erratu
However, all these errors are typographical and do not af
the numerical results in that paper@26#. The errors are: In the

denominator ofT̃(A44)(x,↑,↓;y,↑,↓), (x̄3 ,x1) should be (x̄3 ,y1);

T̃(C75)(x,↑,↓;y,↑,↓) should be multiplied by 1/c; and the diagram
related toC77 by T+E should beF11, notF33.
1-2
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RECALCULATION OF PROTON COMPTON SCATTERING . . . PHYSICAL REVIEW D62 114021
1

~x,y!1 i«
5P

1

~x,y!
2 ipd„~x,y!…, ~7!

where P stands for principal part and (x,y)[x(12ys2)
2yc2, with s5sin(u/2) andc5cos(u/2). Diagrams can be
classified by the number of singular factors found in the
nominator; for the Compton process this number can be 0
2 or 3. The presence of on-shell partons in the Born-le
hard scattering amplitude@for particular values of (xW ,yW )#
leads to large phases in the PQCD amplitude@17,16,18#.
This is in contrast to the handbag model, which predicts
imaginary part that is small and beyond the accuracy of
model.

At least four different numerical methods have previou
been applied to handle the singular integrations. Refere
@16# performed a Taylor expansion of the numerators of
integrand symmetrically about each singularity. Refere
@17# kept the« in Eq. ~7! explicit, and evaluated the integra
for a sequence of« values tending to zero, looking for stab
results. Reference@18# handled the imaginary parts of th
singular integrals by solving thed-function constraint explic-
itly, and carried out the real, principal-part integrals by fo
ing the region of integration over at the singularity, so th
the integrand is manifestly finite. Finally, Ref.@19# deformed
the (xW ,yW ) integration contour into the complex plane, an
egant technique that requires relatively little bookkeeping
its implementation.

We adopted a variation of the contour deformation te
nique @19#. We first let

x15j1 , x25~12j1!~12j2!, x35~12j1!j2 ,
~8!

y15h1 , y25~12h1!~12h2!, y35~12h1!h2 ,

so that the four independent variables (j1 ,j2 ,h1 ,h2) were
integrated on the interval@0,1#. We then deformed the singl
variableh1 into the complex plane, so that it ran either ov
the piecewise linear contour 0→ i e→11 i e→1, or over a
semicircular contour extending from 0 to 1. Note that th
simultaneously deforms bothy1 and y3 , towards opposite
sides of the real axis, whilex1 andx3 remain real. Inspection
of the denominator factors in Tables III and IV of Ref.@18#
shows that this deformation is sufficient to correctly bypa
the singularities in every Compton diagram. For examp
the denominator of diagram A16 includes the facto
@(x1 ,y1)1 i«#@( x̄3 ,y1)1 i«#@(y3 ,x3)1 i«#, where x̄i[1
2xi ,ȳi[12yi . Using the identity (x,y)5( ȳ,x̄), the singu-
lar factors can be rewritten as@(12y1 ,x̄1)1 i«#@(1
2y1 ,x3)1 i«#@(y3 ,x3)1 i«#, which shows thaty1 and y3
should indeed be deformed in opposite directions. If the d
gram happens to contain denominators of the form (xi ,y1)
or (y3 ,xi), instead of (y1 ,xi) or (xi ,y3), as does diagram
A16, then the imaginary part should be multiplied by
overall minus sign~or equivalently, the contour should b
deformed in the opposite direction with respect to the r
axis!.

After making these contour deformations, the real a
imaginary parts of the complex integrals were perform
separately using the Monte Carlo integration routineVEGAS
11402
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@27#. Two independent versions of the contour integrati
were implemented numerically, with two different choices
contour~piecewise linear vs semicircular!, and we also var-
ied the deformation parametere, obtaining stable results.

A third version of the integration program was co
structed, which employed the Gauss-Legendre formal
@28# with ten points per integration variable, instead
VEGAS. Although the Gauss-Legendre errors were larger th
the VEGAS errors, the two sets of results were complete
consistent with each other~and were both inconsistent wit
results from previous work; see Sec. III A!.

We carried out further checks on our integration routin
For diagrams with only one singular factor in the denomin
tor, one can integrate the imaginary part analytically. Us
this procedure we checked the imaginary part of all diagra
with one singularity. One can also check the diagrams w
no singularities in the same manner. A second check
ployed the identity

1

~x,y!~x,z!
5

12ys2

c2~y2z!~x,y!
2

12zs2

c2~y2z!~x,z!
. ~9!

Using Eq.~9! one can reduce all three-singularity diagram
to two singularities.~These expressions can be reduced
further, though, because the four remaining singular v
ables are all different.! One can also reduce all diagrams th
initially had two singularities to one-singularity diagram
allowing their imaginary parts to be computed analytical
Our integration techniques were robust against all of th
tests.

Finally, Table V of Ref.@18# gives detailed results fo
diagramA51, which has two denominator singularities. W
agree completely with these results, for both the real a
imaginary parts. We note that Ref.@18# also attempted to
evaluate this diagram by implementing the explicit«→0
method of Ref.@17#, but they obtained very different result
for the imaginary part, compared with the results of th
folding method. Reference@18# claims that the explicit«
→0 method is not numerically stable. Since we agree w
their results for diagram A51, we do not have cause to d
agree with this claim.

III. RESULTS

A. Comparison with previous work

We computed the Compton helicity amplitudes for a v
riety of distribution amplitudes, which we refer to a
Chernyak-Zhitnitsky~CZ! @7#, Gari-Stefanis~GS! @8#, King-
Sachrajda ~KS! @9#, Chernyak-Oglobin-Zhitnitsky~COZ!
@10#, heterotic~HET! @11#, and ASY@the distribution ampli-
tude for asymptotically large energy scales,f1(x1 ,x2 ,x3)
5120x1x2x3#. The CZ, KS and COZ distribution amplitude
which satisfy the constraints imposed by QCD sum ru
@7,9#, are qualitatively similar. They feature a peak inf1 for
x1'1, x2,3'0; that is, theu quark with the same helicity a
the proton carries most of the momentum. The GS distri
tion amplitude has a peak inf1 for x1,3'1/2, x2'0; thus it
splits the momentum more equitably between the two qua
1-3
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T. BROOKS AND L. DIXON PHYSICAL REVIEW D62 114021
carrying the proton’s helicity. The HET distribution ampl
tude is intermediate in shape between GS and the$CZ, KS,
COZ% class.

Before discussing our full results, we present a comp
son of results in the literature. Here we choose the C
distribution amplitude, since it was employed in four of t
five existing calculations.~Only the earliest calculation@16#,
which was later superseded@17#, did not use the COZ distri-
bution amplitude.! The overall cross-section normalization
in the literature are sometimes difficult to determine, due
example to unspecified choices foras . Therefore we choose
to compare results for the following~normalization-
independent! initial-state helicity correlation@19#,

ALL[

ds1
1

dt
2

ds1
2

dt

ds1
1

dt
1

ds1
2

dt

, ~10!

wheredsh
l/dt is the differential cross section for a helicityh

proton scattering off a helicityl photon.
Figure 1 shows that none of the four calculations ofALL

agrees completely with any other. The only two results t
are very close are ours and that of Ref.@19#. These two
curves are in excellent agreement foru,110°; however, we
do not reproduce the prominent dip of Ref.@19# in the back-
ward region. This statement is true for the four distributi
amplitudes we have compared: KS, COZ, CZ and A
@19,25#. Figure 14 of the second reference in@19# shows that

the dip in ALL derives from (ds1
1/dt)(g↑p↑→gp)

}uM↑↑
↑↑u2 1uM↑↑

↑↓u2, and not from (ds1
2/dt)(g↓p↑→gp)

}uM↑↑
↑↓u21uM↑↑

↓↓u2. Indeed, we agree with theirg↓p↑→gp
cross section for all angles to better than 10%, up to
overall normalization factor which can be accounted for
different choices foras . We agree with theg↑p↑→gp cross
section only foru,110°, however. This suggests that t

FIG. 1. Four different calculations of the polarization asymm
try ALL defined in Eq.~10!, for the COZ distribution amplitude. The
dotted line is from Ref.@17#, the dashed line from Ref.@18#, the
dot-dash line from Ref.@19#, and the solid line from this work.
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discrepancy with Ref.@19# is predominantly from the single
helicity amplitudeM↑↑

↑↑ .
The curve from Ref.@17# has the same general shape

ours, but is offset from it. The phases of the dominant he
ity amplitudes given in Ref.@17# actually agree quite wel
with our results in Figs. 5–7 below; the magnitudes are o
set by relatively angle-independent factors.

Reference@18# finds a very large asymmetry. We hav
made a detailed comparison of our COZ results with those
Ref. @18#, for the real and imaginary parts of the three ind
pendent helicity amplitudes. Each amplitude has been fur
split into four pieces@26#, according to the number of singu
lar propagators in the diagram~as determined from Tables II
and IV of Ref.@18#!. The zero propagator terms~which were
integrated analytically by both groups! agree to high preci-
sion ~6 digits!. The one propagator terms agree to with
VEGAS errors, except for the imaginary part of one helici
amplitude (M↑↑

↑↓) which is within 10%. For the two propa
gator terms, we are in agreement on the real part ofM↑↑

↑↑ and
M↑↑

↑↓ , but have a large discrepancy in the imaginary pa

FIG. 2. The cross section forg↑p↑→g↑p↑ for five different
distribution amplitudes; CZ, COZ, KS, GS, and ASY. The resu
for the asymptotic distribution amplitude~ASY! have been multi-
plied by 100.

FIG. 3. The cross section forg↑p↑→g↓p↑ .

-
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RECALCULATION OF PROTON COMPTON SCATTERING . . . PHYSICAL REVIEW D62 114021
Strangely enough, forM↑↑
↓↓ we agree on the imaginary pa

but disagree on the real part! For the three propagator te
both the real and imaginary parts disagree for all three he
ity amplitudes. The bulk of our overall numerical disagre
ment comes from the two propagator terms contributing
the imaginary part ofM↑↑

↑↑ . The two propagator terms ar
often 100 times larger than ours, and they drive Ref.@18#’s
values for ImM↑↑

↑↑ to be roughly a factor of 10 larger tha
ours.

We also calculatedALL for the COZ distribution ampli-
tude using Gauss-Legendre integration instead ofVEGAS.
The result agrees with ourVEGAS result shown in Fig. 1
~albeit with larger errors!, and it disagrees with the othe
results, in particular that of Ref.@19# for u.110°.

B. Helicity amplitudes and unpolarized cross section

In Figs. 2–4 we display our results for the polarized d
ferential cross sections:

s6
dshh8

ll8

dt
5

s4

16p
uMhh8

ll8u2 ~11!

FIG. 5. Phase of the helicity amplitude forg↑p↑→g↑p↑ for the
distribution amplitudes CZ, COZ, KS, and ASY.

FIG. 4. The cross section forg↓p↑→g↓p↑ .
11402
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for the three independent helicity configurations. Each fig
plots the results for five different distribution amplitude
~For HET we shall only plot the unpolarized cross sectio!
These plots were made foraem

215137.036,as50.3 and f N

55.231023 GeV2, so they can be compared directly wit
Ref. @18#. The phases of the helicity amplitudes are plotted
Figs. 5–7; the GS distribution amplitude has a much diff
ent behavior and is therefore plotted separately, in Fig
The phases are generally large; indeedM↑↑

↑↓ is almost pure
imaginary ~except for the GS distribution amplitude!. For
reference, we also provide in Table I our numerical resu
for the real and imaginary part ofM↑↑

↑↑ , for the COZ distri-
bution amplitude, including errors from the VEGAS integr
tion.

Figure 9 shows our predictions for the unpolarized diffe
ential Compton cross section, given by

s6
ds

dt
5

1

4 (
l,l8,h,h8

s6
dshh8

ll8

dt
, ~12!

along with the experimental data from Ref.@20#. For the
values usedas50.3, f N55.231023 GeV2, the predictions
lie at least an order of magnitude below the data. Since

FIG. 6. Phase of the helicity amplitude forg↑p↑→g↓p↑ .

FIG. 7. Phase of the helicity amplitude forg↓p↑→g↓p↑ .
1-5
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T. BROOKS AND L. DIXON PHYSICAL REVIEW D62 114021
PQCD cross section scales likeas
4, accommodating a facto

of 10 by changingas would requireas'0.5. While this is
not out of the question, and while some variation inf N could
be considered as well, this may be pushing the validity
perturbation theory. On the other hand, the shape of
curves~i.e., ignoring the overall normalization! matches the
data quite well for the KS, COZ, CZ, and HET distributio
amplitudes.

C. Normalization by F 1
p
„Q2

…

As mentioned in the introduction, theas
4(m) scaling of

the proton Compton cross section at Born level introduce
large normalization uncertainty into the PQCD predictio

FIG. 8. Phase of the three independent helicity amplitudes
the GS distribution amplitude. The arrows correspond to the pho

helicitiesl, l8 in the amplitudesM↑↑
ll8 .

TABLE I. The real and imaginary parts of the helicity amplitud
M↑↑

↑↑ for the COZ distribution amplitude~multiplied by s2 in units
of GeV4!. The errors are from theVEGAS numerical integration. The
values used forf N , aem, andas are the same as in the rest of th
paper. The normalization is the same as in Table V of Ref.@18#
~which we found quite useful!.

u ~deg! 103 s2 Re(M↑↑
↑↑) 103 s2 Im(M↑↑

↑↑)

20 2749206240 292006230
30 2157206110 5133646
40 25255615 1301614
50 22371.268.0 348.665.8
60 21273.664.3 42.263.5
70 2768.862.3 272.162.3
80 2511.263.1 2115.461.4
90 2369.861.2 2139.061.0
100 2278.361.0 2152.0360.91
110 2222.461.2 2165.5360.90
120 2179.5460.70 2183.1560.95
130 2144.261.0 2211.661.0
140 2107.8060.91 2257.161.3
150 252.962.7 2324.962.6
160 75.963.1 2415.565.0
11402
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Uncertainty in f N also contributes. Both of these uncertai
ties can be removed at Born level by considering the dim
sionless ratio@29#

s6
dsgp

dt

@Q4F1
p~Q2!#2 , ~13!

whereF1
p(Q2) is the elastic Dirac form factor for the proto

at spacelike momentum transferQ. One might also imagine
normalizing the Compton cross section by the timelike p
ton form factor. At leading order inas , the PQCD predic-
tions in the spacelike and time-like regions are identical@1#;
however, experimentally the timelike form factor is larger
a factor of about two@30,31#. Higher order PQCD correc
tions can in principle account for this factor, as Sudak
effects are different in the two regions@32#. The Compton
scattering kinematics are much closer to those of the sp

FIG. 10. The scaled unpolarized Compton cross section, n
malized by the scaled elastic proton form factor, as in Eq.~13!, for
five distribution amplitudes, compared with the experimental d
@20,31#.

r
n

FIG. 9. The unpolarized scaled cross section~12! for all six
distribution amplitudes, foras50.3 and f N55.231023 GeV2,
compared with experiment@20#.
1-6
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like proton form factor than the timelike one, at least as
as the proton is concerned. Therefore Sudakov and rel
higher-order effects are best cancelled by normalizing w
the spacelike form factor.

At leading twist,F1
p(Q2) is predicted to be the same a

the magnetic form factorGM
p (Q2). Experimentally, these ar

close but not identical@31#. To normalize the experimenta
Compton points, we use the experimental form factor valu

Q4F1
p~Q2!'Q4GM

p ~Q2!'1.0 GeV4, Q2'7 – 15 GeV2,
~14!

which are representative of the region where both sca
form factors flatten out, and are also similar to the high
experimental values ofs available in Compton scattering2

To normalize the theoretical Compton curves, we recal
lated the proton form factor at leading order in PQCD, o
taining

Q4F1
p~Q2!5

~4pasf N!2

216
I F , ~15!

where

I F55
2.5003105 ~CZ!,

2.5053105 ~GS!,

3.6533105 ~KS!,

2.8973105 ~COZ!,

3.3033105 ~HET!,

0 ~ASY!.

~16!

These results, using the wave function~2! which is equiva-
lent to that in Ref.@10#, are precisely a factor of two smalle
than several previous calculations using the same wave f
tions @33#. We do not understand the origin of this discre
ancy. We do agree with the normalization of the hard sc
tering amplitude and the form factor in Ref.@34# @which
uses, however, a different representation of the proton w
function than Eq.~2!#.

Figure 10 shows the Compton cross section, normali
according to Eq.~13!, for both PQCD and the experiment
data. We omit the ASY distribution amplitude, since t
leading order ASY form factor vanishes. Compared with
conventionally normalized curves in Fig. 9, the spread
tween the predictions of the three qualitatively similar dis
bution amplitudes, KS, COZ and CZ, has become mu
smaller. The theoretical curves also lie a factor of 2 to
closer to the data. However, they still fall about an order

2If one equates the four-momentum transfer to the proton in
two processes—Q2 in the form factor and2t in Compton
scattering—then the corresponding Comptons52Q2/(12cosu)
should actually be considerably bigger thanQ2. At 90°, for ex-
ample,s52Q2. Unfortunately, there are no experimental Compt
data with s this large~all have 2t,5.3 GeV2!, so there is not a
good overlap with the region~14! where the elastic form factor is
beginning to scale properly.
11402
r
ed
h

s,

d
t

-
-

c-
-
t-

ve

d

e
-

-
h
5
f

magnitude below the data at the widest scattering ang
~The HET distribution amplitude does slightly better th
this.! Thus it seems unlikely that the elastic proton for
factor and the Compton scattering amplitude are both
scribed by PQCD at presently accessible energies, un
there are large higher-order and process-dependent co
tions.

D. Asymmetries

Various polarization asymmetries can be constructed fr
the helicity amplitudes. These observables may provide
ditional diagnostic power for uncovering the Compton sc
tering mechanism, beyond what the unpolarized cross
tion provides.

Figure 11 presents the perturbative QCD results for
initial state helicity correlationALL defined in Eq.~10!. Also
shown is the handbag model prediction@4# for Eg54 GeV,
where the form factorsRV,A were evaluated using the parto
distribution functions of GRV@35#. In leading-twist PQCD,
the proton helicity is conserved. The handbag model d
not inherently require proton helicity conservation, but it h
been assumed in Ref.@4#. Thus the PQCD and handba
curves forALL in Fig. 11 can be equated to the longitudin
photon-to-proton polarization transfer asymmetry, which
slated to be measured for at least one scattering angle i
upcoming experiment@21#. The diquark model analyzed in
Refs. @5#, @6# has nonvanishing proton helicity-flip ampl
tudes at finites, making ALL and the polarization transfe
into distinct asymmetries. We plot the diquark prediction f
ALL from Ref. @5#. Figure 11 shows that PQCD gives qui
different qualitative behavior from both the handbag and
quark models forALL , and they should be distinguishab
with the help of experimental data at just a couple of ba
ward scattering angles. A caveat is that the GS curve
somewhat oscillatory, so one might wonder whether a dis
bution amplitude ‘‘between’’ GS and the$CZ, COZ, KS%
class of amplitudes could produce behavior similar to
handbag model.

e

FIG. 11. The initial state helicity correlationALL in perturbative
QCD for five distribution amplitudes. Also plotted is the handb
model prediction forEg54 GeV ~GRV! @4#, and a diquark model
prediction@5#.
1-7
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One can also define@6# a photon spin transfer coefficien

DLL[

ds11

dt
2

ds12

dt

ds11

dt
1

ds12

dt

, ~17!

where nowdsll8/dt is the differential cross section for ini
tial and final state photon helicitiesl andl8, and unpolarized
incoming and outgoing protons. Figure 12 gives the PQ
predictions for this asymmetry, as well as that of the diqu
model forEg54 GeV and a ‘‘standard’’ distribution ampli
tude @6#. The handbag model predictsDLL51, basically be-
cause the helicity-flip quark Compton amplitudeg↑q→g↓q
vanishes at Born level for massless quarks.

The final asymmetry we plot is the photon asymmetry@6#

S[

ds'

dt
2

ds i

dt

ds'

dt
1

ds i

dt

, ~18!

whereds' /dt andds i /dt are the differential cross section
for linearly polarized photons, with the polarization pla
perpendicular or parallel~respectively! to the scattering
plane. Generation of this asymmetry requires a nonzero p
ton helicity-flip amplitude; hence the asymmetry vanishes
the handbag model. Figure 13 plots the PQCD and diqu
predictions. The diquark prediction is shown forEg
54 GeV and a ‘‘standard’’ distribution amplitude; for an
other distribution amplitudeS can become positive in th
backward region instead of negative@6#. This asymmetry has
actually been measured@36#, however only for Eg
53.45 GeV and cosu.0.8. A high-energy wide-angle mea
surement would be very useful for distinguishing betwe
handbag and PQCD mechanisms.

FIG. 12. The photon spin transfer coefficientDLL in perturba-
tive QCD for five distribution amplitudes. Also plotted is the d
quark model prediction forEg54 GeV ~standard DA! @6#. The
handbag model predictsDLL51.
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IV. CONCLUSIONS

Motivated by conflicting results in the literature, we ha
recalculated the fixed-order, Born level predictions of pert
bative QCD for proton Compton scattering, for five differe
distribution amplitudes. While our results do not agree w
those of any previous group, they do agree very well w
those of Ref.@19# for u,110°, and the differences foru
.110° seem to be dominated by a single helicity amplitu
M↑↑

↑↑ .
From the helicity amplitudes we computed three sepa

polarization asymmetries. Experimental measurements
these asymmetries could be used in conjunction with
unpolarized differential cross section in order to help sh
light on the mechanism involved in the Compton scatter
process.

We also have attempted to reduce the uncertainty in
overall normalization of the Compton cross section by n
malizing it by the square of the elastic proton form facto
This exercise reduces the spread in the theoretical pre
tions, but it leaves them an order of magnitude below
data. Unfortunately, this result makes it difficult to simult
neously explain the current data on the elastic proton fo
factor and on Compton scattering in terms of perturbat
QCD, without appealing to large uncalculated higher-ord
and process-dependent corrections.
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FIG. 13. The photon asymmetryS in perturbative QCD for five
distribution amplitudes. Also plotted is the diquark model pred
tion for Eg54 GeV~standard DA! @6#. The handbag model predict
S50.
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