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Topology and metastability in the lattice Skyrme model
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We offer the Skyrme model on a lattice as an effective field theory—fully quantized—of baryon-meson
interactions at temperatures below the chiral phase transition. We define a local topological density that
involves the volumes of tetrahedra in the target spaceS3 and we make use of Coxeter’s formula for the Schla¨fli
function to implement it. This permits us to calculate the mean-square radius of a Skyrmion in the three-
dimensional lattice Skyrme model, which may be viewed as a Ginzburg-Landau effective theory for the full
quantum theory at finite temperature. We find that, contrary to expectations, the Skyrmion shrinks as quantum
and thermal fluctuations are enhanced. We ascribe this to a large number of metastable states that become
accessible as the temperature is raised.

PACS number~s!: 12.39.Dc, 12.39.Fe
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I. INTRODUCTION

The Skyrme model@1–5# is a popular model of the dy
namics of pions and nucleons, incorporating the former a
fundamental, pseudo Goldstone field and the latter as to
logical solitons. The continuum theory has been widely st
ied via semiclassical techniques, giving a satisfactory p
nomenology of low-momentum and low-temperatu
physics. In this paper we develop a lattice formulation of
model.1

Our motivation in employing a lattice cutoff is to ove
come the limitations of the continuum theory. In point
fact, the term ‘‘continuum theory’’ is misleading. Th
Skyrme Lagrangian is a non-linear sigma model with a fo
derivative term, which makes it non-renormalizable in p
turbation theory. This means that calculations of quant
effects must involve a short-distance cutoff. In working w
chiral Lagrangians coupled to a local nucleon field, this
not a serious problem@8–10#. One absorbs divergences in
an ever-lengthening list of counterterms; as long as exte
momenta are kept small, dimensional analysis limits the c
tributions of these counterterms to the results. When
nucleon is a soliton rather than a fundamental field, howe
things are more difficult. The soliton’s collective degrees
freedom are quantized separately, and the systematic d
opment of higher-order quantum effects involves disent
gling the pion field from these collective quanta@11#. In any
case, there is no way to limit the addition of highe
dimension terms to the Lagrangian as long as one must
sider energy scales approaching the nucleon mass.

We propose to turn these points to advantage, by con
ering the Skyrme model as an effective field theory. T
cutoff and the cutoff scheme~the lattice! are part and parce
of the specification of the theory. The free choice of terms
the Lagrangian is now a virtue, constrained only by pheno

1For previous work see@6,7#.
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enological necessity. The procedure will be to pick a L
grangian, to fix the lattice spacing, and finally to calcula
any physical quantity of interest, going beyond perturbat
theory and beyond semiclassical methods, since the la
offers many more direct techniques. From a lattice point
view, the fixed cutoff is a virtue as well, since no continuu
limit is necessary~nor is it possible!.

The most interesting feature of the Skyrme model is
stability conferred on the soliton by the topological cons
vation law and the four-derivative coupling. We wish in fa
to isolate a single Skyrmion in order to see how its proper
change with temperature, density, etc. A recurring probl
in lattice studies of solitons is the tendency of lattice dis
cations to destroy topological stability or, in other words,
allow topology to slip through the lattice. We avoid th
problem by choosing a lattice action that enforces continu
at short distances. In order to keep our numerical evolut
within a single topological sector, we insist on a local upd
ing scheme that should not nucleate smooth Skyrmions.
find that these two ingredients suffice to stabilize the latt
Skyrmion.

The main technical development in this paper is the c
struction of an exact topological density that can be m
sured on a lattice field configuration. By ‘‘exact’’ we mea
that the winding number, the sum of the density over
lattice, is always an integer. We cut the lattice into fund
mental tetrahedra and map each tetrahedron into a cu
tetrahedron in theS3 target space. The winding number
then the sum of the signed volumes of the tetrahedra inS3.
We calculate the volume of a spherical tetrahedron via
formula due to Coxeter@12#, derived as a solution of differ-
ential equations first written down by Schla¨fli @13#.

We summarize the continuum Skyrme model in Sec. II
order to establish the notation. General considerations
garding continuity and topology on the lattice are presen
in Sec. III, which concludes with formulas for the lattic
action we employ. In Sec. IV we present our definition of t
local topological density via Coxeter’s formula for the vo
ume of a quadrirectangular tetrahedron inS3. As a first ap-
©2000 The American Physical Society20-1
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ALEC J. SCHRAMM AND BENJAMIN SVETITSKY PHYSICAL REVIEW D62 114020
plication, we present in Sec. V the results of Monte Ca
simulations for the classical Skyrme model in three dim
sions. Easier to simulate than the full four-dimensional p
integral, this model may be regarded as a Ginzburg-Lan
theory for the Skyrme model at finite temperature—a sor
effective theory for the effective theory. We use the topolo
cal density to calculate the mean-square radius o
Skyrmion as a function of the couplingsb1 and b2 of the
lattice action. If we fixb2 /b1, so that the form of the action
is fixed, we find a multitude of metastable configurations
the Skyrmion that are smaller than the ground state solut
As the ‘‘temperature’’ is raised by decreasingb1 and b2,
these metastable states are made accessible to fluctua
with the result that the Skyrmion shrinks as it is ‘‘heated
Presumably the ‘‘temperature’’ of the 3D theory is an i
creasing function of the real temperature in the 4D the
that it approximates. Thus we reach the result that a qu
tized Skyrmion shrinks as it is heated.

II. CONTINUUM SKYRME MODEL

The Euclidean action of the Skyrme model is

S5E d4xF f p
2

16
Tru]mUu21

1

32e2
Tr~@Lm ,Ln#!2G , ~2.1!

where the non-linear chiral fieldU is anSU(2) matrix, and
we have defined

Lm5 iU †]mU. ~2.2!

We have omitted a mass term of the formmp
2 Tr U and thus

S is invariant under theSU(2)3SU(2) group of chiral ro-
tations,

U→AUB†, with A,BPSU~2!. ~2.3!

Classically, the symmetry is spontaneously brok
Finite-energy field configurations must tend to a constan
spatial infinity, and one can use a symmetry rotation to m
this constant the unit matrix, i.e.,

U~x!→1 asuxu→`, ~2.4!

where x is the three dimensional spatial coordinate. Us
the Pauli matricest i , i 51,2,3, we can writeU in terms of
new fieldss5(s0 ,s i) via

U5s01 is it i , ~2.5!

wheres•s51. By considering small fluctuations aboutU
51, we can identifys i , i 51,2,3, with the Goldstone pion
field.

Equation~2.4! means that 3-dimensional space is comp
tified to the 3-sphereS3. SinceUPSU(2) also takes values
in S3 @see Eq.~2.5!#, configurationsU(x) can be classified
according to the homotopy groupp3(S3)5Z. Thus there is
an integer winding numbern that denotes how many time
U(x) covers the 3-sphere in field space asx is varied over its
11402
-
h
u
f
-
a

f
n.

ns,

y
n-

.
at
e

g

-

3-sphere. This winding number is topologically conserv
meaning that it cannot change under continuous deforma
of the fieldU(x).

The n50 sector includes the vacuumU(x)51 and per-
turbations around it. An example of ann51 configuration is
the spherically symmetric Skyrmion:

U~x!5expF i f ~r !
xit i

r G , ~2.6!

with

f ~0!5p,

f ~`!50. ~2.7!

f (r ) should be determined so as to minimize the static
ergy

E5E dxF f p
2

16
Tru] iUu21

1

32e2
Tr~@Li ,L j # !2G , ~2.8!

but a simple choice with the right topology is

f ~r !5pS 12tanh
r

r 0
D . ~2.9!

Skyrme identifiedn with the baryon number of a field con
figuration and the lowest soliton configuration with th
nucleon.

Given an arbitrary field configurationU(x) satisfying Eq.
~2.4!, its winding number may be calculated with the formu

n5
i

24p2E dx e i jkTr LiL jLk . ~2.10!

The geometric meaning of Eq.~2.10! will be apparent in its
lattice counterpart below.

III. LATTICE TOPOLOGY AND CONTINUITY

In this section we define a topological density for a latti
field configuration that is unambiguous and that sums exa
to an integer. The further demand of conservation of
winding number will lead us to choose a lattice action th
constrains discontinuities in the field.

A lattice configuration is specified by the fieldUn
PSU(2) or, equivalently, by the 4-vectorsnPS3. In order
to define the winding number, we begin@7# by cutting the
cubic latticeL3 into tetrahedra, five tetrahedra per cubic c
~see Fig. 1!. The four verticesn( i ), i 51 –4, of each tetrahe
dron map to four unit 4-vectorss( i ), which are vertices of a
spherical tetrahedron inS3. This tetrahedron is defined via it
vertices; its edges are arcs of great circles and its faces
spherical triangles drawn on great spheres.

Since three~non-collinear! points inS3 determine a grea
sphere, it is clear that two adjacent tetrahedra inL3 map onto
adjacent tetrahedra inS3, with the common face inL3 map-
ping onto a common face inS3. Thus the field configuration
sn gives a triangulation of some volume inS3. We impose
0-2
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TOPOLOGY AND METASTABILITY IN THE LATTIC E . . . PHYSICAL REVIEW D 62 114020
periodic boundary conditions on the lattice, and thus no
rahedron possesses a face that is not shared by anothe
rahedron~a free face!. This implies that the complex of tet
rahedra inS3 possesses no free faces either, and thus
volume covered by the complex must be an integer mult
of the volume2 of S3. If the field configuration is smooth, th
complex inS3 will be composed of tetrahedra that are sm
compared toS3, and it will wrap around the sphere much
a smooth mapping of the 3-torus must. In any case, the
ume inS3 of the five tetrahedra corresponding to a cube
L3 gives a definition of the topological densityrn contained
in the cube.

The topological density thus defined is not unambiguo
however. If a tetrahedron inS3 is specified by its faces, the
there are two volumes inS3 that are bounded by these face
One of the volumes includes the north pole~for example!,
and the other does not. If one of the volumes is measure
be a positiveV ~with V,1), then the other volume will be
V21. ~Careful attention to the orientation will make the la
ter negative.! In order to assign a unique topological dens
to a lattice field configuration, we define a tetrahedron’s v
ume to satisfyuVu, 1

2 .
We have solved the problem of uniqueness, but not tha

conservation of the winding number. Consider a field co
figuration wherein one tetrahedron inS3 has volume1

2 2e,
wheree is small. Under a fluctuation of one of the vertices
the tetrahedron, its volume may shift to12 1d, while the
neighboring tetrahedra change their volumes by2(e1d) so
that the winding number is unchanged. Unfortunately,
algorithm will now redefine the volume of the first tetrah
dron to2 1

2 1d, resulting in a loss of 1 in the winding num
ber. This is often called ‘‘topology dropping through the la
tice.’’

The procedure to be followed at this point depends on
physics to be investigated. One might want to study,
example, the thermodynamics of the Skyrme model by fix
a chemical potentialm coupled to the winding number. Th

2The three-dimensional volume of the unit 3-sphere is 2p2. We
will redefine this to be unity, and thus measure volumes in units
2p2.

FIG. 1. A cube cut into 5 tetrahedra. The even vertices~circled!
are connected to form a central tetrahedron and four others
neighboring cubes, theodd vertices are to be connected instead,
that the diagonal edges match up.
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grand partition function would then be

Z~m!5(
n

emnZn , ~3.1!

whereZn is a sum over all field configurations with windin
numbern. A Monte Carlo simulation should then be allowe
to wander freely among the sectors of differentn, subject to
an acceptance-rejection test that enforces the relative p
abilitiesemn. A local updating algorithm can nucleate ‘‘poin
Skyrmions’’ as in the preceding paragraph, which changn
by a unit and then spread out into smoother Skyrmions
addition, a non-local update could be permitted that crea
smooth Skyrmions directly.

Our interest, however, is in the properties of a sing
Skyrmion, which are accessible through a canonical
semble at fixedn51. The simulation must be constrained
as not to changen. This requires that we prevent the nucl
ation of both point Skyrmions and smooth Skyrmions. T
latter can be prevented by choosing a local updating a
rithm. For the former, we choose a lattice action that e
cludes the possibility of tetrahedra inS3 with uVu' 1

2 . We
adopt the kinetic term@14#

S15~a21!(
nm

log~sn•sn1m̂2a! ~3.2!

in order to constrainsn•sn1m̂.a and thus to reject fluctua
tions that put large angles between neighboring field v
ables. With some Monte Carlo exploration, we can find
value ofa that will keep the tetrahedral volumes far enou
from 1

2 .
For smooth configurations, we expandsn•sn1m̂ around 1

and Eq.~3.2! becomes

S1.(
nm

~12sn•sn1m̂!

5(
nm

F12
1

2
Tr ~UnUn1m̂

† !G
5(

nm

1

4
Tr~Un1m̂2Un!~Un1m̂

† 2Un
†!, ~3.3!

which approaches the kinetic term in Eq.~2.1! in the con-
tinuum limit.

A technical point remains. We have discussed the am
guity in fixing the volume of a tetrahedron if its faces a
given, which led us to requireuVu, 1

2 . A lattice field configu-
rationsn gives us only the vertices of each tetrahedron, ho
ever, not its faces. Given three vertices that determine a g
sphere, the face that connects them can be chosen to be e
of two triangles that together make up the sphere. A lit
thought shows that the difference between the volumes
closed is1

2 . This gives an ambiguity between a valueV.0
andV2 1

2 for the volume of the tetrahedron.
This last ambiguity involves choosing which triangle co

stitutes the face of the tetrahedron. But this face is sha
between two adjacent tetrahedra, and the ambiguity will
f

In
0-3
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ALEC J. SCHRAMM AND BENJAMIN SVETITSKY PHYSICAL REVIEW D62 114020
immaterial if the same choice is made for both. This is h
to program, however, if each tetrahedron is to be handled
its own. We prefer to resolve the ambiguity for each tetra
dron separately, by requiring thatuVu, 1

4 . We impose this via
a more restrictive choice ofa in Eq. ~3.2!. We find that
settinga50.1 is adequate for the purpose.

A local updating algorithm based on the action~3.2! will
conserve winding number. Even so, a Skyrmion will tend
shrink down to a point in accordance with the scaling ar
ment that gives Derrick’s theorem. This is because the st
lization is being done at the scale of a single lattice spac
only here will the scaling argument fail and the Skyrmi
run into a repulsive potential. In order to have a sta
Skyrmion of appreciable size, we cannot avoid adding
Skyrme term as in Eq.~2.1!. The most straightforward lattice
transcription uses symmetric derivatives@6#:

S2
SYM5(

n
(
m.n

$~sn1m̂2sn2m̂!2~sn1 n̂2sn2 n̂ !2

2@~sn1m̂2sn2m̂!•~sn1 n̂2sn2 n̂ !#2%. ~3.4!

This couples each site to sites two links away, effectively
plaquette couplings across plaquettes of sideA2, and fails to
couple the odd and even sublattices. We prefer to use a
cretization@15# that couples only across single plaquettes,
side 1:

S254(
n

(
m.n

$~sn1m̂2sn1 n̂ !2~sn1m̂1 n̂2sn!2

2@~sn1m̂2sn1 n̂ !•~sn1m̂1 n̂2sn!#2%. ~3.5!

Our lattice action is a combination of the kinetic and Skyrm
terms:

S5b1S11b2S2 . ~3.6!

In the naive continuum limit, we can compare with Eq.~2.1!
to deduce that

b15
f p

2

4
, b25

1

32e2
. ~3.7!

IV. TOPOLOGICAL DENSITY ON THE LATTICE

As shown in Fig. 1, we cut each cube on the lattice in
five tetrahedra. Each tetrahedron maps onto a curved tetr
dron in S3, the volume of which gives the local topologic
density. We give here a practical, exact formula for this v
ume.

In the 2-sphereS2, the area of a triangle is given simpl
by Girard’s theorem,A5a1b1g2p, where the right hand
side is the sum of the triangle’s angles minusp, known as
the angular excess. The easiest proof of the theorem i
argument based on overlapping lunes. This argument ma
generalized@16# to a simplex inSn, but it only gives a for-
mula for the volume whenn is even; for oddn, one obtains
instead a constraint on the angles of the simplex.

Schläfli @13# attacked the general problem of the volum
11402
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of convex polytopes inSn. He was led to consider~for n
53) the special case of thequadrirectangular tetrahedron,
which we shall abbreviate asqrt. A qrt ~see Fig. 2! is con-
structed as follows@12#. Choose four pointsP0 , P1 , P2 , P3
such that the line segmentsP0P1 , P1P2 , P2P3 are all mutu-
ally perpendicular. Then connect all four points together
form a tetrahedron. Every face of this tetrahedron is a ri
triangle. Three of the dihedral angles—the ones atP1P2 ,
P1P3, and P0P2—are right angles. The dihedral angles
P2P3 , P0P3, and P0P1 are not right angles, and they are
denoteda, b, g.

This construction works equally well in Euclidean spa
and inS3. A simple example of a spherical qrt is construct
by takingP0 , P1 , P2 , P3 to be mutually perpendicular uni
4-vectors. This is a qrt that covers 1/16 ofS3. Its dihedral
angles are allp/2.

In Euclidean space, the dihedral angles of a qrt satisfy

sina sing5cosb. ~4.1!

In S3, they satisfy instead the inequality

sin2 a sin2 g.cos2 b. ~4.2!

The quantity

D5Asin2 asin2 g2cos2 b ~4.3!

may thus be taken to be the generalization of the ang
excess to this case. It vanishes as the qrt becomes s
which is the Euclidean limit.

Let us denote the volume of a spherical qrt asV(a,b,g),
normalized to 2p2 for the entire 3-sphere. Schla¨fli derived
formulas for the derivatives]V/]a, ]V/]b, ]V/]g ~see also
@17#!. The integral of these formulas was found by Coxe
@12# in the form of a Fourier series valid in the restricte
domain

0<a<
1

2
p,

0<b<p,

FIG. 2. A quadrirectangular tetrahedron~qrt! in Euclidean
space. The path fromP0 to P3 connects opposite vertices of a rec
angular solid.
0-4
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0<g<
1

2
p. ~4.4!

Expressing the volume in terms of the complements ofa and
g,

V~a,b,g!5
1

4
SS p

2
2a,b,

p

2
2g D , ~4.5!

his solution for the Schla¨fli function S is

S~x,y,z!5 (
m51

` S D2sinx sinz

D1sinx sinzD
m

3
cos 2mx2cos 2my1cos 2mz21

m2

2x21y22z2. ~4.6!

Armed with Eq.~4.6!, we can calculate the volume of an
tetrahedron inS3 by cutting it up into six qrt’s~see Fig. 3!.
This is done by picking a vertexA of the tetrahedron and
dropping a perpendicular to the opposite face~the base! at E,
then dropping perpendiculars fromE to the edges of the
base. Simple trigonometry gives the vertices of the qrt’s
terms of those of the original tetrahedron; from the vertic
of each qrt we calculate its dihedral anglesa,b,g. Some
technical problems, as well as further discussion of
Schläfli function, are relegated to the Appendix.

The topological densityrn in the lattice cube atn is the
sum of the volumes of the tetrahedra inS3 that correspond to
the Euclidean tetrahedra making up the cube. It goes with
saying that summingrn over the lattice must give an intege
~in units of 2p2) for any configuration, to high precision.

V. CLASSICAL SKYRME MODEL IN 3 DIMENSIONS

The minima of the action~3.6! in 3 dimensions are the
static, classical solutions of the 4-dimensional Skyr
model. When we include fluctuations about these minim
we can think of the 3D action that governs them as of
approximation to an effective action derived via dimensio
reduction. Thus the parametersb1 ,b2 are ~unknown! func-
tions of the parameters of the full 4D theory, namely,f p ,e,
and the temperatureT. Naturally, any reduction scheme th
is precisely defined will give an effective action that is f
more complex than Eq.~3.6!, and further arguments will be

FIG. 3. A Euclidean tetrahedron cut into six qrt’s.~Only two are
shown.!
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necessary to justify its simplification.
As an application of our algorithm for the topologic

density we calculate the mean-square radiusR2 of a single
Skyrmion in the three-dimensional theory, that is, of an eq
librium distribution of configurations withn51 at fixed
b1 ,b2. We fix initial conditions of the form~2.6! and ~2.9!,
suitably discretized. Monte Carlo updates are done with
usual local Metropolis algorithm, which preserves windi
number as discussed above. The volume of the lattice is3.

The observableR2 should be defined carefully. For eac
configuration used in the average one might calculate
barycenter of the topological density according to

Rc5(
n

nrn ~5.1!

and then the second moment via

R25(
n

min~n2Rc!
2rn . ~5.2!

~The notation ‘‘min’’ means that one should take note of t
periodic boundary conditions and always calculate the sh
est distance betweenn andRc .) Unfortunately, the boundary
conditions makeRc calculated via Eq.~5.1! ill defined. This
may be illustrated by considering a compact Skyrmion w
barycenter located on the face of the lattice atz50. Equation
~5.1! fixes Rc in this case to be in the middle of the lattic
between the two half-Skyrmions on opposite faces, andR2

will turn out to be on the order of the lattice size. The so
tion lies in regarding the lattice as a 3-torus on which t
choice of origin~and of ‘‘faces’’! is entirely arbitrary. We
evaluate Eqs.~5.1! and~5.2! for all choices of origin and take
the minimal value ofR2. The Rc that corresponds to this
minimum is thus defined to be the location of the barycen
this is as good a definition as any, considering the perio
boundary conditions.

We show in Fig. 4 the calculated Skyrmion radius f
b153 and various values ofb2. The multiple values ofR2 at
a given value ofb2 reflect metastability. These metastable
Skyrmion configurations are accessible from different init
states, specified by different values ofr 0 in Eq. ~2.9!. We
have observed tunneling from metastable states to low

FIG. 4. Mean-square radius of a single Skyrmion,b153. The
upper curve connects the radii of stable configurations; other po
are radii of metastable Skyrmion configurations.
0-5
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ALEC J. SCHRAMM AND BENJAMIN SVETITSKY PHYSICAL REVIEW D62 114020
energy states of larger radius that are apparently the gl
minima of the action. In all cases the lowest-energy sta
appear to be those of largest radius; these are shown
nected by the upper curve in Fig. 4. The lower curve in
figure connects metastable states that were found to be
tually accessible by annealing. We havenot explored the full
set of metastable states for any given coupling; except for
annealing curve, the metastable states shown in Fig. 4
effectively chosen at random by the initial conditions of t
simulations.

In Fig. 5 we present a more extensive set of results,
time showing the variation withb1 as well as withb2. The
curves connect data points for what we believe to be
equilibrium Skyrmion configuration at each coupling. Poin
not lying on curves are metastable configurations of hig
energy; again, we make no effort to show all such confi
rations at any coupling. We have not run across metast
configurations forb1<2.

The abscissa in Fig. 5 is the ratiob2 /b1 that fixes the
form of the action. The remaining overall coefficientb1 then
acts as an inverse temperature that governs the fluctuat
Regarding the 3D classical model as a Ginzburg-Lan
theory for the fully quantized 4D theory, the lowering ofb1
can be interpreted as enhancing the thermal and quan
fluctuations in the latter. It is remarkable that heating
Skyrmion by loweringb1 causes it toshrink. We ascribe this
surprising property to the many metastable, excited st
that are smaller than the ground-state configuration and
become accessible as the temperature is raised. The ab
of metastability at the smallest values ofb1 merely reflects
the fact that the equilibrium Skyrmion already averages o
the various local minima.

VI. DISCUSSION

The qualitative conclusion of the preceding section m
be taken with a large grain of salt. As mentioned above,
have no idea what the connection is between the coupl
b1 and b2 of the 3D model on the one hand and the co
plings and temperature of the 4D theory on the other. I
possible that raising the physical temperature of the la
will lead to simultaneous changes inb1 and b2 that cause
the Skyrmion to expand after all. In any case, the result is
quantitative and cannot be made quantitative until the dim

FIG. 5. Mean-square radius of the topological density in
single-Skyrmion sector.
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sional reduction to the 3D theory is explored in detail. T
metastable solutions, for that matter, might be artifacts of
specific lattice action we study that are absent in the t
effective 3D theory.

Our study of the 3D model was motivated by its simpli
ity rather than by any fundamental obstacle to studying
full 4D theory at finite temperature. Numerical work on th
4D theory will merely require greater computer resources
order to extract physics from lattice calculations, we w
have to renormalize the theory by fixing the bare couplin
b1 and b2, and the lattice spacinga, in terms of physical
quantities such as thepp scattering length and the Skyrmio
mass and radius. The temperature can be varied by chan
the time extentLt of the lattice in the time direction or by
varying the lattice spacing by changingb1 and b2 along
lines of constant physics. The 4D quantum theory will off
as well the possibility of projecting the Skyrmion to defini
spin and isospin. Finally, it will be imperative to study th
sensitivity of any physical quantities to the choice of latti
action.
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APPENDIX

We collect in this appendix some practical details co
cerning the use of the Schla¨fli function ~4.6! in calculating
the topological density in lattice field configurations.

1. Small qrt’s

Defining

X[
sinx sinz2D

sinx sinz1D
, ~A1!

the formula for the Schla¨fli function is

S~x,y,z!

5 (
m51

`

~2X!m
cos 2mx2cos 2my1cos 2mz21

m2

2x21y22z2. ~A2!

The sum converges absolutely whenuXu<1; since D.0,
this means sinxsinz.0, which includes the entire domai
~4.4! considered by Coxeter. In the Euclidean limit, whe
the qrt is small, we haveD→0 and henceX→1. Then the
sum in Eq.~A2! becomes the Fourier series forx22y21z2,
and thusS50 in this limit as expected.

e
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The region of smallD is where the series converges mo
slowly. We can avoid evaluating Eq.~A2! in this region as
follows @7#. The vertices of a small tetrahedron in th
3-sphere are marked by 4-vectorss( i ) that are nearly equal
These 4-vectors are edges of a spindly 4-pyramid with
apex at the center of the 4-ball bounded by the 3-sphere
volume of which is

V45
1

24
emnrssm

(1)sn
(2)sr

(3)ss
(4) . ~A3!

The ratio of V4 to the total volumep2/2 of the 4-ball is
approximately the ratio of the 3-volumeV of the tetrahedron
to the total volume 2p2 of the 3-sphere, so

V'4V4 . ~A4!

We calculateV4 for every tetrahedron obtained for each la
tice cube~see Fig. 1!. If it is small, we use Eq.~A4! in lieu of
cutting it into qrt’s. We also calculateV4 for each qrt in turn,
and if it is small, we use Eq.~A4! in lieu of evaluating the
Schläfli function. Evaluation ofV4 also gives an easy way t
keep track of the sign of a qrt’s volume, which is need
sinceS(x,y,z) is defined always to be positive.

2. Large tetrahedra

Another problem region for the Schla¨fli function arises
whena→p/2 or g→p/2, giving X→21 and slow conver-
gence. In the limitX521, we have

S~x,y,z!5p~2x1y2z!5p~a1b1g2p!, ~A5!

a useful approximate formula in this regime.
As we have noted, Coxeter’s formula can only be used

the domain~4.4!. One can easily devise larger qrt’s, how
ever, and large qrt’s arise regularly in calculating the top
logical density. We attack this problem by cutting such lar
qrt’s into smaller tetrahedra. If eithera or g is larger than
p/2, but not both, we determine the largest ofa,b,g and
,

N
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draw a plane through its edge and the bisection point of
opposite edge~see Fig. 6!. This creates two new, smalle
tetrahedra. If botha and g are larger thanp/2, we cut the
tetrahedron by connecting all its edge centers; this gives
tetrahedra at the original vertices, plus a central octahed
The octahedron can then be cut into four tetrahedra aro
any line connecting opposite vertices, of which we choo
the shortest.

Having cut the original qrt into two or eight pieces, w
apply the algorithm~cut into qrt’s and apply the Schla¨fli
function! to each piece. Of course, any qrt that results mi
still be too large for Coxeter’s formula. We then apply th
cutting algorithm recursively. We have found that ten lev
of recursion might be necessary for particularly rough latt
configurations.

The amount of recursion can be cut down dramatically
optimizing the operation of cutting the original tetrahedr
into qrt’s. There are four ways to choose the vertexA in Fig.
3. For each choice ofA, we determine the longest edge of th
generated qrt’s, measured by the largest pairwise an
among the 4-vectorss( i ) of each qrt. This maximal edge is
measure of the size of the qrt’s generated by the cut
process. We chooseA in order to minimize the maxima
edge.

FIG. 6. Cutting a qrt in the event thata is too large.
-
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