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We offer the Skyrme model on a lattice as an effective field theory—fully quantized—of baryon-meson
interactions at temperatures below the chiral phase transition. We define a local topological density that
involves the volumes of tetrahedra in the target sgicand we make use of Coxeter’s formula for the Stthla
function to implement it. This permits us to calculate the mean-square radius of a Skyrmion in the three-
dimensional lattice Skyrme model, which may be viewed as a Ginzburg-Landau effective theory for the full
guantum theory at finite temperature. We find that, contrary to expectations, the Skyrmion shrinks as quantum
and thermal fluctuations are enhanced. We ascribe this to a large number of metastable states that become
accessible as the temperature is raised.

PACS numbs(s): 12.39.Dc, 12.39.Fe

[. INTRODUCTION enological necessity. The procedure will be to pick a La-
grangian, to fix the lattice spacing, and finally to calculate
The Skyrme mode]1-5] is a popular model of the dy- any physical quantity of interest, going beyond perturbation
namics of pions and nucleons, incorporating the former as ittheory and beyond semiclassical methods, since the lattice
fundamental, pseudo Goldstone field and the latter as top@ffers many more direct techniques. From a lattice point of
logical solitons. The continuum theory has been widely studview, the fixed cutoff is a virtue as well, since no continuum
ied via semiclassical techniques, giving a satisfactory phelimit is necessarynor is it possiblg
nomenology of low-momentum and low-temperature The most interesting feature of the Skyrme model is the
physics. In this paper we develop a lattice formulation of thestability conferred on the soliton by the topological conser-
model! vation law and the four-derivative coupling. We wish in fact
Our motivation in employing a lattice cutoff is to over- t0 isolate a single Skyrmion in order to see how its properties
come the limitations of the continuum theory. In point of change with temperature, density, etc. A recurring problem
fact, the term “continuum theory” is misleading. The I Iattlce studies of sohton; is the ltgndenpy of lattice dislo-
Skyrme Lagrangian is a non-linear sigma model with a foyr-cations to destroy to_pologlcal stability or, in other quds,_to
derivative term, which makes it non-renormalizable in per-2/0W topology to slip through the lattice. We avoid this

turbation theory. This means that calculations of quantunPrOblem by choosing a lattice action that enforces continuity

effects must involve a short-distance cutoff. In working with at short distances. In order to keep our numerical evolution
chiral Lagrangians coupled to a local nucl'eon field, this isWithin a single topological sector, we insist on a local updat-

grang P ) T ing scheme that should not nucleate smooth Skyrmions. We
not a serious problerf8—10. One absorbs divergences into

S find that these two ingredients suffice to stabilize the lattice
an ever-lengthening list of counterterms; as long as extern

. ) 0 kyrmion.
momenta are kept small, dimensional analysis limits the con- }Il'he main technical development in this paper is the con-

tributions of these counterterms to the results. When th@rction of an exact topological density that can be mea-
nucleon is a soliton rather than a fundamental field, howeverSured on a lattice field configuration. By “exact” we mean

things are more difficult. The soliton’s collective degr_ees Ofthat the winding number, the sum of the density over the
freedom are quantized separately, and the systematic devglyice is always an integer. We cut the lattice into funda-
opment of higher-order quantum effects involves disentanmenia| tetrahedra and map each tetrahedron into a curved
gling the pion field from these collective quantl]. In any  teyranedron in thes® target space. The winding number is
case, there is no way to limit the addition of higher-hen the sum of the signed volumes of the tetrahedr&®in

dimension terms to the Lagrangian as long as one must CoRye caicylate the volume of a spherical tetrahedron via a
sider energy scales approaching the nucleon mass. cL

; . formula due to Coxet€r12], derived as a solution of differ-
We propose to turn these points to advantage, by consi sntial equations first written down by Scfid13].
ering the Skyrme model as an effective field theory. The

. We summarize the continuum Skyrme model in Sec. Il in
cutoff and the cutoff schemhe lattice are part and parcel . jor 1o establish the notation. General considerations re-

of the specif_icat?on of the Fheory. The fr.ee choice of terms ingarding continuity and topology on the lattice are presented
the Lagrangian is now a virtue, constrained only by phenom;, ‘e Ill, which concludes with formulas for the lattice

action we employ. In Sec. IV we present our definition of the
local topological density via Coxeter’'s formula for the vol-
For previous work sef8,7]. ume of a quadrirectangular tetrahedronSh As a first ap-
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plication, we present in Sec. V the results of Monte Carlo3-sphere. This winding number is topologically conserved,
simulations for the classical Skyrme model in three dimenimeaning that it cannot change under continuous deformation
sions. Easier to simulate than the full four-dimensional pathof the fieldU(x).

integral, this model may be regarded as a Ginzburg-Landau The n=0 sector includes the vacuubi(x)=1 and per-
theory for the Skyrme model at finite temperature—a sort ofurbations around it. An example of ar=1 configuration is
effective theory for the effective theory. We use the topologi-the spherically symmetric Skyrmion:
cal density to calculate the mean-square radius of a

Skyrmion as a function of the coupling?;, and B, of the U(x)=exp{if(r)m}
lattice action. If we fixB,/3,, so that the form of the action r|’
is fixed, we find a multitude of metastable configurations of
the Skyrmion that are smaller than the ground state solutiortVith
As the “temperature” is raised by decreasify and S3,, £(0)=
these metastable states are made accessible to fluctuations, I

with the result that the Skyrmion shrinks as it is “heated.” f(o0)=0 2.7)
Presumably the “temperature” of the 3D theory is an in- ' '
creasing function of the real temperature in the 4D theory(r) should be determined so as to minimize the static en-
that it approximates. Thus we reach the result that a quansrgy

tized Skyrmion shrinks as it is heated.

(2.6

2

T,
Il. CONTINUUM SKYRME MODEL E:f dx 76"

r|a-u|2+iTr([L- L:])? (2.9
' 32 ]

The Euclidean action of the Skyrme model is but a simple choice with the right topology is

2

£, 1 r
szf d*x 1—6Tr|aMU|2+ o STr(L,, L)%, 2D f(r)zw<1_tanh_)_ 2.9
e Io
where the non-linear chiral field is anSU(2) matrix, and ~ Skyrme identifiech with the baryon number of a field con-
we have defined figuration and the lowest soliton configuration with the
nucleon.
LuziuTaMU. (2.2 Given an arbitrary field configuratiod (x) satisfying Eqg.

(2.4), its winding number may be calculated with the formula
We have omitted a mass term of the fomi TrU and thus _
Sis invariant under th&U(2) X SU(2) group of chiral ro- I

tations, n= 2472

f dx GijkTrLiLij. (21@

U—AUB', with A,BeSU(2). (2.3 The geometric meaning of E¢2.10 will be apparent in its

lattice counterpart below.
Classically, the symmetry is spontaneously broken.

Finite-energy field configurations must tend to a constant at lIl. LATTICE TOPOLOGY AND CONTINUITY
spatial infinity, and one can use a symmetry rotation to make
this constant the unit matrix, i.e., In this section we define a topological density for a lattice
field configuration that is unambiguous and that sums exactly
U(x)—1 as|x|—=, (2.9 to an integer. The further demand of conservation of the
winding number will lead us to choose a lattice action that
wherex is the three dimensional spatial coordinate. Usingconstrains discontinuities in the field.

the Pauli matrices;, i=1,2,3, we can writdJ in terms of A lattice configuration is specified by the field,
new fieldso=(og,0;) via e SU(2) or, equivalently, by the 4-vectar, e S. In order
to define the winding number, we bedii] by cutting the
U=ootior, (2.5 cubic latticeL® into tetrahedra, five tetrahedra per cubic cell
(see Fig. 1 The four verticem(", i=1-4, of each tetrahe-
where o~ o=1. By considering small fluctuations about  dron map to four unit 4-vectore‘”), which are vertices of a
=1, we can identifyo;, i=1,2,3, with the Goldstone pion spherical tetrahedron i&°. This tetrahedron is defined via its
field. vertices; its edges are arcs of great circles and its faces are

Equation(2.4) means that 3-dimensional space is compacspherical triangles drawn on great spheres.
tified to the 3-spher&®. SinceU e SU(2) also takes values Since thregnon-collineay points inS® determine a great
in S® [see Eq.(2.5)], configurationsU(x) can be classified sphere, it is clear that two adjacent tetrahedra3map onto
according to the homotopy groups(S®)=Z. Thus there is adjacent tetrahedra i&°, with the common face ih® map-
an integer winding numben that denotes how many times ping onto a common face i8°. Thus the field configuration
U(x) covers the 3-sphere in field spacexds varied over its o, gives a triangulation of some volume 8f. We impose
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grand partition function would then be

Z(w)=2, ez, (3.

whereZ,, is a sum over all field configurations with winding
numbern. A Monte Carlo simulation should then be allowed
to wander freely among the sectors of differensubject to
an acceptance-rejection test that enforces the relative prob-
abilitiese“". A local updating algorithm can nucleate “point
Skyrmions” as in the preceding paragraph, which change
by a unit and then spread out into smoother Skyrmions; in
FIG. 1. A cube cut into 5 tetrahedra. The even vertigesled  addition, a non-local update could be permitted that creates
are connected to form a central tetrahedron and four others. I8Mooth Skyrmions directly.

neighboring cubes, thedd vertices are to be connected instead, so  Our interest, however, is in the properties of a single
that the diagonal edges match up. Skyrmion, which are accessible through a canonical en-

o N ] semble at fixedh=1. The simulation must be constrained so
periodic boundary conditions on the lattice, and thus no tetyg not to change. This requires that we prevent the nucle-
rahedron possesses a face that is not shared by another tgfjon of both point Skyrmions and smooth Skyrmions. The
rahedron(a free face. This implies that the complex of tet- |atter can be prevented by choosing a local updating algo-
rahedra inS® possesses no free faces either, and thus thethm. For the former, we choose a lattice action that ex-

volume covered by the complex must be an integer multiplg;judes the possibility of tetrahedra B? with |V|~%. We
of the volumé of S°. If the field configuration is smooth, the adopt the kinetic terni14]

complex inS® will be composed of tetrahedra that are small

compared t&83, and it will wrap around the sphere much as

a smooth mapping of the 3-torus must. In any case, the vol- 31:(0‘_1); log(o- 0711, — @) 3.2
ume in S of the five tetrahedra corresponding to a cube in g

L* gives a definition of the topological densipy contained  in order to constrain,- o, >« and thus to reject fluctua-
in the cube. tions that put large angles between neighboring field vari-
The topological density thus defined is not unambiguousaples. With some Monte Carlo exploration, we can find a
however. If a tetrahedron i8® is specified by its faces, then yalue ofa that will keep the tetrahedral volumes far enough
there are two volumes i8® that are bounded by these faces. from L
One of the volumes includes the north pdfer example, For smooth configurations, we expaag- o,,. ; around 1
and the other does not. If one of the volumes is measured tgng Eq.(3.2) becomes
be a positiveV (with V<1), then the other volume will be
V—1. (Careful attention to the orientation will make the lat-
ter negative. In order to assign a unique topological density Slan (1= oy 00 p)
to a lattice field configuration, we define a tetrahedron’s vol- .
ume to satisfy|V|<3. ‘
We have solved the problem of uniqueness, but not that of = HE 1=5Tr(UnUn, )
conservation of the winding number. Consider a field con- *
figuration wherein one tetrahedron 8% has volumes — ¢, 1 T +
wheree is small. Under a fluctuation of one of the vertices of - nE ZTr(Unﬂl_ Un)(Uny = Un), 3.3
the tetrahedron, its volume may shift o+ 8, while the .
neighboring tetrahedra change their volumes-ie+5) so  \yhich approaches the kinetic term in EQ.1) in the con-
that the winding number is unchanged. Unfortunately, oukinyum limit.
algorithm will now redefine the volume of the first tetrahe- A technical point remains. We have discussed the ambi-
dron to— 3+ 8, resulting in a loss of 1 in the winding num- guity in fixing the volume of a tetrahedron if its faces are
ber. This is often called “topology dropping through the lat- given, which led us to requird/|<%. A lattice field configu-
tice.” o ration o, gives us only the vertices of each tetrahedron, how-
The procedure to be followed at this point depends on theyer, not its faces. Given three vertices that determine a great
physics to be investigated. One might want to study, forgphere, the face that connects them can be chosen to be either
example, the thermodynamics of the Skyrme model by fixingof two triangles that together make up the sphere. A little
a chemical potentigk coupled to the winding number. The thought shows that the difference between the volumes en-
closed is:. This gives an ambiguity between a vahie-0
andV—1 for the volume of the tetrahedron.

2The three-dimensional volume of the unit 3-sphere i€ 2We _This last ambiguity involves choosing which triangle con-
will redefine this to be unity, and thus measure volumes in units otitutes the face of the tetrahedron. But this face is shared
272, between two adjacent tetrahedra, and the ambiguity will be
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immaterial if the same choice is made for both. This is hard P, o P,
to program, however, if each tetrahedron is to be handled on

its own. We prefer to resolve the ambiguity for each tetrahe- P
dron separately, by requiring thiat| < . We impose this via

a more restrictive choice ofr in Eq. (3.2. We find that

settinge=0.1 is adequate for the purpose.

A local updating algorithm based on the acti@?) will y B
conserve winding number. Even so, a Skyrmion will tend to
shrink down to a point in accordance with the scaling argu-
ment that gives Derrick’s theorem. This is because the stabi-
lization is being done at the scale of a single lattice spacing; py
only here will the scaling argument fail and the Skyrmion P,”
run into a repulsive potential. In order to have a stable
Skyrmion of appreciable size, we cannot avoid adding a FIG. 2. A quadrirectangular tetrahedrgirt) in Euclidean
Skyrme term as in Eq2.1). The most straightforward lattice SPace. The_ path froR, to P; connects opposite vertices of a rect-
transcription uses symmetric derivativies: angular solid.

of convex polytopes irS". He was led to consideffor n
SgYM:; ZV {(0n1 2= 0n-p) (0045~ 00-3)° =3) the special case of thguadrirectangular tetrahedrgn
. which we shall abbreviate agt. A grt (see Fig. 2 is con-
~[(Onsa—0n_p) (Ons5—04-3)1%. (3.4  structed as follow$12]. Choose four point®,, Py, Py, Ps
) ) _ _ ) ~such that the line segmen®P,, P,P,, P,P; are all mutu-
This couples each site to sites two links away, effectively viag|ly perpendicular. Then connect all four points together to
plaquette couplings across plaquettes of sieand fails to  form a tetrahedron. Every face of this tetrahedron is a right
couple the odd and even sublattices. We prefer to use a digiangle. Three of the dihedral angles—the onesPg®,,
cretization[15] that couples only across single plaquettes, ofp,p,  and P,P,—are right angles. The dihedral angles at

side 1: P,P;, PoPs, and P,P; are not right angles, and they are
denoteda, 8, 7.
S,=4>, >, {(0ns 3= 0 ) 2Oy s 5= 07)? This construction works equally well in Euclidean space
nou>v and inS3. A simple example of a spherical grt is constructed

by takingPy, P;, Py, P3 to be mutually perpendicular unit
4-vectors. This is a grt that covers 1/16 8. Its dihedral

Our lattice action is a combination of the kinetic and Skyrme"’mgIes are altr/2. _ _
terms: In Euclidean space, the dihedral angles of a grt satisfy

_[(O'n+[1,_0'n+?z)'(0'n+,&+f/_ O'n)]z}- (3.9

S=B1S1tB2S,. (3.6) sina siny=cosp. (4.1

In the naive continuum limit, we can compare with E2.1)  In S°, they satisfy instead the inequality
to deduce that
, sir? a sir? y>cog B. 4.2
fe 1
:3121’ Bo=_ - @7 The guantity

D= \sir? asir® y—cos B 4.3
IV. TOPOLOGICAL DENSITY ON THE LATTICE
As shown in Fig. 1, we cut each cube on the lattice into™&Y thus be_ taken to be the generalization of the angular
five tetrahedra. Each tetrahedron maps onto a curved tetrah@XCeSs {0 this case. It vanishes as the qrt becomes small,

dron in S®, the volume of which gives the local topological Which is the Euclidean limit.

density. We give here a practical, exact formula for this vol- L€t Us denotezthe volume of a spherical qrid(sr, 3, 7),
ume. normalized to 2r~ for the entire 3-sphere. Sciliaderived

In the 2-sphere?, the area of a triangle is given simply formulas fo_r the derivativegV/da, dVIdB, dVIdy (see also
by Girard's theoremA= a+ B+ y— i, where the right hand [17]). The integral of these formulas was found by Coxeter
side is the sum of the triangle’s angles min@sknown as [12] in the form of a Fourier series valid in the restricted
the angular excess. The easiest proof of the theorem is &fPmMain
argument based on overlapping lunes. This argument may be

generalized 16] to a simplex inS", but it only gives a for- O<a< EW
mula for the volume whenm is even; for oddh, one obtains 2
instead a constraint on the angles of the simplex.

Schldli [13] attacked the general problem of the volume 0s=pB=m,
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FIG. 3. A Euclidean tetrahedron cut into six grt&nly two are e
shown) 0 1 2 3 4
B2/B1
o 1 FIG. 4. Mean-square radius of a single Skyrmigh=3. The
O<y=< 5 (4.4 upper curve connects the radii of stable configurations; other points

are radii of metastable Skyrmion configurations.
Expressing the volume in terms of the complementa ahd
¥, necessary to justify its simplification.
As an application of our algorithm for the topological
1 (= iy density we calculate the mean-square radRdsof a single
Via,py)= ZS(E_avﬂ’g_ 7)’ (4.5 skyrmion in the three-dimensional theory, that is, of an equi-
librium distribution of configurations with=1 at fixed

his solution for the Schfk function Sis B1,B8>. We fix initial conditions of the forn{2.6) and(2.9),
suitably discretized. Monte Carlo updates are done with the
“. [D—sinxsinz\™ usual local Metropolis algorithm, which preserves winding
S(x,y,2) =m21 (m) number as discussed above. The volume of the lattice¥is 16

The observabl&R? should be defined carefully. For each
COS 2Mx— oS 2my+ cos nz— 1 configuration used in the average one might calculate the
barycenter of the topological density according to

m2

sty 72 (4.6) Re= ; Npn (5.1)

Armed with Eq.(4.6), we can calculate the volume of any )
tetrahedron irS® by cutting it up into six grt's(see Fig. 3 and then the second moment via
This is done by picking a verteA of the tetrahedron and
dropping a perpendicular to the opposite féite basgatE, R?2=Y, min(n—R.)2p,. (5.2)
then dropping perpendiculars froi to the edges of the n
base. Simple trigonometry gives the vertices of the grt's in ] )
terms of those of the original tetrahedron; from the verticed The notation “min” means that one should take note of the
Of each qrt we Ca'cu'ate |ts dihedra| ang'&sﬁ,'y_ Some perIO.dIC boundary Condltlons and alWayS CalCUlate the Short'
technical problems, as well as further discussion of theest distance betweemandR;.) Unfortunately, the boundary
Schidli function, are relegated to the Appendix. conditions makeR.. calculated via Eq(5.1) ill defined. This
The topological density,, in the lattice cube ah is the ~ May be illustrated by considering a compact Skyrmion with
sum of the volumes of the tetrahedraShthat correspond to  barycenter located on the face of the latticea0. Equation
the Euclidean tetrahedra making up the cube. It goes withou®-1 fixes R; in this case to be in the middle of the lattice,

saying that summing,, over the lattice must give an integer between the two half-Skyrmions on opposite faces, Rfid
(in units of 272) for any configuration, to high precision. ~ Will turn out to be on the order of the lattice size. The solu-

tion lies in regarding the lattice as a 3-torus on which the
choice of origin(and of “faces”) is entirely arbitrary. We
evaluate Eqg5.1) and(5.2) for all choices of origin and take
The minima of the actior{3.6) in 3 dimensions are the the minimal value ofR?. The R, that corresponds to this
static, classical solutions of the 4-dimensional Skyrmeminimum is thus defined to be the location of the barycenter;
model. When we include fluctuations about these minimathis is as good a definition as any, considering the periodic
we can think of the 3D action that governs them as of arboundary conditions.
approximation to an effective action derived via dimensional We show in Fig. 4 the calculated Skyrmion radius for
reduction. Thus the parametes,3, are (unknown func-  B;=3 and various values @,. The multiple values oR? at
tions of the parameters of the full 4D theory, namédly, e, a given value of3, reflect metastability These metastable
and the temperaturé. Naturally, any reduction scheme that Skyrmion configurations are accessible from different initial
is precisely defined will give an effective action that is far states, specified by different values rjf in Eqg. (2.9). We
more complex than Eq3.6), and further arguments will be have observed tunneling from metastable states to lower-

V. CLASSICAL SKYRME MODEL IN 3 DIMENSIONS
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sional reduction to the 3D theory is explored in detail. The
metastable solutions, for that matter, might be artifacts of the
specific lattice action we study that are absent in the true
effective 3D theory.

Our study of the 3D model was motivated by its simplic-
ity rather than by any fundamental obstacle to studying the
full 4D theory at finite temperature. Numerical work on the
X 4D theory will merely require greater computer resources. In

LA L order to extract physics from lattice calculations, we will
¢ have to renormalize the theory by fixing the bare couplings

0 1 2 3 4 . N .
8o/ B, B an'd' B,, and the lattice spacing, in terms of physmgl
guantities such as thes scattering length and the Skyrmion

FIG. 5. Mean-square radius of the topological density in themass and radius. The temperature can be varied by changing
single-Skyrmion sector. the time extenL, of the lattice in the time direction or by

varying the lattice spacing by changingy and B8, along
energy states of larger radius that are apparently the globdhes of constant physics. The 4D quantum theory will offer
minima of the action. In all cases the lowest-energy stategs well the possibility of projecting the Skyrmion to definite
appear to be those of largest radius; these are shown cofpin and isospin. Finally, it will be imperative to study the
nected by the upper curve in Fig. 4. The lower curve in thesensitivity of any physical quantities to the choice of lattice
figure connects metastable states that were found to be maction.
tually accessible by annealing. We hawa explored the full
set of metastable states for any given coupling; except for the ACKNOWLEDGMENTS
annealing curve, the metastable states shown in Fig. 4 are

effectively chosen at random by the initial conditions of the e thank M. Kugler and U.-J. Wiese for their help. Con-
simulations. versations with the latter took place at the Aspen Center for

In Fig. 5 we present a more extensive set of results, thi€hysics. We also thank the Weizmann Institute of Science

time showing the variation wit8, as well as with3,. The for it.s hospita}lity. A.J.S. thanks the. Theore.ticql Elementa}ry
curves connect data points for what we believe to be th&article Physics group at UCLA for its hospitality during his
equilibrium Skyrmion configuration at each coupling. PointsSabbatical leave. The work of B.S. was supported in part by
not lying on curves are metastable configurations of highthe Israel Science Foundation under Grant No. 255/96—1..The
energy; again, we make no effort to show all such configu-Work of A.J.S. was supported by the Research Corporation.
rations at any coupling. We have not run across metastable
configurations for3;<2. APPENDIX

The abscissa in Fig. 5 is the rat®, /B, that fixes the

form of the action. The remaining overall coefficighit then cerning the use of the Scliliafunction (4.6) in calculating

acts as an inverse temperature that governs the fluctuation[%. : e o ; :
. i : e topological density in lattice field configurations.
Regarding the 3D classical model as a Ginzburg-Landau polog y g

theory for the fully quantized 4D theory, the lowering &f

15

10

RB

We collect in this appendix some practical details con-

can be interpreted as enhancing the thermal and quantum 1. Small qrt's

fluctuations in the latter. It is remarkable that heating the Defining

Skyrmion by lowering3; causes it tshrink We ascribe this ) )

surprising property to the many metastable, excited states X = sinxsinz—D (A1)
that are smaller than the ground-state configuration and that sinxsinz+D’

become accessible as the temperature is raised. The absence )

of metastability at the smallest values 8f merely reflects the formula for the Schfé function is
the fact that the equilibrium Skyrmion already averages over

the various local minima. S(x,y,2)

o

VI. DISCUSSION - E (=X)m
m=1 m

COS 2nx—cos 2ny+cos 2nz—1
2

The qualitative conclusion of the preceding section must
be taken with a large grain of salt. As mentioned above, we —x?+y?—272 (A2)
have no idea what the connection is between the couplings
B, and B, of the 3D model on the one hand and the cou-The sum converges absolutely whex|<1; since D>0,
plings and temperature of the 4D theory on the other. It ighis means sixsinz>0, which includes the entire domain
possible that raising the physical temperature of the latte(4.4) considered by Coxeter. In the Euclidean limit, where
will lead to simultaneous changes gy and 3, that cause the grt is small, we hav®—0 and henceX— 1. Then the
the Skyrmion to expand after all. In any case, the result is nosum in Eq.(A2) becomes the Fourier series fof—y?+ 22,
guantitative and cannot be made quantitative until the dimenand thusS=0 in this limit as expected.
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The region of smalD is where the series converges most P, o P;
slowly. We can avoid evaluating E¢A2) in this region as
follows [7]. The vertices of a small tetrahedron in the P
3-sphere are marked by 4-vectar§) that are nearly equal.

These 4-vectors are edges of a spindly 4-pyramid with its /

apex at the center of the 4-ball bounded by the 3-sphere, the
volume of which is

1
V4:ﬂeuvp(ro-,g)o-g)o-f)g)o-s:l) . (A3)

The ratio of V, to the total volumen?/2 of the 4-ball is P
approximately the ratio of the 3-voluméof the tetrahedron
to the total volume 22 of the 3-sphere, so FIG. 6. Cutting a grt in the event that is too large.

0

V=~4V,. (A4) draw a plane through its edge and the bisection point of the
opposite edgdsee Fig. 6. This creates two new, smaller
We calculatev, for every tetrahedron obtained for each lat- tetrahedra. If bothe and y are larger thanr/2, we cut the
tice cube(see Fig. 1 If itis small, we use Eq(A4) inlieu of  tetrahedron by connecting all its edge centers; this gives four
cutting it into grt's. We also calculaté, for each grtinturn,  tetrahedra at the original vertices, plus a central octahedron.
and if it is small, we use EqA4) in lieu of evaluating the  The octahedron can then be cut into four tetrahedra around

Schldli function. Evaluation oV, also gives an easy way to any line connecting opposite vertices, of which we choose
keep track of the sign of a grt's volume, which is neededihe shortest.

sinceS(x,y,z) is defined always to be positive. Having cut the original grt into two or eight pieces, we
apply the algorithm(cut into grt's and apply the Sclla
2. Large tetrahedra function) to each piece. Of course, any grt that results might

still be too large for Coxeter’'s formula. We then apply the
cutting algorithm recursively. We have found that ten levels
of recursion might be necessary for particularly rough lattice

Another problem region for the Sclilafunction arises
when a— /2 or y— /2, giving X— —1 and slow conver-
gence. In the limiiX=—-1, we have

configurations.
S(x,y,z)=m(—x+y—2z)=m(a+B+y—m), (A5) The amount of recursion can be cut down dramatically by
optimizing the operation of cutting the original tetrahedron
a useful approximate formula in this regime. into grt’s. There are four ways to choose the vertein Fig.

As we have noted, Coxeter’s formula can only be used ir8. For each choice ¢k, we determine the longest edge of the
the domain(4.4). One can easily devise larger grt's, how- generated qrt's, measured by the largest pairwise angle
ever, and large qgrt's arise regularly in calculating the topo-among the 4-vectore{) of each grt. This maximal edge is a
logical density. We attack this problem by cutting such largemeasure of the size of the grt's generated by the cutting
grt’s into smaller tetrahedra. If either or v is larger than process. We choosA in order to minimize the maximal
/2, but not both, we determine the largest®fB,y and  edge.
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