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Effective chiral meson Lagrangian for the extended Nambu–Jona-Lasinio model

Alexander A. Osipov* and Brigitte Hiller
Centro de Fı´sica Teo´rica, Departamento de Fı´sica da Universidade de Coimbra, 3004-516 Coimbra, Portugal

~Received 11 July 2000; published 30 October 2000!

We present a derivation of the low-energy effective meson Lagrangian of the extended Nambu–Jona-
Lasinio ~ENJL! model. The case with a linear realization of brokenSU(2)3SU(2) chiral symmetry is
considered. There are two crucial points why this revision is needed. First, it is the explicit chiral symmetry
breaking effect. On the basis of symmetry arguments we show that relevant contributions related with the
current quark mass terms are absent from the effective Lagrangians derived so far in the literature. Secondly
we suggest a chiral covariant way to avoid the nondiagonal terms responsible for the pseudoscalar–axial-vector
mixing from the effective meson Lagrangian. In the framework of the linear approach this diagonalization has
not been done correctly. We discuss as well theSU(2)3SU(2)/SU(2) coset space parametrization for the
revised Lagrangian~nonlinear ansatz!. Our Lagrangian differs in an essential way from those that have been
derived until now on the basis of both linear and nonlinear realizations of chiral symmetry.

PACS number~s!: 12.39.Fe, 11.30.Rd
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I. INTRODUCTION

The Nambu–Jona-Lasinio~NJL! model @1# is useful be-
cause it allows us to derive the effective meson Lagrang
from a more fundamental, i.e., microscopic, theory
quarks. The effective four-fermion interactions of the NJ
like models represent ‘‘certain approximations’’ to QCD
From the theoretical point of view, however, it is still n
clear in which way these four-quark interactions arise
QCD. In the case of two flavors one of the possible mec
nisms might be the quarks’ interaction via the zero mode
instantons@2#, the so-called ’t Hooft interactions. Neverth
less there are a lot of investigations directed to the lo
energy hadron phenomenology following from NJL-like L
grangians@3–18#. The reasons are clear and well know
These approximations are much easier to handle than Q
They provide us with a unique way of constructing effecti
meson Lagrangians including vector and axial-vector m
sons. They incorporate most of the short-distance relat
which follow from QCD. In addition the NJL-like model
are a good playground from the mathematical point of vie
Starting from the basic quark Lagrangian one can deve
both the techniques of the linear@3,4,7# and nonlinear@15#
realizations of chiral symmetry. Both parametrizations
the chiral fields must lead to the same predictions and
equivalent on the mass-shell. The integration over the qu
fields in the generating functional yields the determinant
the Dirac operatorD in the presence of bosonic fields. I
evaluation must conform with the chiral covariant formu
tion of quantum field theory. The difficulties encountered
the realization of this idea are reviewed in@19#.

In order to calculate the effective action and study
spontaneous breakdown of global chiral symmetry it is i
portant to employ a method of calculation which preser
the symmetry explicitly. It is known that the Schwing
proper-time representation@20,21# for lnudetDu in terms of
the modulus of the quark determinant and the following lo
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wavelength expansion of its heat kernel satisfies this requ
ment. This technique is especially good to describe the lo
energy regime of QCD@22#. However, in the presence of th
explicit chiral symmetry breaking term in the Lagrangia
the standard definition of lnudetDu in terms of a proper-time
integral

lnudetDu52
1

2E0

`dT

T
r~T,L2!Tr~e2TD†D! ~1!

modifies the explicit chiral symmetry breaking pattern of t
original quark Lagrangian and needs to be corrected in o
to lead to the fermion determinant whose transformat
properties exactly comply with the symmetry content of t
basic Lagrangian@23#. The necessary modifications can b
done by adding a functional in the collective fields and th
derivatives to the definition of the real part of the fermio
determinant; i.e., we define that

Re~ ln detD !5 lnudetDu1P. ~2!

In the limit m̂50, wherem̂ is a current quark mass,P50
and the old result~1! emerges as a part of our definition. Th
strategy reminds Gasser and Leutwyler’s correcting pro
dure which they used however for a different purpo
namely to restore the standard result~1! for the real part of
the fermion determinant defined by the heat ker
Tr@exp(2TD̄2)#, especially chosen to include anomali
@22#. Both of these procedures are aimed at the subtractio
inessential contributions inherent to the starting definitions
detD. These contributions are inessential in the sense
they change the content of the theory, what should not
The procedures in@22# and ours differ however through th
way of fixing the form of the functionalP, because the origin
of these contributions is different. In the case under cons
eration the functionalP must be chosen in such a mann
that the real part of the effective Lagrangian for t
bosonized extended NJL~ENJL! model Leff will have the
same transformation laws as the basic quark LagrangianL.
In addition it should not change the ‘‘gap’’ equation, i.e., t
Schwinger-Dyson equation which defines the vacuum s
-

a.
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ALEXANDER A. OSIPOV AND BRIGITTE HILLER PHYSICAL REVIEW D62 114013
of the model. These requirements together completely fix
freedom inherent to the definition of this functional. Let
stress that in our caseP cannot be fixed by the requireme
that the determinant remains unchanged when axial-ve
and pseudoscalar fields are switched off, like, for instance
@22#. As a consequenceP contributes to the effective poten
tial of the NJL model at every step of the heat kernel exp
sion. We haveP being a functional as opposed to a polyn
mial in @22#. This is a general feature related to th
nonrenormalizability of the NJL model. Using formula~2!
together with the way we propose to fixP, one can system
atically take into account the effect of explicit chiral symm
try breaking in the ENJL model. To show this is one of t
reasons for this paper. The correct description of expl
chiral symmetry breaking is evidently necessary in order
obtain realistic mass formulas and meson dynamics. We
rive these expressions here and show that they are diffe
~already in the leading current quark mass dependent p!
from the results known in the literature.

The second reason for this work is related to the prob
of the pseudoscalar–axial-vector mixing in the ENJL mod
For some reason this diagonalization has never been d
correctly in the framework of the linear realization of chir
symmetry, as it has been already indicated in@24#. The usual
procedure recurs to a linearized transformation

am→am1c]mp, ~3!

which ruins the chiral transformation properties of the fie
am and gives rise to all sorts of apparent symmetry break
For example, it leads to therpp coupling of the form
rm@p,]mp#, which breaks chiral symmetry. Here we sugg
instead a covariant way to avoid nondiagonal terms resp
sible for the pseudoscalar–axial-vector mixing in the eff
tive meson Lagrangian. The covariant redefinition of t
axial-vector field cannot be done without a correspond
change in its chiral partner, i.e., the vector field. This is
direct consequence of the linear realization of chiral symm
try. We have found two bilinear combinations of scalar a
pseudoscalar fields which transform like axial-vector a
vector fields and are chiral partners at the same time. We
show that our procedure, if one rewrites it in the new co
space variables corresponding to the nonlinear represent
of the chiral group, is identical to the one already know
from @15# or @25#.

As a result we get the effective meson Lagrangian of
ENJL model in a form which includes only the first thre
(a0 ,a1 ,a2) Seeley-DeWitt coefficients in the asymptotic e
pansion for the heat kernel. We restrict to this approxim
tion, the extension is straightforward. Because of the afo
mentioned reasons we obtain a new revised Lagran
which obeys all symmetry requirements of the model for
case of linear realization of brokenSU(2)3SU(2) chiral
symmetry. We derive as well theSU(2)3SU(2)/SU(2) co-
set space parametrization for the revised Lagrangian. For
purpose the Lagrange multiplier method is used to elimin
the scalar field from the generating functional, thus arriv
to the nonlinear version of the model.
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The plan of the paper is the following: In Sec. II w
discuss the Lagrangian of ENJL model and show that ch
SU(2)3SU(2) transformations of quark fields dictate th
transformation laws of the auxiliary bosonic fields. The
collective variables are necessary to rearrange the four-q
Lagrangian of the ENJL model in an equivalent Lagrang
which is only quadratic in the quark fields. In Sec. III w
show how to define the fermion determinant for the case
which explicit symmetry breaking takes place. We calcul
the first three contributions in the asymptotic expansion
the heat kernel in full detail. We derive the correspondi
correcting polynomial from the functionalP and show that it
is completely fixed by the symmetry breaking pattern of t
basic quark Lagrangian and the requirement thatP should
not change the ‘‘gap’’ equation. The effective meson L
grangianLeff is obtained at the end of this section. In Sec.
we introduce the new variables for vector and axial-vec
fields in order to avoid the pseudoscalar-axial-vector mix
term from Leff . We use chiral covariant combinations fo
this replacement. We discuss the field renormalizatio
needed to define the physical meson states and the m
mass spectrum. The transition to the nonlinear version
done in Sec. V. The concluding remarks are given in Sec.
Finally we show in the Appendix that the replacements
variables done in Sec. IV for the spin one mesons are c
pletely equivalent to the replacement which has been alre
used in the literature in the context of the nonlinear para
etrization in the chiral group space.

II. LAGRANGIAN AND ITS SYMMETRIES

Consider the effective quark Lagrangian of strong int
actions which is invariant under a global colorSU(Nc) sym-
metry

L5q̄~ igm]m2m̂!q1
GS

2
@~ q̄q!21~ q̄ig5t iq!2#

2
GV

2
@~ q̄gmt iq!21~ q̄gmg5t iq!2#. ~4!

Here q is a flavor doublet of Dirac spinors for quark field
q̄5(ū,d̄). Summation over the color indices is implicit. W
use the standard notation for the isospin Pauli matricest i .
The current quark mass matrixm̂5diag(mu ,md) is chosen
in such a way thatmu5md . Without this term the Lagrang
ian ~4! would be invariant under global chiralSU(2)
3SU(2) symmetry. The coupling constantsGS andGV have
dimensions (length)2 and can be fixed from the meson ma
spectrum.

The transformation law for the quark fields is the follow
ing:

dq5 i ~a1g5b!q, dq̄52 i q̄~a2g5b!, ~5!

where parameters of global infinitesimal chiral transform
tions are chosen asa5a it i , b5b it i . Therefore our basic
LagrangianL transforms according to the law

dL522im̂~ q̄g5bq!. ~6!
3-2
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EFFECTIVE CHIRAL MESON LAGRANGIAN FOR THE . . . PHYSICAL REVIEW D 62 114013
It is clear that nothing must destroy this symmetry break
requirement of the model~we are not considering anomalie
here!.

Following the standard procedure we introduce color s
glet collective bosonic fields in such a way that the act
becomes bilinear in the quark fields and the quark integra
becomes trivial

Z5E DqDq̄DsDpiDVm
i DAm

i

3expH i E d4xFL2
1

2GS
~s21pi

2!1
1

2GV
~Vm i

2 1Am i
2 !G J .

~7!

We suppress external sources in the generating functionZ
and assume summation over repeated Lorentz (m) and
isospin (i 51,2,3) indices. One has to require from the ne
collective variables that

d~s21pi
2!50, d~Vm i

2 1Am i
2 !50 ~8!

in order not to destroy the symmetry of the basic Lagrang
L.

After replacement of variables inZ,

s5s2m̂1GS~ q̄q!, ~9!

pi5p i2GS~ q̄ig5t iq!, ~10!

Vm
i 5vm

i 1GV~ q̄gmt iq!, ~11!

Am
i 5am

i 1GV~ q̄gmg5t iq!, ~12!

these requirements together with Eq.~5! lead to the transfor-
mation laws for the new collective fields:

ds52$b,p%, dp5 i @a,p#12~s2m̂!b, ~13!

dvm5 i @a,vm#1 i @b,am#, dam5 i @a,am#1 i @b,vm#.
~14!

We have introduced the notationp5p it i , vm5vm it i , am
5am it i . Therefore the transformation law of the quark fiel
finally defines the transformation law of the bosonic field

The Lagrangian in the new variables (L→L8) has the
form

L85q̄Dq2
~s2m̂!21p i

2

2GS
1

vm i
2 1am i

2

2GV
, ~15!

where

D5 igm]m2s1 ig5p1gm~vm1g5am!. ~16!

Let us note that although the Dirac operatorD does not in-
clude the current quark mass,m̂, the transformation law of
pion fields does. Thus,

dD5 i @a,D#2 i $g5b,D%22im̂g5b; ~17!
11401
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i.e., the transformation law of the Dirac operator has an
homogeneous term which is proportional tom̂. In particular,
we have

d~D†D !5 i @a1g5b,D†D#12im̂~g5bD2D†g5b!.
~18!

The second term;m̂ can be used to get systematically th
explicit symmetry breaking pattern of the effective Lagran
ian derived on the basis of formula~1!. The simplest way to
do this is to work in Euclidean space. Since the Dir
g-matrices in this space are antihermitian the combinat
proportional to the derivatives contained in (g5bD
2D†g5b) will vanish. It simplifies substantially the evalua
tion of d lnudetDu and allows to derive in a closed form th
functionalP in Eq. ~2!. After that the asymptotic expansio
of P to obtain the correcting polynomials at each power
the proper-time will be a purely technical procedure. Ho
ever in this paper we prefer to work directly in Minkows
space and present an alternative way to derive correc
polynomials step by step starting from the first term of t
proper-time expansion.

The subsequent integration over quark fields shows
the effective potential has a non-trivial minimum and th
spontaneous chiral symmetry breaking takes place. Red
ing the scalar fields→s1m we come finally to the effec-
tive action

Seff52 i ln detDm2E d4xF ~s1m2m̂!21p i
2

2GS
2

vm i
2 1am i

2

2GV
G ,

~19!

where the Dirac operatorDm is equal to

Dm5 igm]m2m2s1 ig5p1gm~vm1g5am!. ~20!

In this broken phase the transformation law of the pion fi
changes to

dp5 i @a,p#12~s1m2m̂!b ~21!

in full agreement with the variable replacements→s1m
for the scalar field in Eq.~13!. What remains to be done t
have an explicit representation of the effective action to le
ing order in the low energy expansion is to evaluate
determinant of the differential operatorDm . We shall con-
sider this problem in the following section.

III. CALCULATION OF THE REAL PART
OF THE FERMION DETERMINANT:

THE CURRENT QUARK MASS EFFECT

The modulus of the fermion determinant, lnudetDmu, is
conveniently calculated using the heat kernel method or e
more directly in the way suggested in@19#. The result of
these calculations on the basis of formula~1! is well known,
see for example@7#. We prefer this way to the direct calcu
lation of Feynman one-loop integrals@26,27,4,10#, since we
need a method which allows to control the symmetry cont
of the result at each considered step. The differential oper
Dm depends on collective meson fields which have well
3-3
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ALEXANDER A. OSIPOV AND BRIGITTE HILLER PHYSICAL REVIEW D62 114013
fined transformation laws with respect to the action of
chiral group. If one neglects the current quark mass term
the basic quark Lagrangian the combinationDm

† Dm trans-
forms covariantly, i.e.,

d~Dm
† Dm!5 i @a1g5b,Dm

† Dm#. ~22!

This fact ensures that the definition of the real part
ln detDm in terms of the proper-time integral~1! cannot de-
stroy the symmetry properties of the basic Lagrangian. Ho
ever, ifm̂Þ0 this is no longer true. There is no doubt that t
current quark mass does break chirality in the definit
lnudetDmu, for we have seen in Sec. II that the combinati
Dm

† Dm transforms inhomogeneously. The question is ho
ever, whether one should trust the result obtained through
formula lnudetDmu. We have found that this definition need
to be corrected in the presence of the explicit symme
breaking term, since otherwise the transformation law of
effective bosonized meson Lagrangian will be different fro
the transformation law of the basic quark Lagrangian, i
the content of the theory will be changed. As we alrea
mentioned in the introduction the problem can be solved
we define the real part of the fermion determinant throu
formula ~2!. This definition can be extended to include t
case with the heat kernel suggested by Gasser and Leutw
@22# or vice versa, for the formal part of these definitions
the same. The question how to extend the Gasser and
twyler’s treatment of the chiral fermion determinant to t
case of nonrenormalizable models like NJL has been con
ered in@28#. Therefore we proceed from the definition

2 i ln detDm5
i

2E0

`dT

T
r~T,L2!Tr~e2TD̄m

2
!

2E d4x P~s,p,vm ,am!, ~23!

whereP picks up all inessential contributions contained
the proper time integral including the terms with the expli
symmetry breaking. The operatorD̄m is of the form D̄m
5g5Dm . At this level one should not worry that the expre
sion D̄m

2 does not transform covariantly under the action
the chiral group. There is nothing wrong with this, as long
one is careful to express the final result in terms of ch
invariant quantities. The present procedure allows to do i
a systematic and consistent way for each order of the
kernel expansion. The functionalP(s,p,vm ,am) depends on
collective fields and their derivatives. We define it by requ
ing the real part of the fermion determinant to transform
Lagrangian~4!. The imaginary part of ln detDm will be dis-
cussed elsewhere. The expression~23! belongs to the ones
which are known as proper-time regularizations. In the c
of nonrenormalizable models like ENJL we have to intr
duce the cutoffL to render the integrals overT convergent.
We consider a class of regularization schemes which ca
incorporated in the expression~23! through the kernel
r(T,L2). These regularizations allow to shift in loop mo
menta. A typical example is the covariant Pauli-Villars cu
off @29#
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r~T,L2!512~11TL2!e2TL2
. ~24!

Let us put this expression into formula~1! and calculate
the corresponding effective potentialV(s,p i), using Eq.
~16! with fieldsvm andam switched off. We have as a resu
that

V~s,p i !52
m̂s

GS
1

s21p i
2

2GS
S 12

NcGSL2

4p2 D
1

Nc

8p2 F ~s21p i
2!2 ln S 11

L2

s21p i
2D

2L4 lnS 11
s21p i

2

L2 D G . ~25!

The minimum of this potential is localized at the points
5^s&05m which is the solution of the ‘‘gap’’ equation

m2m̂

mGS
5

NcJ0

2p2
. ~26!

The functionJ0 is one of the set of integralsJn appearing in
the result of the asymptotic expansion of Eq.~23!:

Jn5E
0

` dT

T22n
e2Tm2

r~T,L2!, n50,1,2 . . . . ~27!

Although the potentialV(s,p i) leads to the correct form o
the ‘‘gap’’ equation1 @1#, it is incomplete in itsm̂-dependent
part. The reason is obvious: it destroys the symmetry bre
ing pattern of the basic Lagrangian, as one can conclude a
short calculations. We did not include in Eq.~25! the corre-
sponding part from the functionalP.

Let us show how to get these counterterms on the bas
formula ~23!. We have forD̄m

2 the following representation

D̄m
2 5dmdm1m21Q, ~28!

where

dm5]m1Am , Am5gmg5p2 ivm1
i

2
@gn,gm#g5an ,

Q5s212ms13p222amam1 igm~]ms12$am ,p%!

2
1

2
@gm,gn#~aman1vmvn1 i ]mvn!

2 ig5„]mam1 i @am ,vm#12~s1m!p…. ~29!

The functional trace in formula~23! is equal to

Tr~e2TD̄m
2
!5 i E d4 x

e2Tm2

~4pT!2 (
n50

`

tr~Tnan!, ~30!

1It is the same solution as the one from the Schwinger-Dy
equation.
3-4
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EFFECTIVE CHIRAL MESON LAGRANGIAN FOR THE . . . PHYSICAL REVIEW D 62 114013
where tr denotes the traces over color, flavor, and Lore
indices. The coefficientsan[an(x,x) are the coincidence
limit of Seeley-DeWitt coefficients. We need the first thr
of them for our purposes

a051, a152Q, a25
1

2
Q21

1

12
F2, ~31!

whereF25FmnFmn andFmn5@dm ,dn#.
In @28# we have shown form̂50 how to obtain the Gasse

and Leutwyler’s part of functionalP by which this definition
of heat kernel needs to be modified in order to arrive at
fermion determinant whose real part is invariant under ch
transformations. Let us now show how to get the expl
symmetry breaking partP8 of the functionalP. Restricting to
the second order Seeley-DeWitt coefficient one can ob
from Eqs.~19! and ~23! the effective Lagrangian

Leff5
vm i

2 1am i
2

2GV
2

1

2GS
@~s1m2m̂!21p i

2#

1
NcJ0

4p2
~s212ms1p i

2!2
NcJ1

8p2

3F1

6
tr~vmn

2 1amn
2 !2

1

2
tr„~¹m8 p!21~¹ms!2

…

1~s212ms1p i
2!2G2P8~s,p,vm ,am!, ~32!

where trace is to be taken in isospin space. In the consid
approximation the functionalP8 is simply a polynomial.
Here we have used the notation

vmn5]mvn2]nvm2 i @vm ,vn#2 i @am ,an#, ~33!

amn5]man2]nam2 i @am ,vn#2 i @vm ,an#, ~34!

¹ms5]ms2 i @vm ,s#1$am ,p%, ~35!

¹m8 p5]mp2 i @vm ,p#2$am ,s1m%. ~36!

In formula ~32! we already fixed the part of the function
P which is responsible for the chiral symmetric contributio
Now we need only to determine the explicit symmetry bre
ing part P8(s,p,vm ,am). If one uses the classical equatio
of motion for the pion field,p i5 iGSq̄g5t iq, see Eq.~15!,
one can rewrite Eq.~6! in terms of meson fields

dL52
2m̂

GS
~b ip i !. ~37!

Now our task is to choose the polynomialP8 in such a
way that the Lagrangian~32! will have the same transforma
tion law. Let us note thatP8 is unique up to a chirally in-
variant polynomial. One can always chooseP8 in such a
manner that the ‘‘gap’’ equation is not modified, i.e., usi
this chiral symmetry freedom to avoid fromP8 terms linear
in s. One can do this noting thatd(s21pW 2)522(m
2m̂)ds. It completely fixes the chiral freedom inP8. The
11401
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variation of P8(s,p,vm ,am) has to cancel all terms which
break explicitly chiral symmetry, excluding Eq.~37!. As a
result we get that

P8~s,p,vm ,am!5
m̂2~s21p i

2!

2m~m2m̂!GS

2m̂
NcJ1

2p2

3@~2m2m̂!s21s~s21p i
2!#

1m̂
NcJ1

4p2
tr$~2m2m̂!am

2 2am]mp

1 iam@vm ,p#12sam
2 %. ~38!

Finally we have the following expression for the effectiv
Lagrangian:

Leff5
vm i

2 1am i
2

2GV
2

m̂~s21pW 2!

2~m2m̂!GS

2
NcJ1

8p2

3F1

6
tr~vmn

2 1amn
2 !2

1

2
tr„~¹mp!21~¹ms!2

…

1„s212~m2m̂!s1p i
2
…

2G , ~39!

where

¹mp5]mp2 i @vm ,p#2$am ,s1m2m̂%. ~40!

It can be verified, by explicit calculation, that the seco
term in this expression gives the correct behavior of the
grangian with respect to chiral transformations. Other ter
are combined in chiral invariant groups. For example,
terms proportional toJ1 are chiral invariant. The same wil
be true for each group of terms at the sameJn where n
>1. In particular one can in this way obtain systematica
and step by step in the expansion~30! the m̂-part of the
effective potential which escaped from Eq.~25!.

IV. paµ MIXING, FIELD RENORMALIZATIONS AND
MESON MASS SPECTRUM

Having established the effective Lagrangian one may lo
for kinetic and mass terms of the composite meson fields
extract the physical meson masses by bringing the kin
terms to the canonical form by means of field renormali
tions. It is however known that for the axial-vector fieldam
one encounters the complication that chiral symmetry allo
for terms which induce mixing betweenam and pseudoscala
mesons. Such couplings must and can always be transfor
away by a transformation which removes the spin-0 com
nent of am . The simplest replacement of variables whi
really fulfills the necessary transformation property~14! is

am5am8 1
k

2
~$s1m2m̂,]mp%2$p,]ms%!,

vm5vm8 1
ik

2
~@s,]ms#1@p,]mp#!, ~41!
3-5
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reminiscent of the axial-vector and vector currents of
linear sigma model@30#. One can see that these formul
include the linear part of formula~3! and do not lead to
unwanted linear contributions in the vector field transform
tions ~there is not anys-vm mixing in this model!. One can
conclude that Eq.~3! is just a piece of a more complicate
expression which has to be used for a correct removing
the pam mixing effect in this approach. In the case und
consideration the commutator@s,]ms#50. These new re-
definitions, as compared to Eq.~3!, will induce changes a
the level of couplings with three or more fields. In the A
pendix it is shown that the replacement~41! is identical to
the field redefinition considered in@15# for the case of non-
linear realization of chiral symmetry. The constantk is fixed
by the requirement that the bilinear part of the effective L
grangian becomes diagonal in the fieldsp,am8 . We find in
this way that

1

2k
5~m2m̂!21

p2

NcJ1GV
. ~42!

To define the physical meson fields let us consider
bilinear part of the effective Lagrangian

Lfree5
1

4
trH GV

21@~vm8 !21~am8 !21k2~m2m̂!2~]mp!2#

2
m̂~s21p2!

~m2m̂!GS

1
NcJ1

4p2 F ~]ms!21gA
2~]mp!2

14~m2m̂!2@~am8 !22s2#2
1

3
~]mvn82]nvm8 !2

2
1

3
~]man82]nam8 !2G J . ~43!

The following renormalizations lead to the standard form
the kinetic terms of spin-1 fields:

vm8 5A6p2

NcJ1
vm

(ph)[
gr

2
vm

(ph) , am8 5
gr

2
am

(ph) . ~44!

Then we have

mr
25

6p2

NcJ1GV
, ma

25mr
216~m2m̂!2. ~45!

In particular it implies the relations

gA512
6~m2m̂!2

ma
2

5
mr

2

ma
2

, k5
3

ma
2

. ~46!

We also have to redefine the spin-0 fields

s5A4p2

NcJ1
s (ph)[gss (ph), p5gpp (ph), gp5

gs

AgA

.

~47!

The mass formulas for spin-0 fields are
11401
e

-

of
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r

mp
2 5

m̂gp
2

~m2m̂!GS

, ms
25gAmp

2 14~m2m̂!2. ~48!

As compared with previous calculations in@4,7,15# our mass
formulas have a different dependence on the current qu
mass. Numerically these lead to small deviations in the fi
results for m̂;7 MeV. However in the case of broke
SU(3)3SU(3) symmetry this effect is more essential a
has to be taken into account with all care. Anyway, the sm
numerical difference between final results cannot justify
incorrect treatment of symmetry principles.

Let us also point out that after the field redefinitions t
symmetry breaking pattern takes the form@25#

dLeff522mp
2 f pb ip i

(ph) , ~49!

where we used the relation

gp5
m2m̂

f p
. ~50!

Formula~49! leads to the well known PCAC~partial conser-
vation of axial-vector current! relation for the divergence o
the quark axial-vector current

]mJW5
m52 f pmp

2 pW (ph). ~51!

V. THE COSET-SPACE PARAMETRIZATION
FOR MESON FIELDS

To compare our Lagrangian in full detail with the result
the nonlinear approach@15# one has to perform a chiral field
dependent rotation which eliminates the nonderivative c
pling of p. A systematic treatment of the problem has be
developed by Coleman, Wess, and Zumino@31#. We con-
sider here the approximation to this picture which is kno
as the nonlinear realization in which no scalar particles ex
i.e., we shall eliminate completely the scalar degree of fr
dom from the meson Lagrangian~39!. The conventional
method to realize this idea is based on the fact that the
(s1m2m̂)21pW 2 is invariant under chiral transformations
Therefore one can put it equal to a constant~the nonlinear
ansatz! without spoiling chiral symmetry. In this case th
scalar fields is no more an independent variable and can
excluded from the Lagrangian@32,25# in favor of the pion
field. In the state with the minimum energy one hasp i50,
ands50. A constant can be fixed at this point, i.e.,

~s1m2m̂!21pW 25~m2m̂!2. ~52!

The theory with the constraint~52! can be formulated in
terms of the generating functional
3-6
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Z15E DqDq̄DsDp iDvm
i Dam

i Dl

3expH i E d4xFLqm2
l

2
„~s1m2m̂!2

1pW 22~m2m̂!2
…G J , ~53!

whereLqm is the quark-meson Lagrangian~15! rewritten in
the broken phase~the replacements→s1m is done!. One
has to take an integral over the Lagrange multiplierl(x). It
leads to thed-functional

d@~s1m2m̂!21pW 22~m2m̂!2#5 (
a51

2 d~s2sa!

2A~m2m̂!22pW 2
,

~54!

where

s1,256A~m2m̂!22pW 22~m2m̂!. ~55!

In Z1 one has to integrate out small fluctuations of the sca
field s around its vacuum states50. It means that onlys1
contributes to the generating functional, fors2522(m
2m̂)Þ0 atp i50. After integrating overs and quark fields
we have

Z15E Dm@p i #Dvm
i Dam

i expH i E d4x Leff8 ~p i ,vm
i ,am

i !J .

~56!

The LagrangianLeff8 (p i ,vm
i ,am

i ) is our Lagrangian~39!
where one has to substitutes by s1. The
SU(2)3SU(2)-invariant measureDm@p i # emerging inZ1
is related with the curvature in the space ofp i variables,

Dm@p i #5
1

A12
pW 2

~m2m̂!2

)
i 51

3

Dp i . ~57!

It is more convenient now to introduce new variablesf i ,
different fromp i , defined as

p i5~m2m̂!
f i

f
sinf, f5Af i

2. ~58!

The parametrization in terms off i fields corresponds to th
normal coordinate system on the surface of a thr
dimensional sphere: theSU(2)3SU(2)/SU(2) group mani-
fold. One can get the expression for the invariant measur
these new variables

Dm@p i #5detS ]pn

]fm
D 1

cosf )
i 51

3

Df i5N
sin2 f

f2 )
i 51

3

Df i .

~59!

We drop here the expression for the nonessential factorN.
11401
r
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It is not difficult to get from Eq.~21! the form of the
infinitesimal chiral transformation for the variablesf i

df i52b if cotf12
f ifk

f2
bk~12f cotf!22e i jka jfk .

~60!

Geometrically this transformation is nothing else than a l
for the coordinate changes in theSU(2)3SU(2)/SU(2)
coset-space under the action of theSU(2)3SU(2) chiral
group. Let us rewrite the LagrangianLeff8 (p i ,vm

i ,am
i ) in

terms of these new variables. It is customary to put it in
form which includes the fields with the covariant transform
tion law. For this purpose one has to introduce also the n
vector and axial-vector variables

vm5
1

2
@j†~vm8 1am8 !j1j~vm8 2am8 !j†#,

am5
1

2
@j†~vm8 1am8 !j2j~vm8 2am8 !j†#. ~61!

We use here the standard definition of the coset represe
tive j

j5expS 2
i

2
t if i D . ~62!

One can show that the Jacobian of this replacement is e
to one

]~v im ,aim!

]~v j m8 ,aj m8 !
51 ~63!

and the transformation laws of newvm8 ,am8 fields are covari-
ant, i.e.,

dvm8 5 i @a1b~f!,vm8 #, dam8 5 i @a1b~f!,am8 #, ~64!

where

b~f!5bk~f!tk , bk~f!5eknib i

fn

f
tan

f

2
. ~65!

Let us note that the part of chiral transformations which d
pends on the parameterb is x-dependent now,b(f),
through the fieldf(x). We remind also with the purpose o
future references that the functionjm has the same transfor
mation law

jm52 i ~j]mj†2j†]mj!, djm5 i @a1b~f!,jm#. ~66!

Another function,Gm , defines the covariant derivative in th
coset space, i.e., ifR transforms covariantly then the same
true for its covariant derivativedmR defined by

dmR5]mR1@Gm ,R#, ~67!

where

Gm5
1

2
~j]mj†1j†]mj!. ~68!
3-7
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One can show thatGm transforms like the Yang-Mills con
nection on the given coset space

dGm5 i @a1b~f!,Gm#2 i ]mb~f!. ~69!

All these functions appear naturally in the effective Lagran
ian ~56! by means of the above mentioned replacements
variables and we have as a result

Leff8 5
1

4GV
tr@~vm8 !21~am8 !2#1

mp
2

4
f p

2 tr~jj1j†j†22!

1
NcJ1

16p2 F ~m2m̂!2 tr~jm22am8 !22
1

3
tr~Ṽmn

2 1Ãmn
2 !G ,

~70!

where we put

Ṽmn5Vmn8 1
i

2
~@jm ,an8#2@jn ,am8 # !, ~71!

Ãmn5Amn8 1
i

2
~@jm ,vn8#2@jn ,vm8 # !, ~72!

and

Vmn8 5dmvn82dnvm8 2 i @vm8 ,vn8#2 i @am8 ,an8#, ~73!

Amn8 5dman82dnam8 2 i @am8 ,vn8#2 i @vm8 ,an8#. ~74!

Similarly to the case with linear realization of chiral sym
metry one has now to diagonalize the pseudoscalar–a
vector bilinear form in the Lagrangian~70!. The replacemen

am8 →am8 1k~m2m̂!2jm , ~75!

with k defined by Eq.~42! solves the problem. We have as
result

Leff8 5
f p

2

4
tr~jmjm!1

mp
2

4
f p

2 tr~jj1j†j†22!

2
1

2gr
2

tr~Vmn
2 1Amn

2 !1
1

gr
2

tr@mr
2~vm8 !21ma

2~am8 !2#,

~76!

where after the replacement~75! the antisymmetric tensor
Vmn andAmn read

Vmn5Vmn8 1
igA

2
~@jm ,an8#2@jn ,am8 # !1

i

4
~12gA

2 !@jm ,jn#,

~77!

Amn5Amn8 1
igA

2
~@jm ,vn8#2@jn ,vm8 # !

1
1

2
~12gA!~dmjn2dnjm!. ~78!

The following redefinitions lead us to the physical pseud
scalar, vector, and axial-vector states:
11401
-
of

l-

-

f i5
1

f p
p i

(ph) , vm8 5
gr

2
vm

(ph) , am8 5
gr

2
am

(ph) . ~79!

The Lagrangian~76! is the result of the nonlinear realiza
tion in which no scalar particles exist. It is sufficient to illu
trate our point, although it is an approximation. The fi
term in Eq.~76! is the canonical Lagrangian for the nonline
sigma model. The second term of the Lagrangian breaks
ral symmetry and obviously satisfies the symmetry break
pattern of the basic quark Lagrangian. Except for that te
the rest of the terms in Eq.~76! are manifestly chiral invari-
ant. It means that allm̂-dependence is absorbed in couplin
constants, for instance the mass of the axial-vector me
ma , and the coupling,gA , depend onm̂ @see Eq.~45! and
Eq. ~46!#. Our expression~76! clearly shows that only the
symmetry breaking part of the Lagrangian includes the cl
ter S5j†j†1jj with a noncovariant transformation law
This combination~and the other similar one:D5j†j†2jj)
never appears among the interaction vertices, it would g
erate spurious symmetry breaking effects. The structure
our Lagrangian differs in this respect from the known e
pressions where the explicit symmetry breaking effect
also been included~see for instance@33,15#!.

VI. CONCLUDING REMARKS

The modulus of the chiral fermion determinant is we
defined by the formula lnudetDu. It has generally been as
sumed that this formula can be also used in the case w
chiral symmetry is explicitly broken. In this work we hav
shown in considerable detail that it is not true. We ha
described a practical tool to derive in a systematic and c
sistent way the real part of ln detD considering as an ex
ample the ENJL model with the chiralSU(2)3SU(2) sym-
metric four-quark interactions. In this special case we arr
at the fermion determinant as a result of integration o
quark fields in the corresponding generating functional. T
effective meson Lagrangian describing the dynamics of c
lective degrees of freedom emerges in this way. The sym
try breaking pattern of the starting quark Lagrangian sho
not be changed during bosonization. This symmetry requ
ment together with the Schwinger-Dyson equation which
fines the vacuum state of the model helps us to fix co
pletely them̂-dependent part of the effective Lagrangian.
differs from the ones obtained on the ground of other me
ods like the direct calculation of the one-loop Feynman d
grams, or the naive use of the proper-time representatio
form ~1!.

In this work we have addressed another point also rela
to the chiral symmetry transformation laws. It is associa
with the well-known mixing terms in the pseudoscalar-axi
vector fields. We have shown that the way presented in
literature to diagonalize this admixture in the case of
linear realization of chiral symmetry is not compatible wi
the transformation laws for the vector and axial-vector fie
and induces spurious symmetry breaking terms. We h
derived the minimal form of covariant redefinitions for th
spin-1 fields needed to satisfy simultaneously the meso
3-8
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transformation laws and diagonalization. We find out th
our redefinitions of vector and axial-vector fields is in agre
ment with the standard redefinition of axial-vector fields
the nonlinear case.

In the end we have rewritten our Lagrangian in the no
linear form excluding completely the scalar field. This a
proximation is sufficient to pin down the general structu
containing the explicit symmetry breaking terms in the effe
tive mesonic Lagrangian for the ENJL model with nonline
realization of chiral symmetry. We conclude that the effe
of explicit chiral symmetry breaking has never been trea
with enough care in the framework of the NJL model a
have presented in this work a consistent method to tak
into account.
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APPENDIX

Let us show here that the fields redefinition~41! coincides
with a similar redefinition which has been used in the case
nonlinear realization of chiral symmetry. We shall start fro
the piece of Lagrangian~15! with the collective fields of
spin-1

q̄gm~vm1g5am!q5q̄gmH vm8 1 i
k

2
@p,]mp#

1g5@am8 1k„~s1m2m̂!

3]mp2p]ms…#J q. ~A1!

To come to the nonlinear realization of chiral symmetry o
has to eliminate the scalar field, which is achieved by
constraint

s1m2m̂5~m2m̂!A12
p i

2

~m2m̂!2
. ~A2!

Let us choose the exponentional parametrization for p
fields

p i5~m2m̂!
f i

f
sinf, f5Af i

2. ~A3!

The pure geometrical picture appears if we redefine at
same time the quark fields

Q5~j†PR1jPL!q, j5expS 2
i

2
t if i D , ~A4!

where the projection operators 2PR5(11g5) and 2PL5(1
2g5) have been introduced. In this case one needs als
redefine the vector and axial-vector fields. The new variab
Vm andAm are the following ones:
11401
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Vm5
1

2
@j~vm8 1am8 !j†1j†~vm8 2am8 !j#,

Am5
1

2
@j~vm8 1am8 !j†2j†~vm8 2am8 !j#. ~A5!

In these variables the replacement can be written as

Vm→Vm1~m2m̂!2
k

2
@j~Xm1Ym!j†1j†~Xm2Ym!j#,

Am→Am1~m2m̂!2
k

2
@j~Xm1Ym!j†2j†~Xm2Ym!j#,

~A6!

where Xm5tkXkm , Ym5tkYkm with the following expres-
sions forXkm andYkm :

Xkm5«k j if i]mf j

sin2 f

f2
, ~A7!

Ykm5Fdk j sinf cosf1
fkf j

f S 12
sinf

f
cosf D G ]mf j

f
.

~A8!

One can obtain that

j~Xm1Ym!j†1j†~Xm2Ym!j50, ~A9!

j~Xm1Ym!j†2j†~Xm2Ym!j52jm , ~A10!

where

jm5tkjkm , jkm5Fdk j

sinf

f
1

fkf j

f2 S 12
sinf

f D G]mf j .

~A11!

Therefore we get for the nonlinear case the standard repl
ment for the axial-vector field

Am→Am1k~m2m̂!2jm . ~A12!

At the same time the vector field does not change.
3-9
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