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Effective chiral meson Lagrangian for the extended Nambu-Jona-Lasinio model
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We present a derivation of the low-energy effective meson Lagrangian of the extended Nambu-Jona-
Lasinio (ENJL) model. The case with a linear realization of brok8kJ(2)x SU(2) chiral symmetry is
considered. There are two crucial points why this revision is needed. First, it is the explicit chiral symmetry
breaking effect. On the basis of symmetry arguments we show that relevant contributions related with the
current quark mass terms are absent from the effective Lagrangians derived so far in the literature. Secondly
we suggest a chiral covariant way to avoid the nondiagonal terms responsible for the pseudoscalar—axial-vector
mixing from the effective meson Lagrangian. In the framework of the linear approach this diagonalization has
not been done correctly. We discuss as well #g(2) <X SU(2)/SU(2) coset space parametrization for the
revised Lagrangianonlinear ansajz Our Lagrangian differs in an essential way from those that have been
derived until now on the basis of both linear and nonlinear realizations of chiral symmetry.

PACS numbsgps): 12.39.Fe, 11.30.Rd

[. INTRODUCTION wavelength expansion of its heat kernel satisfies this require-
ment. This technique is especially good to describe the low-
The Nambu-—Jona-LasiniNJL) model[1] is useful be- energy regime of QCIP22]. However, in the presence of the
cause it allows us to derive the effective meson Lagrangia@xplicit chiral symmetry breaking term in the Lagrangian,
from a more fundamental, i.e., microscopic, theory ofthe standard definition of IdetD| in terms of a proper-time
quarks. The effective four-fermion interactions of the NJL-integral
like models represent “certain approximations” to QCD.
From the theoretical point of view, however, it is still not In|detD| = — }fmd_-r 2 -T0'D
. . O ” o = p(T,A%)Tr(e ) (1)
clear in which way these four-quark interactions arise in 2Jo T
QCD. In the case of two flavors one of the possible mecha-
nisms might be the quarks’ interaction via the zero modes omodifies the explicit chiral symmetry breaking pattern of the
instantond 2], the so-called 't Hooft interactions. Neverthe- original quark Lagrangian and needs to be corrected in order
less there are a lot of investigations directed to the low1o lead to the fermion determinant whose transformation
energy hadron phenomenology following from NJL-like La- properties exactly comply with the symmetry content of the
grangians[3—18. The reasons are clear and well known.basic Lagrangian23]. The necessary modifications can be
These approximations are much easier to handle than QCDone by adding a functional in the collective fields and their
They provide us with a unique way of constructing effectivederivatives to the definition of the real part of the fermion
meson Lagrangians including vector and axial-vector medeterminant; i.e., we define that
sons. They incorporate most of the short-distance relations
which follow from QCD. In addition the NJL ke models Re(In detD) =In|detD|+P. @
are a good playground from the mathematical point of view. . .
Starting from the basic quark Lagrangian one can develop? the limit m=0, wherem is a current quark mas® =0
both the techniques of the linef8,4,7 and nonlineaf15]  and the old resultl) emerges as a part of our definition. This
realizations of chiral symmetry. Both parametrizations forstrategy reminds Gasser and Leutwyler's correcting proce-
the chiral fields must lead to the same predictions and arélure which they used however for a different purpose,
equivalent on the mass-shell. The integration over the quarRamely to restore the standard resil for the real part of
fields in the generating functional yields the determinant ofthe fermion determinant defined by the heat kernel
the Dirac operatoD in the presence of bosonic fields. Its Tr{exp(—TD?)], especially chosen to include anomalies
evaluation must conform with the chiral covariant formula-[22]. Both of these procedures are aimed at the subtraction of
tion of quantum field theory. The difficulties encountered ininessential contributions inherent to the starting definitions of
the realization of this idea are reviewed[it9]. detD. These contributions are inessential in the sense that
In order to calculate the effective action and study thethey change the content of the theory, what should not be.
spontaneous breakdown of global chiral symmetry it is im-The procedures ifi22] and ours differ however through the
portant to employ a method of calculation which preservesvay of fixing the form of the functiond®, because the origin
the symmetry explicitly. It is known that the Schwinger of these contributions is different. In the case under consid-
proper-time representatidi20,21 for In|detD| in terms of  eration the functionaP must be chosen in such a manner
the modulus of the quark determinant and the following longthat the real part of the effective Lagrangian for the
bosonized extended NJ(ENJL) model Lo will have the
same transformation laws as the basic quark Lagrangian
*On leave from the Joint Institute for Nuclear Research, Laborain addition it should not change the “gap” equation, i.e., the
tory of Nuclear Problems, 141980 Dubna, Moscow Region, RussiaSchwinger-Dyson equation which defines the vacuum state
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of the model. These requirements together completely fix the The plan of the paper is the following: In Sec. Il we
freedom inherent to the definition of this functional. Let usdiscuss the Lagrangian of ENJL model and show that chiral
stress that in our cade cannot be fixed by the requirement SU(2)x SU(2) transformations of quark fields dictate the
that the determinant remains unchanged when axial-vectdransformation laws of the auxiliary bosonic fields. These
and pseudoscalar fields are switched off, like, for instance, iollective variables are necessary to rearrange the four-quark
[22]. As a consequende contributes to the effective poten- Lagrangian of the ENJL model in an equivalent Lagrangian
tial of the NJL model at every step of the heat kernel expanwhich is only quadratic in the quark fields. In Sec. Il we
sion. We haveP being a functional as opposed to a polyno- show how to define the fermion determinant for the case in
mial in [22]. This is a general feature related to the which explicit symmetry breaking takes place. We calculate
nonrenormalizability of the NJL model. Using formu{d8)  the first three contributions in the asymptotic expansion of
together with the way we propose to % one can system- the heat kernel in full detail. We derive the corresponding
atically take into account the effect of explicit chiral symme- correcting polynomial from the function&® and show that it
try breaking in the ENJL model. To show this is one of theis completely fixed by the symmetry breaking pattern of the
reasons for this paper. The correct description of explicitbasic quark Lagrangian and the requirement fathould
chiral symmetry breaking is evidently necessary in order tanot change the “gap” equation. The effective meson La-
obtain realistic mass formulas and meson dynamics. We degrangian’ is obtained at the end of this section. In Sec. IV
rive these expressions here and show that they are differemte introduce the new variables for vector and axial-vector
(already in the leading current quark mass dependenj parfields in order to avoid the pseudoscalar-axial-vector mixing
from the results known in the literature. term from L.¢. We use chiral covariant combinations for
The second reason for this work is related to the problemhis replacement. We discuss the field renormalizations
of the pseudoscalar—axial-vector mixing in the ENJL modelneeded to define the physical meson states and the meson
For some reason this diagonalization has never been domeass spectrum. The transition to the nonlinear version is
correctly in the framework of the linear realization of chiral done in Sec. V. The concluding remarks are given in Sec. VI.
symmetry, as it has been already indicatef4]. The usual  Finally we show in the Appendix that the replacements of
procedure recurs to a linearized transformation variables done in Sec. IV for the spin one mesons are com-
pletely equivalent to the replacement which has been already
a,—a,+cd,m, ) us_ed i_n th_e Iiteratu_re in the context of the nonlinear param-
etrization in the chiral group space.

which ruins the chiral transformation properties of the field Il. LAGRANGIAN AND ITS SYMMETRIES
a, and gives rise to all sorts of apparent symmetry breaking. . . . .
H 9 bp y y 9 Consider the effective quark Lagrangian of strong inter-

For example, it leads to thew coupling of the form ) S :
p,L.a,], which breaks chiral symmetry. Here we Suggestact|ons which is invariant under a global coBU(N,;) sym-

instead a covariant way to avoid nondiagonal terms respon- try

sible for the pseudoscalar—axial-vector mixing in the effec- — R Gs — —

tive meson Lagrangian. The covariant redefinition of the L=q(iy*d,—m)q+ 7[(QQ)2+(q|75TiQ)2]
axial-vector field cannot be done without a corresponding

change in its chiral partner, i.e., the vector field. This is a Gy — y = )

direct consequence of the linear realization of chiral symme- — 5 Lay*nia)*+(qy“ysmia)°l. 4
try. We have found two bilinear combinations of scalar and

pseudoscalar fields which transform like axial-vector andHere q is a flavor doublet of Dirac spinors for quark fields
vector fields and are chiral partners at the same time. We alsajz (UE). Summation over the color indices is implicit. We
show that our procedure, if one rewrites it in the new COS€ef e tr;e standard notation for the isospin Pauli matrices

space variables corresponding to the nonlinear representaticinhe current quark mass matrik—diag(m, .my) is chosen
- usttld

hiral is i ical h I k : ?
?rgrtr??lg] |(r)r;1[295r]oup, 's identical to the one already nOWnin such a way thain,=my. Without this term the Lagrang-

: : i 4) would be invariant under global chirabU(2)
As a result we get the effective meson Lagrangian of thdd" ( .
ENJL model in a form which includes only the first three *<SU(2) symmetry. The coupling constarg andGy have

(ap,a;,a,) Seeley-DeWitt coefficients in the asymptotic ex- dimensions (lengttf)and can be fixed from the meson mass

pansion for the heat kernel. We restrict to this approxima-SpeCtrum' ‘ ion law for th K fields is the foll
tion, the extension is straightforward. Because of the afore- | N€ transformation law for the quark fields is the follow-
mentioned reasons we obtain a new revised Lagrangiall9:

which obeys all symmetry requirements of the model for the Sa=i(a+ Sa=—ia(a— 5
case of linear realization of brokedU(2)xXSU(2) chiral a=i(atyspa, q Ala=rsh), ©
symmetry. We derive as well tt@U(2) X SU(2)/SU(2) co-  \here parameters of global infinitesimal chiral transforma-
set space parametrization for the revised Lagrangian. For thgbns are chosen as=«;7;, 8= ;7. Therefore our basic

purpose the Lagrange multiplier method is used to eliminatef_agrangianﬁ transforms according to the law
the scalar field from the generating functional, thus arriving

to the nonlinear version of the model. SL=—2im(qysBq). (6)
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It is clear that nothing must destroy this symmetry breaking.e., the transformation law of the Dirac operator has an in-
requirement of the modeive are not considering anomalies homogeneous term which is proportionalno In particular,

herg. _ _ we have
Following the standard procedure we introduce color sin-

glet collective bosonic fields in such a way that the action  8(D'D)=i[a+ ys8,D'D]+2im(ys8D—D'ysp).
becomes bilinear in the quark fields and the quark integration
becomes trivial R ]

The second term-m can be used to get systematically the

explicit symmetry breaking pattern of the effective Lagrang-
ian derived on the basis of formu(&). The simplest way to
do this is to work in Euclidean space. Since the Dirac

zZ= f DqDYDsDp; DV, DA,

wexo i | d* £— 2+ p2)+ V2. +A2. } y-matnpes in this space are gntlhermltlap the pomblnatlon
p{ f ZGS( P 2GV( wit i) proportional to the derivatives contained inysBD
@ —D"%ysB) will vanish. It simplifies substantially the evalua-

tion of §In|detD| and allows to derive in a closed form the
We suppress external sources in the generating functional functional P in Eq. (2). After that the asymptotic expansion
and assume summation over repeated Lorenty @nd ©Of P to obtain the correcting polynomials at each power of
isospin (=1,2,3) indices. One has to require from the newthe proper-time will be a purely technical procedure. How-

collective variables that ever in this paper we prefer to work directly in Minkowski
space and present an alternative way to derive correcting
8(s*+p})=0, 8(V2+A%)=0 (8)  polynomials step by step starting from the first term of the

proper-time expansion.
in order not to destroy the symmetry of the basic Lagrangian The subsequent integration over quark fields shows that

L. the effective potential has a non-trivial minimum and that
After replacement of variables B, spontaneous chiral symmetry breaking takes place. Redefin-
. — ing the scalar fieldr— o+ m we come finally to the effec-
s=o—-m+Gg(qq), (9 tive action
= m—Gg(qi vs7iq), 10 (c+tm-—m??+af vii+al,
Pi= s(diys7id) (10) Se=—iIn detDm—f dx i Ui i ,
i i _ 2Gg 2Gy
V,=v,+Gy(qy,7q), (11 (19
A;L:aiﬂ+ Gv(a},ﬂ%ﬂq), (12)  Where the Dirac operatdd,, is equal to
Dp=iy*d,—m—o+i +y*“(v,+vsa,). (20
these requirements together with E§) lead to the transfor- m= Y O otiysmty vt ysa,). (20
mation laws for the new collective fields: In this broken phase the transformation law of the pion field
) - changes to
So=—{B,7}, éw=ila,7]+2(c—m)p, (13

Sm=i[a,m]+2(c+m—m)B (21)
ov,=ila,v,]+i[B,a,], da,=i[a,a,]+i[B,v,].
(14  in full agreement with the variable replacement-o+m
_ _ for the scalar field in Eq(13). What remains to be done to
We have introduced the notation= 7, v,=v,i7i, 8,  have an explicit representation of the effective action to lead-
:amTi . Therefore the transformation law of the quark fleldS”r]g order in the low energy expansion is to evaluate the
f|na”y defines the transformation law of the bosonic fields. determinant Of the differentia' Operatmm . We Sha” con-

f The Lagrangian in the new variable£{ L") has the  sjder this problem in the following section.
orm

~ I1l. CAL LATION OF THE REAL PART
(o—m2+m? v2+a?, CALCULATION O

'— D0 — OF THE FERMION DETERMINANT:
L£'=qDq , (15
2Gg 2Gy THE CURRENT QUARK MASS EFFECT
where The modulus of the fermion determinant/detD,|, is
. _ conveniently calculated using the heat kernel method or even
D=iy"d,—o+iysm+ y*(v,+ vsa,). (16)  more directly in the way suggested ji9]. The result of

_ _ these calculations on the basis of form(lais well known,
Let us note that although the Dirac operalbdoes not in-  see for examplg7]. We prefer this way to the direct calcu-
clude the current quark mass, the transformation law of lation of Feynman one-loop integrdl26,27,4,10, since we

pion fields does. Thus, need a method which allows to control the symmetry content
. of the result at each considered step. The differential operator
6D=i[a,D]—i{ysB,D}—2imysB; (17 D, depends on collective meson fields which have well de-
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fingd transformation laws with respect to the action of thg p(T,Az):l_(1+TA2)e—TA2_ (24)

chiral group. If one neglects the current quark mass term in

the basic quark Lagrangian the combinatibgD, trans- Let us put this expression into formu(@) and calculate

forms covariantly, i.e., the corresponding effective potenti®(o,;), using Eg.
5(DLDm)=i[a+ 75,6’,D;ran]- (22 E;g with fieldsv, anda,, switched off. We have as a result

This fact ensures that the definition of the real part of mo o2+ 77? NchA2

IndetD,, in terms of the proper-time integrél) cannot de- V(o,m)=— G_+ °G 1- 5

stroy the symmetry properties of the basic Lagrangian. How- s s 4

ever, ifm=0 this is no longer true. There is no doubt that the N, A2

current quark mass does break chirality in the definition T (o%+ rriz)zln(1+ >

In|detD |, for we have seen in Sec. Il that the combination 8m oot

DLDm transforms inhomogeneously. The question is how- JET

ever, whether one should trust the result obtained through the —A4Inl 1+ ! ) ] (25)

formula IndetD,|. We have found that this definition needs A?

to be corrected in the presence of the explicit symmetry
breaking term, since otherwise the transformation law of thelhe minimum of this potential is localized at the poimt
effective bosonized meson Lagrangian will be different from={c)o=m which is the solution of the “gap” equation
the transformation law of the basic quark Lagrangian, i.e.,
the content of the theory will be changed. As we already = )
mentioned in the introduction the problem can be solved if mGs 242
we define the real part of the fermion determinant through
formula (2). This definition can be extended to include the The functionJ, is one of the set of integralk, appearing in
case with the heat kernel suggested by Gasser and LeutwylBt€ result of the asymptotic expansion of E23):
[22] or vice versa, for the formal part of these definitions is - dT
the same. The question how to extend the Gasser and Leu- \]n:f e*Tmzp(T,Az), n=0,12... . (27
twyler's treatment of the chiral fermion determinant to the oTZ™"
case of nonrenormalizable models like NJL has been consid-
ered in[28]. Therefore we proceed from the definition Although the potentiaV/(o, ;) leads to the correct form of
— the “gap” equatiort [1], it is incomplete in itsn-dependent
—iln detDm=|—f d—Tp(T,AZ)TI‘(e_TBan) part. The reason is obvious: it destroys the symmetry break-
2)o T ing pattern of the basic Lagrangian, as one can conclude after
short calculations. We did not include in EQ5) the corre-
(23) sponding part from the function&l.
Let us show how to get these counterterms on the basis of

formula (23). We have forﬁﬁ1 the following representation:

m-m_ NcJo

(26)

a

w8y

—f d*x P(o,m,v
where P picks up all inessential contributions contained in
the proper time integral including the terms with the explicit Sﬁfd“d;ﬁ m?+Q, (28)
symmetry breaking. The operat@®@,, is of the formD,,
=ysD,. At this level one should not worry that the expres- Where

sion D2, does not transform covariantly under the action of i

the chiral group. There is nothing wrong with this, as longas d,=d,+A,, A,=y*ysm—iv,+ Sy v lvsa,,
one is careful to express the final result in terms of chiral

invariant quantities. The present procedure allows to doitin =~ Q=g¢?+2mo+ 3772—2a“a#+ iy"(d,0+2{a, m})
a systematic and consistent way for each order of the heat
kernel expansion. The functiong{ o, v, ,a,) depends on
collective fields and their derivatives. We define it by requir-
ing the real part of the fermion determinant to transform as i ,
Lagrangian(4). The imaginary part of In d&, will be dis- —lys(d,a"+i[a, ,v*]+2(o+m)m). (29
cussed elsewhere. The expressi@f) belongs to the ones
which are known as proper-time regularizations. In the case
of nonrenormalizable models like ENJL we have to intro- -
duce the cutoffA to render the integrals ovar convergent. Tr(e‘TDm)zij d*x
We consider a class of regularization schemes which can be

incorporated in the expressiof23) through the kernel

p(T,A?). These regularizations allow to shift in loop mo-

menta. A typical example is the covariant Pauli-Villars cut- it is the same solution as the one from the Schwinger-Dyson
off [29] equation.

1 .
— E[y“,'y l(a,a, v, +id,v,)

The functional trace in formulé23) is equal to

T2
eTm

anTr nzo tr(T"a,), (30
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where tr denotes the traces over color, flavor, and Lorentrariation of P’ (o, m,v,,a,) has to cancel all terms which
indices. The coefficients,,=a,(x,x) are the coincidence break explicitly chiral symmetry, excluding E¢37). As a
limit of Seeley-DeWitt coefficients. We need the first threeresult we get that
of them for our purposes

m?(o?+ 7T|2) ~NgJq
1., 1, P'(o,mv,,a,)= = —m——
ap=1, a;=—Q, azzzQ +1—2F , (3D 2m(m—m)Gg 2m
" 2 2 2
whereF2=F#*F , andF ,,=[d,, .d,]. xLzm=mjo™+ o(o™t 7))
In [28] we have shown fom=0 how to obtain the Gasser ~NJqp ~ 5
and Leutwyler’s part of functiond? by which this definition + m tr{(2m-mja;,—a,d,
of heat kernel needs to be modified in order to arrive at the &
fermion determinant whose real part is invariant under chiral +ia,[v,,m]+20a%}. (39
transformations. Let us now show how to get the explicit S :
symmetry breaking paR’ of the functionalP. Restricting to Finally we have the following expression for the effective

the second order Seeley-DeWitt coefficient one can obtaiagrangian:

from Eqgs.(19) and (23) the effective Lagrangian - .
_Uii+aii m(0'2+772) NCJ]_

2 2
voitay, 1 - Lef= ~
Lor= =36, G5/ 7 MM ) T v 2m-mGs 8
N.J N.J X 1tlr(v2 +a? )—Etr((V )2+ (V ,0)?)
+ =2 (02 +2mo+ 7)) — —— 6 a2k g
T
+(o?+2(m—m)o+ 7?)?|, (39
1 2 2 1 ’ 2 2 !
X gtr(vﬂﬁaﬂv)—ztr((vﬂw) +(V,0)9)
where
+(02+2m0+77i2)2}—|3'(0',77,v#,alu), (32 Vﬂw=r9ﬂ'n'—i[v,u,7'r]—{alu,O'-I-m—rAn}. (40)

where trace is to be taken in isospin space. In the consider Itg can be_ verified, t_)y e>§plicit calculation, that_the second
approximation the functionaP’ is simply a polynomial G€rm in thls.expressmn gives the correct bghawor of the La-
Here we have used the notation " grangian Wlth respect to chlr:_;\I transformations. Other terms

are combined in chiral invariant groups. For example, the

Vup=0,0,—dv,~i[v,v,]-i[a,,a,], (33)  terms proportional taJ; are chiral invariant. The same will

) ) be true for each group of terms at the safdewheren
a,,=d,a,~d,a,~ila,v,]-i[v,.a,] (34 =1. In particular one can in this way obtain systematically
V,o=d,0-i[v,,0]+{a, 7}, (35) and step by step in the expansi@®0) the m-part of the

effective potential which escaped from HE5).
Vur=d,m—i[v,,m]—{a,,c+m}. (36)
) ) IV. mra, MIXING, FIELD RENORMALIZATIONS AND
In formula(32) we already fixed the part of the functional MESON MASS SPECTRUM
P which is responsible for the chiral symmetric contribution.

Now we need only to determine the explicit symmetry break- Having established the effective Lagrangian one may look
ing partP’ (o, m,v,,,a,). If one uses the classical equation for kinetic and mass terms of the composite meson fields and

extract the physical meson masses by bringing the kinetic
terms to the canonical form by means of field renormaliza-
tions. It is however known that for the axial-vector fiedg

om one encounters the complication that chiral symmetry allows
OL=— G—(,Bim). (37) for terms which induce mixing betwee), and pseudoscalar

S mesons. Such couplings must and can always be transformed

away by a transformation which removes the spin-0 compo-
nent ofa,. The simplest replacement of variables which
really fulfills the necessary transformation propefty) is

of motion for the pion field,m=iGsaysriQ, see Eq.(15),
one can rewrite Eq6) in terms of meson fields

Now our task is to choose the polynomial in such a
way that the Lagrangia(82) will have the same transforma-
tion law. Let us note thaP’ is unique up to a chirally in-
variant polynomial. One can always chooBeé in such a K .
manner that the “gap” equation is not modified, i.e., using a,=a,+ 5({U+ m-m,d, 7} —{m,d,o}),
this chiral symmetry freedom to avoid fro®' terms linear
in o. One can do this noting thad(c?+ 72)=—2(m

i K
—m)do. It completely fixes the chiral freedom iR’. The = vut 7([0’(9 oltlmaum, (41)

o
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reminiscent of the axial-vector and vector currents of the ﬁwgz
linear sigma mode[30]. One can see that these formulas mi=——"—, mi=g.m3+4(m-m). (48
include the linear part of formul&3) and do not lead to (m—m)Gg

unwanted linear contributions in the vector field transforma-
tions (there is not anyr-v,, mixing in this mode). One can

concludg that Eq<3) is just a piece of a more compllcgted Qormulas have a different dependence on the current quark
expression which has to be used for a correct removing o

the ara, mixing effect in this approach. In the case under ass: Numerically these lead to small deviations in the final
" : ~ .

consideration the commutatftr,d,o]=0. These new re- results form~7 MeV. HOV\_/ever in _the case of b_roken

definitions, as compared to E¢), will induce changes at SU(3)XSU(3) symmetry this effect is more essential and

the level of couplings with three or more fields. In the Ap- has to be taken into account with all care. Anyway, the small

pendix it is shown that the replacemefdt) is identical to numerical difference between final results cannot justify the

the field redefinition considered [i15] for the case of non- incorrect treatment of symmetry principles. o

linear realization of chiral symmetry. The constanis fixed Let us also point out that after the field redefinitions the

by the requirement that the bilinear part of the effective La-Symmetry breaking pattern takes the fof2b]

grangian becomes diagonal in the fierdsa;L. We find in

this way that SLeog=—2m2f  BimP (49)

2

NeJ Gy’

As compared with previous calculations[#,7,15 our mass

1 B SO
Z—(m m)

(42) where we used the relation

To define the physical meson fields let us consider the
bilinear part of the effective Lagrangian

(50

1 _ . , -
Liee=7 1) Gy T(v})+ (@) + k2(m=m)%(,,m)?]

Formula(49) leads to the well known PCAQartial conser-
vation of axial-vector currentrelation for the divergence of
({9#0)24. gi(aﬂW)Z the quark axial-vector current

ﬁ1(02+ ?) N NcJq
(M—-m)Gg 42

. 1 d,3t=2f m2z(P", 51
+4(m-m)?(a},)?~o?]— §(r9#v;—r9yv;)2 rS e (51)
1 o V. THE COSET-SPACE PARAMETRIZATION
— 30,8, 0,3,)%| 1. (43 FOR MESON FIELDS

) o To compare our Lagrangian in full detail with the result of
The following renormalizations lead to the standard form forine nonlinear approadi 5] one has to perform a chiral field
the kinetic terms of spin-1 fields: dependent rotation which eliminates the nonderivative cou-
672 g 9 pling of 7. A systematic treatment of the problem has been
v,= \/—ngfh)z?pvifh), a}’L:?”aﬁfh). (44)  developed by Coleman, Wess, and Zum([i3d]. We con-
el sider here the approximation to this picture which is known
as the nonlinear realization in which no scalar particles exist,

Then we have i.e., we shall eliminate completely the scalar degree of free-

5 6?2 . ~ dom from the meson Lagrangiaf89). The conventional
M=N 3,6y’ ma=m;+6(m—m)-. (45  method to realize this idea is based on the fact that the sum
C ~ -> - . . . .
(o+m—m)?+ 72 is invariant under chiral transformations.
In particular it implies the relations Therefore one can put it equal to a constéhe nonlinear

ansatz without spoiling chiral symmetry. In this case the

. 6m-m? mp 3 scalar fieldo is no more an independent variable and can be
9a=1- m  m2 K= m2 (46 excluded from the Lagrangial82,25 in favor of the pion
é a a field. In the state with the minimum energy one hgs-0,
We also have to redefine the spin-0 fields ando=0. A constant can be fixed at this point, i.e.,
2 -~ > ~
o= am oP=g PN F=g 7PN g = 9s (o+m—m)?+ 7?=(m—m)Z. (52
N.Jq Jaa
(47) , . ,
The theory with the constraint2) can be formulated in
The mass formulas for spin-0 fields are terms of the generating functional
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Zl=J~DqDaboIManLDaLDA

><exp{ if d*x

+ 72— (m—m)?)

A “
Lom— E((a+ m—m)?

] : (53

where Ly, is the quark-meson Lagrangidh5) rewritten in
the broken phaséhe replacement-— o+ m is dong. One
has to take an integral over the Lagrange multiphiéx). It
leads to thes-functional

S[(a+m—m)2+ 72— (m &F]jg o)
g - m - = ’
a=1 Z,I(m_ﬁ.')Z_E_Z

(59

where

(55

o1 =*+\(m—m)?— 72— (m—m).
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It is not difficult to get from Eq.(21) the form of the
infinitesimal chiral transformation for the variables

5¢:2m¢cm¢+2iﬁk

Bi(1—¢pcotd)—2€a; Py
(60)

Geometrically this transformation is nothing else than a law
for the coordinate changes in tHeU(2)XSU(2)/SU(2)
coset-space under the action of tB&J(2)xXSU(2) chiral
group. Let us rewrite the Lagrangiafg(w;,v),,a,) in
terms of these new variables. It is customary to put it in the
form which includes the fields with the covariant transforma-
tion law. For this purpose one has to introduce also the new
vector and axial-vector variables

1 Too0 ’ ’ ’ T
v,= 3¢ (v, ayErEw,—a,)ET,

1 + ’ ’ ’ ’ T
a,=5l¢ (v, ra,)é— v, —a,)e] (61)

We use here the standard definition of the coset representa-

In Z; one has to integrate out small fluctuations of the scalagjye ¢

field o around its vacuum state=0. It means that onlyr;
contributes to the generating functional, for,=—2(m
- ﬁ1) #0 atm;=0. After integrating ovewrr and quark fields
we have

2. [ Dt 100} e, o | 0%t |
(56)

The LagrangianLe( v}, ,a,) is our Lagrangian(39)
where one has to substitutec by o;. The
SU(2)X SU(2)-invariant measur®u[ ;] emerging inZ,
is related with the curvature in the spacemfvariables,

1 3
Dulm]= = .131””" (57)

1-—
(m—m)?

It is more convenient now to introduce new variablgs,
different fromr; , defined as

7= (mi) D sing, = &7, (58)

¢

The parametrization in terms @f; fields corresponds to the

(62)

§=exr{ _iETMﬁi)-

One can show that the Jacobian of this replacement is equal

to one

Vi, ,q

(U|,M Il,u,) :1 (63)
‘9(’)1#""‘1#)

and the transformation laws of newyL ,a;L fields are covari-
ant, i.e.,

sv,=ila+B(¢)v,], sa,=i[a+pB(¢).a,], (64
where

¢

B(P)=PBi(P) Tk, Bi(P)= €xniBi %tang.

Let us note that the part of chiral transformations which de-
pends on the paramete8 is x-dependent now,3(¢),
through the field$(x). We remind also with the purpose of
future references that the functigry has the same transfor-
mation law

£,=—1(£0,6'=€9,8), 6¢,=ila+tB(d),£,]. (66)

(65

normal coordinate system on the surface of a three-

dimensional sphere: tH2U(2) X SU(2)/SU(2) group mani-

Another function[",,, defines the covariant derivative in the

fold. One can get the expression for the invariant measure iR0Set space, i.e., R transforms covariantly then the same is

these new variables

gmy| 1 Sit ¢ >
DM[Wi]:det ﬁ;jm)@i];[l ,Dd)i:NTzqsi]:'[lD(bi.
(59

We drop here the expression for the nonessential fadtor

true for its covariant derivative ,R defined by
d,R=4,R+[T",,R], (67)

where

1 T t
Fu=5(£0,6"+£'3,8). (68)
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One can show thalf, transforms like the Yang-Mills con- 1 (oh) L P R P
nection on the given coset space d’i:f—ffip , U,Fjvﬂp , a,F?aﬂp . (79
ol ,=i[a+B(¢),I',]-id,B8(). (69

_ _ _ The Lagrangiar{76) is the result of the nonlinear realiza-
All these functions appear naturally in the effective Lagrang+ion in which no scalar particles exist. It is sufficient to illus-
ian (56) by means of the above mentioned replacements ofrate our point, although it is an approximation. The first

variables and we have as a result term in Eq.(76) is the canonical Lagrangian for the nonlinear
1 m?2 sigma model. The second term of the Lagrangian breaks chi-
Lig=——t(v!)?+(a)?]+ _Trfitr(§§+ £et—2) ral symmetry and obviously satisfies the symmetry breaking
4Gy . . 4 pattern of the basic quark Lagrangian. Except for that term

1 the rest of the terms in E¢76) are manifestly chiral invari-
(m—M)2tr(¢,—2a))2~ §tr(\~/iy+ﬁiy) , ant. It means that alh-dependence is absorbed in coupling
constants, for instance the mass of the axial-vector meson,
(70) m,, and the couplingg,, depend orm [see Eq.(45) and
Eq. (46)]. Our expressior(76) clearly shows that only the

N NeJdg
1672

where we put symmetry breaking part of the Lagrangian includes the clus-
i ter 3=¢T¢T+ £¢ with a noncovariant transformation law.
Vo=Vt 5[] -[€,.a,]), (71)  This combinationand the other similar oned = £'¢7— £¢)

never appears among the interaction vertices, it would gen-

5 i erate spurious symmetry breaking effects. The structure of
AMZA,’WJr 5([§M,v’y]—[§v,v;]), (72 our Lagrangian differs in this respect from the known ex-

pressions where the explicit symmetry breaking effect has

and also been include(see for instanc€33,15).

r r_ s ’ 1 ' ’
Vir=0uv,=dw,~ilo, v ]=ila,.a,) (73 VI. CONCLUDING REMARKS
Ap=da,—da,~ila, v,]-ilv,a] (74 The modulus of the chiral fermion determinant is well
Similarly to the case with linear realization of chiral sym- defined by the formula [detD|. It has generally been as-

. . . Fumed that this formula can be also used in the case when
metry one has now to diagonalize the pseudoscalar—axial;

- . ) chiral symmetry is explicitly broken. In this work we have
vector bilinear form in the Lagrangiaff0). The replacement shown in considerable detail that it is not true. We have

a’ —al +x(m—m)2¢,, (75)  described a practical tool to derive in a systematic and con-
BooR g sistent way the real part of IndBt considering as an ex-

with « defined by Eq(42) solves the problem. We have as a ample the ENJL model with the chir8lU(2) X SU(2) sym-
result metric four-quark interactions. In this special case we arrive
at the fermion determinant as a result of integration over
, _Tr mz - quark fields in the corresponding generating functional. The
eff‘Z”( Subu)t watr(§§+ £'¢'-2) effective meson Lagrangian describing the dynamics of col-
lective degrees of freedom emerges in this way. The symme-
1 > 2 1 2, 12 2, 2 try breaking pattern of the starting quark Lagrangian should
B Ftr(VMﬁAw) + ;tr[ my(v,,) "+ ma(@,) ], not be changed during bosonization. This symmetry require-
P P ment together with the Schwinger-Dyson equation which de-
(76)  fines the vacuum state of the model helps us to fix com-

pletely them-dependent part of the effective Lagrangian. It
differs from the ones obtained on the ground of other meth-
ods like the direct calculation of the one-loop Feynman dia-
. iga , , i ) grams, or the naive use of the proper-time representation in
V=Vt 5 [€pa]-[6,a,D+ 7(1-0Ql€,.6], form (D).
77 In this work we have addressed another point also related
to the chiral symmetry transformation laws. It is associated

2 2

where after the replacemef(it5) the antisymmetric tensors
V,, andA ,, read

. 1ga , , with the well-known mixing terms in the pseudoscalar-axial-
Aur=Au,t 7([5# U R vector fields. We have shown that the way presented in the
literature to diagonalize this admixture in the case of the

linear realization of chiral symmetry is not compatible with

(1-9a)(d,€,—d,E,). (78) the transformation laws for the vector and axial-vector fields
and induces spurious symmetry breaking terms. We have

The following redefinitions lead us to the physical pseudo-derived the minimal form of covariant redefinitions for the
scalar, vector, and axial-vector states: spin-1 fields needed to satisfy simultaneously the mesonic

+

N
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transformation laws and diagonalization. We find out that 1
our redefinitions of vector and axial-vector fields is in agree- V.= E[é(v;+a;)§u (v, —a))él,
ment with the standard redefinition of axial-vector fields in
the nonlinear case.

In the end we have rewritten our Lagrangian in the non- 1
linear form excluding completely the scalar field. This ap- A,= E[g(u/’pL aL)gT—gT(v;L—aL)g]. (A5)
proximation is sufficient to pin down the general structures
containing the explicit symmetry breaking terms in the effec-
tive mesonic Lagrangian for the ENJL model with nonlinear ) )
realization of chiral symmetry. We conclude that the effect" these variables the replacement can be written as
of explicit chiral symmetry breaking has never been treated
with enough care in the framework of the NJL model and p
have presented in this work a consistent method to take it VM_>VM+(m—Fn)2§[§(XM+ Y )EHE(X,~ Y€l
into account.
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where X, = 7.Xy,,, Y,= 7Yy, With the following expres-

APPENDIX sions forX, andY),,:
Let us show here that the fields redefiniti@i) coincides
with a similar redefinition which has been used in the case of sir? ¢
nonlinear realization of chiral symmetry. We shall start from Xy, = &yi i, ¢; — (A7)
the piece of Lagrangiaiil5) with the collective fields of ¢
spin-1
— — K i sin 9,
ay*“(v,+ysa,)a=qy* U;,LJF' E[?T,ﬁ/ﬂT] Yy, =| OkjSin¢ cose + —¢lf' (1— —¢¢ cos ) —”qu .
. (A8)
+ ysla, + k((e+m—m)
X d,m—7d,0)]q. (A1)  One can obtain that
To come to the nonlinear realization of chiral symmetry one g(xu+yu)g’f+ gT(xﬂ—Yﬂ)gzq (A9)
has to eliminate the scalar field, which is achieved by the
constraint
; EXu Y ) E (X, =Y, )E=2¢,, (A10)
-~ ~ r;
a+m—m=(m—m)\/1——'A. (A2)
(m—m)?
where
Let us choose the exponentional parametrization for pion
fields
sing ¢, ( sin ¢>)
~ i = , = bi + 1- 3, .
m=(m—m>%sin¢, b=¢7. (a3 T T S { I & ||
(A11)

The pure geometrical picture appears if we redefine at the

same time the quark fields .
d Therefore we get for the nonlinear case the standard replace-

ment for the axial-vector field

Q=(£"Prt £PU)T, §=exp(—'§ri¢i), (A4)

where the projection operator?3=(1+ys) and 2P =(1 A,—A,+Kk(m— m)zgﬂ. (A12)
—vs5) have been introduced. In this case one needs also to

redefine the vector and axial-vector fields. The new variables

V, andA,, are the following ones: At the same time the vector field does not change.
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