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Renormalization of the lattice heavy quark effective theory Isgur-Wise function
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We compute the perturbative renormalization factors required to match to the continuum Isgur-Wise func-
tion, calculated using lattice heavy quark effective theory. The velocity, mass, wave function, and current
renormalizations are calculated for both the forward-difference and backward-difference actions for a variety
of velocities. Subtleties are clarified regarding tadpole improvement, regulating divergences, and variations of
techniques used in these renormalizations.

PACS number~s!: 12.38.Gc, 12.39.Hg
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I. INTRODUCTION

The unitarity of the Cabibbo-Kobayashi-Maskawa~CKM!
matrix is regarded as a crucial test of the standard mo
@1,2#; the precise determination of these matrix elements
received extensive experimental and theoretical scrutiny.
Vcb CKM matrix element can be extracted from the react
B→D* l n̄ l , if the theoretical factors in the decay rate can
reliably computed. The heavy quark effective field theo
~HQET! formalism is well suited to the analysis of this d
cay. The differential decay rate of the above process is

d

d~v•v8!
G~B→D* l n̄ l !

5
GF

2

48p2
k~mB ,mD ,v•v8!uVcbu2j2~v•v8!, ~1!

where j(v•v8) is a universal form factor, the Isgur-Wis
function. The functionk can be calculated in perturbatio
theory using various approximations@1,3#. The Isgur-Wise
function is a QCD matrix element that must be compu
non-perturbatively. Previously and in a companion pa
@4,5# we discussed the numerical calculation of the Isg
Wise function using lattice HQET. In this paper we discu
the perturbative matching of lattice HQET to continuu
HQET, which allows the conversion of the results from t
numerical simulations into physical predictions. Specifica
we shall be matching from the lattice to the continuum m
trix element,

^D,vuJm
b→c~0!uB,v8&5AMDMB~vm1vm8 !j~v•v8!, ~2!

wherev andv8 denote the 4-velocities of thec andb quarks,
and

Jm
b→c~x!5 c̄~x!gm~12g5!b~x! ~3!

is the weak current for the transition of a bottom to a cha
quark @6#.

*Present address: McMurry University, Abilene, TX 79697.
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The Isgur-Wise form factor describes the response of
quark-gluon sea surrounding the heavy quark due to a s
den change in velocity of the heavy quark when it decays
HQET, the Isgur-Wise function is nonperturbatively equal
one at the point of zero recoil,v5v8; HQET does not con-
strain the Isgur-Wise function at non-zero recoil. Continuu
perturbative corrections are required to obtain the zero re
result in QCD; however, these are known to 2 loops@3#.
Unfortunately, there are no experimental data at zero rec
so the experimental data are extrapolated@7# to zero recoil in
order to estimateVcb using Eq.~1!. Knowledge of the func-
tional form of the Isgur-Wise function would greatly aid th
extrapolation. The Isgur-Wise function can be calcula
nonperturbatively, in principle, from QCD for arbitrary re
coil. In our companion paper@5#, we describe our simula
tions that use lattice HQET to calculate the Isgur-Wise fu
tion.

There have been previous calculations of the renormal
tion factors for lattice HQET. Unfortunately, not all of th
perturbative factors required for our numerical simulatio
were calculated. After lattice HQET was introduced by Ma
dula and Ogilvie@8#, there were a number of concerns abo
the validity of the lattice HQET formalism@9–11#. The con-
sistency of lattice HQET was finally demonstrated by Ag
etti @12# in perturbation theory. However, Aglietti used
form of lattice HQET action that is less convenient for n
merical simulation than the one originally used by Mandu
and Ogilvie. The difference between the HQET actions w
in the use of a forward or backward finite difference in t
time direction~see Sec. III!. Also, Aglietti considered only a
special kinematic limit with one quark at rest and the oth
quark at finite velocity. Mandula and Ogilvie@13# limited
their work to the velocity renormalization factors for th
forward-difference action~which we used in our simula
tions!; they calculated neither the vertex function nor t
wave function renormalization which are required to ren
malize the lattice data.

In this paper, we calculate the perturbative factors
quired to renormalize the Isgur-Wise function obtained fro
a lattice HQET simulation. The calculation includes tw
HQET actions: one with the forward time derivative and o
with the backward time derivative. We follow the formalis
developed by Aglietti@12#, but generalize Aglietti’s expres
©2000 The American Physical Society06-1
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sion for the vertex function to arbitrary input and outp
velocities ~as is required for the analysis of the simulati
data!. We also include the effects of tadpole improveme
and discuss a subtlety in the calculation of the vertex fu
tion.

Section II will provide a sparse review of continuu
HQET in order to put the lattice calculation into contex
Section III will describe the details of the velocity, mas
wave function, and vertex renormalizations for the latt
actions, including a discussion of the ‘‘reduced’’ results a
an evaluation at nonzero recoil. Section IV will describe h
these are combined into a single renormalization for the
tice current to be matched to the continuum. Section V c
cludes with some remarks concerning the renormaliza
process.

There have also been a number of attempts to calcu
some of the required renormalization factors numerica
@13,14#. The renormalization factors computed from nume
cal simulations should agree with the perturbative calcu
tions as the weak coupling limit is approached. This is
important test of the numerical renormalization techniqu
which has not yet been attempted. The renormalization of
current has never been computed numerically.

II. CONTINUUM HQET

Heavy quark effective theory is a way of studying a sing
heavy quark in a hadron when the mass of the quark is m
larger thanLQCD. See Neubert@15# for a nice review of
HQET. Mannelet al. @16# make rigorous Georgi’s@17# intu-
ition that the heavy quarks at different velocities do not
teract. They do so by showing that the QCD Green functi
which involve two heavy quarks at different velocities go
zero in the infinite mass limit. So, there is a separate field
each heavy quark at each velocity. In HQET@15#, the con-
nection between the HQET fields and the quark fields,Q, in
QCD is

hv~x!5eiM v•xP1Q~x!,

Hv~x!5eiM v•xP2Q~x!, ~4!

whereP65 1
2 (16v” ). The new form of the QCD Lagrangia

hash describing massless degrees of freedom andH describ-
ing fluctuations with twice the heavy quark mass. Furth
explicit Gaussian integration of theH fields produces the
effective, non-local Lagrangian. Upon integrating out t
heavy degrees of freedom, theH term is replaced by a loca
term involving the light degrees of freedomh and the mass
of the heavy quarkM. The Lagrangian is then expanded
the reciprocal of the heavy quark mass; the zeroth or
HQET Lagrangian is

Leff5h̄viv•Dhv , ~5!

with the additional terms treated perturbatively as higher
der in the reciprocal of the heavy quark mass. At zer
order, i.e., in the infinite mass limit, the theory is indepe
dent of the mass of the heavy quark, and the Isgur-W
function is universal~flavor blind!.
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In HQET, the momentum of the heavy quark (Mv) is
distinguished from the momentum of the light quarks a
gluons (k, the ‘‘residual momentum’’!:

Mhad5Mv1k.

The residual momentum is the difference between the m
mentum of the hadron (Mhadv) and the momentum of the
heavy quark. The velocity of the heavy quark become
parameter of the theory and it is the residual moment
which becomes conjugate to the position. In the infinite m
limit, the momentum of the hadron is due only to the hea
quark.

The matrix element in the continuum modified minim
subtraction (MS) scheme is connected to the matrix eleme
calculated on the lattice by@18#

^vuVmuv8&MS5
Zj

c

Zj
l ^vuVmuv8& latt5Zj

cl^vuVmuv8& latt, ~6!

whereZj
c is a continuum perturbative factor,Zj

l is the lattice
perturbative factor, andZj

cl is the ratio of the two. Falket al.
@19# calculated the continuum renormalization factor

Zj
c511

g2

12p2
$2@12~v•v8!r ~v•v8!# ln~m/l!21dc%,

~7!

where

r ~w!5
ln~w1Aw221!

Aw221
~8!

and l is the gluon mass introduced as a infrared regula
The dependence onl must cancel inZj

cl , the ratio ofZj’s, of
Eq. ~6!. In the MS scheme,dc50 @20#. The calculation of
the lattice renormalization factor,Zj

l , is the subject of the
next section.Zj

cl will be discussed further in Sec. IV whe
we discuss the matching from the lattice to the continuum

III. LATTICE HQET

The Euclidean formulation of the lattice HQET actio
was introduced by Mandula and Ogilvie@8#:

S5(
x

H v0c†~x!D tc~x!2 i(
j

v jc
†~x!

D j1D2 j

2
c~x!J .

~9!

There is some freedom in the choice of which lattice deri
tives are used in Eq.~9!. The tadpole improved finite differ-
ences are defined by

DmcxW5
UxW ,xW1m̂

u0
cxW1m̂2cxW , ~10!

D2mcxW5cxW2
UxW ,xW2m̂

†

u0
cxW2m̂ ~11!
6-2
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RENORMALIZATION OF THE LATTICE HEAVY QUARK . . . PHYSICAL REVIEW D 62 114006
such that

cxW t
†

DmcxW t is a forward difference,

cxW t
†

D2mcxW t is a backward difference,

1
2 ~cxW t

†
DmcxW t1cxW t

†
D2mcxW t! is a centered difference,

andu0 is the tadpole improvement factor@21#. The tadpole
renormalization of the lattice HQET action is subtle beca
of the constraint on the velocity; these subtleties are
dressed in Appendix A.

The centered difference approximates the continuum
rivative to O(a2) ~wherea is the lattice spacing!; both the
forward- and backward-difference derivatives haveO(a)
corrections to the continuum. Therefore, it seems that
centered difference is the preferred type of derivative. Thi
true for the spatial derivative; however, Mandula and Ogil
@13# emphasize that for consistency an asymmetric time
ference must be employed, rather than a centered differe
If a centered difference is employed, then the propaga
vanishes on alternate sites in the positive time direction
there is no continuum limit. The source of this problem
that the heavy quark fields are defined separately from
heavy antiquark fields and are distinct for each velocity@re-
call Eq. ~4!#; thus, heavy quarks can only propagate in o
temporal direction.

The lattice HQET action originally proposed by Mandu
and Ogilvie @8# used a forward time derivative. The bac
ward time derivative can be less convenient for use in sim
lations because a three-dimensional matrix must be inve
for each time step. The forward time derivative only requi
a matrix multiplication at each time step, and so is com
tationally cheaper to simulate.

This choice of a forward time derivative has also be
discussed by Davies and Thacker@22# in the context of non-
relativistic QCD~NRQCD!. However, recent NRQCD calcu
lations follow the prescription of Lepageet al. @23# who use
a backward time derivative but avoid having to invert a lar
spatial matrix by splitting the spatial part of the action ov
two adjacent time slices. Their action, which can beO(a)
improved, is symmetric with respect to time reversal,
avoids the problems of the centered difference. Impro
heavy-Wilson actions@24# also go over to the backward de
rivative in the static limit. Similarly, better choices for th
HQET lattice actions can be made, and if we were to re
the program with higher-order corrections, it would inde
be advantageous to use the backwards time derivative
done for heavy-Wilson and modern NRQCD actions. But
our present purposes, the zeroth-order action suffices, an
this order the forward difference provides a technical adv
tage in computation.

Since Aglietti’s @12# perturbative calculation used th
backward-difference time derivative, we do the perturbat
calculations for both types of time derivative. We can che
our results against Aglietti’s, against the results from
static theory@25#, and also the static limit of NRQCD@22#.
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Comparison in perturbation theory between the forward- a
backward-difference actions for the static case has led to
introduction of the ‘‘reduced wave function renormaliz
tion’’ discussed in Sec. III D and summarized in Append
B. ~Please see Appendix C for a comparison of the nota
between the groups.!

We introduce the notation

s5H 11 forward difference,

21 backward difference
~12!

in order to compare the forward- versus backward-differe
actions. Both the forward- and backward-difference actio
can be represented simultaneously by replacingD t by Dst ,
whereDst is either a forward time difference or a backwa
time difference, depending on the choice of action.

Feynman rules can be derived from the action

quark
propagator Fv0sS 1

u0
eisp421D1(

j

v j

u0
sin~pj !G21

,

~13!

gluon
propagator D~k!5F(

m
4 sin2

km

2
1l2a2G21

, ~14!

vertex Fdm,0S ig~Ta!bc
v0

u0
eis(2p41k4)/2D

1(
j

dm, j S g~Ta!bc
v j

u0
cos

2pj1kj

2 D G ,
~15!

tadpole
vertex Fdm,0S s

g2

2

v0

u0
(Ta)bd(Ta)dceisp4D

1(
j

dm, j S g2

2

v j

u0
(Ta)bd(Ta)dc sinpj D G , ~16!

internal
integrations E2p/a

p/a d4k

~2p!4
. ~17!

The Ta are the color generators andCF5 4
3 is the Casimir

invariant.l is a gluon mass, which is needed to regulate
infrared divergences~as is done in the continuum! and which
will be taken to zero at the end of the calculation.

From the Feynman rules, it is straightforward to deri
the usual self-energy@S(p)#, tadpole@S tad(p)#, and vertex
@V(p,p8)# corrections@the self-energy isS(p)1S tad(p)#:
6-3
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S~p!5g2CFE d4k

~2p!4

1

D~2k!

2~v0
2/u0

2!eis(2p41k4)1(
j

~v j
2/u0

2!cos2@~2pj1kj !/2#

H v0s@~1/u0!eis(p41k4)21#1(
j

~v j /u0!sin~pj1kj !J , ~18!

S tad~p!52
g2CF

2 S 2s
v0

u0
eisp42(

j

v j

u0
sin~pj ! D E d4k

~2p!4

1

D~k!
, ~19!

V~0,0!5g2CFE d4k

~2p!4

1

D~2k! H 2
v0v08

u0
2

eisk4/2eisk4/21(
j

v jv j8

u0
2

cos
kj

2
cos

kj

2 J Y H Fv0sS eisk4

u0
21D1(

j

v j

u0
sin~kj !G

3Fv08sS eisk4

u0
21D1(

j

v j8

u0
sin~kj !G J . ~20!
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It is sufficient for our purposes to evaluate the vertex fu
tion with zero external momentum. The explicitp depen-
dence is kept in the self-energy since the derivative will
considered. The integral which appears in the tadpole cor
tion is standard and has the value@1/(2p)4#*d4k/D(k)
50.154933.

The evaluation of the integrals is nonstandard becaus
the problems caused by the spectrum of the Euclidean HQ
action not being bounded from below. We follow the forma
ism developed by Aglietti@12# and by Mandula and Ogilvie
@13#, in which we must first perform thek4 integration ana-
lytically and do so by transforming toz space (z5e6 ik4). A
contour is chosen that enforces the forward propagation
the HQET quarks@13# as described below.~The connection
to Minkowski space via a Wick contraction is discussed
Aglietti @12#.! The resulting three-dimensional integrals a
then calculated numerically.~All of the numeric integrations
were computed with theVEGAS routine @26#.!

The analytick4 integration of Eqs.~18! through~20! re-
duces the four-dimensional integration to a thre
dimensional integration. It is, however, more convenient
do this as a contour integration inz space@13# after an
action-dependent change of variables

z5eisk4. ~21!

For this change of variables, the gluon propagator is writ

D~km!52(
m

~12coskm!1~al!2

5 2 ~12cosk4!1D3~kW ! ~22!

which definesD3(kW ).
The k4 contour ~along the real axis! transforms into the

unit circle in complexz space. A subtlety arises when deci
ing which poles to enclose by the contour. The quark pro
gator pole appears as
11400
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zQ5e2 isp4S u02s(
j

ṽ j sin~pj1kj ! D . ~23!

The gluon propagator poles appear at

z6511
D3

2
6

1

2
AD3

214D3, ~24!

whereD3 is defined by Eq.~22!. The contour separates th
gluon poles. The contour should enclose the quark pole
one of the gluon poles. The subtlety is in choosing wh
gluon pole. Because the energy-momentum relation from
quark propagator, Eq.~B2!, can be negative, we splitk space
~or z space! into a positive-energy region and a negativ
energy region and enclose the gluon pole which lies in
positive-energy region of the space. For negligible exter
momentum with a quark momentump1k, the upperk4 half-
plane is positive energy and, using Eq.~12! to distinguish the
actions, it is convenient to definez via Eq. ~21! such thatz
5e1 ik4 for the forward-difference action andz5e2 ik4 for
the backward-difference action.~For p2k, the lowerk4 half-
plane is positive energy and it is convenient to usez
5e2 isk4.! With either of these choices, the backward diffe
ence action will have the positive-energy region outside
thez-space unit circle and the forward-difference action w
have the positive-energy region inside thez-space unit circle.

The quark pole

zQ;S 12s
vW •kW

v0
D , ~25!

with positive-energy@using Eq.~B2!, zQ'12s«# is just in-
side ~outside! of the unit circle for the forward~backward!
difference action. SinceAD3

214D3>D3, we findz1 outside
~andz2 inside! of the unit circle.zs ~which is equal toz1 for
the forward difference andz2 for the backward difference! is
therefore in the negative-energy region. Since thek1 (z1)
gluon pole is always in the positive-energy region for t
backward-difference action and always in the negati
energy region for the forward-difference action, we can wr
6-4
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Backward difference

Forward difference 5
z1 positive-energy pole

z2 negative-energy pole

z1 negative-energy pole

z2 positive-energy pole
6 zs negative-energy pole,

z2s positive-energy pole.
~26!
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In both cases, it is the quark and the positive-energy gl
poles which are enclosed by the contour regardless of w
the quark pole actually appears. When the quark pole mo
into the negative-energy region, it is necessary to deform
contour to keep the quark pole enclosed.~This is discussed
for k space by Aglietti@12# and forz space by Mandula and
Ogilvie @13#.! However, to simplify, one can equate this
the negative of the contour integral which encloses only
negative-energy gluon pole. The three-dimensional integ
resulting from the contour integration have an actio
dependent form due to the appearance of the negative-en
gluon pole (zs). This pole is a function ofkW .

In order to compute the renormalizations, the unrenorm
ized propagator is compared to the renormalized propaga
~We include the mass term in order to calculate the m
renormalization.! The renormalized propagator has the for

iH r~k!5
Z

F iv0
r k41(

j
v j

rkj1M r1O~k2!G . ~27!

The renormalization factors are obtained by Taylor se
expanding the unrenormalized propagator

iH ~k!5Fv0sS 1

u0
eisk421D1(

j

v j

u0
sin~kj !

1M02S~k,v !G21

. ~28!

We used

S~k,v !5S~0,v !1k4X41(
j

kjXj1O~k2! ~29!

and

1

u0
eisk45eisk42 ln u0511 isk42 ln u01O~k2!, ~30!

where

Xm5
]S~k!

]km
U

k50

. ~31!

Equation~30! was used for the static case@27,28# to eluci-
date that the tadpole factoru0 results in mass renormaliza
tion rather than wave function renormalization. Notice th
u0 has the perturbative expansion$12@g2CF /(4p)2#p2

1O(g4)%, so lnu0;O(g2); the higher order terms are ne
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glected. After a little algebra which involves the addition a
subtraction of some deducible terms, one can write
propagator in the form

iH ~k!5H @12dZ#F i ~v01dv0!k41(
j

S v j

u0
1d S v j

u0
D D kj

1~M01dM !1O~k2!G J 21

, ~32!

which implies the expressions for the renormalizations

dM5M r2M052S~0,v !2sv0ln u0 , ~33!

dZ5Z2152 iv0X42u0(
j

v jXj , ~34!

d S v i

u0
D5v i

r2
v i

u0
52 iv0

v i

u0
X42~11v i

2!Xi2v i(
j Þ i

v jXj ,

~35!

dv05v0
r 2v052 i ~v0

221!X42v0u0(
j

v jXj . ~36!

We make the following points regarding these expressio
First, in the HQET formalism, the residual momentum
conjugate to the position, leaving the velocity as a free
rameter. As discussed by Aglietti@12#, the velocity is renor-
malized on the lattice. In the continuum, the four-vectorXm
is proportional tovm , the only available four-vector; this
implies that there is no velocity renormalization. On the l
tice, with reduced rotational symmetry, this is not the ca
Secondly, if u0 is set to unity and the special case ofvW

5vzẑ is taken, then these reduce, for the backwa
difference case, to Aglietti’s result@12#. Thirdly, d(v j /u0) is
a notation to remind the reader that this quantity renorm
izesv j /u0 rather thanv j as can be seen in Eq.~35!. For u0
51, our d(v j /u0) corresponds to Aglietti’sdv j . Further,
the velocity renormalization can be written as follows:

v j
r ,tad5v j

b,tadZv j

tad, v0
r ,tad5v0

b,tadZv0

tad,

Zv j

tad5
1

u0
S 11

d~v j /u0!

v j /u0
D , Zv0

tad511
dv0

v0
. ~37!

Finally, theu0 that appears in these expressions is the p
turbatively expandedu0512(g2CF/16p2)p2. It is taken at
lowest order~unity! and the terms higher order ing2 are
ignored becauseXm;O(g2). The result is that the wave
function renormalization and the first term of the mass ren
malization,S(0,v), are the same toO(g2) whether or not
6-5
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one uses tadpole improvement. The velocity renormaliza
is affected by tadpole improvement as

Zv j

tad5F11
d~v j /u0!

v j /u0
2

g2CF

16p2
~2p2!G ,

5F11
g2CF

16p2
~c~ ṽ !1p2!G , ~38!

where the (2p2) is from the perturbative expansion ofu0,

v j[v j /uo, and c( ṽ) is the same@to O(g2)# regardless of
tadpole improvement.

Of the renormalization factors@Eqs.~33! to ~36!#, only the
mass renormalization, Eq.~33!, depends explicitly on the
choice of forward or backward time difference~thes param-
eter!. However, all the renormalization factors implicitly de
pend ons via theXm functions. The explicit dependence o
the mass renormalization ons is zero when tadpole im
provement is not used; this is discussed further in Appen
B, above Eq.~B8!.
r i

qs

ll
ffi

t
lu

ca

in
io
lc
oc

11400
n

ix

A. Velocity renormalization

Mandula and Ogilvie@13# renormalizeṽ j[v j /v0 rather
thanv. We will not be using their notation, rather we will b

renormalizingv, and calculatingc( ṽ) defined by Eqs.~35!,
~37!, and~38!:

d~v j /u0!

v j /u0
5

g2CF

16p2
c~ ṽ !. ~39!

This parallels the notation of Aglietti@12#. ~See Appendix C
for a comparison.! Recall that this is the perturbative reno
malization to the tadpole-improved velocity. Neither Ma
dula and Ogilvie nor Aglietti use a tadpole-improved actio

The expression forc( ṽ) is found from the self-energy
Feynman diagrams as expressed through Eq.~35!. Continu-
ing to use thes561 to distinguish between the actions, w
find
c~ ṽ !5
2v0

2

p E d3k

AD3
214D3

S 22szs~k!1~ ṽ i /u0!@~1/v0
2!1 ṽ i

2#sin~ki !1(
j Þ i

~ ṽ j
3/u0!sin~kj !

s@~1/u0!zs~k!21#1(
j

~ ṽ j /u0!sin~kj !

1

Fzs~k!2(
j

~ ṽ j
2/u0

2!cos2~kj /2!GFzs~k!2[ ~1/v0
2)1 ṽ i

2#cos~ki !2(
j Þ i

ṽ j
2 cos~kj !G

@s@~1/u0!zs~k!21#1(
j

~ ṽ j /u0!sin~kj !#
2 D . ~40!
an-
re
me

ti
er-
Theu0 are perturbatively expanded such that at this orde
g2, they can be replaced with unity.~They are included as a
reminder that in the next order there will be an effect.! Note
thatzs(k) is the negative-energy gluon pole, defined by E
~24! and ~26!, introduced from the residue of the contour.

Mandula and Ogilvie@13# perform an expansion in sma
velocity and present the velocity renormalization as coe
cients to powers of the velocity.~This is convenient in tha
whenever a calculation at a new velocity is desired, the va
for the velocity has precalculated coefficients so that the
culation need not be done repeatedly.! While this is straight-
forward for the velocity renormalization, the divergences
the wave function renormalization and the vertex correct
make this technique more complicated for these other ca
lations. However, if we consider the expansion for the vel

ity renormalization, then we get consistent results atO( ṽ6)
~notice that our format is slightly different becausec renor-
malizesv rather thanṽ)
n

.

-

e
l-

n
u-
-

c~ ṽ !5c0001c200ṽ i
21c020(

j Þ i
ṽ j

21c400ṽ i
41c220ṽ i

2(
j Þ i

ṽ j
2

1c040(
j Þ i

ṽ j
41c022 (

kÞ j ,i
(
j Þ i

ṽ j
2ṽk

21c600ṽ i
6

1c420ṽ i
4(

j Þ i
ṽ j

21c240ṽ i
2(

j Þ i
ṽ j

41c222ṽ i
2 (

kÞ j ,i
(
j Þ i

ṽ j
2ṽk

2

1c060(
j Þ i

ṽ j
61c042 (

kÞ j ,i
(
j Þ i

ṽ j
4ṽk

21•••. ~41!

The forward and backward difference results of this exp
sion are listed in Table I. Mandula’s and Ogilvie’s results a
reproduced by the first two columns. Our results for the sa
special case~backward difference,vx5vy50) that Aglietti
considers@12# are listed in Table II and agree with Agliet
where they overlap. The three columns of the forward diff
6-6
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TABLE I. The coefficientscmnl used in the velocity renormalization when expanded in powers of

velocity to O( ṽ6) according to Eq.~41!. s is the order of the velocity term, found by summing the indice
s5m1n1 l . The first set is for the forward-difference action; the second set is for the backward-diffe
action. If you consider the velocity in only one direction, then only the top row is relevant.

cmnl Forward difference Backward difference
n l s50 s52 s54 s56 s50 s52 s54 s56

0 0 228.07(3) 24.977(6) 21.093(3) 20.458(2) 11.78(1) 0.33(2) 20.88(3) 22.03(3)
2 0 24.292(6) 22.100(6) 21.380(6) 10.26(2) 9.49(6) 7.0(2)
4 0 21.010(3) 21.346(6) 7.62(3) 28.1(2)
2 2 21.005(6) 21.36(1) 9.53(6) 43.4(3)
6 0 20.469(2) 39.98(6)
4 2 24.54(2) 109.6(6)
i
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la
ence are:c( ṽ) according to Eq.~40!, its expansion through
sixth order in small velocity according to Eq.~41!, and its
expansion through second order of the velocity expans
using only the first three terms of Eq.~41!. The latter con-
firms Mandula’s and Ogilvie’s result; however, the sixth o
der result~using the coefficients of Table I! is in much better
agreement with the exact result~as one would expect!. Al-
though Table II only considers motion along a single ax
our more general results indicate that for the forwa
difference action it is sufficient to use the velocity expans
to sixth order.

For the more general case of all the spatial velocities
equal to zero, we present the results for the forwa
difference action at small velocities in Table III. This is th
factor, cz( ṽ), which renormalizes theẑ component of the
velocity according to Eq.~38!. The renormalizations for the
vx and vy components can be deduced from the table
symmetry. Notice that thevz renormalization is affected by
each component ofvW , not merely byvz . The numerical size
of the perturbative factors in Tables II and III are both larg

TABLE II. This table lists the velocity renormalization for bot
forward-difference~our choice! and backward-difference action
for the special casevx5vy50. The last two columns solve th

expanded equation through the superscripted order. Thec( ṽ) en-
tries are exact, that is, not expanded in the velocity. Note that

ṽ→0.0 limit is considered even though there is no need to calcu

the renormalization coefficient whenṽ50. (c has no interpretation
in the static limit.!

~Backward! ~Forward!

c( ṽ) c( ṽ) c(6) c(2)

c( ṽ→0.0) 11.779~4! 228.06(1) 228.06(1) —

c( ṽ50.1) 11.899~5! 228.40(1) 228.40(1) 228.38(1)

c( ṽ50.2) 12.275~5! 229.44(1) 229.44(1) 229.42(1)

c( ṽ50.3) 12.966~5! 231.35(1) 231.35(1) 231.29(1)

c( ṽ50.4) 14.036~7! 234.39(1) 234.39(1) 234.28(1)

c( ṽ50.5) 15.67~1! 239.17(1) 239.17(1) 238.95(2)

c( ṽ50.6) 18.05~1! 246.90(1) 246.90(1) 246.44(2)

c( ṽ50.7) 20.82~3! 260.44(2) 260.45(2) 259.47(3)
1140
on

-

s,
-
n

ot
d-

y

.

Tadpole improving the perturbative factors, by adding1p2

to them as in Eq.~38!, does not substantially reduce the si
of the perturbative contribution.

To give an idea about the magnitude of the velocity ren
malization, we considerb56.0 with uvW u50.5, and use the
bare lattice coupling. The non-tadpole improved multiplic
tive factor isZv j

50.67; the corresponding tadpole improve

he

te

TABLE III. The velocity renormalization,cz( ṽ), for the forward
difference action for several general~small! velocities. The uncer-
tainty is at most 2 in the last digit.
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TABLE IV. Mass @x( ṽ)# and wave function@e( ṽ)# renormalization functions for the backward
difference~BD! and forward-difference~FD! actions. The BD numbers reproduce Aglietti’s table@12#. The

BD and FD numbers forx( ṽ) and e8( ṽ) should agreeonly in the static limit (ṽ50). e8( ṽ)5e( ṽ)

2sx( ṽ)/v0 are the reduced wave function. Notice that we definex( ṽ) as the negative of that of Aglietti. In
addition,vx5vy50.

Backward difference Forward difference

ṽ x( ṽ) e( ṽ) e8( ṽ) x( ṽ) e( ṽ) e8( ṽ)

0.0 219.92(3) 24.43~4! 4.53~1! 219.93(1) 215.40(1) 4.530~4!

0.1 219.87(3) 24.64~4! 4.875~4! 219.99(1) 215.75(1) 4.141~2!

0.2 219.69(3) 25.24~4! 5.97~1! 220.17(1) 216.82(1) 2.935~2!

0.3 219.34(3) 26.36~4! 7.91~1! 220.47(1) 218.78(1) 0.759~4!

0.4 218.75(3) 28.14~4! 10.96~1! 220.97(1) 221.91(1) 22.694(6)

0.5 217.72(3) 30.94~5! 15.60~2! 221.72(2) 226.83(2) 28.015(8)

0.6 215.79(3) 35.44~5! 22.82~4! 222.89(1) 234.74(2) 216.44(2)

0.7 211.15(3) 44.2~1! 36.27~10! 224.79(2) 248.56(4) 230.85(2)
n
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number isZv j

tad50.75. If the boosted coupling,g2/u0
4 @21#, is

used thenZv j

tad50.59. As the slope of the Isgur-Wise functio

essentially depends quadratically on the velocity renorm
ization, this makes perturbation theory unreliable to anal
the simulation data and thus numerical renormalization te
niques must be used@4,5,13,14#.

Aside: Slow HQET. In Aglietti’s @12# initial calculations,
the velocity renormalization was presented as a function
the velocity. However, Mandula and Ogilvie@13# expanded
the velocity renormalization in a power series in the veloc
which allowed them to compare their perturbative resu
with the numbers from their numerical renormalization tec
nique. The expansion of the renormalization factor in vel
ity seems to be similar to Aglietti’s@29# idea of slow HQET,
where thev•D term is a perturbation on the static theor
Slow HQET was studied in perturbation theory by Aglie
and Giménez @30#, where they demonstrated that slo
HQET agreed with HQET in the infrared and ultraviol
limits. It would be interesting to understand the co
nection between slow HQET and the HQET formalism
Mandula and Ogilvie.

We have found expressions for the velocity renormali
tion in terms of the coefficients for the backward-differen
action~Table I! and note that thec042 coefficient of the back-
ward difference is rather large, at 109.6~6!—much larger
than the equivalent coefficient for the forward-difference
tion. This could indicate a problem with the expansion
the backward difference; the forward-difference coefficien
which we checked throughO( ṽ6), are all reasonably close t
11400
l-
e
h-

f

,
s
-
-

-
f

-

-
r
,

unity. Aglietti and Gime´nez do not calculate the sixth-orde
coefficient for the velocity renormalization~although they
take the other renormalizations to this order!; however, the
renormalization factors are only required to quadratic or
in the velocity in order to compute the slope of the Isgu
Wise function from simulations of slow HQET.~The slow
HQET formalism is used to directly calculate the derivativ
of the Isgur-Wise function, using the ‘‘moments’’ techniqu
@29#. Aglietti and Giménez @30# found that the expression
for the higher order derivatives of the Isgur-Wise functio
beyond the slope, contained operators that diverged with
inverse power of the lattice spacing and that must be s
tracted off in the simulation.!

B. Mass renormalization

As with the velocity renormalization, we definex( ṽ) as
the mass renormalization without theg2 prefactor. For com-
parison, Aglietti@12# also does this; however, we prefer~for
comparison to the static limit of the forward-differenc
NRQCD theory! to have ourx( ṽ) proportional to1S(0,ṽ).
So, ourx is the negative of Aglietti’s.~See Appendix C for a
comparison between groups.! We also include the effect o
tadpole improvement.

dM52S~0,ṽ !2sv0 ln u052
g2CF

16p2

x~ ṽ !

a
2sv0 ln u0 .

~42!

Recall that lnu0 is O(g2). From Eq.~33!,
x~ ṽ !5
2v0

p E d3k

AD3
214D3

2zs~k!1(
j

ṽ j
2

u0
2

cos2S kj

2 D
FsS 1

u0
zs~k!21D1(

j

ṽ j

u0
sin~kj !G 1s8p2v0~0.154933!, ~43!
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where the 8p2(0.154933) is from the tadpole contribution (S tad) which is partially canceled by the second term in Eq.~42! as
it should be. Theu0 are again perturbatively expanded such that, at this order, they can be replaced with unity. Th
included here as a reminder that in the next order they will have an effect. The values of this integral are listed in Ta
As they are relevant to the reduced wave function, we will discuss these there.

C. Wave function renormalization

The results of the wave function and reduced wave function renormalization can be compared not only to Agli@12#
~backward difference, HQET! and Mandula and Ogilvie@13# ~forward difference, HQET!, but also to Eichten and Hill@25,31#
~backward difference, static theory! and the static limit of Davies and Thacker@22# ~forward difference, NRQCD!. ~Appendix
C compares the notations between groups.!

Recall that the wave function renormalization can be found as Eq.~34!. During this calculation, as with the velocit
renormalization, thek0 integration is done analytically with the same comments as were made earlier. This introduc
residue from the negative-energy gluon pole,zs(k). Again using thes561 to distinguish between the actions, the result
dZ is

dZ5
g2CF

16p2

2v0
2

p E d3k

AD3
214D3H 22szs~k!1(

j
~ ṽ j

3/u0!sin~kj !

Fs@~1/u0!zs~k!21#1(
j

~ ṽ j /u0!sin~kj !G

1

Fzs~k!2(
j

~ ṽ j
2/u0

2!cos2S kj

2 D GFzs~k!2(
j

ṽ j
2cos~kj !G

H s@~1/u0!zs~k!21#1(
j

~ ṽ j /u0!sin~kj !J 2 J 1
g2CF

16p2
8p2~0.154933!,
i-
ch
ee
a

an
lv
l

l a
c

d in

nd
oth

he
where again the 8p2(0.154933) is from the tadpole contr
bution and theu0 are again perturbatively expanded su
that at this order, they can be replaced with unity. This thr
dimensional integral has a logarithmic divergence. The w
with which this is typically dealt is to add and subtract
integral with the same logarithmic divergence which is so
able analytically. We call this integraldZc and use the smal
k limit because we are interested in the infrared~low energy!
divergence. The differencedZ2dZc is finite and calculated
numerically.dZc ~found analytically! will have a finite piece,
which is added back to the numerical calculation, as wel
a divergent piece. The divergent piece contributes to the
efficient of the ln(l2a2) term in the renormalization of the
lattice Isgur-Wise function.

Although the ‘‘continuum-like’’ limit of dZ is actually

g2CF

16p2

2v0
2

p E d3k

2Ak21l2a2H 22s1(
j

~ ṽ j
3/u0!kj

F ~Ak21l2a2!1(
j

~ ṽ j /u0!kj G

1

F12(
j

~ ṽ j
2/u0

2!GF12(
j

ṽ j
2G

F ~Ak21l2a2!1(
j

~ ṽ j /u0!kj G2J
1

g2CF

16p2
8p2~0.154933!,
11400
-
y

-

s
o-

the first and third terms are finite. Since we are intereste
the infrared divergent piece, we will definedZc as the second
term. By taking advantage ofu0upert511O(g2) as well as
by using the velocity normalization@(12( j ṽ j

2)51/v0
2# we

get

dZc5
g2CF

16p2

1

pv0
2E0

R d3k

Ak21l2a2

1

@Ak21l2a21( j ṽ j kj #
2

.

The upper limitR is arbitrary because this term is added a
subtracted. Interestingly, this is the same integral for b

actions. The result of this integral is~with ṽ5A( j ṽ j
2)

g2CF

16p2

1

v0
2 F 2

12 ṽ2
lnS AR21l2a21R

AR21l2a22R
D

2
2

ṽ~12 ṽ2!
lnS AR21l2a21 ṽR

AR21l2a22 ṽR
D G

→
l!R

g2CF

16p2 F2 lnS 4R2

l2a2D 2
2

ṽ
lnS 11 ṽ

12 ṽ
D G . ~44!

The divergent piece is22 ln(l2a2). This is the wave function
contribution to the divergence in the renormalization of t
Isgur-Wise function. We can, for convenience, setR5 1

2 .
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As with the mass renormalization, the results for t
wavefunction renormalization are listed in Table IV, but d
cussed further in the next subsection. Note that, as withx( ṽ)
for the mass renormalization, the wave function renormali
tion is referred to bye( ṽ) and defined by

dZ5
g2CF

16p2
@22 ln~l2a2!1e~ ṽ !#. ~45!

D. Renormalization of the reduced wave function

The perturbative factors for various heavy quark effect
field theories depend subtly@12,22,25,32# on whether the
forward or backward time derivative is used in the action
is expected that in the Euclidean formulation, the propaga
as a function of time and the residual three-momentum~i.e.,
Fourier transformingk4 into t) will have the dependenc
e2«t5e2mt. However, it turns out~Appendix B! to have the
dependenceAe2m(t2s) wheres561 distinguishes the ac
tions. Eichten and Hill@25# noticed this relation and found
that if one fits, instead, toA8e2mt ~whereA85Aems) this
changes the wave function renormalization by subtracting~or
adding! the mass renormalization. It also ‘‘reduces’’ th
wave function renormalization to a common answer for b
the forward- and backward-difference actions. Since it
convenient to fit toe2mt and the reduced value is the sam
for both actions, this is a popular choice. Unfortunately,
lattice HQET away from the static limit the reduced valu
~for the forward- and the backward-difference cases! are not
equal, as we will show.

Equation~42! definesx( ṽ) in terms of the mass renorma
ization. Equation~45! definese( ṽ) in terms of the wave
function renormalization. Appendix B derives Eq.~B9!,
t

wi

e

11400
-

-

e

t
or

h
s

e8~ ṽ ![e~ ṽ !2sx~ ṽ !/v0
ren, ~46!

which is the relation for the reduced value of the wave fun
tion renormalization. The tadpole term is inx( ṽ) @it gets
canceled in the mass renormalization of Eq.~42!# and, as
noticed for the static case in@27,28#, the wave function and
reduced wavefunction renormalizations remain unaffected
tadpole improvement. Table IV lists our values for the
functions for a large velocity range. Notice that in the sta
limit, the reduced value for the two actions is the same. T
is the expected result. Also notice that our forwar
difference value fore(0.0) agrees with Davies and Thack
@22# ~in their notationC5Z1aA5215.4). Our backward-
difference table agrees with Aglietti@12#; and the static limit
of the backward difference action,e(0.0)524.44, is also in
agreement with Eichten and Hill@25#. While it is still con-
venient to use the reduced result and fit toe2mt in the static
limit, the forward and backward difference will have diffe
ent reduced wave function renormalizations away from
static limit.

E. Vertex correction

The vertex correction also has differences between
actions and a divergence which must be subtracted as
done for the wave function renormalization. However, th
has the further complication that it depends on the veloci
of both the incoming and the outgoing quarks. So wher
the wave function renormalization is a function ofṽ, the
vertex correction,dV( ṽ,ṽ8), is a function of the initial and
final velocities.

After analytically doing the contour integration over th
k4 variable and dealing with the poles as discussed pr
ously, we find
dV~ ṽ,ṽ8!5
g2CF

16p2

2

pE d3k

AD3
214D3

H 2
v0v08

u0
zs~k!

1(
j

v jv j8

u0
2

cos2S k

2D J Y H Fv0sS 1

u0
zs~k!21D1(

j

v j

u0
sin~kj !GFv08sS 1

u0
zs~k!21D1(

j

v j8

u0
sin~kj !G J .

~47!
f
e

um
tti

ave
We
nce
The u0 are once again perturbatively expanded such tha
this order, they can be replaced with unity.~They are in-
cluded here as a reminder that in the next order they
have an effect.! For the rest of this section, we will explicitly
setu051.

As claimed by Aglietti@12#, this must have the form

g2CF

16p2

2

p
@2~v•v8!r ~v•v8!ln~l2a2!1d~ ṽ,ṽ8!#. ~48!

The lattice coefficient must have this form if it is to canc
at

ll

l

the continuum divergence ln(m/l) ~which was computed by
Falk et al. @19#!. Of primary interest is that it be a function o
v•v8, the only nontrivial invariant constructible from th
heavy quark velocitiesv and v8. We find that numerically
the lattice divergence coefficient agrees with the continu
divergence coefficient—these are listed in Table V. Aglie
only gives results for thevW 5vzẑ with ṽ850 case. We have
found a problem with an equation which he uses and h
introduced a better expression for finding the divergence.
have also extended the calculation to the forward-differe
action and to nonzeroṽ8.
6-10



;
ig

’s
d

l
t
r

o
di-
,
in-

one
of

RENORMALIZATION OF THE LATTICE HEAVY QUARK . . . PHYSICAL REVIEW D 62 114006
1. Vertex correction withṽ8\0

In the ṽ8→0 limit, we can reproduce Aglietti’s results
the numerical values are listed in the next subsection. Or
nally, we could not satisfactorily reproduce Aglietti
numbers, especially for theṽ50.0 result. As we investigate
this, we found a problem with thel→0 limit, specifically
there was a subtlety with the interchange of limits (l→0
versusṽ→0). We believe that Aglietti’s choice of integra
subtrac-tion can be improved. This subsection discusses
subtlety. Tables VI, VII, and VIII were produced with ou
choice.
ha

11400
i-

his

Since thedV integral is divergent, a technique similar t
that used fordZ can be used; however, it needs to be mo
fied because the ‘‘continuum-like’’ limit of this integral
dVc, is not analytically manageable. However, a second
tegral, dVcc, can be taken such thatdV2dVc and dVc

2dVcc are each finite. These numeric integrals are then d
separately and added together along with the finite piece
dVcc.

Aglietti refers to dVc as I, and our dVcc is
analogous to his L. Aglietti uses the notation
d( ṽ)5L2I ; we will use the analogous definitiond8( ṽ)
5dVcc2dVc. To be explicit, in the small-k limit Eq. ~47!
reduces to
lt
break
dVc~ ṽ,ṽ8!5
g2CF

16p2

2

pE d3k

2Ak21l2a2

211(
j

ṽ j ṽ j8

FAk21l2a21(
j

ṽ j kj GFAk21l2a21(
j

ṽ j8kj G , ~49!

dVc~ ṽ,0!5
g2CF

16p2

2

pE d3k

2~k21l2a2!

21

FAk21l2a21(
j

ṽ j kj G . ~50!

Aglietti approximatesdVc( ṽ,ṽ850) with

L5
g2CF

16p2

2

pE d3k

2~k21l2a2!

21

@k1( j ṽ j kj #
5

g2CF

16p2

22

ṽ
lnS 11 ṽ

12 ṽ
D lnS 4R2

l2a2D . ~51!

However, this gives al-dependentd( ṽ). In spherical coordinates,d( ṽ) has the form

d~ ṽ !5
g2CF

16p2

2

ṽ
E k dk

k21l2a2 F lnS Ak21l2a21 ṽk

Ak21l2a22 ṽk
D 2 lnS 11 ṽ

12 ṽ
D G . ~52!

So long asṽ is finite, we can take the limit asl→0. However, if we want bothṽ→0 andl→0, a problem arises: the resu
in the limit l→0 is not the result atl50. This is a case in which the limits cannot be interchanged. To be rigorous, we
up the integration into a region fork,l and fork.l:

d~ ṽ→0,l→0!5
g2CF

16p2
4F lim

e→0
E

e

l

dkS k2

~k21l2a2!3/2
2

k

~k21l2a2!
D 1E

l

R

dkS k2

~k21l2a2!3/2
2

k

~k21l2a2!
D G ~53!

5
g2CF

16p2
4 lim

l→0
F211

1

2
lnS 4

R2

l2a2D 2
1

4
lnS R2

l2a2D G1 lim
l→0

O~l2a2/R2!1 lim
l@e→0

O~e3/l3! ~54!

5`. ~55!
While a l divergence was expected fordV, the difference
d( ṽ) must be finite. d( ṽ→0,l→0) is infinite because
the logarithms do not cancel exactly. It happens t
d(l) has a minimum aroundl'1025; at this value, if ṽ
is taken to zero, then Aglietti’sd( ṽ50,ṽ850)524.53
t

can be calculated from limṽ→0@dV( ṽ,0)2dVc( ṽ,0)

1finite part ofVcc( ṽ, 0)#525.75 and d( ṽ→0, l'1025)
521.22. However, Eq.~54! clearlyshows thatd(l→0)
blows up. This can be seen forl,1025.

To avoid this problem, we write Eq.~50! as
6-11
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dVc~ ṽ,ṽ850!5
g2CF

16p2

2

pE d3k

2~k21l2a2!3/2

3
21

@11 ṽW •kW /Ak21l2a2#
, ~56!

which expands as follows and allows a better definition
dVcc( ṽ,ṽ850):

dVc~ ṽ,ṽ850!'
g2CF

16p2

2

pE d3k

2~k21l2a2!3/2

3
21

$11 ṽW • k̂@12 1
2 ~l2a2/k2!#%

~57!

dVcc~ ṽ,ṽ850!5
g2CF

16p2

2

pE d3k

2~k21l2a2!3/2

21

@11 ṽW • k̂#
.

~58!

We find that this makesd8( ṽ) stable to smalll and that it
generalizes to give useful results whenṽ8Þ0. In the equa-

TABLE V. The coefficient of the lattice divergent ln(la) piece
must and does reproduce the continuum divergent coeffic
@4(v•v8)r (v•v8)# in order to correctly cancel the lnl. Errors are
at most three in the last digit shown. In addition,vx5vy5vx85vy8
50.
11400
f

tion analogous to Eq.~54!, the logarithms cancel and th
result is finite in thel→0 limit.

2. Vertex correction withṽ8Å0

This case requires the continuum-like expression for
~47!. Recall Eq.~49!. Again there are problems if we us
Aglietti’s trick of settingl to zero in the factors withṽ and

ṽ8. The problems are~1! the l dependence is incorrec
~which implies that the difference isl-dependent!, ~2! the
limit as ṽ8→0 does not reproduce the results of the previo
section, and~3! the integral is too difficult. So, once again
we will try to retain thel dependence as follows: we ap
proximate

dVc~ ṽ,ṽ8!5
g2CF

16p2

2

p
E d3k

2~k21l2a2!3/2

3

211(
j

ṽ j ṽ j8

@11 ṽW•kW /Ak21l2a2#@11 ṽW8•kW /Ak21l2a2#

by

dVcc~ ṽ,ṽ8!5
g2CF

16p2

2

pE d3k

2~k21l2a2!3/2

3

211(
j

ṽ j ṽ j8

@11 ṽW • k̂#@11 ṽW 8• k̂#
.

While this does solve both thel-dependence problem an
the ṽ8→0 problem, it only barely solves the difficulty of th
integral. However, in spherical coordinates, it allows theuku
integral to be separated from the angular integration. We
solve this integral by doing theuku integration analytically.
~Since this is where thel divergence exists, it is the only
piece that needs to be done analytically anyway.! Having
thus removed the ln(l) term, we can numerically calculat
and add back the angular integration along with the fin
piece of theuku integration.

nt
TABLE VI. The finite piece of the backward-difference vertex correctiond( ṽ,ṽ8) for vx5vy5vx85vy8
50.
6-12
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TABLE VII. The finite piece of the forward difference vertex correctiond( ṽ,ṽ8) for vx5vy5vx85vy8
50.
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Since this is symmetric inṽ and ṽ8, the results
for the vertex correction should be also. Our extens

to nonzeroṽ8 shows that this is the case: Tables VI and V
show our results for backward- and forward-differen
vertex correction at general velocities. Notice that the res

are symmetric about the diagonal,ṽ5 ṽ8. Notice also that
the first row and the first column of Table VI both reprodu

the backward-difference results ofṽ850 in Table VIII.
Table VII shows the results for the forward-differen
vertex correction at general velocities and the first r
and column reproduce the forward-difference results
Table VIII.

IV. LATTICE TO CONTINUUM MATCHING

To renormalize the Isgur-Wise function, which is propo
tional to the current in Eq.~2!, we need the current renor
malization, which can be assembled from the wave funct
and vertex renormalizations calculated in the previous s
tion. This involves
11400
n

ts

f

n
c-

ZQ
1/2~v !ZV~v,v8!ZQ

1/2~v8!5F11
1

2
dZQ~v !G@11dV~v,v8!#

3F11
1

2
dZQ~v8!G

5H 11
1

2
@dZQ~v !1dZQ~v8!#

1dV~v,v8!J . ~59!

So, following Aglietti’s lead@12#, we define

f ~ ṽ,ṽ8!5 1
2 @e~ ṽ !1e~ ṽ8!#1d~ ṽ,ṽ8!,

f 8~ ṽ,ṽ8!5 1
2 @e8~ ṽ !1e8~ ṽ8!#1d~ ṽ,ṽ8!

where a reduced Isgur-Wise correction,f 8, is defined using
the reduced wavefunction,e8, which was used with a fit
model of the forme2mt. Since the wavefunction reduction
does not affect the vertex correction,d, the perturbative fac-
tor for the lattice Isgur-Wise function is:
e

tti’s
TABLE VIII. The finite piece of the vertex correction,d( ṽ,ṽ8), of the forward- and backward-differenc

actions forvx5vy50 andvW 850W . The backward-difference action results should and do reproduce Aglie

table up to the correction mentioned in the text of this paper. Also listed is the current correctionf ( ṽ,ṽ8)

5
1
2 e( ṽ)1

1
2 e( ṽ8)1d( ṽ,ṽ8) and the reduced current correctionf 8( ṽ,ṽ8)5

1
2 e8( ṽ)1

1
2 e8( ṽ8)1d( ṽ,ṽ8)

which form the correction for the lattice Isgur-Wise function.

Backward difference Forward difference

ṽ d( ṽ,ṽ850) f ( ṽ,ṽ850) f 8( ṽ,ṽ850) d( ṽ,ṽ850) f ( ṽ,ṽ850) f 8( ṽ,ṽ850)

0.0 24.526(2) 19.92~1! 0.000~2! 24.527(2) 219.94(1) 0.000~2!

0.1 24.578(2) 19.96~1! 0.122~2! 24.511(2) 220.09(1) 20.174(2)
0.2 24.757(2) 20.08~1! 0.489~2! 24.474(2) 220.58(1) 20.740(2)
0.3 25.089(2) 20.33~2! 1.129~2! 24.401(2) 221.50(1) 21.755(2)
0.4 25.639(4) 20.63~2! 2.100~4! 24.282(2) 222.93(1) 23.364(2)
0.5 26.597(4) 21.09~2! 3.459~4! 24.104(4) 225.21(1) 25.844(2)
0.6 28.432(6) 21.50~2! 5.23~1! 23.800(4) 228.89(1) 29.755(4)
0.7 214.80(1) 19.53~4! 5.57~2! 23.354(6) 235.32(2) 216.529(8)
6-13
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Zj
l 511

g2

12p2
$22@12~v•v8!r ~v•v8!# ln~la!21 f 8~ ṽ,ṽ8!%

~60!

where the divergences have been isolated to calculate
finite pieces andr (v•v8) has been defined by Eq.~8!. If we
did not wish to use the reduced value, the divergence wo
stay the same and we would merely replace thef 8 with f. We
have already shown~Table V! that the divergent piece of th
lattice vertex correction cancels exactly with that of the co
tinuum; thus the lattice logarithm coefficient is written wi
the same form as for the continuum correction, Eq.~7!. Now
the continuum correction,Zj

c , can be divided by the lattice
correction,Zj

l , to find the lattice to continuum matching fac
tor

Zj
cl~v,v8!511

g2

12p2
$2@12~v•v8!r ~v•v8!#

3 ln~ma!22 f 8~ ṽ,ṽ8!%. ~61!

The expression in Eq.~61! is suitable for renormalizing the
Isgur-Wise function extracted by taking ratios of two- a
three-point functions@33#. However, to improve statistics
HQET simulations extract the Isgur-Wise function using
tios of three-point functions only@4,14,34#. We discuss this
additional complication below.

Our results ford, f, and f 8 are listed in the following
tables. Recall Tables VI and VII show our results f
backward- and forward-difference vertex correction at g
eral velocities. Table VIII lists our results for the vertex co
rection, the current correction, and the reduced current
rection in the backward- and forward-difference actions

ṽ850. The backward difference reproduces Aglietti’s r
sults. Tables IX and X show our results for backwar
difference current and reduced current corrections at gen
velocities. Again, the results are symmetric about the dia
nal. Tables XI and XII for the forward-difference current an
reduced current corrections at general velocities are
symmetric about the diagonal. Notice that the first rows a
columns of Tables VI, VII, IX–XII reproduce Table VIII.
Notice also that although the different actions give the sa
result in the static limit (v→0, v8→0), this is not the case a
any other velocity.

For continuum HQET in theMS renormalization schem
at zero recoil (v•v851), Zj

c51 and the finite piece is zer
@15#. This corresponds to the diagonal (v5v8) of the tables
which contain our results. On the lattice, however, if t
conserved current is not used,f 8(v,v) is not constrained to
be zero. We account for this next.

To deal with the finite piece of the renormalization, w
note that the numeric extraction of the Isgur-Wise funct
on the lattice does not calculate the Isgur-Wise function
rectly. The numerical extraction is more manageable us
the technique of Mandula and Ogilvie@34# where the ratio of
the three-point quark propagator,G ~defined explicitly in our
concurrent numerical paper@5#!, gives a ratio of lattice Isgur-
Wise functions
11400
he

ld

-

-

-

r-
r
-
-
ral
-

so
d

e

i-
g

4v0v08

~v01v08!2

Gv,v8~t!Gv8,v~t!

Gv,v~t!Gv8,v8~t!
→
t@1

uj~v,v8!u uj~v8,v !u

uj~v,v !u uj~v8,v8!u
.

~62!

This technique exploits the continuum normalization of t
Isgur-Wise function at zero recoil

j~v•v !5j~1!51. ~63!

Sincevm
2 is normalized to 1, the denominator of Eq.~62! can

be set to unity in the continuum. This ratio also allows t
normalizations and smearing-function dependence to can
so we expect that

uZj
cl~v,v8!j latt~v,v8!uuZj

cl~v8,v !j latt~v8,v !u

uZj
cl~v,v !j latt~v,v !u uZj

cl~v8,v8!j latt~v8,v8!u

→
a→0

ujcont~v•v8!u2

ujcont~1!u2
5ujcont~v•v8!u2.

Thus, our unrenormalized calculation of

j ratio~v,v8![S j latt~v,v8!j latt~v8,v !

j latt~v,v !j latt~v8,v8!
D 1/2

must be renormalized by

Zratio
cl ~v,v8!5S Zj

cl~v,v8!Zj
cl~v8,v !

Zj
cl~v,v !Zj

cl~v8,v8!
D 1/2

~64!

written as

Zratio
cl ~v,v8!j ratio~v,v8! →

a→0
jcont~v•v8!. ~65!

On the lattice,j latt(v,v) does not obey Eq.~63! unless a
conserved current is used; nevertheless,j ratio(v,v8) ~by defi-
nition! acts like the continuum Isgur-Wise function even
the conserved current is not used. Without the conser
current,j latt(v,v)Þ1, but the normalization cancels in th
ratio so thatj ratio(v,v)51. Thus,Zratio

cl will be symmetric in
v andv8 and will have the propertyZratio

cl (v,v)51.
Expanding Eq.~64!, we find

Zratio
cl 511

1

2

g2CF

16p2
$2@„12~v•v8!r ~v•v8!…

1„12~v8•v !r ~v8•v !…2„12~v•v !r ~v•v !…

2„12~v8•v8!r ~v8•v8!…# ln~ma!22 f 8~ ṽ,ṽ8!

2 f 8~ ṽ8,ṽ !1 f 8~ ṽ,ṽ !1 f 8~ ṽ8,ṽ8!%. ~66!

Using v•v5v8•v85r (1)51 and f 8( ṽ,ṽ8)5 f 8( ṽ8,ṽ), this
reduces to
6-14
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TABLE IX. The finite piece of the backward-difference current correction,f ( ṽ,ṽ8), for vx5vy50 and
vx85vy850.

TABLE X. The finite piece of the backward-difference reduced current correction,f 8( ṽ,ṽ8), for vx

5vy50 andvx85vy850.

TABLE XI. The negative of the finite piece of the forward-difference current correction,2 f ( ṽ,ṽ8), for
vx5vy50 andvx85vy850.

TABLE XII. The negative of the finite piece of the forward-difference reduced current correction,

2 f 8( ṽ,ṽ8), for vx5vy50 andvx85vy850.
114006-15
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Zratio
cl ~v,v8!511

g2

12p2 F2„12~v•v8!r ~v•v8!…ln~ma!2

2 f 8~ ṽ,ṽ8!1
f 8~ ṽ,ṽ !1 f 8~ ṽ8,ṽ8!

2
G ~67!

which not only has the correct divergent coefficient but
also see a new finite piece which is manifestly zero on
diagonal. The wave function renormalization cancels exp
itly in Eq. ~67!, so f 8 can be replaced by the vertex corre
tion d.

V. CONCLUSIONS

We have calculated the renormalization of the latt
b→c current by considering the lattice Isgur-Wise functio
This calculation extends previous work by including tadp
improvement, by extending to nonzero initial and final v
locities, and by considering forward as well as backwa
difference actions.

By considering the forward-difference action and t
backward-difference action side-by-side, we find nontriv
differences between the two. The practical difference in
lattice calculation is that the backward difference require
matrix inversion at each step of the calculation. The diff
ences in the renormalization are that the gluon poles o
which one integrates are interchanged; away from the s
limit, the reduced values are no longer equal; and the ve
ity renormalization, when expanded as powers of the ve
ity, stays small for the forward difference, but grows lar
for the backward difference.

Of greater concern is that the velocity renormalization
not terribly small. We have shown that the velocity reno
malization can be expanded in small velocity and that
coefficients remain on the order of unity at higher orders~at
least for the forward-difference action!. These coefficients
are given here toO(v6). The nonperturbative calculation
are giving smaller renormalizations@13,14# and these should
be, in principle, more reliable. This should be considered
more detail, especially the slow HQET for the forwar
difference action.

Although our results confirm other groups’ calculatio
where they overlap, the integrals and divergences are su
and must be managed with care. When we combine
renormalizations into a current correction with the ratio
troduced by Mandula and Ogilvie@34#, such that the finite
piece of the current correction is2 f 8( ṽ,ṽ8)1 1

2 @ f 8( ṽ,ṽ)
1 f 8( ṽ8,ṽ8)#, we find that all of our results have the appr
priate limits and cancelations. These expressions are us
our concurrent numerical paper@5# to compute the slope o
the Isgur-Wise function using lattice HQET.

APPENDIX A: TADPOLE IMPROVEMENT

Tadpole improvement is a mean field improvement@21#
which ~at lowest order! cancels the effects of the large ‘‘tad
pole’’ Feynman diagrams. In the HQET, there is no coe
cient~analogous tok in the Wilson action! which is common
11400
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to both Ut and U j and which allows one toa posteriori
tadpole improve any previous calculation which was not t
pole improved. Fortunately, as noticed by Mandula and O
vie @13#, the evolution equation can be written such that t
u0 is grouped withṽ j5v j /v0. Thus, tadpole-improved~tad!
Monte-Carlo data can beconstructedfrom the non-tadpole-
improved~not! data by replacingvnot→v tad and by including
two overall multiplicative factors (v0

not/v0
tad was not included

by Mandula and Ogilvie!:

Gtad~ t; ṽ tad,v0
tad!5u0

2t
v0

not

v0
tad

Gnot~ t; ṽnot,v0
not! . ~A1!

In addition, the tadpole-improvement of a simulation r
quires adjusting the velocity~analogous to adjustingk) ac-
cording to ṽ tad5u0ṽnot, subject to the normalization (v tad)2

51 and (vnot)251. The adjustment on the velocity is then

v0
tad5v0

not@11~12u0
2!~v j

not!2#21/2

~A2!
v j

tad5u0v j
not@11~12u0

2!~v j
not!2#21/2.

The tadpole improved data is at a velocity which is shift
from the original tadpole unimproved data. Previous HQ
calculations have either not included tadpole improvem
@12# or have had difficulties with it@13#. Although one
should start with a tadpole-improved action, we find it co
venient to be able to tadpole improve a calculationa poste-
riori because there are choices for how one can determ
the mean-field valueu0 @21#.

APPENDIX B: REDUCED RENORMALIZATIONS

One can define a ‘‘reduced’’ wave function renormaliz
tion and relate it to the fit-model exponential. We begin
considering the propagator as a function of timet and the
residual momentumkW ,1

iH ~ t,kW !

5E dk4

2p

eik4

H v0s@~1/u0!eisk421#1(
j

~v j /u0!sin~kj !J
5QS t1

12s

2 Du0
st

v0
e2(t2s)ln[12s( j ( ṽ j /u0)sin(kj )]

2s
. ~B1!

Since iH;e2«t, the energy-momentum relation can b
found:

«52s lnF12s(
j

ṽ j

u0
sin~kj !G'(

j

ṽ j

u0
sin~kj !. ~B2!

1Recall that the residual momentum, rather than the full mom
tum, is conjugate to the position.
6-16



is

as
n
en
o

fit
s

on
a

g

ly
T

al-

e-
a

-

s
c
c-
ve-

D
be-

are

ill
nt
t

ho

RENORMALIZATION OF THE LATTICE HEAVY QUARK . . . PHYSICAL REVIEW D 62 114006
Aglietti @12# notes that the energy goes to zero for bothkW

50W andkW5pW , but provides a physical argument for why th
doubling problem has a negligible effect in the HQET.

In Eq. ~B1!, it may be noticed that theQ-function has a
different argument for the different actions. Though it w
phrased differently, this was also noticed by Davies a
Thacker@22# who give recursive expressions for the Gre
function evolution equation for the two cases of a forward
a backward difference in their NRQCD action.

In order to consider the renormalization effects of the
ting form, consider the next loop-order of the propagator a
function of the time and the residual three-momentum,

iH (2)~ t,kW !5E dk4

2p
eik4$ iH ~k4 ,kW !

1 iH ~k4 ,kW !S~k!iH ~k4 ,kW !%. ~B3!

Following Aglietti @12#, we will make use of

S~k!5S~0!1k4X41(
j

kjXj1O~k2!

52dM tad1@2sv0~12dZ!1dv0# ln~u0!

1dZFv0sS 1

u0
eisk421D1(

j

v j

u0
sin~kj !G

2dv0sS 1

u0
eisk421D2(

j
d S v j

u0
D sin~kj !,

~B4!

wheredM tad is the tadpole improved mass renormalizati
~versusdMnot the not-tadpole improved mass renormaliz
tion! defined by

dM tad52S~0,ṽ !2sv0 ln u05dMNT2sv0 ln u0 .
~B5!

It may also be noticed that since lnu0;O(g2), the @(v0sdZ
1dv0)ln u0# can be neglected asO(g4). We further note that
terms of the residual momentum,O(kW ), can be neglected.2

~The residual momentum can be adjusted by introducin
‘‘residual mass.’’! Finally, we note that thedv0 and
d(v j /u0) can be collected with the bare velocity in precise
the proportion necessary to renormalize each velocity.
solve these integrals, one needs to put Eq.~B3! into a form
which allows the use of

E
2`

` dx

2p

eiax

~eix21!
5Q~a!, ~B6!

E
2`

` dx

2p

eiax

~eix21!2
5~a21!Q~a!. ~B7!

2The calculation including these terms is available from aut
J.C.
11400
d

r

-
a

-

a

o

With these relationships, we find~eventually3!

iH (2)~ t,kW !5QS t1
12s

2 D u0~11dZ!

v0~11dv0 /v0!

3exp$2~ t2s!@Ms#%

3@11O~g2!1O~ ṽ2!#

whereMs is an action-dependent function of the renorm
izations, of the velocity, and of the momentum; andv0(1
1dv0 /v0)5v0

ren. The relevant point is that, as was said pr
viously, for the forward-difference action one should fit to
form of exp(2Mf@t21#); whereas for the backward
difference action one should fit to a form of exp(2Mb@t
11#) @i.e., fit to exp$2Ms(t2s)%#. However, if one chooses
to fit to the form exp(2Mt), then the coefficientZ5(1
1dZ) gets changed toZesMs'Z(11sMs)'(11dZ
1sMs). To O(g2), neglectingO(k) terms, Ms5(dM tad

1sv0
renln u0)/v0

ren52S(0)/v0
ren @recall Eq.~B5!#. So, to this

order, the ‘‘reduced’’ wave function renormalization is

Z85Z2sS~0!/v0
ren

5@11dZ2sS~0!/v0
ren#

5S 11
g2CF

16p2
@22 ln~l2a2!1e~ ṽ !2sx~ ṽ !/v0

ren# D .

~B8!

This is also written in terms of the finite pieces

e8~ ṽ ![e~ ṽ !2sx~ ṽ !/v0
ren. ~B9!

The tadpole term is inx( ṽ) @it gets canceled in the mas
renormalization of Eq.~42!# and, as noticed for the stati
case in@27,28#, the wave function and reduced wave fun
tion renormalizations remain unaffected by tadpole impro
ment.

APPENDIX C: NOTATION

When comparing between the results of HQET, NRQC
and the static theory, the difference in notation starts to
come a factor. Where Davies and Thacker~NRQCD! usedA
for S(0), Aglietti ~HQET! usesA(p) for the nontadpole
portion of the self-energy as well as usingA for a particular
grouping of terms for convenience in the calculation. We
going to maintain Davies’ and Thacker’s use ofA and give
new names to Aglietti’sA’s. However, since Aglietti consid-
ers the velocity-dependence of various quantities, we w
use Aglietti’s notation for a variety of velocity-depende
functions. The velocity will be relevant for the HQET, bu

r

3We found that there are twoQ terms. One goes asQ@ t1(1
2s/2)#[u1, the other asQ@ t1(32s/2)#[u3. We resolved this
assuming we were interested in late enough times (t.21) that
u35u151.
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TABLE XIII. Comparison of notation between Aglietti@12# and Mandula and Ogilvie@13#. Note also that
Aglietti only considers motion in thez direction. Finally note that in the last row, Mandula and Ogilv

considerd ṽ i , but Aglietti considersdvz (ui5 ṽ i5
v i/v0

). To convert between the two, one must include
factor of v0

2.

Mandula and Ogilvie Aglietti Comparison

X052 iX4 X XuAg5X4uMO5 iX0uMO

Xi Y YuAg5X3uMO

ṽ i5
v i

v0
uz5

vz

v0
uzuAg5 ṽzuMO

dṽi52
1

v0
~Xi2ṽiX0! dvz52 iv0vzX2v0

2Y
dv
v

5v0
2
dṽ

ṽ

52
1

v0
~Xi1iṽiX4! 52v0

2~Y1iuzX!
,

fo
tio

.
n,
o
ic
tti

’s

a

or

on
e-

is

-

Sec.
not for thestatic theory nor for the NRQCD. In the HQET
the functional dependence is onṽ defined by

ṽ5(
j

ṽ j
25(

j

v j
2

v0
2

. ~C1!

Note that Aglietti calls thisu.
Aglietti calls the mass renormalizationdM ; he also puts

in a negative sign, which we leave out. Aglietti notes that
the HQET, this is velocity dependent, and defines a func
x(u) which is proportional to hisdM

dM uAg52g2AuDT5
g2CF

16p2

x~u!uAg

a
. ~C2!

v0 does not appear in NRQCD and is 1 in the static limit
In calculating the wave function renormalizatio

]S(p)/]pmup50 is needed. Mandula and Ogilvie use the n
tation Xm . This is a useful notation and does not confl
with either Davies and Thacker or Eichten and Hill. Aglie
names these asXuAg5X0uMO and YuAg5X3uMO . See Table
XIII for an explicit comparison. We choose to use Mandula
and Ogilvie’s notation.

In the definition of the velocity renormalization, there is
further subtlety. Mandula and Ogilvie considerd ṽ i[ ṽ i

(ren)

2 ṽ i , but Aglietti considersdvz[vz
(ren)2vz ~with the defini-

tion ui5 ṽ i5v i /v0). As shown in Table XIII, a factor ofv0
2

must be included to translate betweendv/v and d ṽ/ ṽ. In
addition, Mandula and Ogilvie include the prefact
g2CF/16p2 in their definition ofc( ṽ) in Eq. ~39!.
l
n

11400
r
n

-
t

Mandula and Ogilvie do not calculate the wavefuncti
renormalization, therefore we will compare Aglietti’s wav
function renormalization to Davies and Thacker~while using
Mandula’s and Ogilvie’s notation forXm). Aglietti usesdZ
5Z21 for the wave function renormalization. To relate th
to Davies and Thacker, we note that

ZuAg511S v0X02(
j

v jXj D
511

g2CF

16p2
@22 ln~al!21e~ ṽ !#, ~C3!

where the ln(al) term comes from doing the self-energy in
tegral. It isdZ5Z21 which is Davies’ and Thacker’sC:

CF

16p2
@22 ln~al!21e~ ṽ !#5CuDT5ZuDT1aAuDT .

~C4!

In addition, because of some discrepancies discussed in
III D, it will be convenient to define a ‘‘reduced value ofe,’’

@e(R)( ṽ)[e8( ṽ)#:

CF

16p2
@22 ln~al!21e8~ ṽ !#5ZuDT . ~C5!

This reduced value can be found frome( ṽ) and x( ṽ) as
expressed in Eq.~B9!.
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