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Renormalization of the lattice heavy quark effective theory Isgur-Wise function
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We compute the perturbative renormalization factors required to match to the continuum Isgur-Wise func-
tion, calculated using lattice heavy quark effective theory. The velocity, mass, wave function, and current
renormalizations are calculated for both the forward-difference and backward-difference actions for a variety
of velocities. Subtleties are clarified regarding tadpole improvement, regulating divergences, and variations of
techniques used in these renormalizations.

PACS numbds): 12.38.Gc, 12.39.Hg

[. INTRODUCTION The Isgur-Wise form factor describes the response of the
quark-gluon sea surrounding the heavy quark due to a sud-
The unitarity of the Cabibbo-Kobayashi-Maskat@XM)  den change in velocity of the heavy quark when it decays. In
matrix is regarded as a crucial test of the standard moda@iQET, the Isgur-Wise function is nonperturbatively equal to
[1,2]; the precise determination of these matrix elements hagne at the point of zero recoib,=v'; HQET does not con-
received extensive experimental and theoretical scrutiny. Thetrain the Isgur-Wise function at non-zero recoil. Continuum
Ven CKM matrix element can be extracted from the reactionperturbative corrections are required to obtain the zero recoil
B—D*lv,, if the theoretical factors in the decay rate can beresult in QCD; however, these are known to 2 lodfs
reliably computed. The heavy quark effective field theoryUnfortunately, there are no experimental data at zero recoil,
(HQET) formalism is well suited to the analysis of this de- so the experimental data are extrapoldtéldo zero recoil in
cay. The differential decay rate of the above process is  order to estimat&/., using Eqg.(1). Knowledge of the func-
tional form of the Isgur-Wise function would greatly aid this
extrapolation. The Isgur-Wise function can be calculated

WF(BHD*I”I) nonperturbatively, in principle, from QCD for arbitrary re-
coil. In our companion pap€i5], we describe our simula-
E tions that use lattice HQET to calculate the Isgur-Wise func-
=——k(mg,mp,v-v")|Vep|?E(v-v'), (1)  tion.
48m There have been previous calculations of the renormaliza-

tion factors for lattice HQET. Unfortunately, not all of the
perturbative factors required for our numerical simulations
were calculated. After lattice HQET was introduced by Man-

function is a QCD matrix element that must be compute ula and Ogilvid 8], there were a number of concerns about

non-perturbatively. Previously and in a companion paperhe validity of the lattice HQET formalisf8—11). The con-

) . . sistency of lattice HQET was finally demonstrated by Agli-
[4’.5] we d'.SCUSS.Gd the_numencal caICL_JIatlon of the_lsgurem [12] in perturbation theory. However, Aglietti used a
Wise function using lattice HQET. In this paper we discuss . . . .

. . . . form of lattice HQET action that is less convenient for nu-
the perturbative matching of lattice HQET to continuum

. ; merical simulation than the one originally used by Mandula
HQET’. wh|gh alloyvs the conversion of t_hg results f“.".“ theand Ogilvie. The difference between the HQET actions was
numerical simulations into physical predictions. Specifically,

we shall be matching from the lattice to the continuum ma-in the use of a forward or backward finite difference in the
trix element 9 time direction(see Sec. l). Also, Aglietti considered only a

' special kinematic limit with one quark at rest and the other
D .v]3°%0)|B,v") = VMoMa(v, +0’ 0, (2 quark at finite velocity. Mandula and Ogilviel3] limited
(Dol w € B.v") oMe(v,,+v,)E(v-v’) @ their work to the velocity renormalization factors for the

wherev andv’ denote the 4-velocities of theandb quarks, ~ forward-difference actionfwhich we used in our simula-

where ¢(v-v') is a universal form factor, the Isgur-Wise
function. The functionk can be calculated in perturbation
theory using various approximation$,3]. The Isgur-Wise

and tiong); they calculated neither the vertex function nor the
- wave function renormalization which are required to renor-
I07%(x) = c(X) y,(1— ¥5)b(X) (3)  malize the lattice data.

In this paper, we calculate the perturbative factors re-
is the weak current for the transition of a bottom to a charmquired to renormalize the Isgur-Wise function obtained from
quark[6]. a lattice HQET simulation. The calculation includes two

HQET actions: one with the forward time derivative and one
with the backward time derivative. We follow the formalism
*Present address: McMurry University, Abilene, TX 79697. developed by Agliett{12], but generalize Aglietti’s expres-
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sion for the vertex function to arbitrary input and output In HQET, the momentum of the heavy quarM{) is
velocities (as is required for the analysis of the simulation distinguished from the momentum of the light quarks and
datg. We also include the effects of tadpole improvementgluons , the “residual momentum}:
and discuss a subtlety in the calculation of the vertex func-
tion. M pag=Mv +K.

Section Il will provide a sparse review of continuum

HQET in order to put the lattice calculation into context.
Section Il will describe the details of the velocity, mass,mentum of the hadronMh,) and the momentum of the

wave function, and vertex renormalizations for the Iatticeheavy quark. The velocity of the heavy quark becomes a

actions, including a discussion of the “reduced” results angParameter of the theory and it is t.h.e reS|duaI. momentum
which becomes conjugate to the position. In the infinite mass

an evaluation at nonzero recoil. Section IV will describe howl. it th " f the had is d v to the h
these are combined into a single renormalization for the Iat—'m;‘r’k € momentum ot the hadron 1S due only to the heavy

tice current to be matched to the continuum. Section V cong'“'_l_h rix el in th " dified minimal
cludes with some remarks concerning the renormalization € ma fx elemen |n_ € continuum mo ||e. minima
process. subtraction MS) scheme is connected to the matrix element
There have also been a number of attempts to calculafg@iculated on the lattice by 8]

some of the required renormalization factors numerically c

o . __Z
[13,14). The renormalization factors computed from numeri- (v|V |v,>Ms:_é<U|V |v/>latt:ZcI<U|V |U/>Iatt (6)
cal simulations should agree with the perturbative calcula- " z'§ # ¢ # '
tions as the weak coupling limit is approached. This is an
important test of the numerical renormalization techniqueswherezg is a continuum perturbative factci'f is the lattice
which has not yet been attempted. The renormalization of thgerturbative factor, andy is the ratio of the two. Fallet al.

The residual momentum is the difference between the mo-

current has never been computed numerically. [19] calculated the continuum renormalization factor
Il. CONTINUUM HQET . 9° )
Zi=1+ 2{2[1—(v~v')l’(v-v’)]ln(,u/)\) + 68},
Heavy quark effective theory is a way of studying a single 2w
heavy quark in a hadron when the mass of the quark is much (7)
larger thanAqcp. See Neuberf15] for a nice review of where
HQET. Mannelet al.[16] make rigorous Georgi's17] intu-
ition that the heavy quarks at different velocities do not in- o
teract. They do so by showing that the QCD Green functions r(w)= M (8)
which involve two heavy quarks at different velocities go to wi—1

zero in the infinite mass limit. So, there is a separate field for ) . )
each heavy quark at each velocity. In HQEB], the con- and\ is the gluon mass introduced as a infrared regulator.
nection between the HQET fields and the quark fie@sin ~ The dependence onmust cancel irZ§, the ratio ofZ,’s, of
QCD is Eq. (6). In the MS scheme.=0 [20]. The calculation of
Mo the lattice renormalization factoz'g, is the subject of the
h, (x)=€e"7P ., Q(x), next sectionZ¢ will be discussed further in Sec. IV when
. e discuss the matching from the lattice to the continuum.
H,(x)=€M"*P_Q(x), (4 OO "9 | i

whereP.. = 3(1*%). The new form of the QCD Lagrangian Il LATTICE HQET

hash describing massless degrees of freedomtdmiscrib- The Euclidean formulation of the lattice HQET action

ing fluctuations with twice the heavy quark mass. Furtheryas introduced by Mandula and Ogilvi8]:

explicit Gaussian integration of the fields produces the

effective, non-local Lagrangian. Upon integrating out the . ) " Aj+A

heavy degrees of freedom, theterm is replaced by a local S=2 {vod (AW —i X vy X=X .

term involving the light degrees of freedomand the mass * . 9)

of the heavy quariM. The Lagrangian is then expanded in

the reciprocal of the heavy quark mass; the zeroth ordeThere is some freedom in the choice of which lattice deriva-

HQET Lagrangian is tives are used in Eq9). The tadpole improved finite differ-
ences are defined by

Leg=h,iv-Dh,, (5)
__Ui,iﬂl o )
with the additional terms treated perturbatively as higher or- Au‘/’x_u—o‘/’xw_ P, (10)
der in the reciprocal of the heavy quark mass. At zeroth
order, i.e., in the infinite mass limit, the theory is indepen- T
dent.of t_he mass of the hgavy quark, and the Isgur-Wise A =5 XX~ p Ui (12)
function is universalflavor blind). Uog
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such that Comparison in perturbation theory between the forward- and
backward-difference actions for the static case has led to the
introduction of the “reduced wave function renormaliza-
tion” discussed in Sec. Il D and summarized in Appendix
B. (Please see Appendix C for a comparison of the notation
between the groups.

We introduce the notation

lﬂI}A LU is aforward difference,
1,//}tA, « s is a backward difference,

3( lﬂEtA’ul//)&"' wEtA,#wgt) is a centered difference,
+1 forward difference,
andug is the tadpole improvement factf21]. The tadpole =) _1 packward difference (12
renormalization of the lattice HQET action is subtle because
of the constraint on the velocity; these subtleties are ad-
dressed in Appendix A. in order to compare the forward- versus backward-difference

The centered difference approximates the continuum deactions. Both the forward- and backward-difference actions
rivative to O(az) (wherea is the lattice spacing both the  can be represented simultaneously by repladindy A .,
forward- and backward-difference derivatives ha@¢a)  whereA , is either a forward time difference or a backward
corrections to the continuum. Therefore, it seems that théme difference, depending on the choice of action.
centered difference is the preferred type of derivative. This is Feynman rules can be derived from the action
true for the spatial derivative; however, Mandula and Ogilvie
[13] emphasize that for consistency an asymmetric time dif-
ference must be employed, rather than a centered difference. v -1
If a centered difference is employed, then the propagator +2 _Jsm(pjﬁ }
vanishes on alternate sites in the positive time direction and 7 Uo
there is no continuum limit. The source of this problem is (13
that the heavy quark fields are defined separately from the
heavy antiquark fields and are distinct for each velopity
call Eq. (4)]; thus, heavy quarks can only propagate in one
temporal direction. propagator

The lattice HQET action originally proposed by Mandula
and Ogilvie[8] used a forward time derivative. The back-
ward time derivative can be less convenient for use in simu-
lations because a three-dimensional matrix must be inverted
for each time step. The forward time derivative only requires
a matrix multiplication at each time step, and so is compu-
tationally cheaper to simulate. arbe V] p;+K;

This choice of a forward time derivative has also been +2 8, 9(T?) LS5
discussed by Davies and Thack&g] in the context of non- . 0 (15)
relativistic QCD(NRQCD). However, recent NRQCD calcu-
lations follow the prescription of Lepagst al.[23] who use
a backward time derivative but avoid having to invert a large  taqgpole
spatial matrix by splitting the spatial part of the action over
two adjacent time slices. Their action, which can @¢a)
improved, is symmetric with respect to time reversal, yet 92 v;
avoids the problems of the centered difference. Improved +E 5#,,-(7—'
heavy-Wilson action§24] also go over to the backward de- ! Uo
rivative in the static limit. Similarly, better choices for the
HQET lattice actions can be made, and if we were to rerun 4
the program with higher-order corrections, it would indeed internal J”/a d’k 17)
be advantageous to use the backwards time derivative as isintegrations —ala(2)*
done for heavy-Wilson and modern NRQCD actions. But for
our present purposes, the zeroth-order action suffices, and at
this order the forward difference provides a technical advanThe T2 are the color generators ai@:=3 is the Casimir
tage in computation. invariant.\ is a gluon mass, which is needed to regulate the

Since Aglietti's [12] perturbative calculation used the infrared divergence&s is done in the continuuymand which
backward-difference time derivative, we do the perturbativewill be taken to zero at the end of the calculation.
calculations for both types of time derivative. We can check From the Feynman rules, it is straightforward to derive
our results against Aglietti’s, against the results from thethe usual self-energy> (p)], tadpole[Z®p)], and vertex
static theory[25], and also the static limit of NRQC[22].  [V(p,p’)] correctiongthe self-energy i€ (p)+3>%Yp)]:

quark
propagator

1 .
Vo0 _e|0p4_1
Uo

-1

I
gluon ' (14

A(K) =

k
> 4 sif-£ +\2a2
< 2

vertex

5%0( ig(Ta)bCZ—Zei o(2pa+ k4)/2)

2

g_@ aybd/Taydcaiopy
5,L,o(02 5 (TOPT) e

vertex

(Ta)"d(Ta)dCsinpj) , (16)

114006-3



CHRISTENSEN, DRAPER, AND McNEILE PHYSICAL REVIEW B2 114006

— (v2/u2)e 7(@Patka) 4 ; (vilu)coS(2p;+k;)/2]

s(p)=gic, [ o 19
p)=49g F 4 A(—K ] ’
(2m)* A=K {voo[(lluo)e"’(pﬁkfl)—1]+Ej: (v,—/uo)sin(pj+kj)]
g%Ce vo vj . J dk 1
ta — —r—aloPs 2 . -
dk 1 voUy . vivi ki ki e'ka v
— 2 _ i akgl241 0kyl2 171 Wi - _ P )
V(0,00=g CFJ(ZW)“ A(—k)[ ¥ el 7kal2gi oky +; ¥ cos cosz]/( v00< m 1 +; m sm(k])}
ioky !
x ug,a(e “1]+> U—JSir‘(kj)H. (20)
Uo i Uo

It is sufficient for our purposes to evaluate the vertex func- , -
tion with zero external momentum. The expligitdepen- zg=e"""P ug— X, v sin(pj+kj)|. (23
dence is kept in the self-energy since the derivative will be :
considered. The integral which appears in the tadpole correerne gluon propagator poles appear at
tion is standard and has the val(ie/(27)*]fd*k/A(K)
=0.154933. Ay 1
The evaluation of the integrals is nonstandard because of 2. =14 5 *5VAG+44,, (24)
the problems caused by the spectrum of the Euclidean HQET
action not being bounded from below. We follow the formal- where A5 is defined by Eq(22). The contour separates the
ism developed by Aglietti12] and by Mandula and Ogilvie gluon poles. The contour should enclose the quark pole and
[13], in which we must first perform thk, integration ana- one of the gluon poles. The subtlety is in choosing which
lytically and do so by transforming tospace g=e“*4). A gluon pole. Because the energy-momentum relation from the
contour is chosen that enforces the forward propagation afuark propagator, E4B2), can be negative, we sphktspace
the HQET quarkg$13] as described belowThe connection (or z space into a positive-energy region and a negative-
to Minkowski space via a Wick contraction is discussed byenergy region and enclose the gluon pole which lies in the
Aglietti [12].) The resulting three-dimensional integrals arepositive-energy region of the space. For negligible external
then calculated numericallyAll of the numeric integrations momentum with a quark momentupt- k, the uppeik, half-
were computed with th®EGAS routine[26].) plane is positive energy and, using E#j2) to distinguish the
The analytick, integration of Eqs(18) through(20) re-  actions, it is convenient to defirevia Eq. (21) such thatz
duces the four-dimensional integraton to a three-=e"*4 for the forward-difference action arz=e 4 for
dimensional integration. It is, however, more convenient tathe backward-difference actiotFor p—k, the lowerk, half-
do this as a contour integration in space[13] after an  plane is positive energy and it is convenient to use

action-dependent change of variables =e 17k ) With either of these choices, the backward differ-
ence action will have the positive-energy region outside of
7= el7ks (21) the z-space unit circle and the forward-difference action will

have the positive-energy region inside thgpace unit circle.
The quark pole
For this change of variables, the gluon propagator is written

A(k,) =22 (1—cosk,)+(ax)?2
m with positive-energyusing Eq.(B2), zo~1—0ce] is just in-
side (outside of the unit circle for the forwardbackward
difference action. SinCQA32+ 4A;=A,, we findz, outside
(andz_ insideg of the unit circlez,, (which is equal taz, for
which definesA (k). the forward difference anzl for the backward differengeés
The k, contour (along the real axjstransforms into the therefore in the negative-energy region. Since khe(z.)
unit circle in complexz space. A subtlety arises when decid- gluon pole is always in the positive-energy region for the
ing which poles to enclose by the contour. The quark propabackward-difference action and always in the negative-
gator pole appears as energy region for the forward-difference action, we can write

= 2 (1—cosky) +Az(K) (22)
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Z, positive-energy pol
Backward difference Z_ negative-energy pol z, hegative-energy pole, o6
Forward difference Z, negative-energy pol z_, positive-energy pole. 26

z_  positive-energy pol

In both cases, it is the quark and the positive-energy gluoglected. After a little algebra which involves the addition and

poles which are enclosed by the contour regardless of whemubtraction of some deducible terms, one can write the
the quark pole actually appears. When the quark pole movgsropagator in the form

into the negative-energy region, it is necessary to deform the

contour to keep the quark pole enclosé€this is discussed iH(k)={[1— 8Z]|i(vo+ 5vo)k4+z (ﬂ+ S ﬂ))k_
for k space by Agliett{12] and forz space by Mandula and 7 \Ug Uo/ )
Ogilvie [13].) However, to simplify, one can equate this to 4

the negative of the contour integral which encloses only the +(Mg+ 6M)+0(K?) } (32)
negative-energy gluon pole. The three-dimensional integrals '

resulting from the contour integration have an action- === , o
dependent form due to the appearance of the negative-enerflich implies the expressions for the renormalizations

gluon pole ¢,). This pole is a function ok. SM=M"—My=—3(0p)—ovginug, (33)
In order to compute the renormalizations, the unrenormal-
ized propagator is compared to the renormalized propagator.
(We include the mass term in order to calculate the mass
renormalization). The renormalized propagator has the form

8Z=Z—1=—iveX4— U, v;X;, (34)
]

Ui

.
5(_> =v{— —=—ivg =X~ (1+0))X;—v; X v;X;,
27) uo uo J#i

( 39

z
iH" (k)=

ivpka+ > v;kj+|v|f+0(k2)}
]
Suo=vh—vo=—i(v3—1)Xs—voUp> v;X;. (36)
The renormalization factors are obtained by Taylor series i

expanding the unrenormalized propagator We make the following points regarding these expressions:

v First, in the HQET formalism, the residual momentum is
+E —Jsin(kj) conjugate to the position, leaving the velocity as a free pa-
i Yo rameter. As discussed by Agliefti2], the velocity is renor-

-1 malized on the lattice. In the continuum, the four-vector

(28 is proportional tov,, the only available four-vector; this
implies that there is no velocity renormalization. On the lat-
tice, with reduced rotational symmetry, this is not the case.

Secondly, ifuy is set to unity and the special case wof

=v,z is taken, then these reduce, for the backward-
difference case, to Aglietti’s resyl12]. Thirdly, 6(vj/uo) is
a notation to remind the reader that this quantity renormal-
and izesv;/ug rather tharv; as can be seen in E5). Foru,
1 =1, our §(v;/up) corresponds to Aglietti'ssv;. Further,
Zeivka=givkiTNlo=14jgk,—Inug+O(k?), (30) the velocity renormalization can be written as follows:

iH (k)=

1 Kk
Voo —e'7—1
Uog

+M0—E(k,v)

We used

3(kv)=3(00)+keXs+ 2 kiX;+O(k?) (29
J

0 v]_r,tad:UJb,tadZL?d, U{),tadzvg,tadzzegd,
where
72 (k) pu_ L[ 1, OO0 g B0
X, = . (31) i U vilug |’ o vo
#oook, o

Finally, theug that appears in these expressions is the per-
Equation(30) was used for the static ca§27,2§ to eluci- turbatively expandedi,=1—(g?Cg/1672) 7. It is taken at
date that the tadpole facter, results in mass renormaliza- lowest order(unity) and the terms higher order ig? are
tion rather than wave function renormalization. Notice thatignored becausé(M~O(gZ). The result is that the wave
Up has the perturbative expansidi—[g2Cg/(4m)?]mw?  function renormalization and the first term of the mass renor-
+0(g*}, so Inuy~0(g?); the higher order terms are ne- malization,>(0v), are the same t®(g?) whether or not
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one uses tadpole improvement. The velocity renormalization A. Velocity renormalization
is affected by tadpole improvement as

) , Mandula and Ogilvig13] renormalizev;=v; /v, rather
Ztad_ |1 4 S(v;/uo) 9 Ce —a?) thanv. We will not be using their notation, rather we will be
%I vilup 1672 ’ renormalizingv, and calculating:(v) defined by Eqs(35),
(37), and(398):

2
_ 9°Ce ~ 2
=1+ 16#2(C(v)+77) ,

(38)

8(vjlug) 9°Ce
where the ¢ 7) is from the perturbative expansion of, vjlug 1672

vi=v;/u,, and c(v) is the samdto O(g?)] regardless of
tadpole improvement. . . - .

gf the rgnormalization factof&€qs.(33) to (36)], only the This parallels_ the notation of Aglle_tﬁrlz]. (See App_endlx C
mass renormalization, Eq33), depends explicitly on the for a cqmpansor).Recall th_at this is the pe.rturbatllve renor-
choice of forward or backward time differenttee o param- malization to the tadpole-improved velocity. Neither Man-
eten. However, all the renormalization factors implicitly de- dula and Ogilvie nor Aglietti use a tadpole-improved action.
pend ono via the X, functions. The explicit dependence of ~ The expression foc(v) is found from the self-energy
the mass renormalization om is zero when tadpole im- Feynman diagrams as expressed through(88). Continu-
provement is not used; this is discussed further in Appendiing to use ther= =1 to distinguish between the actions, we
B, above Eq(B8). find

c(v). (39)

9,2 —2azg(k)+(5i/uo)[(l/u§)+5$]simki)+; (vlug)sin(k;)
c(v)=—* a

[ o

o[ (Llug)z, (k) — 1]+ 2 (v /ug)sin(k;)

— > (vElu)cog(k;/2) z(,(k)—[(1/v§)+5i2]cos{ki)—§_ vZ codk;)
J J#I

+ — - . (40
[l (W0)2,(K) ~ 1]+ 2 (v, /u)sin(k;) 1

Theug are perturbatively expanded such that at this order in _

g?, they can be replaced with unityThey are included as a ¢(v)=Cooot CZOd)I +00202 Uj JrC400v| +szov. 2 v,

reminder that in the next order there will be an effebtote

thatz,(k) is the negative-energy gluon pole, defined by Eqgs.

(24) and (26), introduced from the residue of the contour. +C04°2 Uj +0022;| ]2 vkt Coo?
Mandula and Ogilvid13] perform an expansion in small

velocity and present the velocity renormalization as coeffi-

~4 ~2 ~2 ~4 ~2 ~22
) : . o +Caoi C+ Cou T+ Coo -
cients to powers of the velocityThis is convenient in that 420 ,Z‘l vy T b ,E;e:. Oy T b2 k;,i = Vit
whenever a calculation at a new velocity is desired, the value
for the velocity has precalculated coefficients so that the cal- +C0602 i +Co422 2 > Uk+ (42)

culation need not be done repeatedihile this is straight- E,i J#I
forward for the velocity renormalization, the divergences in

the wave function renormalization and the vertex correctio
he forward and backward difference results of this expan-

make this technique more complicated for these other calcu-
ion are listed in Table I. Mandula’s and Ogilvie’s results are

lations. However, if we consider the expansion for the velac, reproduced by the first two columns. Our results for the same
|ty renormallzaﬂon, then we get consistent result@ét)ﬁ) Spec|a| Casébackward d|fferencevx vy= O) that Ag||ett|
(notice that our format is slightly different becauseenor-  considerg12] are listed in Table Il and agree with Aglietti
malizesv rather tharv) where they overlap. The three columns of the forward differ-
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TABLE I. The coefficientsc,,,, used in the velocity renormalization when expanded in powers of the
velocity to O(v®) according to Eq(41). sis the order of the velocity term, found by summing the indices;
s=m+n+I. The first set is for the forward-difference action; the second set is for the backward-difference
action. If you consider the velocity in only one direction, then only the top row is relevant.

Crnl Forward difference Backward difference

n | s=0 s=2 s=4 s=6 s=0 s=2 s=4 s=6

0 0 —28.07(3) —4.977(6) —1.093(3) —0.458(2) 11.78(1) 0.33(2) —0.88(3) —2.03(3)
2 0 —4.292(6) —2.100(6) —1.380(6) 10.26(2) 9.49(6) 7.0(2)
4 0 —1.010(3) —1.346(6) 7.62(3) 28.1(2)
2 2 —1.005(6) —1.36(1) 9.53(6)  43.4(3)
6 0 —0.469(2) 39.98(6)
4 2 —4.54(2) 109.6(6)

ence arec(v) according to Eq(40), its expansion through Tadpole improving the perturbative factors, by adding
sixth order in small velocity according to E¢1), and its  to them as in Eq(38), does not substantially reduce the size
expansion through second order of the velocity expansioff the perturbative contribution.

using only the first three terms of E¢41). The latter con- To give an idea about the magnitude of the velocity renor-
firms Mandula’s and Ogilvie’s result; however, the sixth or- malization, we considep=6.0 with |[v|=0.5, and use the
der result(using the coefficients of Tabl¢ is in much better bare lattice coupling. The non-tadpole improved multiplica-
agreement with the exact resuéts one would expertAl- tive factor isZ, =0.67; the corresponding tadpole improved
though Table Il only considers motion along a single axis, : B

our more general results indicate that for the forward- TABLEIIl. The velocity renormalizationc,(v), for the forward
difference action it is sufficient to use the velocity expansiondifference action for several generamal) velocities. The uncer-
to sixth order. tainty is at most 2 in the last digit.

For the more general case of all the spatial velocities no~

= ; 0.00 0.05 0.10 0.25
equal to zero, we present the results for the forward': 0.00 N
difference action at small velocities in Table Ill. This is the Uy
factor, cZ(Z), which renormalizes the component of the 0.00 2806 —28.15 —28.40 —30.14
velocity according to Eq(38). The renormalizations for the 0.05 —92816 —2823 —2847 —30.19
vy and vy, components can be deduced from the table by 0.10 —2830 —2847 —2872 —3046
symmetry. Notice that the, renormalization is affected by 025 —30.12 —3020 —3045 —32.17
each component of, not merely byv,. The numerical size
of the perturbative factors in Tables Il and Ill are both large.; —¢ s 5 0.00 0.05 0.10 0.25
TABLE IlI. This table lists the velocity renormalization for both Yy
forward-difference(our choiceé and backward-difference actions 0.00 —28.16 —28.23 —28.48 —-30.19
for the special case,=v,=0. The last two columns solve the 0.05 —92826 —2834 —2855 —30.27
expanded equation through the superscripted order.cﬁm)e en- 0.10 —2849 —2856 —2882 —30.53
tries are exact, that is, not expanded in the velocity. Note that th 025 —3020 —3030 —3054 —32.26
—0.0 limit is considered even though there is no need to calculat
the renormalization coefficient when=0. (c has no interpretation 5.=0.10 o 0.00 0.05 0.10 0.25
in the static limit) ) 5 ’
¥
(Backward (Forward 0.00 —2840 —2848 —2872 —3045
c(v) c(v) c® c® 005  —2849 —2855 —2881 —30.53
~ 0.10 —2872 —28.80 —29.06 —30.78
c(v—00) 11.7794) —28.06(1) —28.06(1) - 025  —3045 —30.52 —30.79 —32.50
c(v=0.1) 11.8995 —28.40(1) —28.40(1) —28.38(1)
c(v=0.2) 122785 —29.44(1) —29.44(1) —2942(1) 5 —q25 o 0.00 0.05 0.10 0.25
c(v=03) 129665 —31.35(1) —31.35(1) —31.29(1) v,
7= 14.0367 —34.39(1) —34.39(1) —34.28(1 :
C(E 0.4) &) (1) (1) (1) 0.00 -30.15 -—3021 —30.46 —32.20
c(v=05) 15.641)  —39.17(1) —39.17(1) —38.95(2) 005  —3022 —3031 —3056 —3227
c(v=06) 18031  —46.90(1) —46.90(1) —46.44(2) 010  —3048 —3054 —3080 —32.54
c(v=0.7) 20.843) —60.44(2) —60.45(2) —59.47(3) 0.25 —-3221 —3227 —3251 —3426
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TABLE IV. Mass [x(v)] and wave function[e(v)] renormalization functions for the backward-
difference(BD) and forward-differenc€FD) actions. The BD numbers reproduce Aglietti’s tapl@]. The

BD and FD numbers fox(v) and e’(v) should agreeonly in the static limit £=0). e’(v)=e(v)
—ox(v)/v, are the reduced wave function. Notice that we defie) as the negative of that of Aglietti. In
addition,v,=v,=0.

Backward difference Forward difference

v x(v) e(v) e'(v) x(v) e(v) e'(v)
0.0 —19.92(3) 24.484) 4.531) —19.93(1) —15.40(1) 4.53()
0.1 —19.87(3) 24.644) 4.8754) —19.99(1) —15.75(1) 4.1402)
0.2 —19.69(3) 25.244) 5.971) —20.17(1) —16.82(1) 2.93R)
0.3 —19.34(3) 26.364) 7.91(1) —20.47(1) —18.78(1) 0.756%)
0.4 —18.75(3) 28.14) 10.961) —20.97(1) —21.91(1) —2.694(6)
0.5 —17.72(3) 30.96) 15.6012) —21.72(2) —26.83(2) —8.015(8)
0.6 —15.79(3) 35.46) 22.824) —22.89(1) —34.74(2) —16.44(2)
0.7 —11.15(3) 44.71) 36.27110) —24.79(2) —48.56(4) —30.85(2)

number Isztad 0.75. If the boosted coupling?/u [21], is unit# _Aglie;[cti anhd Ginlw'engz do not ca}!culat?altr;]e sixr:h-rc]:rder
coefficient for the velocity renormalizatiotalthough the
used therzta}d 0.59. As the slope of the Isgur-Wise function take the other renormaliz)a/ltions to this or)dd'rowe?/er, thg
essentially depends quadratically on the velocity renormalrenormalization factors are only required to quadratic order
ization, this makes perturbation theory unreliable to analyzen the velocity in order to compute the slope of the Isgur-
the simulation data and thus numerical renormalization techyyise function from simulations of slow HQETThe slow
niques must be usdd,5,13,14. HQET formalism is used to directly calculate the derivatives
Aside: Slow HQET. In Aglietti’s [12] initial calculations,  of the Isgur-Wise function, using the “moments” technique
the velocity renormalization was presented as a function of29]. Aglietti and Gimeez[30] found that the expressions
the velocity. However, Mandula and Ogilvi@3] expanded for the higher order derivatives of the Isgur-Wise function,
the velocity renormalization in a power series in the velocity,beyond the slope, contained operators that diverged with an
which allowed them to compare their perturbative resultsnverse power of the lattice spacing and that must be sub-
with the numbers from their numerical renormalization tech-tracted off in the simulatioi.
nigue. The expansion of the renormalization factor in veloc-
ity seems to be similar to Aglietti’R29] idea of slow HQET, B. Mass renormalization
where thev-D term is a perturbation on the static theory.

Slow HQET was studied in perturbation theory by Aglietti h As with the veI(I)_city renqrhmalizatiéon, \:cve deﬁ?{v) as
and Gim@ez [30], where they demonstrated that slow the mass renormalization without theé prefactor. For com-

HQET agreed with HQET in the infrared and ultraviolet parison, Aglietti{12] also does this; however, we prefgor

limits. It would be interesting to understand the con- comparison to the static limit of the forward-difference

nection between slow HQET and the HQET formalism of NRQCD theory to have ourx(v) proportional to+3(0p).

Mandula and Ogilvie. So, ourx is the negative of Aglietti's(See Appendix C for a
We have found expressions for the velocity renormaliza£omparison between groupsVe also include the effect of

tion in terms of the coefficients for the backward-differencetadpole improvement.

action(Table ) and note that they,, coefficient of the back-

ward difference is rather large, at 10&B—much larger _ 92Cr x(v)
than the equivalent coefficient for the forward-difference ac- M= —%(0p)—ovglnuyg=— o Yo Inug.
tion. This could indicate a problem with the expansion for 16m
the backward difference; the forward-difference coefficients, (42)
which we checked througB (%), are all reasonably close to Recall that Iru, is O(g?). From Eq.(33),
2
, —z,(k)+ 2 cosz< )
~ Uof 2
X(v)=— = +087v((0.154933, (43

(iz (k) — )+E —sm(k)
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where the 8r?(0.154933) is from the tadpole contributioB £ which is partially canceled by the second term in E) as

it should be. Theu, are again perturbatively expanded such that, at this order, they can be replaced with unity. They are
included here as a reminder that in the next order they will have an effect. The values of this integral are listed in Table IV.
As they are relevant to the reduced wave function, we will discuss these there.

C. Wave function renormalization

The results of the wave function and reduced wave function renormalization can be compared not only td12glietti
(backward difference, HQBTand Mandula and Ogilvigl3] (forward difference, HQEJ, but also to Eichten and Hi[25,31]
(backward difference, static thegrgnd the static limit of Davies and ThacK&2] (forward difference, NRQCD (Appendix
C compares the notations between groups.

Recall that the wave function renormalization can be found as(®). During this calculation, as with the velocity
renormalization, thek, integration is done analytically with the same comments as were made earlier. This introduces the
residue from the negative-energy gluon pag(k). Again using thesr= *+1 to distinguish between the actions, the result for
62 is

gZCF 21}3 _ZO'ZO.(k)-F; (;?/Uo)&mk])

B f d3k
16m2 7 ) JAZ+aA, [U

[(1ug)z,(k)—1]+ 2,: (v /UO)Sin(kj)}

2
c
+ 96 ~872(0.154933,

2
[o[(1/u0)zo(k)—1]+; (Z,—/uo)sin(kj)] 16m

z,(k)— >, ('Jf/ug)cos’-(%)
]

z,(k)— 2, vicogk))
J

where again the 8%(0.154933) is from the tadpole contri- the first and third terms are finite. Since we are interested in
bution and theu, are again perturbatively expanded suchthe infrared divergent piece, we will defid® as the second
that at this order, they can be replaced with unity. This threeterm. By taking advantage cu‘o|pert:1+0(g2) as well as
dimensional integral has a logarithmic divergence. The wayy using the velocity normanzaﬂoﬁl_gj;f)zl/vg] we
with which this is typically dealt is to add and subtract an get

integral with the same logarithmic divergence which is solv-

able analytically. We call this integrdz® and use the small ) 3

k limit because we are interested in the infrafkedv energy 57¢= 9°Cr LJR d°k 1

divergence. The differencéZ — 5Z° is finite and calculated 1672 7v3)o K2+ \2%a? [k + )\2a2+2ﬁ§jkj]2'
numerically.5Z° (found analytically will have a finite piece,

Wh'.Ch IS addgd back to the numerl_cal calculgﬂon, as well Ahe upper limitR is arbitrary because this term is added and
a divergent piece. The divergent piece contributes to the co:

efficient of the In§Za?) term in the renormalization of the subtracted. Interestingly, this is the same integral for both

lattice Isgur-Wise function. actions. The result of this integral (with v= = ;v?)
Although the “continuum-like” limit of 5Z is actually

9°Ce 1| 2 I JRZ+\2aZ+R
~ — —In
) ) . —20+ 2 (v3ugk 16m% v5| 1-v2 | JR*+\%a’-R
g°Ce Zvoj d°k ]
2 7 ) o k21 nZa2 - 2 JR?+2\%a%+uR
16m 2VkT+ATa {(\/k2+)\7az)+2 (vj/ug)k; —=—=5-In N
i v(l—v"°) JRZ+\ZaZ-yR
1-2, (W¥ud)||1-> v? -
;( i/to) 2 ' g2Ce 4R?\ 2 [1+47%
+ > — > n > 2 —=In =1 (44)
(JEN2)+ 3 6ok A<R 16w Mad v il
2c The divergent piece is 2 In(\?a?). This is the wave function
+ 9 F872(0.154933, contribution to the divergence in the ren_ormalizati?n of the
1672 Isgur-Wise function. We can, for convenience, Bet 5.
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As with the mass renormalization, the results for the
wavefunction renormalization are listed in Table IV, but dis-
cussed further in the next subsection. Note that, as x(ﬁ;b which is the relation for the reduced value of the wave func-
for the mass renormalization, the wave function renormalization renormalization. The tadpole term is ¥{v) [it gets

e'(v)=e(v)—ox(v)/lvE", (46)

tion is referred to bye(v) and defined by canceled in the mass renormalization of E42)] and, as
noticed for the static case (27,28, the wave function and

g%Ce - ~ reduced wavefunction renormalizations remain unaffected by

LYAS 6772[_2 In(\“a%) +e(v)]. (45 tadpole improvement. Table IV lists our values for these

functions for a large velocity range. Notice that in the static
o _ limit, the reduced value for the two actions is the same. This
D. Renormalization of the reduced wave function is the expected result. Also notice that our forward-

The perturbative factors for various heavy quark effectivedifference value foe(0.0) agrees with Davies and Thacker
field theories depend subtfl2,22,25,32 on whether the [22] (in their notationC=Z+aA= —15.4). Our backward-
forward or backward time derivative is used in the action. Itdifference table agrees with Aglieftl2]; and the static limit
is expected that in the Euclidean formulation, the propagatoff the backward difference actior(0.0)=24.44, is also in

as a function of time and the residual three-momentien, ~ @greement with Eichten and HilR5]. While it is still con-
Fourier transformingk, into t) will have the dependence Venientto use the reduced result and fietd"" in the static

e *'=e~™ However, it turns outAppendix B to have the limit, the forward and backward difference will have differ-
dependencée ™~ ?) wheres=+1 distinguishes the ac- €nt reduced wave function renormalizations away from the

tions. Eichten and Hil[25] noticed this relation and found Static limit.
that if one fits, instead, té&\'e” ™ (where A’ =Ae™) this

changes the wave function renormalization by subtradiing

adding the mass renormalization. It also “reduces” the The vertex correction also has differences between the
wave function renormalization to a common answer for bothactions and a divergence which must be subtracted as was
the forward- and backward-difference actions. Since it isdone for the wave function renormalization. However, this
convenient to fit toe”™" and the reduced value is the same has the further complication that it depends on the velocities
for both actions, this is a popular choice. Unfortunately, inof both the incoming and the outgoing quarks. So whereas
lattice HQET away from the static limit the reduced valuesthe wave function renormalization is a function of the

(for the forward_— and the backward-difference cas@e not vertex correctionb‘V(Z ,Z’), is a function of the initial and
equal, as we will show. final velocities.

E. Vertex correction

Equation(42) defines(v) in terms of the mass renormal-  After analytically doing the contour integration over the
ization. Equation(45) definese(v) in terms of the wave k, variable and dealing with the poles as discussed previ-
function renormalization. Appendix B derives H&9), ously, we find

2 3 ’
~~ g°Ck 2f d°k VU
N,v')= — - z,(k
(0.0’ 16m2 mJ \JAS+4A, Uo o
vjv| k 1 v , (1 v
+§j: 2 cog 2)]/( voo(quU(k) 1 +§j: m sin(k;) || voor uoz"(k) 1 E;, m sin(k;)

(47

The uy are once again perturbatively expanded such that &he continuum divergence Ia(\) (which was computed by
this order, they can be replaced with unitffhey are in- Falket al.[19]). Of primary interest is that it be a function of
cluded here as a reminder that in the next order they wilb-v’, the only nontrivial invariant constructible from the
have an effect.For the rest of this section, we will explicitly heavy quark velocities andv’. We find that numerically
setup=1. the lattice divergence coefficient agrees with the continuum
As claimed by Aglietti[12], this must have the form divergence coefficient—these are listed in Table V. Aglietti
) only gives results for the =v,z with v’ =0 case. We have
9°Ce E[Z(v«v')r(v'v’)|n(7\232)+d(; 2] (48 found a problem with an equation which he uses and have
1672 ™ ' ’ introduced a better expression for finding the divergence. We
have also extended the calculation to the forward-difference
The lattice coefficient must have this form if it is to cancel action and to nonzero’.
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1. Vertex correction witho'—0 Since thedV integral is divergent, a technique similar to
that used foréZ can be used; however, it needs to be modi-
fied because the “continuum-like” limit of this integral,
o . A
the numerical values are listed in the next subsection. Origi,ﬁ(a;\gJ " :S gogcangxt'%ﬂlﬂangagsgﬁlfh:&vxeg\% aneggrgd n-
nally, we COU'F" not sgtlsfactorlly reprodus:e Ag“ettls — 6V°¢ are each finite. These numeric integrals are then done
numbers, especially for the=0.0 result. As we investigated separately and added together along with the finite piece of
this, we found a problem with the—0 limit, specifically  gsyecc.
there was a subtlety with the interchange of limiss—0 Aglietti refers to 8V¢ as I, and our &V°© is

versus'z;—>0). We believe that Aglietti's choice of integral anfllogous to his L. Aglietti uses the nota~tion
subtrac-tion can be improved. This subsection discusses thigv)=L—1; we will use the analogous definitioa’(v)
subtlety. Tables VI, VII, and VIII were produced with our =§V°— V. To be explicit, in the smalk limit Eq. (47)

In thev’'—0 limit, we can reproduce Aglietti’s results;

choice. reduces to
—1+ !
sVe(v,v") 9°Ce 2 f Wdak 2 v,v, (49)
Ulv = 2 - - - 1
i i
~ g°Cr 2 d3k -1
MO o 7 20 aza - T %0
g (KA | e+ S ok,
J
Aglietti approximatessV(v,v’ =0) with
2Cp 2 d3k -1 2Ce —2 [1+v 4R?
L=9~F 2 N B i 2 I . (51)
1672 ™) 2(k?*+\%a?) [k+Zjvk] 1672 v 1-v \Z%a?
However, this gives a-dependen®(v). In spherical coordinatesi(v) has the form
55) g%Cr 2f k dk VKZ+\Za?+ vk 1+7v 52
v)= = n =~ | — =
1672 vJ) k?+\%a? Jk2+£%a?—vk 1-v

So long ag is finite, we can take the limit as— 0. However, if we want botlh—0 and\—0, a problem arises: the result
in the limit A—0 is not the result at =0. This is a case in which the limits cannot be interchanged. To be rigorous, we break
up the integration into a region fde<<\ and fork>\:

8(0—0N—0) QZCF4 l ﬁdk < +Jde < K (53)
—0AN—0)= im — —
’ 16m% [eole | (K+N%%)¥2  (KP+\%a%)) In|(KP+\%a?)¥  (K*+\%a?)
2 1 R? 1 R?
_9 “4lim| —1+ S In[ 4—— | - ZIn| == | |+ ImO(\%a%/R?)+ lim O(¥\?) (54)
1 N 2 \2a 4\ \a A—0 A0
=0, (55)

While a\ divergence was expected foW, the difference .5, pe calculated from lipn, of 8V(,0)— 8VE(2,0)

5(v) must be finite. S(u ~0N—0) is infinite because +finite part oV°%(s, 0)]=—5.75 and 8(t—0, \~10"5)
the logarithms do not cancel exactly. It happens~ that:—1.22. However, Eq(54) clearlyshows thats(\—0)
8(\) has a minimum around~10"°; at this value, ifv blows up. This can be seen far 10~ °.

is taken to zero, then Agliett’sd(v=0p'=0)=—4.53 To avoid this problem, we write Eq50) as
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TABLE V. The coefficient of the lattice divergent kg) piece

PHYSICAL REVIEW B2 114006

tion analogous to Eq(54), the logarithms cancel and the

must and does reproduce the continuum divergent coefficientesult is finite in thex—0 limit.

[4(v-v')r(v-v")] in order to correctly cancel the k Errors are
at most three in the last digit shown. In additien=v,=v,=v,

=0.

v

!

0.00 0.10 020 030 040 050 0.60 0.70

0.00 4.001 4.014 4.050 4.127 4237 4396 4.618 4.953
0.10 4.012 4.004 4.015 4.059 4.139 4.269 4.462 4.753
0.20 4.053 4.011 4.002 4.018 4.064 4.160 4.319 4.573
0.30 4.126 4.058 4.014 4.000 4.016 4.079 4.194 4.412
0.40 4.238 4.137 4.066 4.016 4.000 4.021 4.095 4.257
0.50 4.398 4.267 4.159 4.077 4.022 4.000 4.026 4.133
0.60 4.622 4.460 4.316 4.197 4.095 4.028 3.998 4.040
0.70 4.956 4.753 4.571 4.412 4257 4.135 4.041 4.000
NVEET = 0) 9°Ce 2f d3k
v, = = -
167 ™) 2(k*+\%a?)%¥?
-1
., (56

X
[1+7-k/Vk®+\2a?]

which expands as follows and allows a better definition of

V°(v,v'=0):
- 9°Cg 2 d3k
C r— ~ _
VA =0~ e 7 20 nEar
-1
X——7— (57)
{1+v-k[1-3(\2a%/k?)]}
VT =0) 9°Ck 2 d’k -1
v, v = = - .
1672 ™ 2(k*+22%a%)¥2 g | 7
(58)

We find that this makes’(v) stable to smalik and that it
generalizes to give useful results wheh#0. In the equa-

TABLE VI. The finite piece of the backward-difference vertex correctifn,v") for v,=v,=v;=v

2. Vertex correction witho ' #0

This case requires the continuum-like expression for Eq.
(47). Recall Eq.(49). Again there are problems if we use
Aglietti’s trick of setting\ to zero in the factors witle and
v’'. The problems arg1) the A dependence is incorrect
(which implies that the difference is-dependent (2) the
limit asv’ —0 does not reproduce the results of the previous
section, and3) the integral is too difficult. So, once again,

we will try to retain theN dependence as follows: we ap-
proximate

e 9°Cg 2 f d3k
V(D7) = —
U= 2w ) 20 nzad)
-1+ 09,
j
X — E—
[1+70-k/IVK?+N2a?][1+7" - kIVk?+\%a?]
by
-~  0°Cg 2 d3k
cc 1 — -
VD= 6m 7] 2062 nzad)
-1+ vjo]
« ]

(145 K[145 k]

While this does solve both the-dependence problem and

thev’—0 problem, it only barely solves the difficulty of the
integral. However, in spherical coordinates, it allows fkie
integral to be separated from the angular integration. We can
solve this integral by doing thgk| integration analytically.
(Since this is where tha divergence exists, it is the only
piece that needs to be done analytically anyywayaving
thus removed the In) term, we can numerically calculate
and add back the angular integration along with the finite
piece of thelk| integration.

!

y

=0.

ol 0.0 0.1 0.2 0.3 0.4 0.5 0.6
v
0.0 —4.528(2) —4.579(2) —4.756(2) —5.088(3) —5.642(3) —6.592(4) —8.454(5)
0.1 —4.583(2) —4459(2) —4.446(2) —4.567(3) —4.892(3) —5.562(3) —7.018(4)
0.2 —4755(2) —4447(2) —4.228(3) —4.131(3) —4.186(3) —4.523(3) —5.525(4)
0.3 —5.088(3) —4.570(3) —4.126(3) —3.768(3) —3.514(3) —3.457(4) —3.890(4)
0.4 —5.640(3) —4.890(3) —4.183(3) —3.517(3) —2.882(4) —2.320(4) —2.007(5)
0.5 —6.598(4) —5.556(3) —4.523(4) —3460(4) —2.320(4) —1.071(5) 0.283(6)
0.6 —8.452(4) —7.022(4) —5.529(5) —3.884(4) —2.003(5) 0.280(6)  3.322(8)
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TABLE VII. The finite piece of the forward difference vertex correctid(v,v’) for vX:vy:v;:u;

=0.
ol 0.0 0.1 0.2 0.3 0.4 0.5 0.6

v

0.0 —4.528(2) —4513(2) —4471(2) —4.402(3) —4280(3) —4.102(3) —3.822(4)
0.1 —4516(2) —4.527(2) —4.509(2) —4.462(3) —4.370(3) —4.221(3) —3.971(4)
0.2 —4471(2) —4.508(2) —4.513(3) —4.487(3) —4437(3) —4.315(3) —4.108(4)
0.3 —4.402(3)  —4457(3) —4.494(3) —4.505(3) —44723) —4.396(3) —4.224(4)
0.4 —4283(3) —4371(3) —4431(3) —44TA(3) —4481(3) —4.446(4) —4.325(4)
0.5 —4.108(4) —4219(3) —4.316(3) —4.398(4) —4.443(4) —4.459(4) —4.402(4)
0.6 —3.822(4) —3973(4) —4.112(4) —4226(4) —4.320(4) —4.398(4) —4.424(4)

Since this is symmetric inv and v’, the results 2112
i i Q
for the vertex correction should be also. Our extension

to nonzerow' shows that this is the case: Tables VI and VI
show our results for backward- and forward-difference X
vertex correction at general velocities. Notice that the results

are symmetric about the diagonal=v’. Notice also that
the first row and the first column of Table VI both reproduce

the backward-difference results of =0 in Table VIII.
Table VII shows the results for the forward-difference +5V(v,v')]. (59)
vertex correction at general velocities and the first row

ir;(gleci)/lmmn reproduce the forward-difference results OfSo, following Aglietti’s lead[12], we define

[1+6V(v,v')]

1

(v)Zy(v,0")Z§Av") =

1
1+ zézQ(U’)

1
1+ E[éZQ(v)-i- 0Zg(v'")]

f(v,")=3le(v)+e")]+d(,v"),
IV. LATTICE TO CONTINUUM MATCHING f/('{)’ 5’):%[e’(5)+e’(5’)]+d(5 ;’)

To renormalize the Isgur-Wise function, which is propor- where a reduced Isgur-Wise correctidn, is defined using
tional to the current in Eq(2), we need the current renor- the reduced wavefunctiorg’, which was used with a fit
malization, which can be assembled from the wave functiormodel of the forme™™'. Since the wavefunction reduction-

and vertex renormalizations calculated in the previous secdoes not affect the vertex correctiai,the perturbative fac-
tion. This involves tor for the lattice Isgur-Wise function is:

TABLE VIII. The finite piece of the vertex correction(v,v"), of the forward- and backward-difference
actions forv,=v,=0 andv’ =0. The backward-difference action results should and do reproduce Aglietti's
table up to the correction mentioned in the text of this paper. Also listed is the current corri@tion)
=3e(v)+3e(v')+d(v,0’) and the reduced current correctidi(v,v’)=3€'(v)+3e'(v')+d(v,0’)
which form the correction for the lattice Isgur-Wise function.

Backward difference Forward difference
dlv,v’'=0) f(v,0'=0) f'(v,v'=0) d(@.v'=0) f(v,w'=0) f'(v,0'=0)

<

0.0 —4.526(2) 19.901) 0.0002) —4527(2)  —19.94(1) 0.00()

0.1 —4578(2) 19.961) 0.1222) —4511(2)  —20.09(1)  —0.174(2)
0.2 —4.757(2) 20.081) 0.4892) —4474(2)  —-2058(1)  —0.740(2)
0.3 —5.089(2) 20.3®) 1.1292) —4.401(2) -2150(1)  —1.755(2)
0.4 —5.639(4) 20.6@) 2.1004) —4.282(2) —2293(1)  —3.364(2)
0.5 —6.597(4) 21.00) 3.4594) —4.104(4) -2521(1)  —5.844(2)
0.6 —8.432(6) 21.5@) 5.231) —-3.800(4) —28.89(1)  —9.755(4)
0.7 —14.80(1) 19.58%) 5.572) -3.354(6) —35.32(2) —16.529(8)
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g - dogug G (7)GY V() [&(v,0")] (0" )
—2[1—(v-v")r(v-v")]In(Aa)?+f'(v,0’ o '
12’”-2{ [ (U v )r(U v )] n( a) + (U v )} (Uo+U6)2 GU’U(’T)GU B (’7') -1 |§(U,U)| |§(U’,U,)|
(60) (62)

where the divergences have been isolated to calculate thgsjs technique exploits the continuum normalization of the

did not wish to use the reduced value, the divergence would

stay the same and we would merely replaceftheith f. We Ev-v)=£1)=1. (63)

have already show(Table V) that the divergent piece of the

lattice vertex correction cancels exactly with that of the con-Sincey? is normalized to 1, the denominator of HG2) can
tinuum; thus the lattice Iogarithm coefficient is written with be set l{o unity in the continuum. This ratio also allows the
the same form as for the continuum correction, & Now  npormalizations and smearing-function dependence to cancel,
the continuum correctionzg, can be divided by the lattice so we expect that

correction,Z, to find the lattice to continuum matching fac-

I _
Z,=1+

tor 12800 0,0)|ZE (0" ,0) (v )]
. g2 128(v,v) €%, v)| 128" v ) €% v )|
Zg(v,v’)=1+127T2{2[1—(v-v’)r(v~v')]
xIn(pa)?—f'(v,v")}. (61) M=|§°°”‘(v-v’)l2-

_

a0 [EMD)[?

The expression in Eq61) is suitable for renormalizing the

Isgur-Wise function extracted by taking ratios of two- and Thus, our unrenormalized calculation of

three-point functiong33]. However, to improve statistics,

HQET simulations extract the Isgur-Wise function using ra- oty )y vy |

tios of three-point functions onl4,14,34. We discuss this Eratio(V V) =| T T

additional complication below. & v,0) 5w v’)
Our results ford, f, and f’ are listed in the following

tables. Recall Tables VI and VII show our results for

backward- and forward-difference vertex correction at gen- ol 12

eral velocities. Table VIII lists our results for the vertex cor- 7% (vw')= Z:(v,0)Z(v'v) (64)

rection, the current correction, and the reduced current cor- ratior = zg'(v,v)zg'(v',v’)

rection in the backward- and forward-difference actions for

v'=0. The backward difference reproduces Aglietti's re-written as

sults. Tables IX and X show our results for backward-

difference current and reduced current corrections at general Zf;tio(v,v’)graﬁo(v,v’) — &My, (65
velocities. Again, the results are symmetric about the diago- a—0

nal. Tables XI and XII for the forward-difference current and

reduced current corrections at general velocities are also On the lattice,£2%(v,v) does not obey E(63) unless a
symmetric about the diagonal. Notice that the first rows andonserved current is used; neverthel@sgq(v,v") (by defi-
columns of Tables VI, VII, IX=XII reproduce Table VIII. nition) acts like the continuum Isgur-Wise function even if
Notice also that although the different actions give the saméhe conserved current is not used. Without the conserved
result in the static limit¢—0, v’ —0), this is not the case at current, &%y v)#1, but the normalization cancels in the

any other velocity. ratio so thaté ,i(v,v)=1. Thus,Z%,, will be symmetric in

For continuum HQET in théS renormalization scheme v andv’ and will have the_propertif;tio(v,v)z1.
at zero recoil ¢-v'=1), Z{=1 and the finite piece is zero ~ Expanding Eq(64), we find
[15]. This corresponds to the diagonal=v’) of the tables

must be renormalized by

which contain our results. On the lattice, however, if the ol 1 g°Ce , ,
conserved current is not usefd,(v,v) is not constrained to Zraio= 1% 5 16772{2[(1_(0.1) )r(v-v'))
be zero. We account for this next.
To deal with the finite piece of the renormalization, we +(A—=(v" - v)r(v" - v)—A—(v-v)r(v-v))
note that the numeric extraction of the Isgur-Wise function o
on the lattice does not calculate the Isgur-Wise function di- —@A=(v"-v)r(w" -v"))]In(na)>=f'(v,v")
rectly. The numerical extraction is more manageable using - - - - -
the technique of Mandula and OgilVi4] where the ratio of '@ )+ (v,o)+f' (v v} (66)

the three-point quark propagat@,(defined explicitly in our . o
concurrent numerical papgs]), gives a ratio of lattice Isgur- Usingv-v=v’'-v'=r(1)=1 andf'(v,0")=1"(v',v), this
Wise functions reduces to
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TABLE IX. The finite piece of the backward-difference current correctiif@,v'), for vx=v,=0 and

vy=vy,=0.
o' 0.0 0.1 0.2 0.3 0.4 0.5 0.6

v

0.0 19.903(8)  19.958(8)  20.100(9) 20.324(10)  20.654(9)  21.093(9)  21.51(1)
0.1 19.961(8)  20.195(10)  20.485(8) 20.921(10) 21.516(10) 22.245(10) 23.03(1)
02 20087(8)  20498(9)  21.022(9)  21.662(9)  22522(9)  23.565(10) 24.84(1)
03 203209)  20947(9)  21.681(9)  22.57(1)  23.73(1)  25.20(1)  27.02(1)
0.4 20.646(10)  21.494(9)  22.495(9)  2374(1)  2525(1)  27.24(1)  29.78(1)
05 21.0009)  22228(9)  23.579(10) 25.175(10)  27.20(1)  29.86(1)  33.48(1)
0.6 21.499(10) 23.017(10)  24.84(1)  27.02(1)  2975(1)  33.47(1)  38.75(1)

TABLE X. The finite piece of the backward-difference reduced current correcfig@,v'), for v,

=v,=0 andvy=v,=0.

ol 0.0 0.1 0.2 0.3 0.4 0.5 0.6
v
0.0 0.004(3)  0.118(2)  0491(2)  1.134(3) 2.098(3) 3.458(4) 5.228(6)
0.1 0.119(2)  0.422(3)  0975(2)  1.821(3) 3.021(3) 4.675(4) 6.822(6)
0.2 0488(2)  0974(2)  1.733(3)  2.810(3) 4.273(4) 6.258(5) 8.858(6)
0.3 1.128(3)  1.822(3)  2812(3)  4.142(4) 5.922(4) 8.292(5)  11.484(7)
0.4 2096(3)  3.026(4)  4274(4)  5.922(4) 8.073(5)  10.954(6)  14.875(7)
0.5 3459(4)  4.672(4)  6250(4)  8.291(5)  10.957(6)  14.504(7)  19.477(9)
0.6 5219(6)  6.839(6)  8.856(6)  11477(7)  14.893(7)  19.470(9)  26.10(1)

TABLE XI. The negative of the finite piece of the forward-difference current correctioi(v,v’), for
vx=vy=0 andv;=v;=0.

ol 0.0 0.1 0.2 0.3 0.4 0.5 0.6
v
0.0 19.923(6)  20.086(6) 20.591(7)  21.500(7)  22953(7)  25.223(8)  28.897(9)
0.1 20.095(7)  20.282(7)  20.786(7)  21.714(7)  23206(7)  25513(8)  29.217(8)
0.2 20.591(7)  20.784(7) 21.342(7)  22297(7)  23.810(7)  26.136(8)  29.882(10)
0.3 21491(7)  21.742(7) 22298(7)  23.268(8)  24.819(8)  27.188(9)  30.987(10)
0.4 22.941(8)  23.192(8)  23.794(7)  24.824(8)  26.394(9)  28.829(9)  32.66(1)
0.5 25.220(8) 25.498(9) 26.138(8)  27.177(8)  28.804(9) 31.283(10)  35.15(1)
0.6 28.885(9)  29.22(1)  29.897(9) 30.993(10)  32.64(1)  35.16(1) 39.16(1)
0.7 3532(1)  35.68(1)  3641(1)  37.59(1)  39.30(1)  41.90(1) 46.01(2)

TABLE XIl. The negative of the finite piece of the forward-difference reduced
—f'(v,v"), for v,=vy,=0 andv;=v,=0.

current correction,

ol 0.0 0.1 0.2 0.3 0.4 0.5 0.6
v
0.0 —0.004(3) 0.178(2)  0737(2)  1.755(2)  3.365(3)  5.843(3)  9.773(4)
0.1 0.181(2)  0380(2)  0968(2)  2.008(2)  3.645(3)  6.154(3)  10.113(4)
0.2 0.740(2)  0967(2)  1.583(2)  2.649(3)  4.311(3)  6.849(3)  10.851(4)
0.3 1.759(2)  2.009(3)  2.652(3)  3.742(3)  5.441(3)  8.020(4)  12.061(5)
0.4 3.366(3)  3.642(3)  4312(3)  5442(3)  7.173(3)  9.796(4)  13.881(5)
0.5 5.841(3)  6.154(3)  6.858(3)  8.022(4)  9.796(4)  12.450(5)  16.618(6)
0.6 9.772(4)  10.118(4)  10.855(4) 12.059(5) 13.886(5) 16.610(6)  20.845(8)
0.7 16.525(6)  16.911(6) 17.687(6)  18.964(7) 20.839(8) 23.675(9)  27.996(10)
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| g2 to both U; and U; and which allows one t@ posteriori
Zraiovv") =1+ 1o 2(1—(v-v")r(v-v"))In(na)? tadpole improve any previous calculation which was not tad-
& pole improved. Fortunately, as noticed by Mandula and Ogil-
£1(0,0)+ (T, vie [13], the evolution equation can be written such that the
5 } (67) g is grouped withv;=v; /v,. Thus, tadpole-improvettad
Monte-Carlo data can beonstructedrom the non-tadpole-
improved(not) data by replacing "'— v and by including
wo overall multiplicative factorsy(}®/v ¢ was not included

y Mandula and Ogilvig

—f'(v,0)+

which not only has the correct divergent coefficient but we
also see a new finite piece which is manifestly zero on th
diagonal. The wave function renormalization cancels explic-
itly in Eq. (67), sof’ can be replaced by the vertex correc- not
i ~ v ~
tion d. Gtad(t;vtadlvgad): uathOadGnot(t;vnot,Ugot) _ (A1)
0
V. CONCLUSIONS
o ~In addition, the tadpole-improvement of a simulation re-

] We have galculat%d the Lenlormahzatlon of tk}e latticequires adjusting the velocitjanalogous to adjusting) ac-
—c current by considering the lattice Isgur-Wise unctlon.coroling 107 99= 3" subject to the normalizatiory %2

Thls calculation extends previous work py_lncludlng_tadpole: 1 and ("™)2=1. The adjustment on the velocity is then

improvement, by extending to nonzero initial and final ve-

locities, and by considering forward as well as backward- plade n
0

__ .2 t\ 27— 1/2
difference actions. =05’ {1+ (1-ug) (v])?]

By considering the forward-difference action and the B (A2)
backward-difference action side-by-side, we find nontrivial U}ad: UOU?OT1+(1_US)(U?Ot)Z] 2,
differences between the two. The practical difference in a ) ) ) o )
lattice calculation is that the backward difference requires d Ne tadpole improved data is at a velocity which is shifted
matrix inversion at each step of the calculation. The differ-from the original tadpole unimproved data. Previous HQET
ences in the renormalization are that the gluon poles ovef@lculations have either not included tadpole improvement
which one integrates are interchanged; away from the staticl2] or have had difficulties with if13]. Although one
limit, the reduced values are no longer equal; and the velocshould start with a tadpole-improved action, we find it con-
ity renormalization, when expanded as powers of the velocYenient to be able to tadpole improve a calculatoposte-
ity, stays small for the forward difference, but grows largeMori becau_se there are choices for how one can determine
for the backward difference. the mean-field value [21].

Of greater concern is that the velocity renormalization is
not terribly small. We have shown that the velocity renor- APPENDIX B: REDUCED RENORMALIZATIONS
malization can be expanded in small velocity and that the _ . . _ _
coefficients remain on the order of unity at higher ordets  ©One can define a “reduced” wave function renormaliza-
least for the forward-difference actipriThese coefficients ton and relate it to the fit-model exponential. We begin by
are given here t®(v°®). The nonperturbative calculations considering the propagator as a function of timand the
are giving smaller renormalizatiof$3,14 and these should residual momenturk,*
be, in principle, more reliable. This should be considered in
more detail, especially the slow HQET for the forward—iH(t,IZ)
difference action.

Although our results confirm other groups’ calculations _f dky €
where they overlap, the integrals and divergences are subtle 2 _

[ UoO'[(l/Uo)el(Tk“— l]+ E (Ul /Uo)Sln(kJ)
]

iky

and must be managed with care. When we combine our
renormalizations into a current correction with the ratio in-
troduced by Mandula and Ogilvig84], such that the finite

piece of the current correction is f'(v,0")+3[f'(v,0) =0
+f'(v',v")], we find that all of our results have the appro-

priate limits and cancelations. These expressions are used 8ince iH~e*!, the energy-momentum relation can be

our concurrent numerical papgs] to compute the slope of found:
the Isgur-Wise function using lattice HQET.

1-o ugt L~ ) Y
t+ 2 U_e*(tfo')ln[l*()’)j(l)j/Uo)Sln(kJ‘)] . (Bl)
0

APPENDIX A: TADPOLE IMPROVEMENT e=—oln

1-o> %sin(kj)}wz %sin(kj). (B2)
J 0 ] 0

Tadpole improvement is a mean field improvemg2i]
which (at lowest ordercancels the effects of the large “tad-
pole” Feynman diagrams. In the HQET, there is no coeffi- Recall that the residual momentum, rather than the full momen-
cient(analogous tac in the Wilson actionwhich is common  tum, is conjugate to the position.
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Aglietti [12] notes that the energy goes to zero for biath With these relationships, we fir@ventually)
=0 andk= , but provides a physical argument for why this

doubling problem has a negligible effect in the HQET. iHt,K)=0|t+ ! U) Uo(1+62)
In Eq. (B1), it may be noticed that th@®-function has a 2 Juo(1+6volvo)
different argument for the different actions. Though it was xexp[—(t—o)[M ]}
phrased differently, this was also noticed by Davies and 7
Thacker[22] who give recursive expressions for the Green X[1+0(g?) +0(v?)]
function evolution equation for the two cases of a forward or
a backward difference in their NRQCD action. whereM , is an action-dependent function of the renormal-

In order to consider the renormalization effects of the fit-jzations, of the velocity, and of the momentum; amg(1
ting form, consider the next loop-order of the propagator as a. s, /v ) = vi". The relevant point is that, as was said pre-

function of the time and the residual three-momentum,  yjously, for the forward-difference action one should fit to a
dk form of expM{t—1]); whereas for the backward-
iH(Z)(t,IZ)=J—4eik4{iH(k4,IZ) difference action one should fit to a form of exgd{l[t
2m +1]) [i.e., fit to exd—M,(t—o)}]. However, if one chooses

. - . - to fit to the form exp{-Mt), then the coefficienZ=(1
+iH (ke K)Z(K)iH (kg k)] (B3) +6Z) gets changed toZe"Me~Z(1+oM,)~(1+6Z
2 ; _ d

Following Aglietti [12], we will make use of +‘T'Vlér)- To 2&9 ) neglecrzélnngO(k) terms, M, = (M=
+avgInUg)lvg "= —2(0)/vg" [recall Eq.(B5)]. So, to this
5 order, the “reduced” wave function renormalization is
3 (k) =2(0)+ksXs+ 2 kiX;+0O(K?)

. Z'=72-c3(0)/v§"

= — SM®Bdy[ — 1—5Z)+ dvylin
[—ovo( )+ dvo]In(uo) =[146Z— o2 (0)/v§

1 . K Uj .
+ 67 Vo0 —e'” 4—1 +2 _Sln(k]) gZCF - -
Uo i Yo =| 1+ ——[~2In(\?a%) +e(v) — ox(v)/vf
1 Ui
—5000'(—emk4—1>_2 5<_J) S|r(k]), (88)
Uo ] Uo
(B4)  This is also written in terms of the finite pieces
where SM® is the tadpole improved mass renormalization e/(;)ze(z)_gx(}j)/v(f)e“_ (B9)
(versusSM " the not-tadpole improved mass renormaliza-
tion) defined by The tadpole term is ix(v) [it gets canceled in the mass

renormalization of Eq(42)] and, as noticed for the static
case in[27,28, the wave function and reduced wave func-
tion renormalizations remain unaffected by tadpole improve-

It may also be noticed that sinceug~0(g?), the[(voosz ~ Ment.
+ 8v)In Ug] can be neglected &(g*). We further note that

terms of the residual momentur@®(k), can be neglected. APPENDIX C: NOTATION

(The_ residual mome_ntum can be adjusted by introducing a \ynen comparing between the results of HQET, NRQCD
“residual mass.) Finally, we note that thedvo and ,nq the static theory, the difference in notation starts to be-
d(vjlug) can be collected with the barg velocity in preqsely come a factor. Where Davies and ThackeRQCD) usedA

the proport|c_>n necessary to renormalize ea_ch velocity. Tg,, 3(0), Aglietti (HQET) usesA(p) for the nontadpole
solve these integrals, one needs to put @) into a form  5ion of the self-energy as well as usiAdor a particular

SM®@= —3(01)— gvgInuy= SMNT— g Inug.
(B5)

which allows the use of grouping of terms for convenience in the calculation. We are
iax going to maintain Davies’ and Thacker's useffnd give
fm ﬂ e —0(a) (B6) new names to Aglietti'®\'s. However, since Aglietti consid-
— 27 (gX—1) ' ers the velocity-dependence of various quantities, we will
use Aglietti's notation for a variety of velocity-dependent
© dx giax functions. The velocity will be relevant for the HQET, but
J_w o (eix—l)z_(a 1)0(a). (B7)

SWe found that there are tw@® terms. One goes a®[t+ (1
—o0/2)]=6,, the other a®[t+(3—0/2)]=6;. We resolved this
2The calculation including these terms is available from authorassuming we were interested in late enough times—1) that
JC 03: 01: 1.
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TABLE XIll. Comparison of notation between Agliefti2] and Mandula and OgilvigL3]. Note also that
Aglietti only considers motion in the direction. Finally note that in the last row, Mandula and Ogilvie
considersy; , but Aglietti considersdv, (u;=v;= ”i/UO). To convert between the two, one must include a
factor of v3.

Mandula and Ogilvie Aglietti Comparison
Xo=—iXy X XlAg:x4|MO:iXO‘MO
X; Y Yl ag=Xslmo
~ _Ui v, -
v'_vo Uz=v_0 uz|Ag:Uz|MO
~ 1 ~ S
5ui=——(Xi—viX0) 5vz:_iv0vzx_v(2JY @:Ugi
Up v 1%
1 ~ 2
=— U_(xi+|vix4) =—vg(Y+iuX)
0

not for thestatic theory nor for the NRQCD. In the HQET,
the functional dependence is ondefined by

v

|

. (Cy

=373

v

onN

Note that Aglietti calls thisu.
Aglietti calls the mass renormalizatiofM ; he also puts

in a negative sign, which we leave out. Aglietti notes that for
the HQET, this is velocity dependent, and defines a function

x(u) which is proportional to his$M

9°Ce X(U)|Ag

5M|Ag:_92A|DT: 1672 a

. (C2
vo does not appear in NRQCD and is 1 in the static limit.

In calculating the wave function

tation X,

names these a%|ag=Xo/mo and Y|ag=Xz|uo. See Table

renormalization,
aE(p)/&pM|p:0 is needed. Mandula and Ogilvie use the no-
. This is a useful notation and does not conflict
with either Davies and Thacker or Eichten and Hill. Aglietti

Mandula and Ogilvie do not calculate the wavefunction
renormalization, therefore we will compare Aglietti's wave-
function renormalization to Davies and Thackehile using
Mandula’s and Ogilvie’s notation fox,). Aglietti useséZ
=Z-1 for the wave function renormalization. To relate this
to Davies and Thacker, we note that

Z|pg=1+ uoxo—; VX
2
C ~
—1+ L oinanre@)], (C3)
1672

where the Iné\) term comes from doing the self-energy in-
tegral. It is6Z=Z—1 which is Davies’ and Thacker:

Ce
2

[-2In(ar)®+e(v)]=Clpr=Z|pr+aAlpr.

(C4

and Ogilvie’s notation.

111 D, it will be convenient to define a “reduced value ef’

In the definition of the velocity renormalization, there is a[e(R)(Z)Ee’(E)]:

further subtlety. Mandula and Ogilvie considés;=ov{™"
—7v;, but Aglietti considerssv ,=v {®"— v, (with the defini-
tion u;=v;=v;/v,). As shown in Table XIlI, a factor oH3
must be included to translate betweén/v and sv/v. In

Cr
1672

[—2In(ar)?+e'(v)]=Z|p7. (C5)

addition, Mandula and Ogilvie include the prefactor This reduced value can be found froefv) and x(v) as

g%Cg/1672 in their definition ofc(v) in Eq. (39).

expressed in EqB9).
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