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Relating different approaches to nonlinear QCD evolution at finite gluon density
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We analyze the relation between evolution equations at lowx that have been derived in different approaches
in the last several years. We show that the equation derived by Balitsky and Kovchegov is obtained from the
Jalilian-Marian–Kovner–Leonidov–Weigert~JKLW! equation in the limit of small induced charge density.
We argue that the higher nonlinearities resummed by the JKLW equation correspond, in physical terms, to the
breakdown of the eikonal approximation when the gluon fields in the target are large.

PACS number~s!: 13.60.Hb
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I. INTRODUCTION

In recent years, there has been renewed interest in
understanding of the physics of systems with a large num
of partons. These studies have been essentially motivate
two large experimental programs—low-x deep inelastic scat
tering ~DIS! at the DESY ep collider HERA and heavy io
collision experiments at the BNL Relativistic Heavy Ion Co
lider ~RHIC! and CERN Large Hadron Collider~LHC!. Both
physical situations involve a large number of participati
gluons. In low-x DIS these gluons are generated in the pro
light cone wave function by the evolution to lowx, whereas
in the nuclear collision this evolution is enhanced since
nuclear wave function contains many gluons already at m
erate values of energy.

The growth of gluon density leads to interesting physi
consequences, the physical understanding of which has
steadily improving. One universal feature now believed to
true is the saturation of gluon densities. Apparently, the nu
ber of gluons per unit phase space volume practically s
rates and at large densities grows only very slowly~logarith-
mically! as a function of the parameter that triggers t
growth. The relevant parameter could be 1/x in the low-x
regime or the atomic number of the nucleusA in heavy ion
collisions. This saturation takes place at values of transv
momentum below a certain saturation momentumks , which
itself depends on 1/x andA. The nature of this dependence
less well understood. In the analysis based on the Balitsˇ-
Fadin-Kuraev-Lipatov~BFKL! evolution @1# and on the
double logarithmic approximation~DLA ! @2# the dependence
is powerlikeks}(1/x)asd, while other approaches@3# suggest
a much slower dependence. In the case of power de
dence, the saturation momentum at HERA is estimated to
in the range 1–2 GeV with similar, slightly higher, values
LHC. Optimistically, one can hope that the saturation reg
is itself semiperturbative; that is, the value of the coupli
constant is reasonably small and, therefore, weak coup
methods can be applied to the quantitative analysis of
phenomenon.

The physics of saturation must have experimental ma
festations. The simplest and the most direct, in a way, is
unitarization of the total DIS cross section. This is, howev
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also the least interesting one. First, since the effect of un
rization is almost kinematical, one does not need high p
tonic density; it is enough to have a large number of parto
not necessarily in the same bin of the phase volume@4,5#.
Second, because the experimental status of unitarizatio
unclear. So far, all DIS data on the total cross section can
reasonably well described by linear Dokshitzer-Gribo
Lipatov-Altarelli-Parisi~DGLAP! evolution without the need
to include nonlinear effects@6#. Although physically it is
hard to believe that the leading twist perturbative approxim
tion can be applied atQ2 as low as 1 GeV2 and although
some aspects of the gluon distribution that emerge fr
these fits@6# are intuitively not satisfactory, present inclusiv
DIS data cannot be considered as an unambiguous confi
tion of nonlinear effects.

The realm of nonlinear effects is, however, much rich
than the total cross section. In particular, one expects qu
tative changes in the structure of the final states as
moves into the saturation region. The study of these effe
has, however, not started in earnest yet and we have a
way to go before being able to make verifiable quantitat
predictions.

In particular, one needs a well-defined formal framewo
to perform calculations. Several approaches to the prob
have been developed in recent years by different grou
They all rely on the smallness of the coupling constant wh
resuming the effects of a large number of partons/parto
density. The aim of all these approaches is essentially
derive the evolution of the hadronic scattering cross sec
with 1/x. They, however, utilize different techniques an
conceptual frameworks and the resulting evolution equati
look rather different. It is the aim of this paper to explore t
relation between some of these different approaches in
attempt to understand where they diverge from each othe
terms of physics input.

In particular, we will concern ourselves with three rece
works, Refs.@7,8,9–13#. In Ref. @7# the evolution equation
for the scattering amplitude is derived using the effect
action and the eikonal approximation in the target r
frame. Reference@8# uses the dipole model method of Ref
@14,15#. And, finally, Refs.@9–12# use the effective action in
the projectile rest frame to derive the evolution of the had
©2000 The American Physical Society05-1
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light cone wave function with 1/x. We will refer to the re-
sulting evolution equation as the Jalilian-Marian–Leonido
Weigert ~JKLW! equation.

The outline of this paper is the following. In Sec. II w
rederive the evolution equation of Ref.@7# in a simple and
intuitive way. This derivation makes it obvious that this a
proach is equivalent to the approach of Ref.@8# up to sub-
leading corrections in 1/Nc . This is not new and was note
already in Ref.@8#. In the following, we will refer to this
evolution equation as the Balistskiıˇ-Kovchegov ~BK!
equation.1 We discuss the physical picture of this evolutio
and resulting unitarization of the total cross section in b
target and projectile rest frames and point out the effects
to which the approximations involved should break down
extremely smallx. The breakdown of the approximatio
should have very little effect on the unitarization of the to
cross section, since, especially for large targets like nuc
the black disk limit should be reached while the approxim
tion is still valid. However, one does expect the structure
the final states to be strongly affected. Our discussion her
in large measure, parallel to that of Refs.@4,5#.

In Sec. III we relate explicitly the calculation of Ref.@7#
to that of Refs.@9–12#. In particular, we calculate the bas
physical quantities appearing in the evolution equation
Refs.@9–12# in the approximation of Ref.@7#. We show that
the results of Ref.@7# are recovered from Refs.@9–12# in the
limit of small induced fields. We also show that the doub
logarithmic limit of the evolution of Ref.@7# is trivial. That
is, in the double logarithmic limit, the evolution equation f
the gluon distribution function~defined operatorially as th
number of gluons in the light cone gauge in the infinite m
mentum frame! becomes linear and does not contain a
Gribov-Levin-Ryskin ~GLR-! type corrections.2 This is in
contrast with the result of Ref.@13#, where it was shown tha
the double logarithmic limit of the evolution Refs.@9–12#
results in a nonlinear equation. We point out that this
indeed a very natural result from the point of view of t
dipole model approach.

In Sec. IV we transform the full calculation of Ref
@9–12# into the framework of Ref.@7#. We show that in the
approach of Ref.@7# it corresponds to abandoning the eik
nal approximation or, equivalently, to the inability to full
describe the target by a classicalA1 field. We also point out
technical reasons which lead us to believe that, in fact, in
framework of the effective action of Ref.@7# such a failure is
expected when the evolution is continued to very low valu
of x. Finally, we conclude with a brief discussion in Sec.

1The O(1/Nc) differences between the equations derived in Re
@8# and @7# do not carry essential new physics. They therefore
not affect our understanding of the relationship between the gen
frameworks of the BK and JKLW equations.

2This is not to say that the evolution of the DIS cross section
which the equation of Refs.@7# and@8# has been derived is linear i
the double logarithmic limit. The GLR-type nonlinearity does i
deed appear in the evolution equation for the virtual photon cr
section due to the nonlinear relation between the cross section
the gluon distribution function.
11400
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II. A SIMPLE DERIVATION OF THE BK EQUATION

In this section we will give a simple derivation of th
evolution equation first derived in Ref.@7# and discuss the
physical picture behind it. Consider the deep inelastic sc
tering at low x. We will work in the frame in which the
photon fluctuates into an energetic quark-antiquark pair lo
before it reaches the target, but where most of the ene
resides in the target hadron which moves very fast. The s
tering of the quark-antiquark pair is dominated by its inte
action with the gluons in the target. Since the target had
moves fast, the time evolution of the gluon fields is slow
by Lorentz time dilation. Also, due to Lorentz contractio
the gluon fields are well localized in the plane perpendicu
to the direction of motion, which we take to be the positi
x3 axis. The target can, therefore, be modeled by a distri
tion of static gluon fields localized atx250. As the scatter-
ing energy increases~x decreases! the gluon fields of the
target change due to contributions of quantum fluctuation
is this evolution inx of the hadronic ensemble that we inten
to describe in terms of the evolution equation.

A. The BK equation

In this section we will use the light cone gaugeA250. In
this gauge, following Ref.@7#, we take the vector potential
representing the relevant gluon field configurations to be
the form

bi50, b15b~x'!d~z2!. ~1!

Here and in the rest of this section, unless otherw
specified, we use the matrix notation for the gauge fieldb1

5ba
1ta , etc., whereta are the generators of the SU(N) group

in the fundamental representation. One can reasonably
whether the vector potential of this form is the only releva
one. This turns out to be a nontrivial question. In fact, w
will argue later in Sec. IV that this is not quite the case if w
want to be able to describe the evolution up to arbitrar
small values ofx. At this point, however, we follow Ref.@7#.
We will return to this question in Sec. IV.

The DIS structure function can be written in the followin
general form:

F2~x,Q2!5
Q2

4p2aem
E dzdx'dy'

4p

3F~x'2y' ,z!N~x' ,y' ,y!. ~2!

Here,x' andy' are the transverse coordinates of the qu
and the antiquark in the pair,z is the fraction of the pairs
longitudinal momentum carried by the quark, andy is the
rapidity of the slowest particle in the pair. Also,F(x'

2y' ,z) is the square of the ‘‘wave function’’ of the
photon—the probability that the virtual photon fluctuat
into the pair with given coordinates and momenta—a
N(x' ,y' ,y) is the cross section for the scattering of t
pair.

The wave functionF is well known. It is given, for ex-
ample, in Ref.@8#, but its explicit form will not be of interest
to us. We concentrate our discussion on the scattering c
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RELATING DIFFERENT APPROACHES TO NONLINEAR . . . PHYSICAL REVIEW D62 114005
sectionN. If the quark-antiquark pair is energetic enough t
scattering cross section is eikonal,

N~x' ,y'!5tr^V~x'!V†~y'!21&A , ~3!

whereV(V†) is the eikonal phase for the scattering of t
energetic quark~antiquark!,

V~x150,x'!5P expF2 igE
2`

1`

dx2A1~x150,x' ,x2!G ,
~4!

with the vector potential in the fundamental representati
We, therefore, have to calculate the average of^V(x1

50,x')V†(y150,y')&A over the hadronic wave function a
indicated by^¯&A . In our frame, the quark and the ant
quark move with the velocity of light in the negativex3
direction. All the fields in Eq.~4!, therefore, have a vanish
ing x1 coordinate. This will also be the case for all the fiel
in the rest of this section. For simplicity, we suppress thex1
11400
.

coordinate in the following. In the leading approximation t
vector potential is given by Eq.~1! and the scattering ampli
tude is

N~x' ,y'!5^tr@U~x'!U†~y'!21#&b , ~5!

with

U~x'!5P expF2 i E
2`

1`

dx2b1~x' ,x2!G , ~6!

To calculate the orderas correction to this expression w
write the vector potential as

A15
1

g
b11a1, ~7!

with a1 being a small fluctuation and expand the eikon
factors to second order ina1.

Recalling that the classical background vector potentia
a d function in x2, we have
s

V~x'!5P expF2 igE
2`

0

dx2a1~x' ,x2!GU~x'!P expF2 igE
0

1`

dx2a1~x' ,x2!G ~8a!

5U~x'!2 igH E
2`

0

dx2a1~x' ,x2!U~x'!1U~x'!E
0

1`

dx2a1~x' ,x2!J
2g2H E

2`

0

dx2dy2u~y22x2!a1~x' ,x2!a1~x' ,y2!U~x'!

1E
2`

0

dx2a1~x' ,x2!U~x'!E
0

1`

dx2a1~x' ,x2!

1U~x'!E
0

1`

dx2dy2u~y22x2!a1~x' ,x2!a1~x' ,y2!J . ~8b!

All contributions break down intox2 ordered pieces because of thex2 structure in Eq.~1!. Now, together with the analogou
expansion forV†, we insert this into Eq.~3! and obtain

tr^V~x'!V†~y'!&A2tr^U~x'!U†~y'!&b ~9!

5g2trK E
2`

0

dw2a1~x' ,w2!U~x'!U†~y'!E
2`

0

dz2a1~y' ,z2!

1E
2`

0

dw2a1~x' ,w2!U~x'!E
0

1`

dz2a1~y' ,z2!U†~y'!

1U~x'!E
0

1`

dw2a1~x' ,w2!U†~y'!E
2`

0

dz2a1~y' ,z2!

1U~x'!E
0

1`

dw2a1~x' ,w2!E
0

1`

dz2a1~y' ,z2!U†~y'!
5-3
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2E
2`

0

dw2dz2u~z22w2!a1~x' ,w2!a1~x' ,z2!U~x'!U†~y'!

2E
2`

0

dw2a1~x' ,w2!U~x'!E
0

1`

dz2a1~x' ,z2!U†~y'!

2U~x'!E
0

1`

dw2dz2u~z22w2!a1~x' ,w2!a1~x' ,z2!U†~y'!

2U~x'!U†~y'!E
2`

0

dw2dz2u~w22z2!a1~y' ,w2!a1~y' ,z2!

2U~x'!E
0

1`

dw2a1~y' ,w2!U†~y'!E
2`

0

dz2a1~y' ,z2!

2U~x'!E
0

1`

dw2dz2u~w22z2!a1~y' ,w2!a1~y' ,z2!U†~y'!L
b,a

.

In writing Eq. ~9! we have anticipated that^au
1&a50 as in the free case. This can easily be shown using the explicit expre

for the fluctuation propagator given below.
Although this expression is a little cumbersome, the physical meaning of the various terms is very clear. Pu

compactly the structure of the above is determined by

tr^V~x'!V†~y'!&A2tr^U~x'!U†~y'!&b5g2K ^au
1av

1&a

1

2 F2
d

dbu
1 U~x'!

d

dbv
1 U†~y'!

1S d

dbu
1

d

dbv
1 U~x'! DU†~y'!1U~x'!S d

dbu
1

d

dbv
1 U†~y'! D G L

b

. ~10!

Diagramatically the right-hand side~rhs! can be represented as follows:

~11!
to

o
a

e

the
n-

f

ex-
ck
The straight lines represent the eikonal factorsU, while the
curly lines denote the gluon fluctuation propaga
^au

1av
1&a , evaluated in the fixed backgroundb1(x). The

terms in Eq.~10! with first order derivatives correspond t
processes where the gluon is emitted by the quark and
sorbed by the antiquark~or vice versa!. Those will be here-
after referred to as ‘‘exchange contributions.’’

The terms in Eq.~10! with second derivatives acting onU
~or U†! correspond to the diagrams where the quark~or an-
tiquark! emits the gluon and then reabsorbs it at a later tim
11400
r

b-

:

typical self-energy corrections. To contrast them against
exchange contributions we will also refer to them as ‘‘no
exchange contributions.’’

In Eq. ~9! we are looking at ax2 ordered breakdown o
the diagrams in Eq.~11! with the first four terms summing
up to the exchange contribution and the rest to the non
change contributions. With the vertices known, we only la
an explicit expression for̂au

1av
1&a . The QCD action ex-

panded to second order in the fluctuation fielda1, in the
presence of the classical backgroundb1, in our light cone
5-4
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gauge is

S5 1
2 $aa

1@2~]2!2#aa
122~] iaa

1!~]2aa
i !

2aa
i @„2Dab

1 @b#]22~]'!2dab…d
i j 1] i] jdab#ab

j %.

~12!

Recall that we are interested only in the propagator of
fields at equalx1. Consequently, it is only the on-shell pa
of the propagator that is relevant for our purposes. We c
therefore, use the classical equation of motion fora1

a15
] i

]2 ai . ~13!

Substituting this in Eq.~12! we get

S52 1
2 aa

i ~D2!abd
i j ab

j , ~14!

where

~D2!ab52Dab
1 @b#]22~]'!2dab . ~15!

The propagator of the spatial components of the vector
tential is, therefore, simply given by2 i /D2. The explicit
form is very simple and can be found, for example, in R
@16#.

2 i F 1

~D2!G
ab

5E dp2

2p2~2p!3 @u~x22y2!u~p2!

2u~y22x2!u~2p2!#

3E d2p'd2q'e2 ip•x1 iq•y

3E d2z'

~2p!2 e2 i ~p'2q'!z'Ũab
21~x2,y2,z'!,

~16!
11400
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with p15p'
2 /2p2, q15q'

2 /2p2 and q25p2. The adjoint
color matrix3

Ũab
21~x2,y2,z'!5@u~x2!u~y2!1u~2x2!u~2y2!#dab

1u~2x2!u~y2!Ũab~z'!

1u~x2!u~2y2!Ũab
† ~z'! ~17!

represents a phase factor one picks up when crossing
x250 plane due to interaction with a field of type Eq.~1!.
Here,Ũab(z') is the adjoint version of the fundamentalU in
Eq. ~6!. If the x250 plane is not crossed the propagati
remains free.

We can now write the on-shell correlator of the ‘‘1’’
component of the vector potential as

^aa
1~x150,x' ,x2!ab

1~y150,y' ,y2!&a

5K ]x
i

]x
2 aa

i ~x150,x' ,x2!ab
i ~y150,y' ,y2!

]y
i

]y
2L

52]x
i ]y

i E dp2

~p2!3

1

4p
@u~x22y2!u~p2!

2u~y22x2!u~2p2!]

3E d2z'

d2p'

~2p!2

d2q'

~2p!2 eip'~x'2z'!1 iq'~z'2y'!

3e2 ip'
2 /2p2x21 iq'

2 /2p2y2

3$u~x2!u~y2!1u~2x2!u~2y2!

1u~2x2!u~y2!Ũ~z'!1u~x2!u~2y2!Ũ†~z'!%.
~18!

This expression displays a separation intox2 ordered contri-
butions that seamlessly matches up with what we have
ready seen for the vertices in Eq.~9!. Diagrammatically, the
x2 ordered exchange contributions are given by
that
tion
~19!

while the ~connected parts of the! non-exchange ones are represented by

3More rigorously, the structure ofŨ21 is given byŨab
21(z')5ei @u(x2)2u(y2)#b(z'). However, the difference between this expression and

given in Eq.~17! only shows up if it is multiplied by]1 derivatives ord(x2) factors. Since we encounter no such factors in our calcula
we will be using Eq.~17! throughout.
5-5
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~20a!

~20b!
r,

e

nt
t

ith

use
Whenever thex250 plane cuts the fluctuation propagato
the diagram contains a factorUab

(†) ; otherwise the fluctuation
propagator is free.

Algebraically, the corrections to the scattering cross s
tion involve integrals of this propagator with respect tox2

andy2 from zero to either1 or 2 infinity. This is straight-
forward to do. For example, for the second term in Eq.~9!
we need

E
2`

0

dw2E
0

1`

dz2^aa
1~x' ,w2!ab

1~y' ,z2!&

5]x
i ]y

i E
0

1` dp2

p2

1

p E d2z'E d2p'

~2p!2

d2q'

~2p!2

3
eip'~x'2z'!1 iq'~z'2y'!

p'
2 q'

2 Ũab~z'!

5
1

p E
0

1` dp2

p2 K x'U ] i

]'
2 Ũab

] i

]'
2Uy'L . ~21!

Here,^x'uOuy'& means the matrix element of the operatorO

in the coordinate basis in the usual sense. We treatŨ as an
operator in the coordinate space with matrix eleme

^x'uŨuy'&5Ũ(x')d(x'2y') and the products in the las
line are understood in the operatorial sense. Explicitly,

E
2`

0

dw2E
0

1`

dz2^aa
1~x' ,w2!ab

1~y' ,z2!&

5
1

4p3 E
0

1` dp2

p2 E d2z'

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2 •Ũab~z'!.

~22!

In the same way we obtain for the other contributions w
interaction with the background
11400
c-

s

E
0

1`

dw2E
2`

0

dz2^aa
1~x' ,w2!ab

1~y' ,z2!&

5
1

p E
0

1` dp2

p2 K x'U ] i

]'
2 Ũab

† ] i

]'
2Uy'L

5
1

4p3 E
0

1` dp2

p2 E d2z'

~x2z!'•~y2z!'
~x2z!'

2 ~y2z!'
2 •Ũab

† ~z'!

~23!

2E
2`

0

dw2E
0

1`

dz2^aa
1~x' ,w2!ab

1~x' ,z2!&

52
1

p E
0

1` dp2

p2 K x'U ] i

]'
2 Ũab

] i

]'
2Ux'L

52
1

4p3 E
0

1` dp2

p2 E d2z'

1

~x2z!'
2 •Ũab~z'!

~24!

2E
0

1`

dw2E
2`

0

dz2^aa
1~y' ,w2!ab

1~y' ,z2!&

52
1

p E
0

1` dp2

p2 K y'U ] i

]'
2 Ũab

† ] i

]'
2Uy'L

52
1

4p3 E
0

1` dp2

p2 E d2z'

1

~y2z!'
2 •Ũab

† ~z'!.

~25!

To simplify the color structure of these expressions we
the identity

Ũab~z'!„taU~x'!…ab
„tbU†~y'!…gd

52tr@ taU~z'!tbU†~z'!#„taU~x'!…ab
„tbU†~y'!…gd

5
1

2Nc
@Nc„U~z'!•U†~y'!…ad

„U†~z'!•U~x'!…gb

2U~x'!abU†~y'!gd#. ~26!
5-6
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Note that the integral over the frequencyp2 logarithmically
diverges. In fact, we have to integrate only over a finite
terval of frequencies. The gluon field modes of very lo
frequency have been already included in the backgro
field b1 and, therefore, the fluctuation fields at these l
frequencies should not be considered. The lower cutoff
the frequency of the modes that are being integrated is
versely proportional to the initial value ofx0 at which we
start the evolution. The upper limit on the high frequen
side is furnished by the maximal rapidity of the quark~or
antiquark! in the virtual photon which is of the order of 1/x.
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The ratio of these two cutoffs is of orderx0 /x. Thus, in the
leading logarithmic approximation we identify

E dp2

p2 5 ln
x0

x
. ~27!

The calculation of the remaining contributions~the ones with
no interaction with the background! proceeds along simila
lines and is given in the Appendix.

Collecting all contributions together we obtain
tr^V~x'!V†~y'!&A2tr^U~x'!U†~y'!&b

5
g2

8p3 lnS x0

x D E d2z'K $tr@U~x'!U†~z'!#tr@U†~y'!U~z'!#22Nctr@U~x'!U†~y'!#%
~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2

2$tr@U~x'!U†~z'!#tr@U~z'!U†~y'!#2Nctr@U~x'!U†~y'!#%
1

~x2z!'
2

2$tr@U†~y'!U~z'!#tr@U†~z'!U~x'!#2Nctr@U†~y'!U~x'!#%
1

~y2z!'
2 L

b

. ~28!

The eikonal factorsV themselves should be considered as functions ofx, so thatU5V(x0). Differentiating this equation with
respect to ln 1/x we recover the evolution step for tr^V(x')V†(y')&A . This is precisely what was found in Ref.@7#.4

At large Nc the products of traces in Eq.~28! factorize:

^tr@U~x'!•U†~z'!#tr@U†~y'!•U~z'!#& ——→
Nc→`

^tr@U~x'!•U†~z'!#&^tr@U†~y'!•U~z'!#&. ~29!
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Equation~28! then becomes a closed equation for the evo
tion of N(x' ,y')5^tr@U(x)U†(y)21#&. It is identical to
the nonlinear evolution equation of Ref.@8#.

B. The physical interpretation

Now, let us discuss the physical picture of this evolutio
As always with DIS, the physical picture depends on
frame in which one chooses to view the process. We h
specified the frame to some extent by declaring that the p
ton fluctuates into aqq̄ pair long before the target. Howeve
we are still free to put the subsequent evolution inx either
into the evolution of the photon wave function or into th
evolution of the gluon field distribution in the target. We w
refer to the former picture as the ‘‘projectile evolution pi
ture’’ and to the latter as the ‘‘target evolution picture.’’ Th

4As it stands, Eq.~28! does not provide a closed equation—it h
to be supplemented by evolution equations for arbitrary produ
^V1

(†)
^¯^ Vn

(†)&A . The evolution of these higher correlators is d
rived following the same procedure as described above and lea
the full set of operator equations derived in Ref.@7#. We will give a
compact representation of the whole set of the evolution equat
in Eq. ~75!, Sec. IV.
-

.
e
e

o-

calculation is, fortunately, noncommittal on this point a
we will consider both pictures in turn.

In the projectile evolution picture, the higher energy
the scattering is achieved by boosting theqq̄ pair. In this
picture, the quark and antiquark have very high energy
consequently their wave function develops extra gluon co
ponents. The growth of the cross section with 1/x then is
interpreted as due to the scattering of extra gluons in
projectiles wave function. This is precisely how the lowx
evolution is viewed in the dipole model of Mueller@14,15#.
Our calculation of this section has a simple interpretat
from this point of view. The quark and the antiquark is t
pair of pointlike color charges moving with the velocity o
light and located atx150 and transverse coordinatesx' and
y' . These color charges carry with them a fluctuating glu
field. When the pair is boosted to higher rapidity the glu
fields ‘‘freeze’’ due to the time dilation and become static.
the approximation when the gluon fields are frozen, they
given by the Weisza¨cker-Williams static (p150) fields cre-
ated by the qq̄ pair. In the leading order inas the
Weiszäcker-Williams~WW! fields are small and are emitte
independently by the quark and the antiquark. The total W
field is

Ai5g
1

]2

] i

]'
2 @ j q

21 j q
2#, ~30!
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KOVNER, MILHANO, AND WEIGERT PHYSICAL REVIEW D 62 114005
where j q
2 ( j q̄

2) is the color current due to the quark~anti-
quark! which in our frame has only a ‘‘2’’ component. For
pointlike quark and antiquark the charge densities ared func-
tions in the transverse coordinates and inx1. The WW field
is therefore

Ai~p2,z'!5g
1

p2 Ft xi2zi

~x2z!2 1t8
yi2zi

~y2z!2G . ~31!

Here,t andt8 are fundamental color matrices correspond
to the orientation of the quark and antiquark wave functio
in the color space. Their exact form does not matter for
purposes. The WW field, if written in the particle basis, c
be thought of as representing equivalent gluons. The num
of gluons at a given transverse position is given by the
miliar expression

nWW~z'!}E
0

`

dp2p2trF2 i~p2,z'!F2 i~p2,z'!

5asE
0

` dp2

p2 trFt xi2zi

~x2z!2 1r 8
yi2zi

~y2z!2G
3Ft xi2zi

~x2z!2 1t8
yi2zi

~y2z!2G . ~32!

If we do not take the trace over the color indices, this e
pression gives the probability to have one extra WW glu
in the wave function of theqq̄ pair ~at the transverse positio
z' with a particular color orientation!. These WW gluons
scatter on the gluon field of the target eikonally just like t
quark and the antiquark, apart from the fact that they ca
adjoint charge, and so their eikonal amplitude is given byŨ
rather thanU. The terms in this expression are in one-to-o
correspondence with the real contributions in Eq.~9!, that is,
the terms in which the gluons interact with the target~back-
ground!. The rest of the terms in Eq.~9!—the virtual
terms—as usual serve to restore the correct normalizatio
the wave function.

To summarize, in the projectile evolution picture our c
culation describes emission of the WW gluons into the wa
function of qq̄ long before the scattering. The transver
coordinates of these gluons are frozen due to the Lore
time dilation. Subsequently, both theq and q̄, and also the
gluons, scatter eikonally and independently of each othe
the target gluon field. Clearly, this picture is identical to t
dipole evolution picture of Mueller which was used in Re
@8# to derive a nonlinear evolution equation. The only diffe
ence is that the dipole model uses the simplifications in
color algebra which arise in the largeNc limit.

The calculation presented above also has a simple in
pretation in the target evolution picture. In this picture, it
the target rather than the projectile that is boosted when
ing to lower x. As already made explicit above by writin
^¯&b , one should think about the target as being represe
by an ensemble of the configurations ofb1. The correspond-
ing statistical weightZ@b# is determined, of course, by th
structure of the target at the relevant resolution scale.
will have more to say about it in Sec. IV. The boost of t
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target freezes the gluon field fluctuations around the ta
backgroundb1 and, consequently, some field modes whi
were not important at higherx are now capable of inducing
scattering. Thus, the ensemble of the relevant field confi
rations which characterizes the target changes. In fact, e
b1 now forks into a ‘‘subensemble’’b185b11a1. In the
weak coupling regimea1 have Gaussian distribution with
the width determined by the inverse of their correlation fun
tion Eq.~18!. One can work back from here and calculate t
modification of the distribution of the background fields. W
will do this in the following sections. The fluctuations ofa1

are, therefore, considered in the target evolution picture
modifying the ensemble of the target background fields v
much like in the approach of Refs.@9–12#, @17#.

C. Unitarization in different approximations

From what has been said so far, it is clear that althou
the calculation presented in this section includes in the e
lution some nonlinear effects, it is not the end of the sto
At very low x, this approximation should break down. The
are clear reasons why this should happen in both pictures
the projectile evolution picture, it is not true indefinitely th
the WW fields are emitted independently from the partons
the projectile. Due to the evolution, more and more gluo
are emitted into the wave function of the projectile and so
density of partons grows. At some point, the approximat
of independent emissions as well as of independent sca
ing of the partons on the target must break down. This is
point at which, in the parlance of Ref.@8#, the Pomeron loop
diagrams must come into play.

In the target evolution picture, the problematic point is t
eikonal approximation for the scattering of theqq̄ pair. One
starts the evolution at some initial value ofx5x0 with all the
available energy in theqq̄ pair and the target fields not to
strong. Since theqq̄ pair is very energetic, the eikonal ap
proximation is perfectly valid at this initial point. Howeve
with the evolution the strength of the target fields grow
whereas the energy of theqq̄ pair, on the other hand, stay
fixed. Corrections to the eikonal approximation are of ord
aG(x)/s, wheres}1/x0 is the energy squared of the pai
andG(x) is the density of the target fields. The field dens
grows due to evolution~at least initially in the linear regime!
as

G~x!}S 1

xD aP21

, ~33!

with aP the BFKL Pomeron intercept. At very smallx the
fields are strong enough so that the quark and antiquark
losing a finite fraction of their energy and, therefore, the
recoil eikonal approximation cannot stay valid indefinite
Parametrically these corrections are of the same order as
Pomeron loops in the projectile frame, which suggests t
they have the same physical origin.

The effect of the nonlinear evolution Eq.~28! on the be-
havior of the total cross section was studied in Re
@18,19#. It was concluded that the nonlinearities slow dow
the BFKL-type rise of the cross section and lead to its u
5-8
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RELATING DIFFERENT APPROACHES TO NONLINEAR . . . PHYSICAL REVIEW D62 114005
tarization so that the cross section approaches the black
limit. We want to conclude this section with a comment
the nature of the unitarization in this approximation. Ess
tially, the unitarization is brought about by purely kinema
cal effects. This is especially clear in the projectile evoluti
picture. At the initial value ofx5x0 one starts with theqq̄
pair as the only relevant component of the photon wa
function, which has a certain probabilityPqq̄ to scatter on the
target. So, initially, the total scattering probabilityPx0

is

Px0
5Pqq̄ . ~34!

At lower x5x02dx the wave function also contains a com
ponent with an extra gluon. Let the probability to have
extra gluon in the wave function beD and the probability for
this gluon to scatter on the targetPg . In the linear approxi-
mation~the BFKL limit! the total probability of scattering is
additive

Px5~12D!Pqq̄1D~Pqq̄1Pg!5Pqq̄1DPg . ~35!

However, this is, in fact, overcounting, since there are eve
where both the gluon and theqq̄ pair undergo scattering an
those events are counted twice in the linear approximat
One should, therefore, subtract the probability of the
double scattering events from the total probability. This d
ficiency is corrected by writing.

Px5~12D!Pqq̄1D~Pqq̄1Pg2Pqq̄Pg!

5Pqq̄1D~Pg2Pqq̄Pg!

5Px1dx1D~12Px1dx!Pg . ~36!

At arbitrary low x, the same argument leads to a simi
expression wherePx1dx denotes the total scattering probab
ity of the projectile~which itself contains theqq̄ pair and
some number of gluons! at a slightly higher value ofx. This
is precisely the nonlinear term in the evolution equation~28!,
with the only difference that the extra gluon in the wa
function can have arbitrary transverse coordinate and
should, of course, integrate over this extra degree of fr
dom. It is clear that this negative nonlinear correction lea
to the unitarization of the cross section since asPx tends to
unity the emission of the extra gluon does not increase
total scattering probability. This effect is somewhat simi
to the Glauber mechanism, not in the sense that each pa
undergoes multiple scattering, but that the unitarization is
a purely geometrical nature. A similar discussion, in t
framework of the dipole model, is given in Refs.@4,5#. In the
next section we will show how to relate the approach j
discussed with that of Refs.@9–12,17#.

III. THE JKLW EQUATION AND THE SMALL INDUCED
FIELD LIMIT

We start this section by recalling the framework and
sults of Refs.@9–13,17#.
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A. The JKLW equation

In this approach, following Refs.@20,21#, the averages of
gluonic observables in a hadron are calculated via the
lowing path integral:5

^O~A!&5E Da iDAmO~A!Z@a#

3expH 2 i E d4x
1

4
trFmnFmn

2
1

Nc
E d2x'dx2d~x2!] iaa

i ~x'!

3trTaW2`,`@A2#~x2,x'!J , ~37!

where the gluon field strength tensor is given by

Fa
mn5]mAa

n2]nAa
m2g fabcAb

mAc
n ~38!

andW is the Wilson line in the adjoint representation alo
the x1 axis

W2`,1`@A2#~x2,x'!

5P expF1 igE dx1Aa
2~x1,x2,x'!TaG . ~39!

The hadron is represented by an ensemble of chromoele
fields, localized in the planex250, of the form

f 1 i5
1

g
d~x2!a i~x'!, ~40!

where the two-dimensional vector potentiala i(x') is ‘‘pure
gauge’’

] iaa
j 2] jaa

i 2 f abcab
i ac

j 50. ~41!

In Eq. ~37!, Z@a# is the statistical weight of a configuratio
a i(x') in the hadronic ensemble.

The evolution in Refs.@9–12# is derived in the target
evolution picture where decreasingx corresponds to boosting
the hadronic target. This leads to freezing of part of the g
conic degrees of freedom. Integrating out these slow mo
of the vector potential generates the renormalization gr
equation, which has the form of the evolution equation
the statistical weightZ @9–12,17#

5An alternative form of the effective action was suggested in R
@22#, where it was also shown that it leads to the same evolu
equation.
5-9
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KOVNER, MILHANO, AND WEIGERT PHYSICAL REVIEW D 62 114005
d

d ln
1

x

Z5asH 1

2

d2

da~u!da~v !
@Zx~u,v !#

2
d

da~u!
@Zs~u!#J . ~42!

In the compact notation used in Eq.~42!, bothu andv stand
for color and rotational index and transverse coordina
with summation and integration over repeated occurren
implied. This evolution equation for the statistical weight c
be rewritten as the set of the evolution equations for
correlation functions of the chromoelectric field

d

d ln
1

x

^aa1

i 1 ~x1!¯aan

i n ~xn!&

5asF (
0, l ,n11

^aa1

i 1 ~x1!¯aal 21

i l 21 ~xl 21!

3aal 11

i l 11 ~xl 11!¯aan

i n ~xn!sal

i l ~xl !&

1 (
0,m,k,n11

^aa1

i 1 ~x1!¯aam21

i m21 ~xm21!

3aam11

i m11 ~xm11!¯aak21

i k21 ~xk21!aak11

i k11 ~xk11!

3¯aan

i n ~xn!xamak

i mi k ~xm ,xk!&G . ~43!

The quantitiesx@a# ands@a# have the meaning of the mea
fluctuation and the average value of the induced vector
tential which arises from the field modes which become f
zen due to extra boost of the hadronic target. In the lead
logarithmic approximation of Refs.@9–12# the two quantities
x and s completely specify the low-x evolution. We give
here an explicit expression for the mean fluctuationx which
will be the focus of our interest throughout this section,

xab
i j ~x' ,y'!52K x'U H Di

D'
2 @D'

2 2S21#
D j

D'
2 J

ab
Uy'L .

~44!

For convenience, we have defined

aab
i 5 f abcac

i ,

Dab
i 5] idab1aab

i . ~45!

The operatorS in Eq. ~44! is given by

S5
1

D'
2 12F ] i

]'
2 2

Di

D'
2 GF ] i

]'
2 2

Di

D'
2 G

5
1

D'
2 22

1

]'
2 ]'a

1

D'
2 12

1

D'
2 D'a

1

]'
2 . ~46!
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B. Where does it come from?

Technically, these results are derived as follows. One c
siders the quantum corrections in the classical backgro
field Eq. ~40!. The calculation is performed in the light con
gauge A150 with the residual gauge fixing] iAi(x2→
2`)50 which fixes the gauge completely. In this gauge t
chromoelectric field Eq.~40! corresponds to the backgroun
vector potential

bi5u~x2!a i~x'!. ~47!

Note that, as opposed to the previous section, here we
using a different light cone gauge:A150. As a consequence
the background vector potential has a different form.

The complete set of on-shell small fluctuation solutions
the classical equations is

ap2,r
i

5eip2x1E d2p'Fu~2x2!

3expS i
p'

2

2p2 x22 ip'x'D v2,r
i ~p'!

1u~x2!U~x'!expS i
p'

2

2p2 x22 ip'x'D
3@U†v1,r

i #~p'!1u~x2!g1,r
i G . ~48!

Here, r is the degeneracy label, which labels independ
solutions with the frequencyp2. In the free case it is con
ventionally chosen as the transverse momentum,$r %
5$p'%. The matrixU(x') is the SU(N) matrix that param-
eterizes the two-dimensional ‘‘pure gauge’’ vector potent
a i(x'),

a i~x'!5 iU ~x'!] iU†~x'!.

The auxiliary functionsg1
i ,v6

i are all determined in terms
of one vector function. Choosing this independent funct
asv2

i we have

v1,r
i 5@Ti j 2Li j #@ t jk2 l jk#v2,r

k , ~49!

g1,r
i 52DiF D j

D'
2 2

] j

]'
2 G @ t jk2 l jk#v2,r

k ,

~50!

where we have defined the projection operators

Ti j [d i j 2
DiD j

D'
2 , Li j [

DiD j

D'
2 ,

t i j [d i j 2
] i] j

]'
2 , l i j [

] i] j

]'
2 . ~51!

Theg1 piece of the eigenfunction Eq.~48! is responsible for
the induced vector potential since this is the only contrib
tion that does not vanish atx2→`, so that
5-10
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xab
i j ~x' ,y'!54pE dp2^g1,a

i ~x' ,p2!g1,b
j ~y' ,2p2!&.

~52!

Note that the essential nonlinearity of the expression Eq.~44!
is due to the denominator in the operatorS21 Eq. ~46!. The
reason this arises is due to the nontrivial normalization of
small fluctuation eigenfunctions. As discussed in detail
Refs.@9–12# the proper normalization of the eigenfunctio
requiresv2

i to be chosen as a complete set of eigenfuncti
of the two-dimensional Hermitian operatorO21

@~ t2 l !O21~ t2 l !#ab
i j ~x' ,y'!

5^x'udab
i j 22H F] i

1

]'
2 2Di

1

D'
2 G

3S21F 1

]'
2 ] j2

1

D'
2 D j G J

ab

uy'&, ~53!

such that

E d2r'v2,r ,a
i ~x'!v2,r ,b* j ~y'!5

1

4pup2u @O21#ab
i j ~x' ,y'!.

~54!

This nontrivial normalization is the consequence of the pr
ence of theg1 piece in the solution Eq.~48!. Equation~52!,
supplemented by Eq.~50! and the normalization Eq.~54!,
leads to the final expression Eq.~44!.

If the contribution ofg1 could be neglected in the nor
malization condition, the normalization of the eigenfunctio
would be trivial and we would haveO51 in Eq. ~54!. One
can consider the limit in whichg1

i , or equivalentlyx, is
small. In the leading order in the expansion ing1 we have a
very simple expression forx,6

x̃ab
i j ~x' ,y'!54K x'UFDi H 1

]'
2 1

1

D'
2 2

1

]'
2 ]'D'

1

D'
2

2
1

D'
2 D']'

1

]'
2 J D j G

ab
Uy'L . ~55!

Note that this is a different limit than the one in which th
JKLW evolution reduces to the BFKL equation@9–12#. The
BFKL limit corresponds to the expansion in powers of t
background fielda i . Now, we are not assuming thata i is
small, but rather that the correction induced by the evolut
g i is small.

We will now see that Eq.~55! is reproduced precisely b
translating the calculation of the previous section into
language of the JKLW evolution. Thus the BK equation
recovered from the JKLW equation in the limit when th
induced fieldg i is small.

6If so desired this expression can be written in a simple form
terms of the unitary matrixU, since operatoriallyDi5U] iU†. In
Fourier space this gives convolutions ofU(p) and powers of trans-
verse momentum.
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C. BK to JKLW: transforming between the gauges

In the previous section, following Ref.@7#, we used the
gaugeA250. This is a very convenient gauge from the po
of view of the projectile evolution since the eikonal amp
tudes in this gauge are given by simple Wilson line facto
We will refer to this gauge as the ‘‘projectile light con
gauge,’’ or the ‘‘projectile gauge’’ for short. The JKLW ap
proach, on the other hand, uses theA150 gauge, which is
convenient for the target evolution picture since it simplifi
the relation between the distribution functions and the co
elators of the gluon fields. We will call this gauge the ‘‘targ
light cone gauge’’ or, simply, the ‘‘target gauge.’’ Our im
mediate aim is, therefore, to calculatex using the results of
the calculation in the projectile gauge.

To do this, note that the relation between the fields in
target and projectile gauges is given by

1

g
Bm1Am5V S 1

g
bm1amDV†1

i

g
V]mV†. ~56!

To simplify the notation, from now on we will denote th
fields in the target (A150) gauge by capital letters an
fields in the projectile (a250) gauge by lower case letters
This we do for both the background part of the field and
the small fluctuation part. The field-dependent matrixV is
given by

V5P expF2 i E
2`

x2

dx2~b11ga1!G . ~57!

The conditionA150 does not by itself specify the lowe
limit of the integration overx2 in the exponential. However
choosing this limit to be at minus infinity ensures th
V(x2→2`)51 and, as a consequence,Ai(x2→2`)
5ai(x2→2`). The projectile gauge fields satisfy the sta
dard vanishing boundary conditions at infinity. This choi
of the lower limit of the integration, therefore, guarante
that the target gauge fields also vanish atx2→2` and, fur-
ther, satisfy the residual gauge condition] iAi(x2→2`)
50 that was imposed in Refs.@9–12#. To calculatex we
only need to consider the linearized relation between
small fluctuations of the fields in the two gauges. To do t
we need to expandV to first order ina1. This has been done
in the previous section. Taking only linear terms ina1 in Eq.
~8a! and substituting them into Eq.~56! we find for the trans-
verse components of the field

Aa
i ~x!5u~2x2!Faa

i ~x!2E
2`

x2

dx2] ia1G
1u~x2!F Ũabab

i ~x!2Dab
i

3S E
2`

0

dx2ab
11ŨbcE

0

x2

dx2ac
1D G

5Fd i j 2W] iW†
1

]1]2 W] jW†G
ab

~Waj !b . ~58!

n
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Here, the matrixŨ is the same as in the previous section a
is related to the classical background by

Ũ~x'!5P expH 2 i E
2`

1`

dx2b1J ,

Bi5u~x2!iŨ ] i Ũ† ~59!

as per Eq.~47!. We have also defined

W~x2!5P expH 2 i E
2`

x2

dx2b1~x2!J
5u~2x2!11u~x2!Ũ, ~60!

which is essentially the classical part ofV. The operator
1/]1 in the last line of Eq.~58! is defined as the integral from
2`.7 We will further simplify this expression by using th
on-shellness conditions

a15
] i

]2 ai ,

~2]2D1@b1#2]'
2 !ai50. ~61!

The resulting relation between the on-shell transverse fi
in the two gauges is

Aa
i 5u~2x2!~ t2 l ! i j aa

j ~x2!1u~x2!H Ũab~ t2 l ! i j ab
j ~x2!

22Dab
i F ] j

]'
2 ab

j ~x2→02!2Ũbc

] j

]'
2 aj~x2→01!G J .

~62!

Note that we have to specify on which side ofx250 the
fields are taken since the solutions of the small fluctuat
equations in the projectile gauge are discontinuous at z
Now, recall thatai satisfies, everywhere except atx250, the
free equations of motion. With this in mind we can compa
this equation with Eq.~48!. We see that Eq.~62! is indeed
precisely of the form Eq.~48! with

g1,a
i 522Dab

i F ] j

]'
2 ab

j ~x2→02!2Ũbc

] j

]'
2 ac

j ~x2→01!G ,
v2,a

i 5~ t2 l ! i j aa
j ~x2→02!,
11400
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v1,a
i 5Ũab~ t2 l ! i j ab

j ~x2→01!. ~63!

Remembering that~see, for example, Ref.@16#!

ai~x2→01!5Ũ†ai~x2→02!, ~64!

we see that the functionsv1
i , v2

i , andg1
i are related pre-

cisely by the same relations as in Eq.~50!. We have estab-
lished, therefore, that ifai satisfies the equation of motion i
the projectile gauge, then the transformed fieldAi of Eq. ~56!
satisfies the equations of motion in the target gauge.
only remaining question is that of the normalization of t
eigenfunctions. Recall that the functionsai in the calculation
of Ref. @7#, which was reproduced in the previous sectio
were normalized in the same way as the eigenfunctions
the free theory. That is to say, the full set of on-shell eige
functions is obtained by choosingap'

i (x2→02) as a com-

plete set of normalized eigenfunctions of the unit operato
the transverse space

E d2p'

4p2 ap'

i ~x' ,x2→02!ap'

j* ~y' ,x2→02!

5d i j d~x'2y'!. ~65!

Sincet2 l is a unitary operator, Eq.~63! tells us thatv2
i is

also normalized to unity rather than to a nontrivial opera
O as in the JKLW calculation Eq.~54!. Using this, as well as
the relations Eq.~63! and Eq.~52!, we find that when trans-
lated into the language of JKLW, the results of Ref.@7# give
Eq. ~55! as the mean fluctuation of the induced chromoel
tric field. The essential nonlinearity of Eq.~44! is, therefore,
absent in this calculation.

So far, we have only considered the real part of the JKL
kernel,x. Of course, the same method can be applied to fi
what is the form of the virtual parts, Eq. ~42!, that arises
from the calculation of Ref.@7#. To reproduce the virtual par
it is clearly necessary to keep the quadratic terms in
relation betweenAi andai . Thus the quadratic terms in Eq
~8a! will be important in this calculation. Other than that, th
calculation is straightforward. Again the gauge invarian
ensures that all the ‘‘kinematical’’ factors ofs of Refs.
@9–12# are reproduced in the projectile gauge calculation a
the only difference comes from the difference in the norm
ization of the eigenfunctions. It is clear, therefore, that t
result of such a calculation is again the lowest order exp
sion of s in powers ofg1 ,
s̃a
i 5F Di

D2G
ab
S Nc

2
~] jab

j !K x'U 1

]2 Ux'L 2 f bcd̂ x'uF4D j
1

]2 ]D
D j

D2 12
1

]2 ]a22a]
1

]2 14a j
1

]2 a j G
cd

ux'& D
22e i j F Di

D2G
ab

~x,y! f bcde
kl^y'uFDkS 1

]2 1
1

D22
1

]2 ]D
1

D22
1

D2 D]
1

]2DDl G
cd

uy'&. ~66!

7Equation~58! has been derived also in Refs.@23,24#. The only difference in our derivation is that the meaning of the 1/p6 pole is entirely
unambiguous and, as discussed above, is dictated by the residual gauge condition.
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D. The doubly logarithmic limit

Before exploring the relationship between the two a
proaches further in the next section, we want to make a c
ment about the form Eq.~55!. Although this equation cer
tainly gives x̄ in general as a nonlinear function of th
background fielda i , this nonlinearity disappears in th
double logarithmic limit. Following Ref.@13# we take the
double logarithmic limit as the limit when the backgroun
field a i does not depend onx' . In this limit, the covariant
and the simple derivatives commute and it is easy to see
Eq. ~55! reduces to

x̃ i j 54
a2

]2

DiD j

D2 ~67!

or

trx̃54tr
a2

]2 . ~68!

When substituted into the evolution equation~43! this gives
the simple linear double logarithmic DGLAP evolution fo
the gluon distribution functionG}tra2 ~see Ref.@13# for a
detailed derivation!. This is in contrast with the situation
discussed in Ref.@13# where the double logarithmic limit o
Eq. ~44! was studied. It was shown there that the nonlinea
ties in Eq.~44! survive in the doubly logarithmic limit and
in fact, lead even in this limit to the ‘‘almost saturation’’ o
the gluon distribution.

The absence of the nonlinearities is in contradiction w
the explicit calculation of Mueller and Qiu@25# who showed
that the QCD evolution of the gluon distribution in the do
bly logarithmic approximation does indeed contain contrib
tions from higher twist operators. This again underscores
observation that the nonlinearities included in the evolut
of Ref. @7# are not the whole story. Those are the ‘‘kinema
cal’’ nonlinearities in the sense discussed in the previ
section and do not include interesting dynamical effe
which come into play when the parton density becom
large.

In fact, the triviality of the doubly logarithmic limit of the
calculation of the previous section is easy to understand
ing the intuition based on the dipole model approach. In
projectile evolution picture, in every step in the evolutio
one extra gluon is emitted into the virtual photon wa
function.8 The doubly logarithmic limit is achieved by as
suming that this extra gluon has the smallest transverse
mentum or, in the coordinate space, has the largest transv
coordinate @8#. In the large Nc limit the extra gluon is

8This extra gluon can be emitted either from a quark or from
antiquark present in the original wave function, or from any oth
parton emitted in the previous steps in the evolution. So the t
amplitude for emission is given by the sum of the amplitudes
these processes. Note, however, that the amplitude for the proc
where two gluons are emitted simultaneously~say fromq andq̃! is
higher order inas and such processes are not present in the dip
model.
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equivalent to an extraqq̃ pair. Thus, if initially one starts~as
in Ref. @7# or @8#! from a fundamental dipole, after one ste
in the evolution the wave function has a component with t
fundamental dipoles. The scattering events involving sim
taneous scattering of both these dipoles lead to a nonlin
GLR-type quadratic term@26# in the evolution equation for
the scattering cross section. This result indeed has been
rived in Ref.@8#.

The same process can be viewed from the point of v
of adjoint dipoles. Since in the doubly logarithmic approx
mation the newly emitted gluon is assumed to be very fa
the transverse plain from the partons previously presen
the wave function, the part of the wave function that conta
it essentially looks like one adjoint dipole of large transve
size. One leg of this dipole is the newly emitted gluon, wh
the other leg is the remainder partons which are clos
bunched together in the coordinate space.9 The cross section
for the scattering of the adjoint dipole in the largeNc limit is
simply related to the cross section for the fundamental dip
sadj52s fund2s fund

2 . Thus starting from the fundamental d
pole in the initial state, the nonlinear GLR evolution in th
picture follows due to the nonlinear relation between t
scattering cross section of the adjoint and the fundame
dipoles.

However, if we want to consider the evolution of th
gluon distribution itself, the initial state should contain a
adjoint rather than a fundamental dipole. This can
achieved by considering ‘‘DIS’’ of a virtual particle tha
couples to trF2 @27#. In this case, in any step in the doub
logarithmic evolution, the state contains only one adjoint
pole. Thus for this initial configuration the nonlinear relatio
between the adjoint and fundamental cross sections is
tirely irrelevant. The probability for the appearance of
larger dipole in the approximation of independent emissio
is itself proportional to the number of gluons. The evoluti
of the gluon distribution in this approximation is, therefor
naturally linear and is merely the simple DGLAP DLA.

IV. MORE ON THE TARGET VERSUS PROJECTILE
GAUGE

The discussion of the previous section may seem a l
paradoxical on the purely technical level. Indeed, we ha
been calculating the same physical quantity in two differ
ways. The quantity in question is the equal~light cone! time
propagator of the transverse components of the vector po
tial Ai in the target light cone gauge. The first way of pe
forming the calculation is to work entirely in the target gau
as was done in Refs.@9–12#. This gives the result Eq.~44!.
The second way to calculate the same quantity is to fi
calculate the propagator ofai in the projectile gauge and the
gauge transform the result into the target gauge using E
~58,62!. This results in an inequivalent expression Eq.~55!.

n
r
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r
ses

le

9These partons are in the adjoint representation of the color gr
since together with the extra emitted gluon the state must be
overall singlet.
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A. The i e complication

Our first aim in this section is to resolve this technic
paradox. To do this let us consider in more detail the cal
lation of Refs.@9–12# and its transformation into the projec
tile gauge. The equal time propagator of the transverse c
ponents of vector potential is calculated in the following w
@9–12#. One starts with the quadratic part of the action
the small fluctuations ofAm. IntegratingA2 it is reduced to
a quadratic action for the small fluctuations of the transve
components of the vector potential

S5E d4xd4yAi~x!G21i j ~x,y!Aj~y!. ~69!

For the purpose of this discussion we use somewhat sim
fied notations and omit the color indices on the fields. T
explicit form of G21 is given in Refs.@9–12#. One then finds
properly normalized eigenfunctions ofG21

G21i j ~x,y!Al,p2,r
j

~y!5lAl,p2,r
i

~x!,

E d4xAl,p2,r
i

~x!A
l8,p28,r 8

i* ~x!5d~l2l8!d~p22p28!

3d2~r 2r 8!. ~70!

Using the complete set of eigenfunctions one constructs
propagator with the standardi e prescription as

Gi j ~x,y!5E dl

l1 i e E dp2d2rAl,p2,r
i

~x!Al,p2,r
j* ~y!.

~71!

The limit x15y1, andx2,y2→` is then taken to calculate
x i j . Clearly, the equal time limit selects the on-shell eige
functions l50 and, therefore, when transforming into th
projectile gauge it is important to keep track of thei e pre-
scription. The simplest way to do this is to include thei e
term directly in the action

St5E d4xd4yAi~x!@G21i j ~x,y!1 i ed i j d~x2y!#Aj~y!.

~72!

The propagator Eq.~71! is then just the inverse of the qua
dratic form in Eq.~72! without any additional regulators.

To transform this expression into the projectile gauge o
has to use Eqs.~58!,~62!. The gauge invariance of the QC
action ensures that the first term in Eq.~72! under this trans-
formation transforms into

ai~x!D2~x,y!ai~y!, ~73!

which is exactly the action used in Sec. II to calculate
projectile gauge propagator. However, thei e term is not so
simple. If the transformation Eq.~62! was unitary, the norm
of the fieldAi would be preserved and thei e term in Eq.~72!
would transform into the standardi e*d4xai(x)ai(x) term in
the projectile gauge. The problem is that, as we saw in
11400
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previous section, the transformation Eq.~62! is not unitary.
A normalized functionai is transformed into a functionAi

normalized not to unity but rather to an eigenvalue of t
operatorO in Eq. ~53!.10 This was precisely the root of th
discrepancy betweenx andx̄. The resulting projectile gauge
action can be written as11

Sp5E d4xai~x!D2ai~x!1 i eE d4xH ai~x!ai~x!12ai~02!

3F] i
1

]'
2 2Di

1

D'
2 GD'

2 F] i
1

]'
2 2Di

1

D'
2 Gai~02!J . ~74!

Thus, the standardi e prescription in the target gauge
equivalent to a fairly complicated momentum-dependent p
scription in the projectile gauge. Since the calculation of S
II, following Ref. @7#, was performed using the standardi e
prescription in the projectile gauge the result is, indeed,
pected to differ from that of Refs.@9–12#.

While the technical reason for the difference between
results of Refs.@9–12# and Ref. @7# is clear, the physics
behind it is not so obvious. In the rest of this section, we w
make an attempt to understand the physical reason for
difference.

As we have just explained, the calculation of Refs.@9–12#
is equivalent to a calculation in the projectile gauge with
nonstandard momentum dependenti e prescription. It is well
known that such a change of prescription is equivalent t
calculation not in the vacuum state but rather in a state wh
contains gluons@28,29#. We, therefore, ask ourselves wh
the projectile gauge calculation should be performed in
state which, on top of the background fieldb1, also contains
additional gluons.

B. Evolution as renormalization group in the projectile gauge

To answer this question let us first try to reformulate t
projectile gauge calculation of Sec. II in terms of the Wils
renormalization group akin to the approach of Refs.@9–12#.
The hadron is represented as a statistical ensemble o
staticb1 fields of the form Eq.~1! with a statistical weight
Z@b#. Evolution in x generates induced vector potenti
which changes the statistical weight. Strictly speaking
induced vector potential is not static. It has components
the frequency rangep2,L}1/x. However, as long as the
frequency of the components of the projectile wave funct
are large enough, one can treat the induced potential as s
during the interaction with theqq̄ pair. Also, as long as the
wavelength of the projectile in thex2 direction is large

10The fact that the transformation between the two gauges is n
unitary is not unusual. Even though it is a gauge transformation
therefore formally unitary, the gauge parameter itself depends
the dynamical field. Such transformations are generically nonu
tary and do not preserve the scalar product.

11In writing this expression we have made use of the fact that
i e term is important only for functionsai that satisfyD2ai50.
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enough~p1 is small! the induced vector potential can b
approximated by ad(x2) shaped function. One can, equiv
lently, describe the hadron by a statistical ensemble ofV and
V† with some statistical weightZ@V,V†#. It is clear that both
he
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e
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i
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11400
descriptions encode exactly the same information. For
purpose one has to define analogs ofx and s, that is, the
~connected! fluctuation correlation functions of orderas .
The resulting evolution equation
d

d ln
1

x

Z@U,U†#5asF1

2 S d2

dU~u!dU†~v !
@Zxqq̄~u,v !#1

d2

dU†~u!dU~v !
@Zx q̄q~u,v !#

1
d2

dU~u!dU~v !
@Zxqq~u,v !#1

d2

dU†~u!dU†~v !
@Zx q̄q̄~u,v !# D2

d

dU~u!
@Zsq~u!#2

d

dU†~u!
@Zs q̄~u!#G

~75!

is the analog of Eq.~42!.
Using the formulas of Sec. II and the Appendix we find

sq
ab~x'!52

1

2p2 E d2z'

1

~x2z!'
2 $tr@U~x'!•U†~z'!#@U~z'!#ab2Nc@U~x'!#ab%, ~76!

xqq̃
ab,gd~x' ,y'!5

1

2p2 E d2z'

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2 $@U~z'!•U†~y'!#ad@U†~z'!•U~x'!#gb

1@U~x'!•U†~z'!#ad@U†~y'!•U~z'!#gb2dad@U†~y'!•U~x'!#gb2@U~x'!•U†~y'!#addgb%, ~77!

xqq
ab,gd~x' ,y'!52

1

2p2 E d2z'

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2 $@U~z'!#ad@U~y'!•U†~z'!•U~x'!#gb

1@U~x'!•U†~z'!•U~y'!#ad@U~z'!#gb2@U~x'!#ad@U~y'!#gb2@U~y'!#ad@U~x'!#ab%. ~78!
, it
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s q̄ is obtained fromsq by replacingUs byU†s. The same is
true forx q̄q̄ andxqq . x q̄q is obtained fromxqq by swapping
(x,ab) with (y,gd) as this exchanges theq and q̄ lines
there. We stress that Eqs.~75!–~78! contain all the informa-
tion that is contained in the BK equation as well as in t
equations for higher correlation functions ofU that appear in
Ref. @7#.

C. The snag

There is one implicit assumption in this procedu
namely, that thea1 component of the vector potential is th
only relevant one. One assumes that if, for example, anai

component is generated in the evolution it does not affect
subsequent evolution of the physical cross section. This
however, not quite right. What is important for the intera
tion with the projectile is not merelyb1 but rather theF1 i

component of the color electric field. The interaction b
tween the projectile and the target is due to the termF2 iF1 i

in the QCD Lagrangian. TheF2 i component is the
Weiszäker-Williams field of theqq̄ pair, while theF1 i com-
ponent is generated by the color charges in the target. In
eikonal approximation it is true thatF1 i5] ib1 and, there-
fore, the coupling can be written asb1J2, where J2
:

e
s,
-

-

he

5]iF2i. However, if there is a contribution toF1 i coming
from the transverse component of the vector potential
should be taken into account.

It is easy to see that such a contribution is indeed gen
ated by the low-x evolution. Suppose one starts the evoluti
initially with the background field configuration as in Eq.~1!.
In the first step of the evolution one generates both the
crement ina1 and the increment inai . The two are related
by the condition Eq.~61!

a15
] i

]2 ai . ~79!

Naively, one would expect that since all the fluctuation fie
in this step have small frequencies, it should be true t
a1@ai and, therefore, it should be safe to forget aboutai .
The reason this is incorrect is that the on-shell solutions
ai are discontinuous atx250. Therefore, even though th
field ai is indeed small, it has a large derivative with respe
to x2 which contributes to the field strength. In fact, th
induced chromoelectric field is

dF1 i5] ia12D1ai . ~80!

Recalling that on-shellai satisfy the second of the equation
Eq. ~61!, we see that the second term in this expression
5-15
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KOVNER, MILHANO, AND WEIGERT PHYSICAL REVIEW D 62 114005
(]1
2/2]2ai! and is of the same order as the first te

(] i] j /]2)aj . Clearly, even if one starts initially from a back
ground which only containsb1, after long enough evolution
a large transverse component of the vector potential is g
erated. When the contribution of the transverse compone
the field strength is comparable to the contribution of
‘‘ 1’’ component, the eikonal approximation breaks dow
and the evolution discussed in Sec. II ceases to be vali
looks indeed very natural that in order to take into acco
the presence of the~potentially large! transverse field, the
calculation in the projectile gauge should be perform
around a state that contains transverse gluons apart from
b1 background.

One could try to argue that the transverse part of the v
tor potential can be somehow gauged away and the calc
tion could still be performed consistently around a pureb1

background. Even if this is possible the evolution of t
background defined by such a procedure will be differ
from the evolution of Sec. II. In any case, we do not see h
such ‘‘regauging’’ is possible.

It is instructive to see in more detail how the gauge fixi
works in both the projectile and the target gauges and w
the two seem to have different status as far as
renormalization-group structure is concerned. As we m
tioned above, the chromoelectric field is created by the co
charges in the target. In fact, the whole renormalizat
group procedure can be formulated in terms of the co
charge densityj 1 rather than the vector potentials them
selves, which was in fact originally done in Refs.@9–11#.
The background vector potentials are found as static s
tions of classical equations of motion in the presence of
color charge densityj 15rd(x2),

Fi j 50,

DiF1 i5Di@Dib12]1bi #5 j 1. ~81!

An important property of these equations is that for a giver
they have infinitely many solutions. By considering an ar
trary unitary matrixV(x' ,x2) it is straightforward to see
that all the following are solutions:

bi5 iV†] iV,

b15
1

D'
2 @ j 11Di]1bi #. ~82!

The difference between the target and the projectile gau
at this point becomes important. In the target gaugeB150,
the equations reduce to

Bi5 iV†] iV,

Di]1Bi52 j 1. ~83!

We, therefore, get rid of almost all the solutions, the on
residual degeneracy being the value of the matrixV at x2

→2`. The imposition of the residual gauge conditio
] iAi(x2→2`) then removes all solutions except one. In t
11400
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projectile gauge the situation is very different. The conditi
a250 does not eliminate any of the infinite number of s
lutions Eq.~82!. The choice of the residual gauge fixing
thus crucial to eliminate the redundant solutions. If those
not eliminated, the perturbative calculation will be plagu
with zero mode problems. The calculation in Sec. II was
fact performed with the residual gauge fixing] iai(p250)
50. This gauge fixing does indeed eliminate all the solutio
except the one which has vanishingai and has therefore
precisely the form of Eq.~1!.

Now, consider the renormalization-group~RG! calcula-
tion. Here, we have to integrate out modes which ha
higher frequencyp2. In the target gauge this is straightfo
ward: the residual gauge condition does not care about
quency. It therefore eliminates nonzero frequency fluctuat
modes which do not vanish atx2→2` in the same way as
it eliminated the static background solutions with this beh
ior. As a result, the fluctuation modes have a very sim
structure to the background field and the induced field
similar to the background. It is, therefore, straightforward
formulate a self-similar renormalization-group transform
tion in this gauge. The situation is quite different in the pr
jectile gauge. The residual gauge condition, although it fi
unambiguously the background, has nothing to say about
fluctuations—it only fixes the static modes. It is impossib
therefore to ensure that the fluctuations will have the sa
form as the static background. In fact, as we have s
above, it will not be the case. The first equation of Eq.~61!
in the projectile gauge is just one of the equations of mot
~with or without the external source!. This means that it is
possible to have nonvanishinga1 with vanishingai only at
exactly zero frequency. At any finite frequency nonvanis
ing, ai is required. As we have seen, thisai contributes to the
induced chromoelectric field, or equivalently to the induc
color charge density. The calculation thus explicitly lacks
self-similar structure and proper renormalization-group se
does not seem possible12 unless extra eikonal approximatio
is invoked.

The discussion of this section leads us to conclude that
projectile gauge calculation, as formulated in Ref.@7# and
Sec. II is only valid as long as the eikonal approximation
applicable. When the evolution is continued for a large sp
of 1/x, the eikonal approximation breaks down and t
higher nonlinear corrections of Refs.@9–12# should become
important. This is not to say that one cannot learn much fr
this simplified evolution. Quite to the contrary—clearly the
is a range ofx values where this evolution captures the r
evant physics. This is particularly true when the target
large— is the case of a large nucleus discussed in Ref.@8#. In
this case, the eikonal cross section is significantly differ
from the simple perturbative one which assumes single s
tering. The nonlinearity of the evolution becomes importa
much faster than for a small hadron. One, therefore, exp

12It may be possible to reformulate RG so that it would inclu
also transverse background fields or equivalently finite numbe
gluons in addition tob1. This seems, however, to be quite a com
plicated problem and is far beyond the scope of our discussion h
5-16
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RELATING DIFFERENT APPROACHES TO NONLINEAR . . . PHYSICAL REVIEW D62 114005
unitarization to appear already within the eikonal regim
Subsequent appearance of other nonlinear corrections
not change the fact that the total cross section has unitari
It must, however, affect other more exclusive properties
the process such as the structure of final states. The spec
of the target gauge fields is presumably directly related to
spectrum of the emitted gluons@27,30#. Thus, when the evo
lution of these fields changes even locally one expects
change to be visible in the spectrum of final state gluo
Assuming the local parton-hadron duality this then has to
mirrored in the spectrum of final state hadrons.

V. CONCLUSIONS

In recent years several approaches to the evolution
dense gluonic systems in the saturation regime were de
oped. The approaches differ from one another in many te
nical respects and the relationship between the physic
also not always clear. In this paper, our aim was to relate
of these approaches and thereby to try and reduce the en
in the field. We have shown that the nonlinear JKLW equ
tion of Refs.@9–12# coincides with the BK evolution equa
tion derived in Refs.@7# and @8# as long as the gluon field
induced by the evolution is small. We have argued that
approach of Ref.@7# should break down when the field
large enough so that the eikonal approximation intrinsic
the derivation of Ref.@7# ceases to be valid. We have als
argued that the evolution of Refs.@9–12# when translated
into the language of Ref.@7# corresponds to taking into ac
count some noneikonal contributions.

We should note that our discussion puts into perspec
the discrepancy between the double logarithmic limit~DLL !
of the evolution of Refs.@9–12# and the evolution suggeste
in Refs. @31–33#. The AGL equation@31–33# has been
shown to arise from the BK equation@8# in the regime where
the evolution on the projectile side is dominated by prod
tion of small size dipoles, or equivalently, large transve
momentum gluons@8,19#. This is a natural regime when th
target is a small object rather than a large object of the ty
cal hadronic size. It was suggested in Ref.@19# that these
configurations also dominate in usual DIS in the saturat
regime. It seems to us that this point warrants further stu
In any case this is not the standard DLL, where the evolut
on the projectile side is dominated by large dipoles. There
therefore, no reason to expect that the DLL of Refs.@9–13#
has much to do with the AGL equation. In fact, as we ha
shown, the DLL of the BK evolution is itself extremel
simple when considered as the evolution of the gluon dis
bution operator rather than the physical DIS cross sectio
turns out to be entirely devoid of nonlinear corrections a
coincides with the standard DGLAP double logarithm
equation. The DIS cross section still evolves nonlinearly a
in fact saturates in this limit due to the nonlinear Glaub
type relation between the cross section and the gluon di
bution @18#. On the other hand, the DLL of Refs.@9–13# is
also nonlinear for the gluon distribution and as a result
evolution is slowed down already on the level of the glu
distribution @34#.
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We hope that this paper clarifies to some extent the r
tionship between the different approaches to the nonlin
low-x evolution. There are still many questions to be a
swered. In particular, it is desirable to find a more expli
relation between the nonlinearities of the JKLW equati
and the breakdown of the eikonal approximation and to b
ter understand the physics of these nonlinearities. It would
extremely useful to understand on the level of Feynman d
grams the differences between the BK and the JKLW evo
tion. At this point unfortunately we are unable to do th
Perhaps the most interesting question concerns the effe
these nonlinearities on the structure of the final states. S
work on the analytic understanding of quantities less inc
sive than the total cross section has appeared recently@35–
37#. There is also an ongoing numerical effort in connecti
with heavy-ion physics@38,39# in the framework of the
McLerran-Venugopalan model@20,21#. Further progress in
this direction is extremely important both for our understan
ing of nonlinear physics and for disentangling linear a
nonlinear effects in the existing data.
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APPENDIX

In this appendix, we give a more detailed derivation of t
evolution equation of Sec. II including the calculation of th
contributions where the glue does not interact with the ba
ground~target!. We start with the quadratic action for sma
fluctuations in the projectile gauge

S5 1
2 „aa

1@2~]2!2#aa
122~] iaa

1!~]2aa
i !

2aa
i $@2Dab

1 @b#]22~]'!2dab#d
i j 1] i] jdab%ab

j
….

~A1!

The equation of motion fora1 is

a15
] i

]2 ai . ~A2!

Substituting this in Eq.~A1! we get

S52 1
2 aa

i ~D2!abd
i j ab

j , ~A3!

where

~D2!ab52Dab
1 @b#]22~]'!2dab ~A4!
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is the same as the inverse propagator for a charged scalar field in the presence of a background fieldb1. It has been calculated
for example, in Ref.@16#. The most useful form for us is

2 i F 1

~D2!G
ab

5E dp2

2p2~2p!3 @u~x22y2!u~p2!u~y22x2!u~2p2!#

3E d2p'd2q'e2 ip•x1 iq•yE d2z'

~2p!2 e2 i ~p'2q'!z'Ũab
21~x2,y2,z'!, ~A5!

with p15p'
2 /2p2, q15q'

2 /2p2, andq25p2. The color matrixŨab
21(x2,y2,z') is13

Ũab
21~x2,y2,z'!5@u~2x2!u~2y2!1u~x2!u~y2!#dab1u~2x2!u~y2!Ũab~z'!1u~x2!u~2y2!Ũab

† ~z'!. ~A6!

The on-shell two-point correlator ofa1 can be written as

^aa
1~x150,x' ,x2!ab

1~y150,y' ,y2!&

5K ]x
i

]x
2 aa

i ~x150,x' ,x2!ab
i ~y150,y' ,y2!

]y
i

]y
2L

52]x
i ]y

i E dp2

p2

1

2~2p!

1

~p2!2 @u~x22y2!u~p2!2u~y22x2!u~2p2!#

3E d2z'E d2p'

~2p!2 e1 ip'~x'2z'!E d2q'

~2p!2 e1 iq'~z'2y'!

3e2 ip'
2 /2p2x2

e1 iq'
2 /2p2y2

Ũab
21~x2,y2,z'!. ~A7!

We now need to expand the eikonal factors

V~x'!5P expF2E
2`

1`

dx2~b11ga1!~x' ,x2!G ~A8!

to second order in the fields. Recalling that the background part of the fieldb1}d(x2) and that the fluctuation fielda1 is
nonsingular atx250, this becomes

V~x150,x'!5P expF2 igE
2`

0

dx2a1~x150,x' ,x2!GU~x'!P expF2 igE
0

1`

dx2a1~x150,x' ,x2!G , ~A9!

where

U~x'!5P expF2 i E
2`

1`

dx2b1~x150,x' ,x2!G ~A10!

is the classical part of the eikonal factor.
To second order ina1 we have

13More rigorously, the structure ofŨ21 is given byŨab
21(z')5ei @u(x2)2u(y2)#b(z'). However, the difference between this expression a

that given in Eq.~17! only shows up if it is multiplied by]1 derivatives ord(x2) factors. Since we encounter no such factors in o
calculation we will be using Eq.~17! throughout.
114005-18
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V~x150,x'!5H 12 igE
2`

0

dx2a1~x150,x' ,x2!2g2E
2`

0

dx2dy2u~y22x2!a1~x150,x' ,x2!a1~x150,x' ,y2!J
3U~x'!H 12 igE

0

1`

dx2a1~x150,x' ,x2!2g2E
0

1`

dx2dy2u~y22x2!

3a1~x150,x' ,x2!a1~x150,x' ,y2!J ~A11!

or

V~x'!5U~x'!2 igH E
2`

0

dw2a1~x150,x' ,w2!U~x'!1U~x'!E
0

1`

dw2a1~x150,x' ,w2!J
2g2H E

2`

0

dw2dz2u~z22w2!a1~x150,x' ,w2!a1~x150,x' ,z2!U~x'!

1U~x'!E
0

1`

dw2dz2u~z22w2!a1~x150,x' ,w2!a1~x150,x' ,z2!

1E
2`

0

dw2a1~x150,x' ,w2!U~x'!E
0

1`

dz2a1~x150,x' ,z2!J . ~A12!

Similarly,

V†~y'!5U†~y'!1 igH U†~y'!E
2`

0

dz2a1~y150,y' ,z2!1E
0

1`

dz2a1~y150,y' ,z2!U†~y'!J
2g2H U†~y'!E

2`

0

dw2dz2u~w22z2!a1~y150,y' ,w2!a1~y150,y' ,z2!

1E
0

1`

dw2dz2u~w22z2!a1~y150,y' ,w2!a1~y150,y' ,z2!U†~y'!

1E
0

1`

dw2a1~y150,y' ,w2!U†~y'!E
2`

0

dz2a1~y150,y' ,z2!J . ~A13!

Rather than directly calculating the eikonal cross section, we will first calculate the tensor product of two eikonal fact
later take the trace over the color indices. We use the notationA^ B5AabBgd. To second order in the fluctuation field w
have

^V~x'! ^ V†~y'!&2^U~x'! ^ U†~y'!&

5g2K E
2`

0

dw2a1~x150,x' ,w2!U~x'! ^ U†~y'!E
2`

0

dz2a1~y150,y' ,z2!

1E
2`

0

dw2a1~x150,x' ,w2!U~x'! ^ E
0

1`

dz2a1~y150,y' ,z2!U†~y'!

1U~x'!E
0

1`

dw2a1~x150,x' ,w2! ^ U†~y'!E
2`

0

dz2a1~y150,y' ,z2!1U~x'!E
0

1`

dw2a1~x150,y' ,w2!

^ E
0

1`

dz2a1~y150,y' ,z2!U†~y'!2E
2`

0

dw2dz2u~z22w2!a1~x150,x' ,w2!a1~x150,x' ,z2!U~x'! ^ U†~y'!

2E
2`

0

dw2a1~x150,x' ,w2!U~x'!E
0

1`

dz2a1~x150,x' ,z2! ^ U†~y'!2U~x'!
114005-19
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3E
0

1`

dw2dz2u~z22w2!a1~x150,x' ,w2!a1~x150,x' ,z2! ^ U†~y'!

2U~x'! ^ U†~y'!E
2`

0

dw2dz2u~w22z2!a1~y150,y' ,w2!a1~y150,y' ,z2!

2U~x'! ^ E
0

1`

dw2a1~y150,y' ,w2!U†~y'!E
2`

0

dz2a1~y150,y' ,z2!

2U~x'! ^ E
0

1`

dw2dz2u~w22z2!a1~y150,y' ,w2!a1~y150,y' ,z2!U†~y'!L . ~A14!

For calculational purposes it is fruitful to separate the different contributions into the set terms where the glue intera
the background field@the first four terms in Eq.~A14!# and the set of contributions where there is no such interaction@the other
terms in Eq.~A14!#.

Let us first consider the contribution where the glue is exchanged between the quark in the negative half plane (x2,0) in
the amplitude and an antiquark in the positive half plane in the complex conjugate amplitude:

E
2`

0

dw2E
0

1`

dz2^aa
1~x150,x' ,w2!ab

1~y150,y' ,z2!&•@„taU~x'!…^ „tbU†~y'!…#. ~A15!

One notices that only theu(2p2) term in Eq.~A7! survives and that, Eq.~A6!, the color matrixŨab
21(w2,z2,z') reduces to

Ũab(z').

E
2`

0

dw2E
0

1`

dz2^aa
1~x150,x' ,w2!ab

1~y150,y' ,z2!&

52]x
i ]y

i E dp2

p2 @2u~2p2!#
1

2~2p!

1

~p2!2 E d2z'E d2p'

~2p!2 e1 ip'~x'2z'!E d2q'

~2p!2 e1 iq'~z'2y'!

3S E
2`

0

dw2e2 ip'
2 /2p2w2E

0

1`

dz2e1 iq'
2 /2p2z2D •Ũab~z'!. ~A16!

The w2 andz2 integrations are easily performed

E
2`

0

dw2e2 ip'
2 /2p2w2E

0

1`

dz2e1 iq'
2 /2p2z2

52
~2p2!2

p'
2 q'

2 . ~A17!

Noting that

E dp2

p2 u~2p2!5E
2`

0 dp2

p2 52E
0

1` dp2

p2 52E dp2

p2 u~p2!, ~A18!

we have

1

p E
0

1` dp2

p2 E d2z']x
i ]y

i E d2p'

~2p!2

1

p'
2 e1 ip'~x'2z'!E d2q'

~2p!2

1

q'
2 e1 iq'~z'2y'!

•Ũab~z'!. ~A19!

The transverse momenta integrals yield

E d2p'

~2p!2

1

p'
2 e1 ip'~x'2z'!52

1

4p
log~x'2z'!2. ~A20!

Taking the derivatives

1

4p3 E
0

1` dp2

p2 E d2z'

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2 •Ũab~z'!, ~A21!
114005-20
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we use the following identity valid for SU(N) group:

Ũab~z'!„taU~x'!…^ „tbU†~y'!…52tr@ taU~z'!tbU†~z'!#„taU~x'!…ab
„tbU†~y'!…gd

5
1

2Nc
@Nc„U~z'!•U†~y'!…ad

„U†~z'!•U~x'!…gb2U~x'!abU†~y'!gd#.

~A22!

This contribution, the second term in Eq.~A14!, therefore is

1

4p3 E
0

1` dp2

p2 E d2z'

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2

1

2Nc
@Nc„U~z'!•U†~y'!…ad

„U†~z'!•U~x'!…gb2U~x'!abU†~y'!gd#.

~A23!

The third contribution, due to the exchange of the gluon between the quark in the positive half plane and the antiqua
negative half plane, is calculated similarly with the only difference that nowŨab

21(w2,z2,z')5Ũab
† (z') and we pick up the

u(p2) term in the propagator.

E
0

1`

dw2E
2`

0

dz2^aa
1~x150,x' ,w2!ab

1~y150,y' ,z2!&•@„U~x'!ta…^ „U†~y'!tb…#

5
1

4p3 E
0

1` dp2

p2 E d2z'

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2 3
1

2Nc
@Nc„U~x'!•U†~z'!…ad

„U†~y'!•U~z'!…gb

2U~x'!abU†~y'!gd#. ~A24!

For the quark self-energy correction everything is the same as in Eq.~A23! except that the transverse coordinates of the t
fields coincide (y'→ x̃'5x'),

2E
2`

0

dw2E
0

1`

dz2^aa
1~x150,x' ,w2!ab

1~y150,x̃'5x' ,z2!&•@„taU~x'!tb…^ U†~y'!#

52
1

4p3 E
0

1` dp2

p2 E d2z'

1

~x2z!'
2 3

1

2Nc
@Nctr„~U~x'!•U†~z'!…„U~z'!…ab2„U~x'!…ab#U†~y'!gd. ~A25!

Finally, the antiquark self-energy correction:

2E
0

1`

dw2E
2`

0

dz2^aa
1~x150,y' ,w2!ab

1~y150,ỹ'5y' ,z2!&•@U~x'! ^ „tatbU†~y'!…#

52
1

4p3 E
2`

0 dp2

p2 E d2z'

1

~y2z!'
2 3

1

2Nc
@Nctr„U

†~y'!•U~z'!…„U†~z'!…gd2„U†~y'!…gd#U~x'!ab. ~A26!

Now let us look at the other set of contributions. Since for all of these there is no interaction with the background w
Eq. ~A6!, Ũab

21(w2,z2,z')5dab . The z' integral is trivial for all terms in this set~it yields ad function for the transverse
momenta!. However, as we want to combine both sets of contributions in the final result, this integral will not be perfo

Consider the first term in Eq.~A14!—the exchange between the quark and the antiquark in the negative half-plane—

E
2`

0

dw2dz2^aa
1~x150,y' ,w2!ab

1~y150,ỹ'5y' ,z2!&•@„taU~x'!…^ „U†~y'!tb…#. ~A27!

In the correlator part now bothu functions survive, corresponding to the two possible orderings ofw2 andz2
114005-21



KOVNER, MILHANO, AND WEIGERT PHYSICAL REVIEW D 62 114005
E
2`

0

dw2dz2^aa
1~x150,x' ,w2!ab

1~y150,y' ,z2!&

52]x
i ]y

i E dp2

p2

1

2~2p!

1

~p2!2 E d2z'E d2p'

~2p!2 e1 ip'~x'2z'!E d2q'

~2p!2 e1 iq'~z'2y'!

3S E
2`

0

dw2dz2@u~w22z2!u~p2!2u~z22w2!#e2 i ~p'
2 /2p2!w2

e1 i ~q'
2 /2p2!z2D •dab . ~A28!

The w2 andz2 integrals now have to be performed with more care. Doing this we get

2
1

p
]x

i ]y
i E dp2

p2 E d2z'E d2p'

~2p!2 e1 ip'~x'2z'!E d2q'

~2p!2 e1q'~z'2y'!

3Fu~p2!S 1

p'
2 q'

2 2
1

p'
2 ~q'

2 2p'
2 ! D 1u~2p2!S 2

1

p'
2 q'

2 2
1

q'
2 ~q'

2 2p'
2 ! D G•dab . ~A29!

Recalling Eq.~A18! we obtain for the momentum denominators

E dp2

p2 Fu~p2!S 1

p'
2 q'

2 2
1

p'
2 ~q'

2 2p'
2 ! D 1u~2p2!S 2

1

p'
2 q'

2 2
1

q'
2 ~q'

2 2p'
2 ! D G

5E
0

1` dp2

p2 F2
1

p'
2 q'

2 1S 1

q'
2 ~q'

2 2p'
2 !

2
1

p'
2 ~q'

2 2p'
2 ! D G

5E
0

1` dp2

p2

1

p'
2 q'

2 . ~A30!

The correlator part is then

E
2`

0

dw2dz2^aa
1~x150,x' ,w2!ab

1~y150,y' ,z2!&52
1

4p3 E
0

1` dp2

p2 E d2z'

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2 •dab . ~A31!

The color algebra raises no problems,

dab(taU~x'!…^ „U†~y'!tb…5dab„taU~x'!…ab
„U†~y'!tb…

gd5
1

2Nc
@Ncd

ad
„U†~y'!•U~x'!…gb2U~x'!abU†~y'!gd#

~A32!

and so the first term in Eq.~A14! is

1

4p3 E
0

1` dp2

p2 E d2z'

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2 3
1

2Nc
@Ncd

ad
„U†~y'!•U~x'!…gb2U~x'!abU†~y'!gd#. ~A33!

The quark to antiquark exchange in the positive half plane gives

E
0

1`

dw2dz2^aa
1~x150,y' ,w2!ab

1~y150,ỹ'y' ,z2!&•@„U~x'!ta…^ „tbU†~y'!…#

52
1

4p3 E
0

1` dp2

p2 E d2z'

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2 3
1

2Nc
$Ncd

jk@U~x'!•U†~y'!#ad2U~x'!abU†~y'!gd%. ~A34!

Now we combine the two terms that give corrections to the quark line—the fifth and the seventh terms in Eq.~A14!. It is easy
to see that they have the same color structure and will also yield the same transverse structure.

The color algebra is trivial

dab„tatbU~x'!…^ U†~y'!5dab„tatbU~x'!…ab
„U†~y'!…gd5

~Nc
221!

2Nc
U~x'!abU†~y'!gd. ~A35!
114005-22
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The fifth term is the same as Eq.~A33!, but with y'→ x̃'5x' and only theu(2p2) term surviving,

2E
2`

0

dw2dz2u~z22w2!^aa
1~x150,x' ,w2!ab

1~x150,x' ,z2!&•dab„tatbU~x'!…^ U†~y'!

52
1

p
]x

i ]y
i E

0

1` dp2

p2 E d2z'E d2p'

~2p!2 e1 ip'~x'2z'!E d2q'

~2p!2 e1 iq'~z'2 x̃'!

3F 1

p'
2 q'

2 1
1

q'
2 ~q'

2 2p'
2 !G ~Nc

221!

2Nc
U~x'!abU†~y'!gd. ~A36!

And the seventh term is the same as Eq.~A34!,

2E
0

1`

dw2dz2u~z22w2!^aa
1~x150,x' ,w2!ab

1~x150,x' ,z2!&•dab„U~x'!tatb…^ U†~y'!

52
1

p
]x

i ]y
i E

0

1` dp2

p2 E d2z'E d2p'

~2p!2 e1 ip'~x'2z'!E d2q'

~2p!2 e1 iq'~z'2 x̃'!

3F 1

p'
2 q'

2 2
1

p'
2 ~q'

2 2p'
2 !G ~Nc

221!

2Nc
U~x'!abU†~y'!gd. ~A37!

Adding the two terms Eqs.~A36!,~A37! and then performing the transverse integrations we get

1

4p3 E
0

1` dp2

p2 E d2z'

1

~x2z!'
2

~Nc
221!

2Nc
U~x'!abU†~y'!gd. ~A38!

The correction to the antiquark line—the eighth and the tenth terms in Eq.~A18!—give similarly

1

4p3 E
0

2` dp2

p2 E d2z'

1

~y2z!'
2

~Nc
221!

2Nc
U~x'!abU†~y'!gd. ~A39!

Finally, combining all the terms together we get

^V~x'!abV†~y'!gd&2^U~x'!abU†~y'!gd&

5
1

8p3 logS x0

x D E d2z'•H @„U~z'!•U†~y'!…ad
„U†~z'!•U~x'!…gb1„U~x'!•U†~z'!…ad

„U†~y'!•U~z'!…gb

2dad
„U†~y'!•U~x'!…gb2„U~x'!•U†~y'!…addbg#•

~x2z!'•~y2z!'

~x2z!'
2 ~y2z!'

2

2@ tr„U~x'!•U†~z'!…„U~z'!…ab2NcU~x'!ab#U†~y'!gd
•

1

~x2z!'
2

2U~x'!ab@ tr„U†~y'!•U~z'!…„U†~z'!…gd2NcU
†~y'!gd#•

1

~z2y!'
2 J . ~A40!

This coincides with the result of Ref.@7#. When comparing this evolution equation with the results of Ref.@7#, one should keep
in mind that there the evolution is considered with respect to the variablez. The relation between the two evolution equatio
is given byd/d lnx

l ^¯&522d/d ln z^¯&. Now taking trace over the color indices we obtain the evolution equation for
scattering cross section given in Sec. II.
.
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