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Relating different approaches to nonlinear QCD evolution at finite gluon density
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We analyze the relation between evolution equations aitivat have been derived in different approaches
in the last several years. We show that the equation derived by Balitsky and Kovchegov is obtained from the
Jalilian-Marian—Kovner—Leonidov—WeigefdKLW) equation in the limit of small induced charge density.
We argue that the higher nonlinearities resummed by the JKLW equation correspond, in physical terms, to the
breakdown of the eikonal approximation when the gluon fields in the target are large.

PACS numbds): 13.60.Hb

[. INTRODUCTION also the least interesting one. First, since the effect of unita-
rization is almost kinematical, one does not need high par-

In recent years, there has been renewed interest in thtenic density; it is enough to have a large number of partons,
understanding of the physics of systems with a large numbemot necessarily in the same bin of the phase volji#B].
of partons. These studies have been essentially motivated I8econd, because the experimental status of unitarization is
two large experimental programs—Ilandeep inelastic scat- unclear. So far, all DIS data on the total cross section can be
tering (DIS) at the DESY ep collider HERA and heavy ion reasonably well described by linear Dokshitzer-Gribov-
collision experiments at the BNL Relativistic Heavy lon Col- Lipatov-Altarelli-ParisiDGLAP) evolution without the need
lider (RHIC) and CERN Large Hadron Collid¢tHC). Both  to include nonlinear effect§6]. Although physically it is
physical situations involve a large number of participatinghard to believe that the leading twist perturbative approxima-
gluons. In lowx DIS these gluons are generated in the protortion can be applied a®? as low as 1 Ge¥and although
light cone wave function by the evolution to lowy whereas some aspects of the gluon distribution that emerge from
in the nuclear collision this evolution is enhanced since thehese fitd 6] are intuitively not satisfactory, present inclusive
nuclear wave function contains many gluons already at modpIS data cannot be considered as an unambiguous confirma-
erate values of energy. tion of nonlinear effects.

The growth of gluon density leads to interesting physical The realm of nonlinear effects is, however, much richer
consequences, the physical understanding of which has begman the total cross section. In particular, one expects quali-
steadily improving. One universal feature now believed to beative changes in the structure of the final states as one
true is the saturation of gluon densities. Apparently, the nummoves into the saturation region. The study of these effects
ber of gluons per unit phase space volume practically satuaas, however, not started in earnest yet and we have a long
rates and at large densities grows only very sloddgarith-  way to go before being able to make verifiable quantitative
mically) as a function of the parameter that triggers thepredictions.
growth. The relevant parameter could be It the lowx In particular, one needs a well-defined formal framework
regime or the atomic number of the nucleisn heavy ion  to perform calculations. Several approaches to the problem
collisions. This saturation takes place at values of transverdeave been developed in recent years by different groups.
momentum below a certain saturation momentumwhich  They all rely on the smaliness of the coupling constant while
itself depends on %/andA. The nature of this dependence is resuming the effects of a large number of partons/partonic
less well understood. In the analysis based on the Balitskidensity. The aim of all these approaches is essentially to
Fadin-Kuraev-Lipatov(BFKL) evolution [1] and on the derive the evolution of the hadronic scattering cross section
double logarithmic approximatiofDLA ) [2] the dependence with 1/x. They, however, utilize different techniques and
is powerlikekgx (1/x) %s?, while other approachd8] suggest conceptual frameworks and the resulting evolution equations
a much slower dependence. In the case of power depetook rather different. It is the aim of this paper to explore the
dence, the saturation momentum at HERA is estimated to beelation between some of these different approaches in an
in the range 1-2 GeV with similar, slightly higher, values atattempt to understand where they diverge from each other in
LHC. Optimistically, one can hope that the saturation regiornterms of physics input.
is itself semiperturbative; that is, the value of the coupling In particular, we will concern ourselves with three recent
constant is reasonably small and, therefore, weak couplingiorks, Refs[7,8,9—13. In Ref.[7] the evolution equation
methods can be applied to the quantitative analysis of théor the scattering amplitude is derived using the effective
phenomenon. action and the eikonal approximation in the target rest

The physics of saturation must have experimental maniframe. Referencg8] uses the dipole model method of Refs.
festations. The simplest and the most direct, in a way, is thg€l4,15. And, finally, Refs][9-12] use the effective action in
unitarization of the total DIS cross section. This is, howeverthe projectile rest frame to derive the evolution of the hadron
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light cone wave function with X/ We will refer to the re- Il. A SIMPLE DERIVATION OF THE BK EQUATION
sulting evolution equation as the Jalilian-Marian—Leonidov—

Welgert(JKLW) eqqaﬂon. . ) evolution equation first derived in Rdf7] and discuss the

The outline of this paper is the following. In Sec. Il we il picture behind it. Consider the deep inelastic scat-
rederive the evolution equation of R¢%] in a simple and  tering at lowx. We will work in the frame in which the
|ntU|t|ve_Way. ThIS derivation makes it obvious that this ap- photon fluctuates into an energetic quark-antiquark pair long
proach is equivalent to the approach of R@f up to sub-  pefore it reaches the target, but where most of the energy
leading corrections in N;.. This is not new and was noted resides in the target hadron which moves very fast. The scat-
already in Ref[8]. In the following, we will refer to this tering of the quark-antiquark pair is dominated by its inter-
evolution equation as the Balistsilovchegov (BK)  action with the gluons in the target. Since the target hadron
equation: We discuss the physical picture of this evolution moves fast, the time evolution of the gluon fields is slowed
and resulting unitarization of the total cross section in bothpy Lorentz time dilation. Also, due to Lorentz contraction,
target and projectile rest frames and point out the effects dughe gluon fields are well localized in the plane perpendicular
to which the approximations involved should break down atyg the direction of motion, which we take to be the positive
extremely smallx. The breakdown of the approximation yx, axis. The target can, therefore, be modeled by a distribu-
should have very little effect on the unitarization of the totaltjgn of static gluon fields localized at” =0. As the scatter-
cross section, since, especially for large targets like nucleiing energy increaseék decreasesthe gluon fields of the
the black disk limit should be reached while the approxima+arget change due to contributions of quantum fluctuations. It
tion is still valid. However, one does expect the structure ofis this evolution inx of the hadronic ensemble that we intend
the final states to be strongly affected. Our discussion here isg describe in terms of the evolution equation.
in large measure, parallel to that of R€fi4,5].

In Sec. Ill we relate explicitly the calculation of Réf7] A. The BK equation
to that of Refs[9-12]. In particular, we calculate the basic
physical quantities appearing in the evolution equation of In this section we will use the light cone gauge =0. In
Refs.[9-17] in the approximation of Ref7]. We show that  this gauge, following Refl7], we take the vector potentials
the results of Re'['[?] are recovered from Ref@_lZ] in the representing the relevant g|u0n field Conﬁgurations to be of
limit of small induced fields. We also show that the doublethe form
logarithmic limit of the evolution of Ref[7] is trivial. That i _
is, in the double logarithmic limit, the evolution equation for b'=0, b”=b(x,)a(z"). @)
the gluon distribution functioridefined operatorially as the Here and in the rest of this section, unless otherwise
num?er Off 9'“;’;)5 in the "?_ht cone ga(ljjge in tk]{e inﬁ?i'?e MO-gpecified, we use the matrix notation for the gauge field
mentum Iramg becomes fineéar and does not contain any_p*t etc,, wherd, are the generators of the SN group
Grlbov—Le\_/ln—Ryskm(GLR—) type correcy0n§. This is in 3 t;e fundamental representation. One can reasonably ask
contrast with the .resu_lt O.f R_’eﬁlS], where it was shown that whether the vector potential of this form is the only relevant
the double logarithmic limit of the evolution Reff9—-12] . one. This turns out to be a nontrivial question. In fact, we

_rejultz n a nonITeaIr equcﬁtl?n. V\tlﬁ pO"_“tOL:} t_hat tkf"fh'swill argue later in Sec. IV that this is not quite the case if we
indeed a very natural result from the point of view ot In€ant to be able to describe the evolution up to arbitrarily

dipole model approach. : :
. mall val k. At thi int, however, we follow Ref7].
In Sec. IV we transform the full calculation of Refs. \s/VeawiIIarg?usrr?to t:]its éupeostidn ic:] Sees ,IVe ollow Ref7]

[9-17 into the framework of Refl.7]. We show'that in the The DIS structure function can be written in the following
approach of Ref[7] it corresponds to abandoning the eiko- .

. . S general form:
nal approximation or, equivalently, to the inability to fully

In this section we will give a simple derivation of the

describe the target by a classidal field. We also point out 2 dzdx dy,

technical reasons which lead us to believe that, in fact, in the Fa(x,Q%)= 4720 f p

framework of the effective action of R€f7] such a failure is em

expected when the evolution is continued to very low values XD(x, =y, ,2)N(X, ,Y,,Y). 2

of x. Finally, we conclude with a brief discussion in Sec. V.
Here,x, andy, are the transverse coordinates of the quark
and the antiquark in the paig, is the fraction of the pairs

The O(1/N,) differences between the equations derived in Refs.longlt.UdInaI momentum Cam.ed b.y the qua.rk’ ayds the
rapidity of the slowest particle in the pair. Alsdb(x,

8] and[7] do not carry essential new physics. They therefore do ) .
(8] 7] Y e Y y,,2) is the square of the “wave function” of the

not affect our understanding of the relationship between the generic, o .
frameworks of the BK and JKLW equations. photon—the probability that the virtual photon fluctuates

2This is not to say that the evolution of the DIS cross section forlNt0 the pair with given coordinates and momenta—and
which the equation of Ref§7] and[8] has been derived is linear in N(?& ,Y1,Y) is the cross section for the scattering of the
the double logarithmic limit. The GLR-type nonlinearity does in- Pair.
deed appear in the evolution equation for the virtual photon cross The wave function® is well known. It is given, for ex-
section due to the nonlinear relation between the cross section ar@mple, in Ref[8], but its explicit form will not be of interest
the gluon distribution function. to us. We concentrate our discussion on the scattering cross
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sectionN. If the quark-antiquark pair is energetic enough thecoordinate in the following. In the leading approximation the

scattering cross section is eikonal, vector potential is given by Eq1) and the scattering ampli-
tude is
N(X Y =tr(V(x V() =D, ()
N(x, :YL):“"[U(XDUT(YL)_1]>b1 5
whereV(V') is the eikonal phase for the scattering of the
energetic quarkantiquarh, with
+ oo
+ oo _ o — .t —
V(x+=0,xL)=Pexr{—igf dx AT (x"=0x, ,x7)|, U(Xi)_Pex% 'j,x dxb(x, . x7) . )

(4 To calculate the ordety correction to this expression we

with the vector potential in the fundamental representation\.'vrlte the vector potential as

We, therefore, have to calculate the average(@{x* 1

=0x,)VT(y"=0y,))A over the hadronic wave function as AY =§b+ +a’, (7)
indicated by{---)5. In our frame, the quark and the anti-

quark move with the velocity of light in the negativegy  with a* being a small fluctuation and expand the eikonal
direction. All the fields in Eq(4), therefore, have a vanish- factors to second order ia".

ing x* coordinate. This will also be the case for all the fields Recalling that the classical background vector potential is
in the rest of this section. For simplicity, we suppressxfie a & function inx~, we have

V(xl)=7>ex;{—igf0 dx a*(x, ,x7) U(xl)Pexp{—ingrmdxa*(xL X7) (8a)
S 0
0 +oo
=U(xl)—ig[J’ dx*a+(xi,x*)U(xL)+U(xl)f dxa*(xi,x)’
—x 0
0
—92‘ fﬁde’dy’ﬁ(y’—X’)a*(xi,x*)a*(xi,y*)u(xu
+fldx’a*(xl,x*)U(xl)fOde*a*(xL X7)
+o
+U(Xl)f0 dx dy 6y —x)at(x, ,x)a"(x, ,y)]. (8b)

All contributions break down inta™ ordered pieces because of thie structure in Eq(1). Now, together with the analogous
expansion folVT, we insert this into Eq(3) and obtain

tr(V(x )V (y )y a—tr(U(x ) UT(y,))p (9)
0 0
:gztr< f_de_a+(XL aW_)U(XL)UT(YL)f_mdz_aJr(YL Z7)

0 + o

+f dw-a®(x, aWi)U(XL)JA dz a*(y, :Zi)UT(yL)
oo 0

+o0 0
+U(Xi)fo dw-a’(x, ,w’)UT(yl)fiwdz’aWyl Z7)

+ o0 +
+U(xl)f0 dw-a* (x, w*)fo dz-a*(y, .z )Ut(yL)
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—j_o dw dz 6(z —w)a'(x, ,w)a"(x,,z)U(x )UT(y,)
0 + o
—Jlgcdwfa*(xL ,w*)U(xl)f0 dz a*(x,,z7)U(y,)
—U(xl)Jomdw‘dz‘ 6(z —wHa'(x, ,w)a"(x,,z)UT(y,)
0
—U(XL)UT(yL)fﬁxdw*dz*H(Wf—z*)aWyi woat(y,,z)
+ o0 0
—U(xnfo dw-a*(y, ,W‘)U*(yL)f_de‘aWyl z)

- U(xl)fo “dwodz o(w-—z)at(y, ,wa*(y,,z)U'(y))
b,a

In writing Eq. (9) we have anticipated thaa, ),=0 as in the free case. This can easily be shown using the explicit expression
for the fluctuation propagator given below.

Although this expression is a little cumbersome, the physical meaning of the various terms is very clear. Put more
compactly the structure of the above is determined by

t t T A P O\t
VOOV YDA U U (Y ))e=0 (@l a) )y | 257 U(x) 5 5 UT(Y)

P
UT(yL))

)
Sby, b,

5 8 .
+ ﬁﬁ:WM))U (y ) +U(x,) - (10

Diagramatically the right-hand sidehs) can be represented as follows:

(11)

The straight lines represent the eikonal factdrswhile the  typical self-energy corrections. To contrast them against the
curly lines denote the gluon fluctuation propagatorexchange contributions we will also refer to them as “non-
(aja, )s, evaluated in the fixed backgrourd'(x). The exchange contributions.”

terms in Eq.(10) with first order derivatives correspond to  In Eq. (9) we are looking at &~ ordered breakdown of
processes where the gluon is emitted by the quark and althe diagrams in Eq(11) with the first four terms summing

sorbed by the antiquarfor vice versa Those will be here- up to the exchange contribution and the rest to the nonex-
after referred to as “exchange contributions.” change contributions. With the vertices known, we only lack
The terms in Eq(10) with second derivatives acting @h  an explicit expression fofa_a, ),. The QCD action ex-
(or U™ correspond to the diagrams where the quankan-  panded to second order in the fluctuation field, in the
tiquark emits the gluon and then reabsorbs it at a later timepresence of the classical backgroumd, in our light cone

114005-4



RELATING DIFFERENT APPROACHES TO NONLINEAR . .. PHYSICAL REVIEW B2 114005

gauge is with p"=p?/2p~, q"=g%/2p~ andq™ =p . The adjoint
color matrix®

U (x7,y,20)=[0(x) 0y )+ 0(—x ") 0(—y " )18ap
(12) +0(—x7) 0y ) Uap(z,)
+0(x7)6(—y)0l(z)) (17)

represents a phase factor one picks up when crossing the
=0 plane due to interaction with a field of type EG).

Here,Uab(zi) is the adjoint version of the fundamentalin

=3ai[—(9)%as —2(d'a)) (s ay)
—ay[(2D;[b]0™ = (9,)28ap) 8" + 39 S,p]a)

Recall that we are interested only in the propagator of the
fields at equak*. Consequently, it is only the on-shell part
of the propagator that is relevant for our purposes. We ca
therefore, use the classical equation of motiongdr

g Eqg. (6). If the x™ =0 plane is not crossed the propagation
at=—a. (13 remains free.
J We can now write the on-shell correlator of thet"

o o component of the vector potential as
Substituting this in Eq(12) we get

(ax (x*=0x, X )ag (Y =0y, .,y Na

S=- 3 ay(D?)apd'a), (14 4 J
={ SZa(x"=0x, x)aj(y" =0y, y) %
where Iy dy
_ o dp
(D?)ap=2D4[0]0™ = (d,)?8ap. (15) =—a'xa'yf(pp) 2160 =y )ep)
The propagator of the spatial components of the vector po- By —x)6(—p)]
tential is, therefore, simply given by i/D?. The explicit y P
form is very simple and can be found, for example, in Ref. d%p, d%q
[16]. szzj_ = ;‘ elPL(X =z )+id, (2 —y1)
11 dp —ipZ/2p~x"+iq?12p "y~
—il=x| = | 5=5=3l0(X —y_)o(p~ xe Tt .
[(D)ab pr 2 [6(x"—y_)6(p)

X{0(x )0y )+6(—x)0(—y~
0] {60x7) 6y )+ 6(—x ) 6(—y")

+0(—x7) 0y ) U(z)+0(x ) o(—y ) UT(z,)}

><f d?p, d?q e P *1aY (18
d2z, ~ This expression displays a separation intoordered contri-
xf (277)2e*'(pfqﬂziugbl(x*,y*,zl), butions that seamlessly matches up with what we have al-

ready seen for the vertices in E®). Diagrammatically, the
(16)  x~ ordered exchange contributions are given by

while the (connected parts of thenon-exchange ones are represented by

3More rigorously, the structure & ~* is given byU,,}(z, ) =e'l? )~y )b()  However, the difference between this expression and that
given in Eq.(17) only shows up if it is multiplied by* derivatives ors(x~) factors. Since we encounter no such factors in our calculation
we will be using Eq(17) throughout.
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- n % + (20b)

Whenever thex” =0 plane cuts the fluctuation propagator, te L0 . -
the diagram contains a factol}) ; otherwise the fluctuation fo dw f_wdz (85 (X, W)ay (Y, ,27))
propagator is free.

Algebraically, the corrections to the scattering cross sec- 1 (+=dp” d + L
tion involve integrals of this propagator with respectxto = f Xy gfuabgf Y1

andy~ from zero to either+ or — infinity. This is straight-

forward to do. For example, for the second term in E9). 1 fﬂo dp~ f 2, x—2),-(y—2), ot )
we need T as3 Lx—2)2(y—2)7 @ Z
0 + o0 (23)
|" aw | Tazqaiow woas v 2 0o e
o 0 _f dW_J dz (a, (X, W )ay (X, ,27))
— % 0
J‘+ocdp 1f f d’p, d’q, . .
2 9. N\2 2 5. N2 1 +oe dp_ d - é'
(2m)” (2m) I——f -\ X0 a_zuabo.'_z Xy
1 1
@iPL(x —2))+ia (z —y,) 1 o dp
X Ua(z1) :__f _f LY
pia; b a7 |, Zi(x—z)f Uan(z,)
. 24
f+x dp 07| U &I (21) s o ( )
=— X b7 . _ _ _ .
| 77 Va2 Ve - [ Tow [ az @i a2
Here,(x, |Oly, ) means the matrix element of the operador _ 1 f*w dp~ J - Ot J
in the coordinate basis in the usual sense. We {teas an —ra fﬁ abaL Y1
operator in the coordinate space with matrix elements d 1
~ ~ + oo
(X, |Uly, )=U(x,)8(x, —y,) and the products in the last f p f 2, T Ol .(z).
line are understood in the operatorial sense. Explicitly, Cart * 2)] a2
(25
0 + o . . .
- — At At - To simplify the color structure of these expressions we use
f_wdw fo dz <aa(xl "W )ab (yLaZ )> the identity
Lo [rdp [ o 0D (y-2)s o Uan(z) (tU (X, )™ (t,UT(y,))"°
:m TA— a8 (X_Z)Z( _Z) ab(ZJ_) + oB + 5
0 Y=z =2t tU(z,)tpU 7 (Z) 1t U (X)) *F(tpU (1))
(22)

1 T ad( )t vB
=5 [NeU(z0) - UT ()" (20) - U(x,)
In the same way we obtain for the other contributions with
interaction with the background —U(x,)*Put(y ). (26)
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Note that the integral over the frequengy logarithmically ~ The ratio of these two cutoffs is of ordep/x. Thus, in the

diverges. In fact, we have to integrate only over a finite in-leading logarithmic approximation we identify

terval of frequencies. The gluon field modes of very low

frequency have been already included in the background dp~ Xo
f p__: In ; (27)

field b™ and, therefore, the fluctuation fields at these low
frequencies should not be considered. The lower cutoff on
the frequency of the modes that are being integrated is in-
versely proportional to the initial value of, at which we  The calculation of the remaining contributiofiee ones with
start the evolution. The upper limit on the high frequencyno interaction with the backgroupgroceeds along similar
side is furnished by the maximal rapidity of the qudde¢  lines and is given in the Appendix.

antiquark in the virtual photon which is of the order ofxl/ Collecting all contributions together we obtain

tr(Vx )V (Y ) a=tr(U(x U (y.))p

2 [y X=2),-(y—2)
=%@m(7°“ d22L<{tr[um)u*(zﬂ]tr[U*(yL)U(zm—2thf[U<XﬁUT(VL”}ﬁiﬁf

—{tfU(x )UT(z)]t[U(z ) UT(y ) ]= Nt Ux )UT Yy )} ——=
(x—2)7

—{trfUT(y, )U(z)Jtr[UT(z, )U(x, )] =Nt UT(y H)U(x )T} (28

1 >
=21/,
The eikonal factory/ themselves should be considered as functions eb thatU =V(X;). Differentiating this equation with

respect to In ¥ we recover the evolution step fof¥(x,)V'(y,)). This is precisely what was found in Ré7].*
At large N, the products of traces in ER8) factorize:

Ne—

(U (x,)- U (z) U (y1) - U(z0)]) —— (tTU(x,)- UT(z) I U (y.) - U(z)]). (29

Equation(28) then becomes a closed equation for the evolu<alculation is, fortunately, noncommittal on this point and
tion of N(x, ,y,)=(t[U(x)UT(y)—1]). It is identical to  we will consider both pictures in turn.
the nonlinear evolution equation of R¢8]. In the projectile evolution picture, the higher energy of
the scattering is achieved by boosting tipg pair. In this
picture, the quark and antiquark have very high energy and
B. The physical interpretation consequently their wave function develops extra gluon com-
ponents. The growth of the cross section witlk ten is

A N?W' let USSITDCIUSSS ;[]he p:ys_lcall picture ?jf this SVOIUt'OrT'interpreted as due to the scattering of extra gluons in the
S always wit » the physical picture depends on the, yieciiles wave function. This is precisely how the law-

frame in which one chooses to view the process. We havgyg|ytion is viewed in the dipole model of Muellgt4,15.
specified the frame to some extent by declaring that the phqoyr calculation of this section has a simple interpretation
ton fluctuates into &q pair long before the target. However, from this point of view. The quark and the antiquark is the
we are still free to put the subsequent evolutiorxirither  pair of pointlike color charges moving with the velocity of
into the evolution of the photon wave function or into the light and located at™ =0 and transverse coordinates and
evolution of the gluon field distribution in the target. We will y, . These color charges carry with them a fluctuating gluon
refer to the former picture as the “projectile evolution pic- field. When the pair is boosted to higher rapidity the gluon
ture” and to the latter as the “target evolution picture.” The fields “freeze” due to the time dilation and become static. In
the approximation when the gluon fields are frozen, they are
given by the Weiszzker-Williams static p* =0) fields cre-
ated by theqq pair. In the leading order inag the

“4As it stands, Eq(28) does not provide a closed equation—it has o o - .
to be supplemented by evolution equations for arbitrary productéNelSZ&ker'W"“ams(WW) fields are small and are emitted

(V{P@---@V{(D),. The evolution of these higher correlators is de- Independently by the quark and the antiquark. The total WW
rived following the same procedure as described above and leads [Bald 1S

the full set of operator equations derived in Héfl. We will give a 1 4
compact representation of the whole set of the evolution equations Al= g— =[] qt ial, (30
in Eq. (75), Sec. IV. 9" a7 d
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where (jqi) is the color current due to the quat&nti-  target freezes the gluon field fluctuations around the target
quark which in our frame has only a“*” component. For ~ backgroundb™ and, consequently, some field modes which
pointlike quark and antiquark the charge densitiesstenc- ~ Were not important at higher are now capable of inducing
tions in the transverse coordinates ankin The WW field  scattering. Thus, the ensemble of the relevant field configu-

is therefore rations which characterizes the target changes. In fact, every
L . O b* now forks into a “subensembleb* =b*+a*. In the
i X~z y— 2 weak coupling regime™ have Gaussian distribution with
A Z)=9—| T +7 . 31
(p L) gp (X_Z)Z (y_z)Z ( )

the width determined by the inverse of their correlation func-
tion Eq.(18). One can work back from here and calculate the
Here,7and 7" are fundamental color matrices correspondingmodification of the distribution of the background fields. We
to the orientation of the quark and antiquark wave functionsyill do this in the following sections. The fluctuations af

in the color space. Their exact form does not matter for ougre, therefore, considered in the target evolution picture as
purposes. The WW field, if written in the particle basis, canmodifying the ensemble of the target background fields very

be thought of as representing equivalent gluons. The numbepych like in the approach of Reff®9—12], [17].
of gluons at a given transverse position is given by the fa-

miliar expression C. Unitarization in different approximations
From what has been said so far, it is clear that although
the calculation presented in this section includes in the evo-
lution some nonlinear effects, it is not the end of the story.
At very low x, this approximation should break down. There
are clear reasons why this should happen in both pictures. In
the projectile evolution picture, it is not true indefinitely that
the WW fields are emitted independently from the partons in
the projectile. Due to the evolution, more and more gluons
are emitted into the wave function of the projectile and so the
If we do not take the trace over the color indices, this ex-density of partons grows. At some point, the approximation
pression gives the probability to have one extra WW gluorof independent emissions as well as of independent scatter-
in the wave function of the/q pair (at the transverse position ing of the partons on the target must break down. This is the
z, with a particular color orientation These WW gluons point at which, in the parlance of R¢B], the Pomeron loop
scatter on the gluon field of the target eikonally just like thediagrams must come into play.
quark and the antiquark, apart from the fact that they carry In the target evolution picture, the problematic point is the
adjoint charge, and so their eikonal amplitude is giverlby €ikonal approximation for the scattering of the pair. One
rather tharlJ. The terms in this expression are in one-to-onestarts the evolution at some initial valuexof x, with all the
correspondence with the real contributions in ), that is, ~ available energy in the[q pair and the target fields not too
the terms in which the gluons interact with the targeick-  strong. Since the&q pair is very energetic, the eikonal ap-
ground. The rest of the terms in Eq(9)—the virtual proximation is perfectly valid at this initial point. However,
terms—as usual serve to restore the correct normalization afith the evolution the strength of the target fields grows,
the wave function. whereas the energy of theeq pair, on the other hand, stays
To summarize, in the projectile evolution picture our cal-fixed. Corrections to the eikonal approximation are of order
culation describes emission of the WW gluons into the wavexG(x)/s, wheresx1/x, is the energy squared of the pair,
function of qq long before the scattering. The transverseandG(x) is the density of the target fields. The field density
coordinates of these gluons are frozen due to the Lorent@rows due to evolutiofat least initially in the linear regime
time dilation. Subsequently, both tlieandq, and also the as
gluons, scatter eikonally and independently of each other on
the target gluon field. Clearly, this picture is identical to the G(x)oc(
dipole evolution picture of Mueller which was used in Ref.
[8] to derive a nonlinear evolution equation. The only differ-
ence is that the dipole model uses the simplifications in thevith ap the BFKL Pomeron intercept. At very smallthe
color algebra which arise in the lar@é, limit. fields are strong enough so that the quark and antiquark start
The calculation presented above also has a simple intetesing a finite fraction of their energy and, therefore, the no
pretation in the target evolution picture. In this picture, it isrecoil eikonal approximation cannot stay valid indefinitely.
the target rather than the projectile that is boosted when gaParametrically these corrections are of the same order as the
ing to lowerx. As already made explicit above by writing Pomeron loops in the projectile frame, which suggests that
(--*)p, one should think about the target as being representetthey have the same physical origin.
by an ensemble of the configurationsof. The correspond- The effect of the nonlinear evolution E(28) on the be-
ing statistical weighZ[b] is determined, of course, by the havior of the total cross section was studied in Refs.
structure of the target at the relevant resolution scale. WEg18,19. It was concluded that the nonlinearities slow down
will have more to say about it in Sec. IV. The boost of thethe BFKL-type rise of the cross section and lead to its uni-

nWW(ZL)OCJO dp‘p‘trF‘i(p‘,zl)F‘i(p‘,zL)

o
= —tr
s o P

xi-7  yi-7
Tx-22" " y-2?

i y -7
x—2)2 T (y=2)

. (32

><7'(

1) ap—1

X (33
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tarization so that the cross section approaches the black disk A. The JKLW equation

limit. We want to CO!’]C|l-.Ide.thiS. seqtion with acommenton |, his approach, following Ref$20,21], the averages of
the nature of the unitarization in this approximation. Essen-

. AT . ""gluonic observables in a hadron are calculated via the fol-
tially, the unitarization is brought about by purely kinemati- lowing path integraP

cal effects. This is especially clear in the projectile evolution

picture. At the initial value ofk=x, one starts with thejq :

pair as the only relevant component of the photon wave (O(A)>:j Da'DA*O(A)Z[ a]

function, which has a certain probabiliB; to scatter on the

target. So, initially, the total scattering probabllltjy(0 is Xexp{ _if d“x‘l—ltrF“”FW
Py, =Paq- (34

- Nicf d2x, dx™ 8(x7)d'al(x,)
At lower x=xy— dx the wave function also contains a com-
ponent with an extra gluon. Let the probability to have an
extra gluon in the wave function ke and the probability for
this gluon to scatter on the targef,. In the linear approxi-
mation(the BFKL limit) the total probability of scattering is
additive

xtrTaWw,x[A‘](x‘,xL)], (37

where the gluon field strength tensor is given by
Py=(1-A)PggtA(Pggt Pg)=PggtAPgy. (39 Fov=orAL—0"AL—gfn ALAL (39

However, this is, in fact, overcounting, since there are eventgng)y is the Wilson line in the adjoint representation along
where both the gluon and tlgy pair undergo scattering and he x* axis

those events are counted twice in the linear approximation.

One should, therefore, subtract the probability of these

double scattering events from the total probability. This de- W e AT1(XT1X0)
ficiency is corrected by writing.
=P ex;{ﬂgf dx* A, (xT,x7,x)Tal. (39
Py=(1—A)Pygt A(Pggt+ Py—PqqPy)

=PggtA(Pg—PqgPy) The hadron is represented by an ensemble of chromoelectric
fields, localized in the plang™ =0, of the form
=Prs ot A(1= Py 5)Py. (36) P

At arbitrary low x, the same argument leads to a similar
expression wherP, , 5, denotes the total scattering probabil-
ity of the projectile (which itself contains theyq pair and
some number of gluonst a slightly higher value af. This

is precisely the nonlinear term in the evolution equati2®),
with the only difference that the extra gluon in the wave
function can have arbitrary transverse coordinate and one

should, of course, integrate over this extra degree of free- 5ia£_[giaia_fabcaiba£::0_ (42)
dom. It is clear that this negative nonlinear correction leads

to the unitarization of the cross section sincePastends to

unity the emission of the extra gluon does not increase th#é Ed. (37), Z[ «] is the statistical weight of a configuration
total scattering probability. This effect is somewhat similarai(X.) in the hadronic ensemble.

to the Glauber mechanism, not in the sense that each parton The evolution in Refs[9-12 is derived in the target
undergoes multiple scattering, but that the unitarization is ofVvolution picture where decreasirgorresponds to boosting

a purely geometrical nature. A similar discussion, in thethe hadronic target. This leads to freezing of part of the glu-
framework of the dipole model, is given in Ref4,5]. Inthe ~ conic degrees of freedom. Integrating out these slow modes

next section we will show how to relate the approach justof the vector potential generates the renormalization group
discussed with that of Ref§9—12,117. equation, which has the form of the evolution equation for

the statistical weighZ [9-12,11

f“:é(S(X_)ai(Xi), (40

where the two-dimensional vector potentid(x, ) is “pure
gauge”

Ill. THE JKLW EQUATION AND THE SMALL INDUCED

FIELD LIMIT ) ) ) )
SAn alternative form of the effective action was suggested in Ref.

We start this section by recalling the framework and re{22], where it was also shown that it leads to the same evolution
sults of Refs[9-13,17. equation.
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1 82
2 Sa(u)da(v)

d
—qZ=as

din—
X

[Z,(u0)]

1)

~ Sa(u) (42)

[ZU(U)]}.

In the compact notation used in Eg2), bothu andv stand

for color and rotational index and transverse coordinates,
with summation and integration over repeated occurrences

PHYSICAL REVIEW D 62 114005

B. Where does it come from?

Technically, these results are derived as follows. One con-
siders the quantum corrections in the classical background
field Eq.(40). The calculation is performed in the light cone
gauge A"=0 with the residual gauge fixing'A'(x™—

— ) =0 which fixes the gauge completely. In this gauge the
chromoelectric field Eq40) corresponds to the background
vector potential

b'=0(x")a'(x,). 47)

implied. This evolution equation for the statistical weight Cannote that, as opposed to the previous section, here we are

be rewritten as the set of the evolution equations for th
correlation functions of the chromoelectric field

7 (@ (x0) - (%))
din-
X

(aiall(xl). . .a;Il—

=« ll(X|71)

s
o<l<n+1

i i i
XL (Xi) o (Xa) o (%)

i Cim
+ <aa1(X1) aaTn

0<m<k<n+1

ll(Xm, l)

Xaim+l

R ] ik+1
am+1(Xm+ 1) aak_l(xkfl)aalﬁ_l(kar 1)

X ad (X)X (X X)) | 43)

The quantitiesy[ a] and of @] have the meaning of the mean

qusing a different light cone gauga™ =0. As a consequence,

the background vector potential has a different form.
The complete set of on-shell small fluctuation solutions of
the classical equations is

0(—x7)

i _ip x* 2
ap_’r—e'p X jd P,

X ex;{

+6(X)U(xl)exp<i

2
[ fx_ipﬁﬁ)vl—,r(pﬂ

2
L _ .
~—X _lpLXL)

X[UT!, 1(p)+00x7) 7, |- (48)

Here, r is the degeneracy label, which labels independent
solutions with the frequencp™. In the free case it is con-
ventionally chosen as the transverse momentum;
={p,}. The matrixU(x,) is the SUN) matrix that param-

fluctuation and the average value of the induced vector pogterizes the two-dimensional “pure gauge” vector potential
tential which arises from the field modes which become fro-'(X.),

zen due to extra boost of the hadronic target. In the leading

logarithmic approximation of Ref§9—12] the two quantities
x and o completely specify the low- evolution. We give
here an explicit expression for the mean fluctuatiowhich
will be the focus of our interest throughout this section,

N D', DI
ng(XL'YL):Z Xy _2[DL_871]_2 Yi)-
DJ. DJ.
ab
(44)
For convenience, we have defined
aiab:fabca'icv
Dip= 7' Sap+ by (45)
The operatoiSin Eq. (44) is given by
o 1+2 d D'éd D
b s pIj|# D?
= ! 2 ! 0 +2 ! D ! 46
“pr 2 lapzt2pzbiazy. (46

a'(x)=i1U(x)ad'UT(x,).

The auxiliary functionsy, ,v', are all determined in terms
of one vector function. Choosing this independent function
asv' we have

vl =[TI =Lt =Kk (49)
_ o 47
i i k kv, k
Y,  =2D'| —— —|[t" =¥t |,
R A ‘
(50)
where we have defined the projection operators
Tii= il DiDJ’ ij_DiDj
- Di ) - Di )
L L
= - —, ll=— 51
9 9 ®D

The y, piece of the eigenfunction E¢48) is responsible for
the induced vector potential since this is the only contribu-
tion that does not vanish af —«, so that
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C. BK to JKLW: transforming between the gauges

ij - . =) A —p-
Xap(X1 ) 47Tf dp™ (742X P ) ¥4 p(Ye =P 7)) In the previous section, following Ref7], we used the
(52 gaugeA™ =0. This is a very convenient gauge from the point

. . ) i of view of the projectile evolution since the eikonal ampli-
Note that the essential nonlinearity of the expression®.  {,ges in this gauge are given by simple Wilson line factors.

. . - _l
is due to the denominator in the opera®r- Eq. (46). The  \ye il refer to this gauge as the “projectile light cone
reason this arises is due to the nontrivial normalization of thegauge " or the “projectile gauge” for short. The JKLW ap-
small fluctuation eigenfunctions. As discussed in detail i”proach' on the other hand, uses #ié=0 gauge, which is
Refs. [9_}2] the proper normalization of the eigenfunctions ;yenjent for the target evolution picture since it simplifies
requiresv_ to be chosen as a complete set_(lnf eigenfunctiongne relation between the distribution functions and the corr-
of the two-dimensional Hermitian operator elators of the gluon fields. We will call this gauge the “target
t—1O~Yt=Ti(x, , Iight_cone.ga.uge” or, simply, the “targe_t gauge.” Our im-
L= (=D an(x. Y. mediate aim is, therefore, to calculagfeusing the results of

i , i the calculation in the projectile gauge.
=(X,[53p—2 d—7-D5z To do this, note that the relation between the fields in the
+ + target and projectile gauges is given by
xS’liai—iDi ly.) (53) 1 L py ! t
92 D? L5 —B*+A*=V | —-b*+a* |V '+ =Vo*V'. (56)
L L ab 9 g g

such that To simplify the notation, from now on we will denote the

o i 1 i fields in the target A" =0) gauge by capital letters and
f d?rivl (X p(y) = W[O Tan(XL Y1) fields in the projectile 4 =0) gauge by lower case letters.
(54) This we do for both the background part of the field and for

the small fluctuation part. The field-dependent mawixs
This nontrivial normalization is the consequence of the presgiven by

ence of they, piece in the solution Eq48). Equation(52),
supplemented by Eq50) and the normalization Eq54), X~
leads to the final expression E@4). V=P9XF{—iJ dx (b +ga")
If the contribution ofy, could be neglected in the nor- o
malization condition, the normalization of the eigenfunctions
would be trivial and we would hav®=1 in Eq.(54). One
can consider the limit in whichy'. , or equivalentlyy, is
small. In the leading order in the expansiomin we have a
very simple expression fop,®

. (57)

The conditionA™ =0 does not by itself specify the lower
limit of the integration ovex™ in the exponential. However,
choosing this limit to be at minus infinity ensures that
V(x"——=)=1 and, as a consequencé/(x — —x)
=a'(x~— —). The projectile gauge fields satisfy the stan-

-~ _ 1 1 dard vanishing boundary conditions at infinity. This choice
Xab(X. !yL):4< x, || D' Ztpz- 7% bigz of the lower limit of the integration, therefore, guarantees
L Lo L that the target gauge fields also vanistxat>—o and, fur-
1 1) ther, satisfy the residual gauge conditiohA'(x™ — —x)
- _ZDJ_‘?J__Z] D! yl> (55 =0 that was imposed in Ref§9—12. To calculatey we
DY 91 ab only need to consider the linearized relation between the

Note that this is a different limit than the one in which the small fluctuations of the fields in the two gauges. To do this

JKLW evolution reduces to the BFKL equatipd—12. The we need to expan\i.to first qrder inaf. This has pegn ks
BFKL limit corresponds to the expansion in powers of the'N the previous section. TaI_<|ng only "”eaF termsaih in Eq.
background field'. Now, we are not assuming that is (8a) and substituting them into E¢66) we find for the trans-
small, but rather that the correction induced by the evolutior/€"S€ components of the field
v is small.

We will now see that Eq(55) is reproduced precisely by AL(x)=0(—x")
translating the calculation of the previous section into the
language of the JKLW evolution. Thus the BK equation is
recovered from the JKLW equation in the limit when the +0(x)
induced fieldy' is small.

al(x)— J'i(dx*o?‘a+

U%Paj(x)— Dl

O ~
j dx‘ag+Ube dx a;
0

— 00

X

81f so desired this expression can be written in a simple form in
terms of the unitary matrixJ, since operatorialyD'=U4'U". In N ) 1 .
Fourier space this gives convolutions{p) and powers of trans- =| o —W&'WTW WEAWYA

(Wal),. (59
verse momentum. b

a
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Here, the matribl is the same as in the previous section and v+ A= Uab(t—l)”a’ (X~ —0"). (63
is related to the classical background by
Remembering thafsee, for example, Ref16])

U(XL)ZPEXP{—IJ’OO dx b ] a(x —0")=0%al(x"—0), (64

S, we see that the functions, , v, andy', are related pre-
B'=0(x")iUudU (59 isely by the same relations as in H§0). We have estab-

as per Eq(47). We have also defined lished, therefore, that ' satisfies the equation of motion in

the projectile gauge, then the transformed figlabf Eq. (56)

_ e satisfies the equations of motion in the target gauge. The
W(x™)=Pexp —i wadx b™(x7) only remaining question is that of the normalization of the
eigenfunctions. Recall that the functioa'sin the calculation
=6(—x")1+6(x)0U, (60)  of Ref.[7], which was reproduced in the previous section,

were normalized in the same way as the eigenfunctions of
which is essentially the classical part ¥t The operator the free theory. That is to say, the full set of on-shell eigen-
1/6" in the last line of Eq(58) is defined as the integral from functions is obtained by ChOOSir@JL(X_—)O_) as a com-

7 . . . . . .
—o." We will further simplify this expression by using the pate set of normalized eigenfunctions of the unit operator in
on-shellness conditions the transverse space

at=—g d’p, %
o 4—2—3 (XJ_,X —0~ )a (yJ_,X —0" )
(20"D[b*]-0%)a'=0. (62) =818(x, —y,). (65)

The resulting relation between the on-shell transverse fieldSincet—1 is a unitary operator, Eq63) tells us that'
in the two gauges is also normalized to unity rather than to a nontrivial operator
O as in the JKLW calculation Eq54). Using this, as well as
— o(—x ) (t—hilal(x")+ G(X)[Uab(t—U”a{)(X) the relations Eq(63) and Eq.(52), we find that when trans-
lated into the language of JKLW, the results of Réfl give
gi gi Eq. (_55) as the mean ﬂuctua_ltion pf the induc_ed chromoelec-
—2D! . 2 ab(x —07)—Upe—zal(x —0") } tric field. The essential nonlinearity of E@4) is, therefore,
J| absent in this calculation.
62) So far, we have only considered the real part of the JKLW
kernel, y. Of course, the same method can be applied to find
Note that we have to specify on which sidef=0 the what is the form of the virtual pawr, Eq. (42), that arises
fields are taken since the solutions of the small fluctuatiorfrom the calculation of Ref.7]. To reproduce the virtual part
equations in the projectile gauge are discontinuous at zerd is clearly necessary to keep the quadratic terms in the
Now, recall thai' satisfies, everywhere excepbat=0, the  relation betweerA' anda'. Thus the quadratic terms in Eq.
free equations of motion. With this in mind we can compare(8a) will be important in this calculation. Other than that, the
this equation with Eq(48). We see that Eq(62) is indeed  calculation is straightforward. Again the gauge invariance
precisely of the form Eq(48) with ensures that all the “kinematical” factors af of Refs.
[9-12] are reproduced in the projectile gauge calculation and
the only difference comes from the difference in the normal-
ization of the eigenfunctions. It is clear, therefore, that the
i o result of such a calculation is again the lowest order expan-
vl a=(t=hlay(x"—07), sion of o in powers ofy, ,

o - d
a—za'b(x‘HO‘)—cha—za{:(x‘Hoﬂ ,
1 1

'yi-%—,a: - 2Diab

_i_[D'] [Ne 1 1. D1 11
0,= D—ab ?(ﬂ ab) X, ? X _fbcd<XL| 4D ?ﬁDF+2?&a—2aﬁ?+4a?a CleL>
| i " J1 .11 1 1 1\,
—2e Fab(xyy)fbcde (yul| D 22+ gz— 52D gz~ 52D 2/|D Cd|YL>- (66)

"Equation(58) has been derived also in Ref&3,24]. The only difference in our derivation is that the meaning of thE"1gole is entirely
unambiguous and, as discussed above, is dictated by the residual gauge condition.
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D. The doubly logarithmic limit equivalent to an extrgq pair. Thus, if initially one startéas

Before exploring the relationship between the two ap-n Ref.[7] or [8]) from a fundamental dipole, after one step
proaches further in the next section, we want to make a conil the evolution the wave function has a component with two
ment about the form Eq(55). Although this equation cer- fundamental dipoles. The scattering events involving simul-
tainly givesy in general as a nonlinear function of the taneous scattering of both these dipoles lead to a nonlinear
background fielda', this nonlinearity disappears in the GLR-type quadratic terni26] in the evolution equation for
double logarithmic limit. Following Ref[13] we take the the scattering cross section. This result indeed has been de-

double logarithmic limit as the limit when the background fived in Ref.[8].

field &' does not depend ox, . In this limit, the covariant The same process can be viewed from the point of view
and the simple derivatives commute and it is easy to see th&f adjoint dipoles. Since in the doubly logarithmic approxi-
Eq. (55) reduces to mation the newly e_mltted gluon is assumed_to be very far in
the transverse plain from the partons previously present in
~ii a? D'D! the wave function, the part of the wave function that contains
X'=%32 2 67 it essentially looks like one adjoint dipole of large transverse
size. One leg of this dipole is the newly emitted gluon, while
or the other leg is the remainder partons which are closely

bunched together in the coordinate spadée cross section
for the scattering of the adjoint dipole in the lafyg limit is
simply related to the cross section for the fundamental dipole
T adi= 20 fund™ afzund. Thus starting from the fundamental di-
When substituted into the evolution equati@®) this gives pole in the initial state, the nonlinear GLR evolution in this
the simple linear double logarithmic DGLAP evolution for picture follows due to the nonlinear relation between the
the gluon distribution functiotG=tra? (see Ref[13] for a  scattering cross section of the adjoint and the fundamental
detailed derivation This is in contrast with the situation dipoles.
discussed in Ref.13] where the double logarithmic limit of However, if we want to consider the evolution of the
Eq. (44) was studied. It was shown there that the nonlineari-gluon distribution itself, the initial state should contain an
ties in Eq.(44) survive in the doubly logarithmic limit and, adjoint rather than a fundamental dipole. This can be
in fact, lead even in this limit to the “almost saturation” of achieved by considering “DIS” of a virtual particle that
the gluon distribution. couples to tF2 [27]. In this case, in any step in the doubly

The absence of the nonlinearities is in contradiction withlogarithmic evolution, the state contains only one adjoint di-
the explicit calculation of Mueller and Qii25] who showed pole. Thus for this initial configuration the nonlinear relation
that the QCD evolution of the gluon distribution in the dou- between the adjoint and fundamental cross sections is en-
bly logarithmic approximation does indeed contain contribu-tirely irrelevant. The probability for the appearance of a
tions from higher twist operators. This again underscores ouiarger dipole in the approximation of independent emissions
observation that the nonlinearities included in the evolutionis itself proportional to the number of gluons. The evolution
of Ref.[7] are not the whole story. Those are the “kinemati- of the gluon distribution in this approximation is, therefore,
cal” nonlinearities in the sense discussed in the previousaturally linear and is merely the simple DGLAP DLA.
section and do not include interesting dynamical effects
which come into play when the parton density becomes
large. IV. MORE ON THE TARGET VERSUS PROJECTILE

In fact, the triviality of the doubly logarithmic limit of the GAUGE
calculation of the previous section is easy to understand us-
ing the intuition based on the dipole model approach. In the The discussion of the previous section may seem a little
projectile evolution picture, in every step in the evolution Paradoxical on the purely technical level. Indeed, we have
one extra gluon is emitted into the virtual photon wavebeen calculating the same physical quantity in two different
function® The doubly logarithmic limit is achieved by as- Ways. The quantity in question is the eqdaht cong time
suming that this extra gluon has the smallest transverse méropagator of the transverse components of the vector poten-
mentum or, in the coordinate space, has the largest transvertial A' in the target light cone gauge. The first way of per-
coordinate[8]. In the largeN, limit the extra gluon is forming the calculation is to work entirely in the target gauge
as was done in Ref§9-12]. This gives the result Eq44).
The second way to calculate the same quantity is to first
e , ) calculate the propagator af in the projectile gauge anq then
This extra gluon can be emitted either from a quark or from angauge transform the result into the target gauge using Egs.

antiquark prese_nt in the or_lglnal Wave_ function, or_from any Other§58,62. This results in an inequivalent expression ).
parton emitted in the previous steps in the evolution. So the total

amplitude for emission is given by the sum of the amplitudes for.
these processes. Note, however, that the amplitude for the processes

a2
ry=4tr—. (68)

where two gluons are emitted simultaneoud@gy fromg andq) is %These partons are in the adjoint representation of the color group,
higher order inag and such processes are not present in the dipolesince together with the extra emitted gluon the state must be an
model. overall singlet.
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A. The ie complication previous section, the transformation E§2) is not unitary.
|A normalized functiora' is transformed into a functioA'

paradox. To do this let us consider in more detail the calcu'Malized not to unity but rather to an eigenvalue of the
lation of Refs[9—12] and its transformation into the projec- OPeratorO in Eq. (53)." This was precisely the root of the

tile gauge. The equal time propagator of the transverse confliScrepancy betweepandy. The resulting projectile gauge
ponents of vector potential is calculated in the following way&Ction can be written as

[9-12]. One starts with the quadratic part of the action for

the small_ﬂuctu_ations of#. IntegratingA‘ it is reduced to Sp:f d4xai(X)D2ai(x)+i€J' d“x[ al(x)al(x)+2al(07)

a quadratic action for the small fluctuations of the transverse

components of the vector potential

Our first aim in this section is to resolve this technica

il i 2
X|d'—=—D D?

# DI

il i ia-
(9¥—DD—J2_3(0 )t (74)

s:f d*xd*y Al(x)G Y (x,y)Al(y). (69)
Thus, the standarde prescription in the target gauge is

For the purpose of this discussion we use somewhat simpliequivalent to a fairly complicated momentum-dependent pre-
fied notations and omit the color indices on the fields. Thescription in the projectile gauge. Since the calculation of Sec.

explicit form of G~ 1 is given in Refs[9-12. One then finds |I, following Ref. [7], was performed using the standa
properly normalized eigenfunctions 6f ! prescription in the projectile gauge the result is, indeed, ex-
_ _ pected to differ from that of Ref$9-12|.
G—lii(x,y)AJ)\'p—‘,(y)Z)\A;\'p—,,(X), While the technical reason for the difference between the

results of Refs[9-12 and Ref.[7] is clear, the physics
behind it is not so obvious. In the rest of this section, we will

f d4XAi)\ p- r(X)Ai)\*, L, (x)= 5()\—)\')5(p*—p*') make an attempt to understand the physical reason for this
P, P .
difference.
5 , As we have just explained, the calculation of R§gs-12]
X (r—r’). 70 s equivalent to a calculation in the projectile gauge with a

. _ ) nonstandard momentum dependienprescription. It is well
Using the complete set of eigenfunctions one constructs thﬁnown that such a change of prescription is equivalent to a

propagator with the standare prescription as calculation not in the vacuum state but rather in a state which
d\ _ _ contains gluong28,29. We, therefore, ask ourselves why
Gij(x’y):f—'f dp*erA'A o r(X)Ai\*p’ (y). the projectile gauge calculation should be performed in a
Atie A A state which, on top of the background fiddd, also contains

(71) additional gluons.

The limitx*=y™, andx~,y~— is then taken to calculate
x". Clearly, the equal time limit selects the on-shell eigen-
functions\ =0 and, therefore, when transforming into the B. Evolution as renormalization group in the projectile gauge

projectile gauge it is important to keep track of thepre- To answer this question let us first try to reformulate the
scription. The simplest way to do this is to include e pojectile gauge calculation of Sec. Il in terms of the Wilson
term directly in the action renormalization group akin to the approach of R€8s-12].
The hadron is represented as a statistical ensemble of the
St:f d*xd*y Al (x)[ G~ Y (x,y) +ied S(x—y)]A(y). staticb™ fields of the form Eq(1) with a statistical weight
Z[b]. Evolution in x generates induced vector potential

(72) which changes the statistical weight. Strictly speaking the
induced vector potential is not static. It has components in
the frequency range™ <A 1/x. However, as long as the
érequency of the components of the projectile wave function
are large enough, one can treat the induced potential as static
during the interaction with thgq pair. Also, as long as the
wavelength of the projectile in th&™ direction is large

The propagator Eq.71) is then just the inverse of the qua-
dratic form in Eq.(72) without any additional regulators.

To transform this expression into the projectile gauge on
has to use Eq¥58),(62). The gauge invariance of the QCD
action ensures that the first term in E@2) under this trans-
formation transforms into

a' (x)D*(x,y)a'(y), (73)

o ) ) 1%The fact that the transformation between the two gauges is non-
which is exactly the action used in Sec. Il to calculate theyitary is not unusual. Even though it is a gauge transformation and
projectile gauge propagator. However, fleeterm is not SO therefore formally unitary, the gauge parameter itself depends on
simple. If the transformation Eq62) was unitary, the norm  the dynamical field. Such transformations are generically nonuni-
of the fieldA' would be preserved and tihe term in Eq<72) tary and do not preserve the scalar product.
would transform into the standaie/d*xa;(x)a;(x) term in i writing this expression we have made use of the fact that the
the projectile gauge. The problem is that, as we saw in thee term is important only for functiona' that satisfyD2a'=0.
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enough(p* is smal) the induced vector potential can be descriptions encode exactly the same information. For this
approximated by a&(x ) shaped function. One can, equiva- purpose one has to define analogsyoénd o, that is, the
lently, describe the hadron by a statistical ensembM ahd  (connectedl fluctuation correlation functions of ordet.

VT with some statistical weigt&[V,V']. Itis clear that both  The resulting evolution equation

d 1 2 2
—:LZ[U,UT]ZCZS §<Wm[zxqa(u,v)]+ m[zxaq(u,v)]

din-
X
5 5 ) )
+ m[zxqq(u,v)H W[ZWU,U)] - m[ZUq(U)]— m[ZUa(U)]
(79
is the analog of Eq(42).
Using the formulas of Sec. Il and the Appendix we find
1 1
o)== 5 f 0°2, g (U 0x) - U0 TV (201 = NU )12, (76
” 1 (x=2),-(y-2) )
Xde " .yl>=ﬁj 2ty =7 V@) U1 U Ux))
+[U(x)-UT(z)]* LU (yL) - U(z0)]"P= 8*TUT(yL) - U(x)]"P=[U(x,) - UT(y,)]*°67}, (77)
1 X—2),-(y—2)
XG40y == ﬁf d’z, ((X_Z))é((yy_ 7 VDIV UT(2)-Ux)]”
1 1
+[U(x)-UT(z))- Uy )1*TU(z) 1P~ [U(x)]*TU(Y) 1P~ [U(y )] TU(x )]} (78)

g s obtained fromr, by replacingUs byU's. The same is =dF~'. However, if there is a contribution tB*" coming

true formandxqq- X is_obtained fromyqq by stlpping from the transverse component of the vector potential, it
(x,aB) with (y,y8) as this exchanges the and q lines  Should be taken into account. o

there. We stress that Eq@5)—(78) contain all the informa- It is easy to see tha_t such a contribution is indeed gener-
tion that is contained in the BK equation as well as in the@ted by the lowx evolution. Suppose one starts the evolution

equations for higher correlation functionslfthat appear in  INitially with the background field configuration as in H@).
In the first step of the evolution one generates both the in-

Ref. [7]. ; . )
7] crement ina® and the increment ia'. The two are related
by the condition Eq(61)
C. The snag Pl
. . .. . . . . aJr =— ai_ (79)
There is one implicit assumption in this procedure: 9~

namely, that the* component of the vector potential is the
only relevant one. One assumes that if, for examp|eaian Naively, one would expect that since all the fluctuation fields
component is generated in the evolution it does not affect th# this step have small frequencies, it should be true that

subsequent evolution of the physical cross section. This i€t >a' and, therefore, it should be safe to forget abalt
however, not quite right. What is important for the interac- 1"e reason this is incorrect is that the on-shell solutions for

a' are discontinuous at~ =0. Therefore, even though the
field a' is indeed small, it has a large derivative with respect
to X~ which contributes to the field strength. In fact, the
induced chromoelectric field is

tion with the projectile is not merelp™ but rather theF ™
component of the color electric field. The interaction be-
tween the projectile and the target is due to the tErmF ™'

in the QCD Lagrangian. TheF™' component is the
Weisz&er-Williams field of theqq pair, while theF ™' com- SEti=gat—D"a. (80)
ponent is generated by the color charges in the target. In the

eikonal approximation it is true th&*'=¢'b™ and, there- Recalling that on-sheli' satisfy the second of the equations
fore, the coupling can be written as*J~, where J~ Eg. (61), we see that the second term in this expression is
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(ailza*ai) and is of the same order as the first termprojectile gauge the situation is very different. The condition
(8'd'197)al. Clearly, even if one starts initially from a back- a~ =0 does not eliminate any of the infinite number of so-
ground which only containk™, after long enough evolution lutions Eq.(82). The choice of the residual gauge fixing is
a large transverse component of the vector potential is gerthus crucial to eliminate the redundant solutions. If those are
erated. When the contribution of the transverse component taot eliminated, the perturbative calculation will be plagued
the field strength is comparable to the contribution of thewith zero mode problems. The calculation in Sec. Il was in
“ 17 component, the eikonal approximation breaks downfact performed with the residual gauge fixiata'(p~ =0)
and the evolution discussed in Sec. Il ceases to be valid. k0. This gauge fixing does indeed eliminate all the solutions
looks indeed very natural that in order to take into accounexcept the one which has vanishiag and has therefore
the presence of thépotentially large transverse field, the precisely the form of Eq(l).
calculation in the projectile gauge should be performed Now, consider the renormalization-groyRG) calcula-
around a state that contains transverse gluons apart from tiien. Here, we have to integrate out modes which have
b* background. higher frequency ™. In the target gauge this is straightfor-
One could try to argue that the transverse part of the vecward: the residual gauge condition does not care about fre-
tor potential can be somehow gauged away and the calculauency. It therefore eliminates nonzero frequency fluctuation
tion could still be performed consistently around a phfe  modes which do not vanish at — —« in the same way as
background. Even if this is possible the evolution of theit eliminated the static background solutions with this behav-
background defined by such a procedure will be differenior. As a result, the fluctuation modes have a very similar
from the evolution of Sec. Il. In any case, we do not see howstructure to the background field and the induced field is
such “regauging” is possible. similar to the background. It is, therefore, straightforward to
It is instructive to see in more detail how the gauge fixingformulate a self-similar renormalization-group transforma-
works in both the projectile and the target gauges and whyion in this gauge. The situation is quite different in the pro-
the two seem to have different status as far as thgectile gauge. The residual gauge condition, although it fixes
renormalization-group structure is concerned. As we menunambiguously the background, has nothing to say about the
tioned above, the chromoelectric field is created by the colofluctuations—it only fixes the static modes. It is impossible
charges in the target. In fact, the whole renormalizatiortherefore to ensure that the fluctuations will have the same
group procedure can be formulated in terms of the coloform as the static background. In fact, as we have seen
charge densityj © rather than the vector potentials them- above, it will not be the case. The first equation of E{)
selves, which was in fact originally done in Ref9—-11]. in the projectile gauge is just one of the equations of motion
The background vector potentials are found as static soluwith or without the external sourgeThis means that it is
tions of classical equations of motion in the presence of thgossible to have nonvanishireg” with vanishinga' only at

color charge density*=p8(x™), exactly zero frequency. At any finite frequency nonvanish-
B ing, a' is required. As we have seen, thiscontributes to the

F''=0, induced chromoelectric field, or equivalently to the induced

S _ color charge density. The calculation thus explicitly lacks a

D'F*'=D'[D'b*—s%b']=j". (81)  self-similar structure and proper renormalization-group setup

does not seem possibfainless extra eikonal approximation
An important property of these equations is that for a giwen is invoked.
they ha\(e infinitely many soluiio_ns. By_ considering an arbi- The discussion of this section leads us to conclude that the
trary unitary matrixV(x, ,x") it is straightforward to see projectile gauge calculation, as formulated in Réf] and

that all the following are solutions: Sec. Il is only valid as long as the eikonal approximation is
ot applicable. When the evolution is continued for a large span
b'=ivTa'V, of 1/x, the eikonal approximation breaks down and the

higher nonlinear corrections of Ref®-12] should become
important. This is not to say that one cannot learn much from
this simplified evolution. Quite to the contrary—clearly there
is a range ofx values where this evolution captures the rel-

The difference between the target and the projectile gauge®/ant physics. This is particularly true when the target is
at this point becomes important. In the target gaBge=0,  large— is the case of a large nucleus discussed in[BEfin

1 S
b+=55[j++D'a+b']. (82

€L

the equations reduce to this case, the eikonal cross section is significantly different
from the simple perturbative one which assumes single scat-
B =ivTigv, tering. The nonlinearity of the evolution becomes important

much faster than for a small hadron. One, therefore, expects
Dig"B'=—j". (83)

We, therefore, get rid of almost all the solutions, the only 12 nay pe possible to reformulate RG so that it would include
residual degeneracy being the value of the matfiat X~ also transverse background fields or equivalently finite number of
——c. The imposition of the residual gauge condition gluons in addition td*. This seems, however, to be quite a com-
d Al(x~ — — o) then removes all solutions except one. In theplicated problem and is far beyond the scope of our discussion here.
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unitarization to appear already within the eikonal regime. We hope that this paper clarifies to some extent the rela-
Subsequent appearance of other nonlinear corrections willonship between the different approaches to the nonlinear
not change the fact that the total cross section has unitarizethw-x evolution. There are still many questions to be an-
It must, however, affect other more exclusive properties okswered. In particular, it is desirable to find a more explicit
the process such as the structure of final states. The spectruedation between the nonlinearities of the JKLW equation
of the target gauge fields is presumably directly related to thand the breakdown of the eikonal approximation and to bet-
spectrum of the emitted gluoh27,30. Thus, when the evo- ter understand the physics of these nonlinearities. It would be
lution of these fields changes even locally one expects thiextremely useful to understand on the level of Feynman dia-
change to be visible in the spectrum of final state gluonsgrams the differences between the BK and the JKLW evolu-
Assuming the local parton-hadron duality this then has to beion. At this point unfortunately we are unable to do that.
mirrored in the spectrum of final state hadrons. Perhaps the most interesting question concerns the effect of
these nonlinearities on the structure of the final states. Some
work on the analytic understanding of quantities less inclu-
sive than the total cross section has appeared recg3gly
V. CONCLUSIONS 37]. There is also an ongoing numerical effort in connection

In recent years several approaches to the evolution ofith heavy-ion physicg38,39 in the framework of the
dense gluonic systems in the saturation regime were devel/cLerran-venugopalan mod¢p0,21. Further progress in
oped. The approaches differ from one another in many tech_t-h's d|rect|or1 is extremgly important poth for our understand—
nical respects and the relationship between the physics {89 Of nonlinear physics and for disentangling linear and
also not always clear. In this paper, our aim was to relate twdonlinear effects in the existing data.
of these approaches and thereby to try and reduce the entropy
in the field. We have shown that the nonlinear JKLW equa-
tion of Refs.[9-12] coincides with the BK evolution equa- ACKNOWLEDGMENTS

tion derived in Refs[7] and[8] as long as the gluon field .
induced by the evolution is small. We have argued that thf?J GT:/Ie ﬁotugggft‘éalsbsug%%;(eg b%;g%‘?ﬁ;gfg\;voérazi
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of the evolution of Refs[9—12] and the evolution suggested

in Refs. [31-33. The AGL equation[31-33 has been APPENDIX

tsr?own tlotgnse fr(:rr]n the BthTqugéuﬁa_] '3 thg retgl(rjng wherde _In this appendix, we give a more detailed derivation of the
€ evolution on the projectiie side 1S dominated by produc,qton equation of Sec. Il including the calculation of the

tion of small size dipoles, _or.equwalently, Ie}rge transverse, o wibutions where the glue does not interact with the back-
momentum gluon$§8,19]. This is a natural regime when the

. . . .ground(targel. We start with the quadratic action for small
target is a small object rather than a large object of the typ'%ucltjuatgong irz the projec\?illle gaugqeu ' !

cal hadronic size. It was suggested in Rdf9] that these
configurations also dominate in usual DIS in the saturation l(aTl—(9-\2TaT _ 9 giat\( 91— Al

regime. It seems to us that this point warrants further study. S=2@a[~(97)718s ~2(7'35)(9" 3a)

In any case this is not the standard DLL, where the evolution — aL{[ZD;b[b]a‘ —(0,)28,5]81 + ' @ 5ab}a{)).

on the projectile side is dominated by large dipoles. There is,

therefore, no reason to expect that the DLL of R€®s-13| (A1)
has much to do with the AGL equation. In fact, as we hav

. . 4
shown, the DLL of the BK evolution is itself extremely eThe equation of motion foa™ is

simple when considered as the evolution of the gluon distri- J
bution operator rather than the physical DIS cross section. It at=—a. (A2)
turns out to be entirely devoid of nonlinear corrections and d

coincides with the standard DGLAP double logarithmic o o

equation. The DIS cross section still evolves nonlinearly and®ubstituting this in Eq(A1) we get

in fact saturates in this limit due to the nonlinear Glauber- L0 i

type relation between the cross section and the gluon distri- S=—3a5(D%)apd’ay, (A3)
bution [18]. On the other hand, the DLL of Reff®-13 is

also nonlinear for the gluon distribution and as a result thevhere

evolution is slowed down already on the level of the gluon 5 . B )
distribution [34]. (D) ap=2D4p[b]d™ — (3, ) Sap (A4)
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is the same as the inverse propagator for a charged scalar field in the presence of a backgrduhdifiels been calculated,
for example, in Ref[16]. The most useful form for us is

—[—1 —f—dp B(x"—y ) 6(p ) Oy —Xx")6(—p~
I (DZ) ab_ Zp_(277)3[ (X y ) (p ) (y X ) ( p )]
) ) d? . ~
XJ dzpldzqieflp-XJrlq-y (27:;‘2e*l(pi*qi)zlugbl(xf,yflzL), (AS)

with p"=p?/2p~, q*=q%/2p~, andq~=p~. The color matrixU_}(x",y ",z,) is*®

Uao (XY 7,20 =[0(=Xx7) 6(=y )+ 6(x7) 6y )] 8ap+ (=X )0y ) Uap(z) +0x )6~y )UL(z)).  (A6)

The on-shell two-point correlator @& can be written as

+

(ag (x"=0x, X )ay (y"=0y,.,y))

_ aix i + —\ Al + _ — ﬂ;
= a—_aa(x =0x, ,X )ay(y" =0y, .y )(7—_
X y

g4 1 1 - e o
==, [ S s ol 80—y e by =X )o(—p )]

2 d’p, +ip(x —2;) d’q, +ig(z, -y,)
deZLJ’We PL(Xy LJ‘WG 9z —yy

L2 C 2~ -
xe 1P ety G Yx "z, (A7)

We now need to expand the eikonal factors

(A8)

— o0

V(x,)=P ex;{ - j+ccdx‘(bJr+g(';1+)(xl X7)

to second order in the fields. Recalling that the background part of thebffeldS(x ™) and that the fluctuation field™ is
nonsingular ak™ =0, this becomes

0
V(x+=0,XL)=PeX[{ —igf dx a*(x*=0x,,x7)

+ 00

U(xl)Pex;{—igJ dx a*(x*=0x, ,x7)|, (A9)
0

where

Ux)=P ex;{—irmdxbﬂx*:O,xl X7) (A10)

is the classical part of the eikonal factor.
To second order im™ we have

More rigorously, the structure dd ! is given byU,}(z,)=¢€'l?* )~?)IPz)  However, the difference between this expression and
that given in Eq.(17) only shows up if it is multiplied bys* derivatives ord(x~) factors. Since we encounter no such factors in our
calculation we will be using Eq.17) throughout.
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0 0
V(x*=0x,)= 1—igJ dx‘a*(x+=0,xL,x‘)—92J dx dy 6y —x7)a"(x"=0x, ,x)a*(x"=0x,,y")

+ o0 + o
XU(XL){l—igf dx’a*(x*=0,xi,x’)—ng dx dy 6y —x")
0 0

Xat(x"=0x, ,x)a*(x"=0x, ,y)] (A11)
or
0 +o
V(xﬁzU(xQ—ig[f dw a®(x"=0x, ,w’)U(xL)+U(xi)f dw a*(x"=0x,,w")
o 0
0
—gz(f dw dz 6(z —w )a"(x"=0x, ,w)a"(x"=0x,,z7)U(x,)
+ o0
+U(xi)f dw dz 6(z —w )a*(x"=0x, ,wHa*(x"=0x,,27)
0
0 + oo
+f dw a*(x*=0x, ,W’)U(XL)J' dz a®(x*=0x, ,z)}. (A12)
o 0
Similarly,

Viy ) =U'(y,)+ig

O + o
U*(yl)f dz*a*(y*=0,yi,2’)+J dza*(y*=0,yL,z)U*(yl)]
— 0
0
—92( UT(yi)ff dw dz g(w™—z )a’(y =0y, w)a'(y =0y, ,z")
+ oo
+f dw dz o(w -z )a(y*=0y, ,wa"(y =0y, ,z)U'(y,)
0

+oo 0
+f dw a’(y"=0y, ,W’)UT(VL)J dz a™(y =0y, ,2)}- (A13)
0 — o0

Rather than directly calculating the eikonal cross section, we will first calculate the tensor product of two eikonal factors and
later take the trace over the color indices. We use the notétioB=A*’B”°. To second order in the fluctuation field we
have

<V(XL)®VT(yL)>_<U(XL)®UT(yL)>

0 0
:gz<J dwfa+<x+:o,xl,w*)U(xl)®uT(yl)f dz a’(y"=0y,.z")

+

0 o
+f dw‘a+(x+=0,xL,w‘)U(xL)®f dz a*(y"=0y,,z )U'(y))

0
+ o0 0 + o0
+U(xl)f dw a®(x"=0x, ,W’)®UT(yl)f dz a"(y"=0y, ,z*)+U(xL)j dw a*(x*=0y, ,w")
0 —o0 0
+o0 0
®J dz a®(y =0y, ,z*)UT(yL)—f dw dz 6(z —w )a"(x"=0x, ,w)a"(x" =0x, ,z7)U(x,)eU(y,)
0 —

—fo dw a*(x*=0x, ,W‘)U(XL)JMdz‘a (xT=0x,,z)®UM(y,)—U(x,)
e 0

114005-19



KOVNER, MILHANO, AND WEIGERT PHYSICAL REVIEW D 62 114005

+ o
xj dw dz 6(z —w)a"(x"=0x, ,w)a"(x"=0x,,z7 )oU(y,)
0
0
_U(XL)®UT(yL)f dW7d27 e(Wi_Zi)a+(y+:01yL 'Wf)aJr(y*:O’yi !Zi)
+oo 0
_U(XL)®J dW7a+(y+:ovyL 1W7)UT(yL)J’ dziaJr(er:OvyL 127)
0 —

—Ux)® fo wdw‘dz‘ o(w —z)at(yt=0y, ,wHat(y"=0y, ,z‘)UT(yL)>. (A14)

For calculational purposes it is fruitful to separate the different contributions into the set terms where the glue interacts with
the background fielfthe first four terms in EqA14)] and the set of contributions where there is no such interaftfi@nother
terms in Eq.(A14)].
Let us first consider the contribution where the glue is exchanged between the quark in the negative haif ptahiei
the amplitude and an antiquark in the positive half plane in the complex conjugate amplitude:

0 +oo
fﬁwdwf fo dz (a; (x"=0x, ,w)a, (y =0y, ,z27))-[(taU(x, D@ t,UT(y, )]. (A15)

One notices that only thé(—p~) term in Eq.(A7) survives and that, EqA6), the color matrixD;bl(w*,z*,zi) reduces to

Uab(ZJ_)-

0 + o
f dw‘f dz (aj (x"=0x, ,w)ag (y"=0y, ,z7))
— 0

-4 J—[— o(~p )12(2 S jd Lj(dsz +Ipi<xi—zl>J(d27q)i A

+ oo . o -
X f_ dwe P2 W jo dz e+l z )'Uab(zj_)- (A16)

Thew™ andz™ integrations are easily performed

0 +oo )2
f dwfefipf’z"fwff dz*e*‘qf’z‘ff:—%. (A17)
—o0 0 quL
Noting that
dp~ B 0 dp~ +ocdp
J —0(—p )=f — =—J J—e(p ), (A18)
p -» P
we have
o AN 2 2
£J+ d_pf dZZJ_ﬁ (9' ﬂz_lz_eﬂm (- ZL)f diq, 1 e+'%(2i vi). U Uan(z)). (A19)
o P 77) ql
The transverse momenta integrals yield
d’p, 1 1
22 o e P = — o—log(x, —z,)%. (A20)
Taking the derivatives
1 +°°d|0 (x=2),-(y=2), v
477 j J X Z)L(y Z)L ab(ZL)l (AZl)
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we use the following identity valid for SUN) group:

Uan(20) (€U (x))® (t,UT (v, ) =2t tU (2, )tpU T (20) 1(taU (x, ) PtV (y1)) "

1
= Z_NC[NC(U(ZL)'UT(VL))M(UT(ZL)'U(Xi))w_U(XL)Q'BUT(yL)y‘S]_

(A22)
This contribution, the second term in E@14), therefore is
1 (+=dp 2 (x=2),-(y=2), 1 t as(t v8 apy |t v
mjo p_—J' d<z, (x—z)f(y—z)f Z_NC[NC(U(ZL).U (y ) (U (z)-U(x )P =U(x)*PU(y, )]
(A23)

The third contribution, due to the exchange of the gluon between the quark in the positive half plane and the antiquark in the

negative half plane, is calculated similarly with the only difference that blog(w~,z",z,)=U0](z,) and we pick up the
0(p~) term in the propagator.

+oo 0
fo dw™ fﬁxdz%ag(x* =0x, , W )ag (y =0y, ,2))- [(U(x)t)® Uy )ty)]

1 +edp” (X=2),-(y—2), 1 o
i)y o | P NV U)W ) U
—U(x,)*PUu'(y,)"]. (A24)

For the quark self-energy correction everything is the same as i(A28) except that the transverse coordinates of the two
fields coincide ¥, —%X, =X, ),

0 +oo
- j_de_ fo dz (aj (x"=0x, ,w)ag (y " =0%, =x,,z7))-[(tU(x)ty)®@U'(y,)]
1 +edp” 1 1
:_4_173Jo p_pj dZZLmXZ_NC[NCtr((U(XL)'UT(ZL))(U(ZL))aﬁ_(U(XL))aﬁ]UT(yL)yé- (A25)

Finally, the antiquark self-energy correction:

+ o0 0
- fo dw™ f_wdz_<a;(x+:0a)ﬂ ,W_)ag(y+=0%=h :Z_)>‘[U(XL)@)(tathT(YL))]

- de_p a2, — XL[N tr(UT(y,)-U(z,)(UT(z,)"= UMy, )" TU(x,)*.  (A26)
ar* ) . p Ly—2)2 “2Ng e 1)-U(z, f i ).

Now let us look at the other set of contributions. Since for all of these there is no interaction with the background we have,

Eq. (A6), Ua_bl(w‘,z‘,zL)= Sap- Thez, integral is trivial for all terms in this sdft yields a § function for the transverse
momenta. However, as we want to combine both sets of contributions in the final result, this integral will not be performed.
Consider the first term in EqA14)—the exchange between the quark and the antiquark in the negative half-plane—

0
Jloodwidzi<a;(x+ =0y, ’W,)a;(y+ =0y, =Yy,.,27))- [(taU(XL))®(UT(yL)tb)]- (A27)

In the correlator part now both functions survive, corresponding to the two possible orderings ofandz™
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0
f dW_dZ_<a;(X+:O,XL aW_)ag(er:OaYL Z7))

oo (dpT 1 1 d’p, . d’q,
g4 2 +ip,(x, —z;) etidi(zi—y)
| o 202m) <p)2Jd ZJ(br)?e ) @et

O . — — . — —
f_ dw dz [6(w™ —27)6(p~)— Bz~ —w~)]e (PL/2 W gritalizn )z )-5ab. (A28)

X

Thew™ andz™ integrals now have to be performed with more care. Doing this we get

dpJ' d’p, _ d?q, _
5 07 d2 +'pi(xl z)) +qL(ZL Y1)
f (2) (277)
P S SN VOIS N SN | D
bp p’a? p2(a?-p?) P pia? dZ(gZ—p?))|

Recalling Eq.(A18) we obtain for the momentum denominators

|5
®

1 1 ) o(— )( 1 1 )
p’a? p’(a?-p) P pia? af(ai—p?)

0(|O)(

+odp” 1 1 1
Zfo b piqi+(qf<qi—pi>_pi(qi—pi))
tedp” 1
- |, e A0

The correlator part is then

! fﬂﬂjd? S e T e

0
—o L L

The color algebra raises no problems,

1
Ban(tal (X))@ (UT(Y1)te)= an(tal (X)) (U (Y1 )tp) 7= 5= [Nc8*(UT(y1) - U (x,) P = U (x,)*PUT(y,) 7]

(A32)
and so the first term in EqA14) is
1 +°°dp (X=2), - (y— Z)L . - )
43 f f Tx—22(y-22 )-U(x )" =U(x)“PUT(y,)"]. (A33)

The quark to antiquark exchange in the positive half plane gives

+oo
fo dW7d27<a;(X+:O,YL aWi)ag(er:OS/LYL vzi)>'[(U(XL)ta)®(thT(yL))]

1 jwdpf (X=2) - (y— )L

NS [U(x,)-Ut *—U(x,)*PUT(y, )"}, (A34
] (x— z)l(y Z)L { [U(x)-U'(y,)] (x,) (Y1)’ (A34)
Now we combine the two terms that give corrections to the quark line—the fifth and the seventh termgAfa4Eglt is easy
to see that they have the same color structure and will also yield the same transverse structure.

The color algebra is trivial

NZ-1)
Pt atol (X)) UT(Y )= 3ty U6, )Ty, )= oY) PUT ()7, (A35)
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The fifth term is the same as EQA33), but withy, —X, =x, and only thef(—p~) term surviving,

- ﬂ) dw™dz" 0(z" —w){aq (X" =0x,,W)ay (X" =0x,,27))- Sap(tatsU (x. )& UT(Y.)

1 dp” d’q, 4
:_;ﬁlxﬁyf J'dz f(z )Ze+|pL X, — zﬂJA (277-) +|qL(zL X, )

1 1 (N2—1)
X + U(x,)*PUuT(y, ). A36
Uil B A3

And the seventh term is the same as EB4),

- eroodW_dZ_ 9(2_—W_)<a;(X+ZO,XL !W_)a;(x+:0!XJ_ ,Z_)>' 5ab(U(XJ_)tatb)®UT(yJ_)
0

p - d’q, .. -
= J fdzZLj(—zeJr'pi(M ZL)jWe+|qL(ZL Xy)

a

» 1 1
piai pi(al—pi)
Adding the two terms EqgA36),(A37) and then performing the transverse integrations we get

(Ne-1)
oN, Vo) Uy (A37)

1 (+=dp [, 1 (N2-1)
— - - - - aft yé

The correction to the antiquark line—the eighth and the tenth terms if/&8®@)—give similarly

1 - dp 1 (Ng—l)
—_— aByt vé
Finally, combining all the terms together we get

(V(X)*VT(y, )7 —(U(x,)“PUT(y,)7)
1
= m|09(§> J dzzi : [ [(U(z)- UT(yi))aé(UT(ZL) : U(XL))YB‘*' (U(xy)- UT(ZL))Q(S(UT(YL) : U(ZL))YB

(x-2),-(y=2),
— syt . B_ .yt abgByy, o T
5UUT (Y1) U X)) = (U (x)- Uy )P

—[tr(U(x,)-UT(z,))(U(z,)*#=NU(x,)*TUT(y )" ——
(x—2)7

~U ) UYL - U ))UT(2)) = NUT )] = (A40)

1
This coincides with the result of Rdf7]. When comparing this evolution equation with the results of REf.one should keep
in mind that there the evolution is considered with respect to the variaflee relation between the two evolution equations

is given byd/dInl(---)=—2d/d In ¢---). Now taking trace over the color indices we obtain the evolution equation for the
scattering cross section given in Sec. Il.
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