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In this paper we reanalyze the electroweak chiral Lagrangian with particular focus on two issues related to
gauge invariance. Our analysis is based on a manifestly gauge-invariant approach that we introduced recently.
It deals with gauge-invariant Green’s functions and provides a method to evaluate the corresponding generat-
ing functional without fixing the gauge. First we show, for the case where no fermions are included in the
effective Lagrangian, that the set of low-energy constants currently used in the literature is redundant. In
particular, by employing the equations of motion for the gauge fields one can choose to remove two low-
energy constants which contribute to the self-energies of the gauge bosons. If fermions are included in the
effective field theory analysis the situation is more involved. Even in this case, however, these contributions to
the self-energies of the gauge bosons can be removed. The relation of this result to the experimentally
determined values for the oblique paramet8rg, andU is discussed. In the second part of the paper we
consider the matching relation between a full and an effective theory. We show how the low-energy constants
of the effective Lagrangian can be determined by matching gauge-invariant Green'’s functions in both theories.
As an application we explicitly evaluate the low-energy constants for the standard model with a heavy Higgs
boson. The matching at the one-loop level and at next-to-leading order in the low-energy expansion is per-
formed employing functional methods.

PACS numbgs): 12.39.Fe, 11.15.Ex, 12.15y, 14.80.Bn

I. INTRODUCTION which contains the Higgs field, was presented in [R&f.For
a strongly interacting symmetry breaking sector, i.e. in the
The symmetry breaking sector of the standard model imion-decoupling case, the effective Lagrangian can be built
still poorly understood from a theoretical point of view. Fur- [8—11] in analogy to the chiral Lagrangidd2,13 for QCD
thermore no direct experimental evidence of the Higgs bosoand it is therefore called electroweak chiral Lagrangian. The
has been found so far. In this situation the method of effecuse of effective Lagrangians might in fact be the only way,
tive field theory has repeatedly been used in recent years tapart from lattice calculations, to gain insight into strongly
analyze the symmetry breaking secfdf. It provides a con- interacting theories for the electroweak symmetry breaking
venient and model independent parametrization of variousector, similarly to the situation with QCD at low energies.
scenarios which are discussed in the literature, regarding th@/e note that by employing the electroweak chiral Lagrang-
nature of the spontaneous breaking of the electroweak synian it was shown recently14] that present electroweak pre-
metry. In this approach, the unknown physics is hidden ircision data are still compatible with a strongly interacting
the low-energy constants of an effective Lagrangian, whichmodel of symmetry breaking with a scale of new physics as
describes the effective field theory. Effective Lagrangianshigh as 3 TeV.
thereby allow a unified treatment of different parametriza- The purpose of this paper is to take another look at the
tions of new physics effects, such as oblique corrections telectroweak chiral Lagrangian and to investigate two issues
gauge bosons self-energig®,3] and anomalous tripl¢4]  related to gauge invariance where there are some subtleties
and quartid 5] vertices of the gauge bosons. involved, because one has to deal with off-shell quantities.
The low-energy structure of a theory containing light andAccording to Refs[12,13 the effective field theory should
heavy particle species which are separated by a mass gap caescribe the physics of the underlying full theory at low
adequately be described by an effective field theory whictenergies. Symmetry principles thereby play a crucial role for
contains only the light fields. In the case of the standardhe construction of the effective field theory and, apart from
model one can construct effective Lagrangians by introducthe occurrence of anomalies, the effective field theory can be
ing higher dimensional operators that preserve $t¥?2),  described by an effective Lagrangian which respects these
X U(1)y gauge symmetry. In the presence of a light Higgs(possibly brokeh symmetrieqd15]. In order to preserve the
boson, i.e. in the decoupling capgl, the symmetry is lin- gauge symmetry even when dealing with off-shell quantities
early realized and the corresponding effective Lagrangianye employ a manifestly gauge-invariant approach that was
introduced recently[16]. It deals with gauge-invariant
Green’s functions and provides a method to evaluate the cor-
*Present address: Centre de Physiquéeofigee, CNRS-Luminy,  responding generating functional without fixing the gauge.
Case 907, F-13288 Marseille Cedex 9, France. Email address: The first topic is the analysis of the general effective field
nyffeler@cpt.univ-mrs.fr theory which describes a strongly interacting electroweak
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symmetry breaking sector. We are particularly interested in Several group$19—21] have performed such a matching
the question of how many independent, physically relevantalculation for the standard model with a heavy Higgs boson
parameters are contained in the effective Lagrangian. It i§1 recent years, thereby extending the results which were
well known from chiral perturbation theofy13,17] that one  obtained a long time agi8,9]. Gradually the importance to
can use the equations of motion which are derived from thénaintain gauge invariance in the matching procedure was
lowest order effective Lagrangian to remove redundant term&ecognized. Whereas the matching was performed with
that appear at higher orders in the low-energy expansiorffauge-dependent Green’s functions in Réfl, the authors
This procedure is well defined within a functional approach®f Refs.[20,21] proposed new methods to overcome these
where one performs an expansion around the solutions of tHiaUge artifacts. See R¢R2] for a more detailed account of -
classical equations of motion in the path-integral representdl® development. The extension of the method proposed in
tion of the generating functional of suitably chosen Green'sX€f. [20] to the two-loop level was discussed in RE23].
functions. It is only in this framework where we will use the Nevertheless, the problems with gauge dependencies have
equations of motion later on. Equivalently, one can also re0t Yet been fully resolved. In the meantime similar match-
move terms in the effective Lagrangian by performing ap-N9 calculgnons havg bgen perfprmed for various models
propriate reparametrizations of the fields and external24—28 without considering the issue of gauge invariance
sources in the path integrgl8]. any further. _ _

In the usual gauge-dependent framework the equations of 10 avoid any problems with gauge dependencies one
motion for the gauge fields are gauge-dependent. For inshould_ in fact match only gauge-invariant quantities, su_ch as
stance, contributions from the gauge-fixing terms and fromp>Matrix elementd20]. As it turns out, however, matching
the non-gauge-invariant source terms would appear in Eqs>Matrix elements is quite cumbersome because one has to
(2.34—(2.36 below. It is doubtful whether these equations deal with the Whole_ infrared physics. _Techmques which in-
can then be used to eliminate redundant gauge—invariaMOlve Green'’s functions are muc_h easier to use. We_ ther_efore
terms from the effective Lagrangian. As a matter of fact, wePrOPOSe to match Green’s functions of gauge-invariant fields
do not know of any reference where this has been tried. Th# order to determine the effective Lagrangian. In this way
equations of motion in our approach are gauge-invariant’0 9auge artifacts can appear through the matching proce-
Employing them we first show for a purely bosonic effective duré and one can employ functional meth¢ag]. For the
field theory, i.e. when no fermions are included in the effec/Abelian Higgs model such a manifestly gauge-invariant
tive Lagrangian, that the set of parameters currently used i"atching calculation has been performed in iR22]. Inthe
the literature contains two redundant low-energy constantB'€Sent paper we show how one can determine the effective
which can be removed. In particular, one can choose to ré-agrangian for the standard model with a heavy Higgs boson
move two low-energy constants which contribute to the selfPY matching gauge-invariant Green's functions in the full
energies of the gauge bosons which are not observable an nd the_z effective theory at low energies at the one-loc_)p level.
way. If fermions are present, the situation is more involvedor this purpose we can use a generating functional of
We will show that these two parameters renormalize the coud@uge-invariant Green's functions for the bosonic sector of
pling of the massive gauge bosons to charged and neutriie stand.ard model Whlph was discussed in a recent paper
currents and, thus, have no physical meaning in a full effect16]- In this way the starting point of the matching procedure
tive Lagrangian analysis. The relation of this result to the!S Well defined and gauge invariance is manifestly preserved
experimentally determined values for the oblique parameterdroughout the whole calculation. o
S,T, andU [2] as quoted by the particle data group will be In view of the fact that all fits to electroweak precision
discussed. data olver the _Iast couple of years tend to prefer. a light Higgs

The second topic of this paper is to study the evaluatioP0S0n, we will regard the standard model with a heavy
of the low-energy constants in the effective Lagrangian for 411995 boson merely as a model of a strongly interacting
given underlying theory. Comparing the theoretical predic-Symmetry breaking sector, where, however, perturbation
tions for the low-energy constants for different models withth€ory can still be applied if the coupling constant is not too
experimental constraints might help to rule out some of thétrong. Thus, it serves as a testing ground for our gauge-
underlying theories under consideration before direct effectdlvariant method of matching. The corresponding values for
become visible. This point motivates to determine the valued1€ Iow-energy constants will also represent a reference point
of the low-energy constants in the effective theory for vari-fOr Other strongly interacting models. As pointed out in Ref.
ous models. At low energies, the standard model with 429], it is very difficult to get any rellable estlmat.e for the
heavy Higgs boson in the spontaneously broken phase cd@W-energy parameters for genuinely strongly interacting
adequately be described by such an effective field theory. If70dels of the electroweak symmetry breaking sector.
order to determine the effective Lagrangian one can require, 1S paper is organized as follows: In the next section we
for instance, that corresponding Green’s functions in bot{ntroduce the general effective field theory for a strongly
theories have the same low-energy structure. One can tak@teracting electroweak symmetry breaking sector within the
this matching condition as the definition of the effective field 92uge-invariant functional framework presented in iR8).
theory. At this point the issue of gauge invariance is crucial.

If gauge-dependent Green'’s functions are used in this match-
ing procedure one has to make sure that no gauge artifactsFor instance, at the Moriond 2000 meeting the vaMg,
enter the low-energy constants of the effective Lagrangian.=(67'5) GeV was presentef®8].

113006-2



THE ELECTROWEAK CHIRAL LAGRANGIAN REANALYZED PHYSICAL REVIEW D 62 113006

We discuss our choice of gauge-invariant operators and thean be described by an effective Lagrangian which respects
corresponding source terms which emit one-particle states d@hese (possibly brokeh symmetries[15]. In our case this

the gauge bosons. We then determine the number of indé-agrangian is gauge-invariant and depends on the Goldstone
|oer;dentt low-energy cgns:jantts tby em?loyintghthe fiqutatioan %oson fieldU, confined to the spherd'U=1, theSU(2),
motion to remove redundant terms from the effective La- CHANR ([ — R

grangian. We sketch the inclusion of fermions in the effec-9219¢ fieldshv, (a 1;12’3)’ thel(1)y gauge fields,,, and

tive field theory and relate our findings to the experimentallyeXternal sourcet,,,J,, (a=1.2,3)
determined oblique paramete®s T, andU. In order to pre- — = = = -
pare the matching calculation in the second part of this paper Leti=Leti(Wy,,Buy,U,D,UDLDU, Ky, T0),
we briefly recapitulate in Sec. Ill the main results from our (2.2

manifestly gauge-invariant approach to the standard model i
[16]. We calculate the generating functional for the gauge—Where t_he Goldstone boson QOubldt 1S c;oupled to the
auge fields through the covariant derivative

invariant Green’s functions in the bosonic sector up to the?
one-loop level. In this section we also present the renormal- L 2 N

ization prescriptions for the fields, the mass parameter and D,U=|4d,—i ?Wi—i EB“ u. 2.3
the coupling constants of the model. In Sec. IV we evaluate

the matching condition between gauge-invariant Green’s _ — =
functions in the full and the effective theory at low energiesNOte that we have absorbed the coupling constgréadg
at the one-loop level for the case of the standard model witfinto the gauge field3V%, and B,,, respectively. The field
a heavy Higgs boson. The effective Lagrangian for thestrengths are given by

bosonic sector is determined up to ordef in the low-
energy expansion. In Sec. V we express the result for the
effective Lagrangian in terms of the physical masses of the . . .

Higgs and the gauge bosons and the electric charge. Finally, B.,=d,B,—d,B,. (2.5

we compare our results with those obtained by other groups.

We summarize our findings in Sec. VI. The source termsThe fields and the sources in the effective theory have been
which appear in the general effective Lagrangian at opder denoted with a bar in order to distinguish them from those
are listed in Appendix A. The relations between our set ofoccurring in the standard model which will be discussed be-
operators for the electroweak chiral Lagrangian and the basisw. The Goldstone boson fielt) and the gauge fields

which is usually used in the literature can be found in AP'V_V;'":EM transform underSU(2), gauge transformations in
pendix B. Some technical details needed for the calculatiogy,

4 X X e following way:
of the one-loop generating functional in the standard model

uvs

,= 9, Wa— 3, W2+ e 3PWPWE (2.9

§9’|

are presented in Appendix C. U=WU. Ve SuU(2)
Il. EFFECTIVE FIELD THEORY _ — + — = 2
W, —- W, V' —-i(g V)V, W, =W, 2.6
A. The general effective Lagrangian w P () o2 @8

In this section we will discuss the general effective field
theory for the bosonfcpart of a strongly interacting elec-
troweak symmetry breaking sector, closely following the U_e o2y
functional approach to the standard model introduced in Ref. ’
[16]. The relation of our approach to the one that is usually
adopted in the literatur8—11] will be discussed below. Ac-
cording to Refs[12,13 the effective field theory should de-
scribe the physics of the underlying full theory at low ener-
gies. We assume that

and undeU(1)y gauge transformations as follows:

gﬁegﬂ—ﬁ#w. (2.7

The effective Lagrangian in Eq2.2) describes the dy-
namics of the massive gauge bostits ,Z,,, and the mass-
less photorKM. In order to have nontrivial solutions of the
p?, M\ZN , M%« M?, (2.2 equations of motion, we furthermore couple external sources,

denoted byK,,, andJ2 in Eq. (2.2), to the gauge fields. In

wherep is a typical momentum anif is the mass scale for e applications that we will discuss below we will be forced
heavy particles in the underlying theory, e.g. a heavy Higasq deal with off-shell quantities. Therefore, we want to pre-

boson in the standard model or a techn_irhp in some tec_hméerve the gauge symmetry, which is imposed in the construc-
color model[31]. I_n general, symmetry_prlnmples are crucial ion of the effective Lagrangian, even in the presence of
for the construction of the effective field theory and, apartihese external sources.

from the occurrence of anomalies, the effective field theory  aq giscussed in detail for the Abelian Higgs model in Ref.

[22], for QED in Ref.[32], and for the standard model in
Ref.[16], the appropriate choice of the source terms is cru-
2The electroweak chiral Lagrangian including matter fields wascial for a manifestly gauge-invariant analysis. The sources
presented in Ref.30]. will only respect the gauge symmetry, if they do not couple
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to the gauge degrees of freedom. Otherwise, one has to inB . For the massive gauge bosons the situation is more

pose constraints on the fields in order to solve the equatiorm | Wh he field® . is full 2) X U(1
of motion. Usually, this problem is cured by fixing a gauge. volved. ereas the field, is fu y_SU( )L U(L)y

However, one can also turn the argument around and cord@uge-invariant, the charged gauge fiells have a residual
sider only those external sources which couple to gaugedaUd¢ depe”‘gence under tbg1)y gauge transformations
invariant operators. As we will see below, such a manifestlyom EG. (3.4):
gauge-invariant treatment is in fact possible at the classical
level as well as when quantum corrections are taken into

account. :

In this respect our approach to the effective field theoryWe .car?, however, comper\sate_t+h|s gauge dependence by
description of a strongly interacting electroweak symmetrymur[Iplylng the charged fieldsy, by a phage faptor
breaking sector differs from the one that is usually adopted36:37,32,16 AppropriateSU(2), X U(1)y gauge-invariant
in the literaturel8—11]. Although the authors of these refer- SOUrce terms for all the fields can then be written in the
ences also start with a gauge-invariant effective LagrangiafP!lowing way:
they then add gauge-fixing and Faddeev-Popov terms. Since — — —_— . —— — —
these terms break the gauge symmetry these authors, as well KB, J;(’D+WM tue W, J/ZLZM’ (2.16
as those of Refs[19-21,23-2f are then working with ) —
gauge-dependent Green’s functions. with external sourcek,, ,

In order to write down appropriate source terms we will EQ- (2.16 is defined by
first introduce fields for the dynamical degrees of freedom o o
which are already invariant under the non-Abelian group (f(x):ex;{:if dYyGo(x—y)d,B,(y) |, (2.17
SU(2), and, in parts, under the Abelian group(1)y as
well. It has been known for a long timg83-393 that all ;i
fields in the standard model Lagrangian can be written, in the

Wi —e W (2.15

J,,, andJZ. The phase factor in

spontaneously broken phase, in a gauge-invariant way up to 1
the unbrokerlJ (1)em. A similar approach can be employed Go(x—y)=(x| EM- (2.18
for the effective field theory description. Defining the
Y-charge conjugate doublet by For computational convenience we are working in Euclidean
_ o space-time.
U=irU*, (2.9 Using identities of the form
. P . — == -
we can introduce the following fields, see also Ré&f|: D,U= EZMU_I ; ,
_ o, — e,
W, = E(UT(D#U)—(DMU)TU), (2.9 I S
D, U=-i ﬂU—EZM ,
e
W“=§(UT(DuU)—(DHU)TU), (2.10 i 1\
D,D,U= 5(8,[5”)— 722 W Wy U
z,=i(U'(D,U)-U"(D,U)), (2.11) 1 1 |-
+ —Id#WV‘FE u V_EZMWV u,
— =
A,=B,+s°Z,, (2.12
e - — 1 1— _\—
—, 01— D D,,Uz(—id W, +=ZW, — = ZV)U
W =5 WIW5), (2.13 g v o2
I — 1— — — =
L=
which are invariant under th@U(2), gauge transformations +( B 5(‘9ﬂzv)_ ZZMZV_ uWVy ) U,
from Eq.(2.6). In Eq.(2.12 we used the following definition
of the weak mixing angle: (2.19
_ _ — — where
c’=cog fy=M3 /M2, s?=1-c2 (2.14 - B
d, W, =(d,7iB, )W, , (2.20

In order to calculate Green’s functions from which we
then can extract physical masses, coupling constants and
Smatrix elements, we have to introduce external sources -
which emit one-particle states of the gauge bosons. In anal-*Note that theSU(2), invariant field A, from Eq.(2.12 trans-
ogy to our effective field theory analysis of the Abelian forms underU(1)y as.A,—.A,—d,o, i.e. like an Abelian gauge
Higgs model[22] we couple a source to the field strength field.
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one can express the Lagrangian in terms of the fieldghese rules requires that the coupling constapty’ and

W, ,Z,,B,, and covariant derivatives thereof therefore the electromagnetic coupling constrdefined in

_ Eqg. (2.32 below, are also treated as quantities of order

i ,Jff,)- (2.2)  Note that this is different from the usual dimensional analy-
_ sis: the coupling constants have dimension (nfasat they

As a matter of convenience we write the fielj, in Eq.  count as ordep in the low-energy expansion. This is similar

‘Ceff:[:eff(v_vz 15;1,75“1 e ;Rﬂ,yy

(2.21) instead of the photon fiem\_oﬂ, to chiral perturbation theory where the quark massgsare
The generating functional in the effective field theory is quantities of ordemp? [13] and where the electromagnetic

given by the path integral coupling constane is counted as ordep if virtual photons
are included 38]. Our counting rules furthermore imply that

efweff[iwji ,Tj’]:f d,u[U,V_\/a Eﬂ]e,fddxﬁe”_ coshy and sing, are tr'eate_d as quantities of ordeP,
(2.22 whereas the gauge field$V},B, and therefore also

_'_ w,, Z,, and A#_c?unt ii; quantities of o_rc.iqx Finally,

Note that we still integrate over the original fieldsW?,  the external sourcel, andJ,, count as quantities of order

and B, in Eq. (2.22. Furthermore, we have absorbed anWhile the sourceK,,, and the phase factap™ are of order
appropriate normalization factor into the measureP

d,u[U,V_Va ’gﬂ]. Derivatives of this functional with respect In general, there are two different kinds of contributions

, . .. to the generating functional. On the one hand, one has tree-
to the sourceK,, generate Green's functions of the field oyq| contributions given by the integrdld®x e, which
strengthB,,,, while derivatives with respect td, andJ;  has to be evaluated at the stationary point, i.e., with the so-
generate Green’s functions for the gauge-invariant fieldsutions of the equations of motion. On the other hand there
qfwj and Z,,, respectively. As was pointed out in Refs. are contributions from loops, which ensure unitarity. General
[22,32,14 it is possible to evaluate the path integral in Eq. power counting arguments show thatoop corrections are
(2.22 without the need to fix a gauge as will be shown suppressed by at leasthDowers of the momentuir2]. For
below. instance, tree-level contributions with one vertex frap
The effective Lagrangiartes; in Eq. (2.21) is a sum of and any number of vertices froui, are of orderp¥, while
terms with an increasing number of derivatives, mass factorgyne-loop corrections with one vertex frofy and any num-
and powers of external sources, corresponding to an expaber of vertices fromC, are of ordep**2. On the other hand,

sion in powers of the momenta and the masses, graphs with more vertices fronf,, wherek’>2 or with
more loops are suppressed by additional powers of the mo-
Legt=Lot Lyt Lo+, (223  mentum. The corresponding expansion of the generating

functional is denoted by
where £, is of orderp* and has the general form
Weff:W2+W4+ W6+ cey (223

£k=2i 190, (224 whereW, is of orderpX.

. . )
The coefficientd ¥ in Eq. (2.24 represent the low-energy 1. The generating functional at ordep

constants of the effective theory and count as opferThe At order p? the effective Lagrangian can be written in the
operatorsOi(k) involve the light fields and the sources in form
such a way that they respect ti&U(2), X U(1)y gauge
symmetry.

In order to evaluate the low-energy expansion up to a .
given order, we follow the counting rules usually adopted inWlth
chiral perturbation theor§12,13 for the bookkeeping of the — 1
terms in the effect|v_e Lagrangian. Thesg rul_es are necessary  ,O0_" (W4 poZ Z |+ — 2 2
for the internal consistency of the effective field theory. We 2\ # 492 MU
note that they are formulated completely within the frame-
work of the effective field theory. In particular, there is no 1 - —
expansion with respect to some heavy mass scale in the un- + 47 B (227
derlying theory involved. We thus treat the covariant deriva-

tive D, the gauge boson masskék, andM; and the mo-  and
menta as quantities of ordg; while the Goldstone boson

field U is of orderp®. In counting the massed, andM; as rs EK B + 2v_2(j_+1/_\2’ +j_’)/_v+) 122322
m mr M

Lo=LI+L5, (2.26

order p, the low-energy expansion is carried out at a fixed 2= T QR wPuy
ratio pZ/M\ZN andp?/M2, and correctly reproduces all singu- _

— T oI
larities associated with the gauge bosons. The consistency of +acyw?d,d, +c?dy, (2.28
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where
Wa, =9, Wa-a, W 23+eW oW, a=123,
(2.29
M=§M+§M’ (2.30
=0, (2.3D

The Lagrangianld contains only the mass terms and the
kinetic terms of the gauge bosons in the effective theory
Note that in the general effective Lagrangid@i in Eq.

(2.28 there appear additional contact terms involving the

external sources only. The masses of the gauge bosons, t

PHYSICAL REVIEW D362 113006

der gauge transformations. Similarly, the electric cha_rgiﬂe
determined by the coupling of the charged gauge bos&jn

to the photon field4,, . The low-energy constants and p

—1 are of ordep®. Note thatp=M35c?/ M3, is the inverse of
the usualp-parameter. In allowingg#1 we do not assume
that custodial symmetry breaking effects vanish at leading
order in the low-energy expansion. Hence, we follow the first
paper of Ref[9] and Ref.[10]. Note that in the recent lit-
erature it became customary to include such a custodial sym-
metry breaking term only at ordg?, following the conven-
tions used in the second paper of REF] and the second

paper of Ref[19]. Since;— 1 is very small[39] this might

weak mixing angle and the electric charge can be expresséBdEEd be justified, if the low-energy expansion is carried out

through the quantities, p,qg, andE’ as follows:

, , —v’e
Mv=7g Morge
- 2
“= 2g_,2 e2=_2 g_rz (2.3
g°+g g°+

The expression for the weak mixing angT% follows from

the requirement that the field, =W 2—B,, is invariant un-

up to orderp” or higher.
At order p?, the generating functional of the effective
field theory is given by

J5),
(2.33

L= f d%L(W 2 B, K,

EES
VY

where the gauge fields satisfy the equations of motion

—d W, = —M&Y, £i(2,,+B, )W, FiW,,2,7i(3,2,)W, £i(3,2,) WV, i 2,d,W, TiZ,d,W,
—(Z,ZIW; +(Z,Z)WV, 22W, W W, =W W), (2.34
—,(2,,+B,,)= —CM3YVi+2Z, (Wi W, + Wi W, ) —4Z W W, + 21 (Wi W, =W, W)
—2i(d Wi W, —d W, W, —d, W, W, +d, W, W5, (2.35
_ __ e _
_ 2\ 2 Z
—3d,B,,=s"MZPT,, M_?%Kuv (2.36
|
Using relatign(2.12) the equationsgf motion for the massive Z —9gzZ 9z (2.40
gauge fieldZ, and the photon field{, can be obtained. The g a g
constraints are given by . 1
- - Vo=W,+4j,, Vi=2,+4=07, (2.41)
d,V,=*iZ,YV, FipVIW, (2.37) P
1 PT, =5, 20 (2.42
_Z_ . At — SA— : + V_ V_ . .
auy#—&?( =Wl (2.38 u m 0

They are obtained by varying the effective Lagrangian

with respect to the Goldstone boson fiéld In Eqs.(2.34)—
(2.38 we have introduced the quantities

w;,=d, W, —d, (2.39

=+
w

11300

The covariant derivatives id, )V, andd, ), are defined in
the same way as in E@2.20.

Several things about the equations of moti¢h34)—
(2.38 are worth notice. As discussed in REL6] the equa-
tions of motion uniquely determine only the physical degrees
of freedom since we did not fix a gauge. The equations of
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motion can be rewritten in a form which only involves fully then any gauge transformation yields another equivalent so-

SU(2)LXU(1)y gauge-invariant fields. Solutions for the ution. The indexi in 7' labels the different fields. Thus,
massive gauge boson fielwwj follow from Eg. (2.34). differentiating equatior{2.44) with respect to the gauge pa-
Suitable linear combinations of Eq®.35 and(2.36) deter-  rametersw” one obtains

mine the gauge boson fieﬁL and the transverse component

T 8%Set; OF)
of the massless photon field ,=PT,,.4,. Note that the 0 Zeff -0 (2.45
equations of motion do not determine the longitudinal com- SFISFI S™ 7 ' '
ponent of the photon field and the phase of the gauge boson B

fields V_\//f which correspond to th&J(1)y gauge degree of The quadratic form which appears in Eg.45 is identical

freedom. Even more_they do not determine the classical, e gifferential operatd?)_. If these zero modes are treated
Goldstone boson fielt either, since it corresponds to the properly[22,16], one can evaluate the path-integral represen-
SU(2). gauge degrees of freedom. Thus, gauge invariancgation for the generating functional at the one-loop level
implies that these equations have a whole class of solutiongithout the need to fix a gauge and without introducing
in terms of the original fieIdM,WZ,BM. Every two repre- ghost fields. Up to an irrelevant infinite constant one obtains
sentatives are related to each other by a gauge transformtpe following result for the generating functional of the ef-
tion. Nevertheless, the physical degrees of freedom artective field theory at ordep*:
uniquely determined by these equations of motion. More-
over, since the action is gauge-invariant, the generating func-
tional in Eq.(2.33 is uniquely determined for the given set
of source terms.

The most important point is the fact that the classical

Goldstone boson field) represents th&U(2), gauge de-
grees of freedom. Thus, no Goldstone bosons are propagat-
ing at the classical level of the theory. All gauge-invariantwWhere £y is the effective Lagrangian of ordgr'. The first
sources emit physical modes only. Moreover, E§s37 and ~ term on the right-hand side represents the classical action
(2.38, which follow from the requirement that the variation Which describes the tree-level contributions of orgérand
of the Lagrangian with respect to the Goldstone boson field” to the generating functional. The two determinants on the

U vanishes, are not equations of motion, but constraints e){_jght-hand side of this equation represent one-loop contribu-

. T o - h ing functional. The fi [ -
pressing the fact that the gauge field&)V- , Z, . andA, tions to the generating functiona e first determinant de

. scribes all one-loop contributions with vertices from the La-
couple to conserved currents. They can also be obtained by ]

taking the derivative of the equations of motion for the gaugefrangian£, where detD is defineﬁ as the product of all
fields. Note that we have already used the constraints taon-zero eigenvalues of the operallorThe second determi-
bring these equations of motion into the form given in Egs.nant originates from the path integral measure. The operator

(2.39—(2.36). _ _ _P satisfies the relatioP'D=DP=0. The fields in Eq.
We note that the equations of motion can be solved N2 46 satisfy the equations of motion. At ordpf the con-
powers of the external sources, see Re6]. tributions from L, to these equations of motion are not rel-

evant. Hence, they are given by E¢®.349—(2.38. The ex-

The one-loop contribution to the generating functionalﬂ”dt form of the differential operator® andP for the case
can be evaluated with the saddle-point method. If we writeo# 1 is very complicated and we will not write it down here.

the fluctuations/ around the classical field&® as F=F°  We note that the results f@ andP for p=1 can be inferred
+y, we obtain the following representation for the one-loopffom the corresponding differential operators in the standard

Fcl

wvr

— 1 -
(W, +W,)[K J;,Jj’]:f ddx(cz+c4)+§|ndef D

1 .
—Eln detP'P, (2.46

2. The generating functional at order

approximation to the generating functional: model, see the discussion after £4.12 below. _
The most general effective Lagrangian at orgwér is
e WeiflKuy 3y, I — g JdL g'ffJ dﬂ[ﬁe—(uz)ydf’x??y_ given by
(2.43 Lo=L3+L5. (2.47

Gauge invariance implies that the operaaf)has zero eigen- The first term can be written in the form
values corresponding to fluctuatiogswhich are equivalent

to infinitesimal gauge transformations. Indeed 7" is a £9-S 10 04
solution of the equation of motion, i.e., a stationary point of 4T T (2.48
the classical action,

18

55 where the operator®; are given by
el =0, (2.44 S
5f' F=Fel Olz(WMWﬂ)(WV Wv)’
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O,=( ot V_V_)( WEWD) which are readily verified by partial integration. On the other
moy poo hand, the Lagrangiaf, contributes only at the classical
o =(§ = )(V_V+V_V_) level. Hence, the equations of moti¢2.34)—(2.36) as well
3 w voiv as the constraint2.37) and(2.38 can also be used to elimi-
e nate further redundant termi$3,17). Equivalently, one can
O4=(2,2,) (W, W, ), also remove terms in the effective Lagrangian by performing
- appropriate reparametrizations of the fields and external
O5=(2,2,)(2,2,), sources in the path integrfl8]. Note that we have already
S eliminated all algebraically dependent terms from the lists
O6= €u1paZa( Wy Wy, T W, W), given in Eq.(2.49 and in Appendix A. Thus, we only need
S to employ the equations of motion and the constraints to
O7=1Z,, W, W, =W, W,), eliminate further redundant terms. Note that in our gauge-
S invariant approach no gauge artifacts can enter through this
Og=iB,,,( ;W;—Wj ), procedure.
The constraint$2.37) and (2.38 yield the following re-
Og=i EM(EMV_WV_V;—EMV_V;V_V:), lations between the operators in the Lagrangian
Oy=i Z,(d, WiV, —=d, W, W), O10=—2(1—p) 0, +405-405-405%, (2.52
(911: (73 2 TA 7R 013=(1_;)204_4(1_;)(924‘4(1_;)02
01=B,,2,,, +1605,~1605,+ 16054+ 4(1—p) 0%
013: (aﬂ _;)(E,,W;), - 16(9 1+ 16(9 3+ 160 741 (253

64
014_;(20 30— 03 2)+;(O49 052)+ 076'

- 1—

O15=My| W, W, + 22,2, |, (2 54
- - (1_\"S s _ s _ s
OlG—MEZ’uZM, (1 p)04+8014 4017 4051, (255)
O=WA, W2, O5,=—(1-p)Os+405,-805,—40%,, (2.50

015=B,,B ... (2.49 8 4
e O3==(205- 0 +=(03=0%). 25

We recall that we count the gauge fieltls, ,Z, and the
massesM,,,M, as orderp in the low-energy expansion,

therefore the custodial symmetry breaking tefiyy is of the O35= —(1-p)O5+4055-405,- 403, (2.58
orderp*. The second term in Eq2.47) contains all contri-
butions involving external sources: ——(1— P)O4e+4051 405,-805,, (2.59
76
L£L5= P03, (2.50 4
s _(o So— 0%,) —=05%. (2.60
p

The operatorg)? are listed in Appendix A. Note, that we
considerCP-even terms only The low-energy constahts The equations of motion fory* | Eq. (2.34), and w3, Eq.
andI? are quantities of ordep®. (2.35), yield
It is important to note, that the most general effective

Lagrangian at this order is given as a linear combination of a
maximal set of gauge-invariant terms of orgetr One can
then eliminate redundant terms by using algebraic relations
of the form +2¢?

O11= —80; +80,— 1603+ 16904+ 80, — 80— 80;5

1
- 2) 016 Ol7+ 018+ 320 s 320 s
p
~2
C
— 3205, 1603, 16—0%,, (2.61)
P

(2.51

fddx( d, W) (d,W,)= fdd (—08+013

113006-8
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015=80;—80,+803—8p0,— 407+ 40+ 80,5

— (1
—202(:—1 O16+ O17— O1g— 1605+ 1603
p
~2
S S c S

_ 32 16
= —405+405-205+2p05— =05+ =03,
P p
+803,- 16034+ 2035+ 05— 405,+205

8
_;( 29_05332)_8023_ 2024_ 16OZ5= (2.63

o= —805+4p05+3205,~ 1605,+405,— 405,

2
— C
—1603,— 2¢O~ 8?(’)27— 03,. (2.64

Note that we have frequently employed partial integrations
to derive the Eqgs(2.52—(2.64). Furthermore, we have al-

PHYSICAL REVIEW D 62 113006

2

- W

U2—>;gff= Uz( 1+ 21 1572
v

' (2.67

M? VE
- — — w z
p—perr=p—2(p— 1)l 5= +8l 16> (2.68

*—92=07(1-4l197), (2.69
9'%—0'2=0' A(1-4l59'?), (2.70
E,u,v_>_/UJ;eff:E/u;_2'?1‘]—51;v (271)
— =+ =+ 1 s M\ZN
J;%J;;effz\]; 1+ §|64_2|15 ? , (2.73

2

. M2
Ji—)Ji;eff:Ji( 1+|26?_2|15

W
. ) .73

v

64)T +—|S e

2 2
s Mw) 1 . My
02 4 65 02’

C—Cyyeff= Cw( 1+(215—

ready replaced all dependent terms on the right-hand side of (2.74
Egs. (2.61)—(2.64). Equation(2.62 can be derived by ob-
serving the identities - — — \2}\, s % s %
- Cz—Czeff=Cz 1+2|15?_2|66? +|67?'
W= —201+20,~203+20,+207+ 05— 20, .75
1 1 1 1 . . .
+20,0— ZO“_ 5012+1017_ 2018' (2.65 Hence, we end4up with the following set of independent
operators at ordep™:
and AN A
O1=W, W, )W, W,),
A A — AT A A A AT o o
WoW= =W, d W, =W, d W,  (2.60 0, ;W;)( ;W;),
which are valid up to partial integrations. Afterwards one can S ——
employ the equation of motiof2.34 to substitute the ex- 03=(2,2,) (W, W,),
pression fordMW/fV in Eq. (2.66). In the same way one can o —
obtain the relatiori2.63 for O gg. Similarly, performing par- 04=(2,2,) (W, WV,),
tial integrations in O1,+ 0y and O35,+03,) leads to o
d,(B,,+2,,) where the equation of motio(2.35 can be 05=(2,2,)(2,2,),
applied in order to obtain Eq$2.61) and(2.64). Using the o
relations(2.52—(2.64 one can eliminate the terms on the O6= €pvpaZa(W, ;,,Jr ;W;V),
left-hand side of the corresponding equations from the set of
terms in the Lagrangiad,. This reduces the number of low- O;=i Zw( _+y_\;; - y_\;j W),
energy constants by 13. Note that one has to adjust the val- a a
ues of the low-energy constants of the remaining terms ac- Og=iB, (W' W — W' W)
cordingly. We will denote the modified low-energy constants 8 pyRTTp Ty voome
by I{ andlf' in order to distinguish them from the old ones. T (A N T Dot
Finally, there are terms in the Lagrangi@n which are Oo=12,(d WV, W, =d, W, W,), 2.76
proportional to corresponding terms in the lowest order La- '
grangianL,. These are the operatot®;5, O, O17, O13g, and
_ s ( 25,_ g6 Og7, and O3,. Following the interpreta-
tion given in Refs[9,11] these terms lead to a renormaliza- 03, ...,030,05,,034,055,05,0%, - - -,
tion of the low-energy constants and sources at ogfer S s s s s
according to 63:069:072,074,07. (2.77

113006-9



ANDREAS NYFFELER AND ANDREAS SCHENK PHYSICAL REVIEW D362 113006

Thus, we obtain 9-63=72 independent low-energy con- o 2
stants which we denote by and|®' . 01,= 28015+ 8=03. (2.89
As discussed above, singe-1 is ti_ny,_some people set P

p=1 and instead add the operatdZ,Z, to the basis at This relation can also be derived from E¢®.61) and(2.62
orderp®. In order to facilitate the comparison with the litera- since the equations of motion now have the solutions
ture, we cover this case by including the term .
w,=0 (2.85
0v=M2Z,Z, =04, (2.78 _
o TR e A,=0, (2.86
with the corresponding low-energy constafinto the basis L= 5 —3 )
from Eqg. (2.76. The total number of independent low- implying B, = —s ZM_ andWM—(; Zp- Equat|ons(2.6]?,
energy constants iff,+ £, remains the same, if we trade (2-62 @nd(2.84 do, in fact, require Eq(2.86 to be satis-

~1forl’ Th t tina. h is diff i fied. This result shows clearly, that one should be careful in
P orio. The momentum counting, however, Is difterent, using equations of motion to eliminate operators in the ef-
see the discussion after E@.32.

g . . fective Lagrangian, if(some of their solutions vanish. In
Note that one cannot obtain additional relations betvveelaoing so, one may accidentally remove terms that are not

the operators i, from the equation of motion foB,,, Eq.  redundant at all.

(2.36), since it contains non-local terms involving the projec-  |n the remainder of this section we will compare our re-

tion operator P, , cf. Eq.(2.42. Let us consider this equa- sults with those obtained in the literatui#0,11. Since no

tion in greater detail. source terms have been considered in these references we
The presence of non-local terms in £8.36) results from il switch off all the sources for the moment. Furthermore,

our coupling sources to the non-local charged gauge-bosafe have to take into account that in REf1] the low-energy

fields in Eq.(2.28. Indeed, switching off the sourcel,  constanp—1 is treated as a quantity of ordp?. Thus, we

yields will compare our 10 low-energy constants
W2 =0, (2.79 I;,... g and p—1 (orequivalentlyly),
(2.8
J,Y =0. (2.80  with those obtained in the literature. The expression for the

effective Lagrangiancg in the notation which is usually

used in the literature and the relation between our set of

operators inCJ and the usual basis can be found in Appen-

v dix B. In Refs.[10,11] all operators in.§ that are propor-

9,K,. (2.81 ) - .

tional to terms in the lowest order Lagranglﬁ@ have been

discarded right at the beginning. Hence, the authors start
Multiplying this equation byZ, one obtains by partial inte- With 15 CP-even terms corresponding to the terms

Hence, Eq(2.36 simplifies to

| @

B _2M2y) 2
—3,Bu,=s MY [~ >

(@]

gration O1, ...,01,and 05 in Eq. (2.49, see also Eq(B4).
By making use of the equations of motion,fnrl(\A/M)
_ ‘2 e =0 (for notations see Appendix)Bcorresponding to our
01,=25°O 5+ 8=O§6+:ZZMKM. (2.82  constraints(2.37) and (2.38), the number of terms was re-
p ¢ duced from 15 to 12 in these references. In fact, the three
. o relations
This relation involves the new operator
_ L1;=0, (2.88
2K, (2.83
L12= 0, (289
which we did not consider because it is physically irrelevant.
In the case of the standard model the soufce enters the 1 —
Lagrangian as in Eq3.12 below. As will be shown in Sec. Lis= 7BuBuytLitla—Ls—LetLs+ Lo,
IV, this in turn implies that the corresponding effective field (2.90

theory involves the sourc&,, only through the single ) 4 )
source term introduced in E(2.28. As long as the fiel, ~ 9'Ven In Ref.[11]" correspond to Eqs2.52~(2.54), if we
describes a weakly interactirg(1)y gauge field, this is in Set all sources to zero and assuprel at leading order, i.e.
fact true for any underlying theory. Hence, operators as thé0
one shown in Eq{(2.83 need not be considered and Eq.
(2.82 cannot be used to eliminate further redundant terms.

If the sourceK ,, is switched off as well, E(2.82 sim- “We obtain a different sign of the ternis, andLg in Eq. (2.90
plifies to compared to Refl11].
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010=0, 013=0, 00,=0. (2.91) In summary, in a purely bosonic effective field theory
with the same symmetry breaking pattern as the standard
Note especially that Eq2.90 corresponds t@;,=0 in our  model, there are only 10 instead of 12 physically relevant
basis, cf. the relation between the two sets of operators whiclow-energy constants at ordef in the electroweak chiral
is given in Eq.(B6). Lagrangian. In particular, one can choose to remove two
In addition to the constraints we furthermore use thelow-energy constants; andl;, which contribute to the self-
equations of motion for the gauge field&34 and(2.35 to  energies of the gauge bosons. An additional number of 63
reduce the number of low-energy constants from 12 to 10low-energy constants contributes to the off-shell behavior of
Since this step was not taken in Refd0,1] the set of  our gauge-invariant Green’s functions. The latter low-energy
low-energy constants used in these references is redundantonstants, however, do not enter physical quantities.
This is an important result and we would like to add some The situation is more involved, however, if fermions are

comments. First of all, we stress again that we are studying,cjuded in the analysis, since in that case the sou?ﬁe&nd
for the moment a purely bosonic effective field theory which— | tain fermioni ts. We will ¢
describes any underlying theory with the same symmetr p IS0 contain fermionic currents. We will now comment on
breaking pattern as the standard model, i.e. no fermions ha Q'S point.

been included in the effective Lagrangian. In order to really

compare our findings with Ref§10,11] one has to consider B. On the inclusion of fermions

the fermions in the analysis, which was implicitly done in  The fermionic part of the effective Lagrangian is of the
these references, see also Refl]. We will come back to  form

this point below.

Using Egs.(2.61) and(2.62 we havechosento remove Ll=Ll (WE uk, d ,U,DM‘lfk 'DMUE,
the operators),; and O, from the effective Lagrangian in L
Eq. (2.49. These operators contribute to the self-energies of D,d&,D,U, ... ;M NS MELNE), (2,92

the gauge bosons which are not observable anyway. In the

basis which is usually used in the literature this correspondwhere\If‘,f denotes the left-handed iso-doublet fields Wﬂﬂe

to removing the operatork; and Lg from the basis, see and U'é represent right-handed up- and down-type fermion

Appendix B. Sometimes the corresponding low-energy confields comprising leptons and quarks. Note that all our fer-

stantsa; and ag are identified with the oblique correction mijon fields are weak eigenstates. The quantisg and

parametersS and U [2]. Furthermore, the parametdris Nk . denote external sources coupling to these fermion

identified with the low-energy constars, which corre-  fie[ds, As discussed for the bosonic part, the effective La-

sponds top—1, or, depending on the momentum counting, grangian is a sum of terms with an increasing number of

to the low-energy constamf in our basis. Before any con- derivatives and powers of fields and sources corresponding

clusions about the oblique parameters can be drawn, howe an expansion of the generating functional in powers of the

ever, one has to study the inclusion of fermions in the effecmomenta and the masses. In addition to the counting rules

tive field theory. This will be done below where we will discussed above we require that fermion fields are treated as

compare our results with the experimentally determined valguantities of order/p and fermion masses, denoted iy,

ues for the oblique paramete®s T, andU. as of ordem. This ensures that the low-energy expansion is
Of course, within our functional approach the sourcecarried out at a fixed ratim'f‘/p.

terms have to be considered as well. Even in this case, how- The left-handed iso-doublet fields transform under

ever, only the 10 low-energy constanfs . .. |g and;— 1 SU(2), gauge transformations in the following way:
(or equivalentlylg) will contribute to physical quantities, . .
like Smatrix elements, masses and decay constants of gauge Vi—V¥[, VeSUQ2), (2.93

bosons. The first group of source terms which will obviously . _
not contribute to physical quantities are the contact term&nd undetU(1)y gauge transformations as follows:
S S S S S S H
e5: Og7: Ogg, 075, O7,, and O 74 with two powers of KT el 2k
the external sources, cf. EGA3), and all terms inZ$ with Pi—e YTIR2gr, (2.99

three or four powers of the fields and sources which contain . .
at least one factor with an external source, i.e. the operatorsh€ iSo-singlets transform undéf(1)y gauge transforma-

S ....0%in Egs.(AL) and(A2). This is due to the fact tions in the following way:
that in physicalS-matrix elements all external lines are am- K mivbywr2,
putated from the Green’s functions. The corresponding low- Ur—#€ R 7UR,
energy constants are thus similar to the constapts the
ordinary chiral Lagrangiaf13]. Furthermore, with the help dgﬁe*iY(dﬁ)w/ng, (2.95

of Egs.(2.63), (2.64), (2.59, and(2.60, one can remove the

operatorsOgg, 079,07, and 07 from the basis. Finally, The hypercharges for lepton fields ar¢¥¥)=—1, Y(uf)

the operator®)g,, O and 07, lead only to a renormaliza- =0 and Y(d&)=—2 while those for quark fields are
4

tion of the sourced,, ,J7, andK,,, in the lowest order ef- Y(¥{)=%, Y(uk)=4% and Y(dk)=—2. The covariant de-

fective Lagrangian in Eq(2.28), cf. Egs.(2.7)—(2.73. rivatives for the fermion fields in Eq2.92 are given by
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K .Ta—a Y(W L) K
D,V = aﬂ_'fwﬂ_' > YL, (2,99

Dﬂfé=(ﬁﬂ—| (ZR) )fg, f=ud. (297

PHYSICAL REVIEW D362 113006

J;/R'ijg _(UL/R'Y,uuL/R dL/R?’MdL/R)a (2.109

f X .k k. 4k
JM’Q: Ek: (Qukug v, up +Qqrd( v, df

Following our approach to the bosonic sector, we can + QurURY, Uk Qaedy, dR). (2.110

rewrite the effective Lagrangiaf2.92 in terms ofSU(2),_
invariant fields, which are defined §32]

ST (2.99
dk=utwk, (2.99

They transform undet (1)y gauge transformations as

vk
uIE_>ele(uL)w/2ullf ,

dk e ivdderzgk (2.100

whereY(uf)=Y(uk) andY(df)=Y(dK).
At order p? the fermionic part of the effective Lagrangian
contains several terms

Lh=ptking g0 £hCCr pENCy pI4F 4 £l
(2.101)

The electromagnetic charges are given by the quantities
Q=21Y(f¥). The Yukawa coupling constanty; and hj;
count as quantities of ordgrin the low-energy expansion.
This ensures that fermion massp%are treated as of order
as well. The constanisl. andcy,. are of ordemp®. Gauge-
invariant sources for fermions are readily constructed. We do
not need to discuss this point here and refer the interested
reader to Ref[32].

A general effective Lagrangian analysis involvespri-
ori, all possible couplings between the fermions and the
gauge bosons. Invariance undéfl) gauge transformations
completely determines only the coupling between fermions
and the photon. The coupling between fermions and the mas-
sive gauge bosons, on the other hand, is only restricted such
that the constants!. andcy,c vanish if the electromagnetic
charge is not conserved at the vertex. However, from experi-
ment one knows that many of these low-energy constants are
very small, e.g. the couplings of the massive gauge bosons to
right-handed fermions or those couplings which induce

They denote the kinetic part of the Lagrangian, the Yukawdlavor-changing neutral currents or lepton-number violation.
couplings, the coupling to charged and neutral currents, fourfherefore, in analogy to the low-energy const,aﬁtl in the
fermion interactions and source terms. The first four termdosonic sector, one might set these low-energy constants in
can readily be inferred from the corresponding terms in theﬁf2 equal to zero and consider them only at orgérin the

fermionic sector of the standard modap]

ki Z( dfip df+ukiD uk+dip d&+ukipuk),
(2.102

:@ (EﬁLdHEﬁRdHEJ +h* ugub),
(2.103

/chc EC”L ]LIJ +V_V;j;'ij+)

o

LB iR+ W, R, (2.104

fNC_ ij,L~ 1qL,ij3 ij, Rz R,ij3_ 2 f,.Q =
ch Zc z,35 +Ec 2z, 38—z |

(2.109
where
D,fl r= (3, ~1IQuAl s, (2100
JL/R 1+ = L/RyuuL/R' (2.107
JL/R 1 —UIL/RVMdjL/R: (2.108

effective Lagrangian. In general, however, these coupling
constants are already present at onoer

It is interesting to note that the coupling to charged and
neutral currents can readily be derived from E2.28 by
substituting

v ]H—w Jﬂ+2 CchJ;LLII++iEj c'éCijf'”, (2.111)

U_Zji' ZJZ+2 CIJ LJL|13+2 CIJ RJR|13 ZJIL,Q_
(2.112
For the case of four-fermion interactions this is also true. In

substituting

U ],u_’v J,,,+E dlj L LIJ++2 dlj R Rij+, (2.113

U2 742 ij,LqL,ij3 ij,RqRIj3_"221f,
v2IZ—v JM+; difgas +i2j dilahis—_s2yte,
(2.119
all four-fermion interactions of the current-current type can
be generated from the last two terms in Eg.28. One

should note, however, that there are other four-fermion inter-
actions, which are not of this type and which cannot be gen-
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erated in this way. The same procedure works at opder this respect, no complete effective Lagrangian analysis was
Using our source terms given in Appendix A one can generattempted in these references. The constraint equations then

ate a host of terms involving the interaction of fermionic (g|ate tr© ,V,) to a four-fermion term which can be trans-
nY

currents. Again, a con_siderable number (_)f the correspondingy med further by employing the equations of motion for the
low-energy constants is, however, either irrelevant to the cur]; . Th ity t ) is th tional to th
rent experimental situation or is very small. All terms involv- ermions. The quantity ti,,V,) is then proportional to the

ing four powers of currents and/or gauge fields, for exampleSduare of the fermion masses which are small for external
contribute to eight-fermion processes only. fight fermions. Only in this approximate sense the terms
One should also note, that terms of orgérre already of ~L11,L12, @ndL 3 have been removed from the basis in Refs.
next-to-next-to-leading order if fermions are present. This id10,11. The application of the equations of motion for the
due to the fact that fermionic fields count as ord@. gauge fields, on the other hand, leads to fermionic operators

Hence, the effective Lagrangian also contains terms of ord hich would modify the usual couplings_ of the fermions to
p3, for example the gauge bosons. Therefore, no reduction of the number of

independent terms can be achieved in this framework. This
interplay of bosonic and fermionic operators when employ-
ing the equations of motion was also noted in R&fl]. In
. ) ) .. that paper a heavy Higgs boson is integrated out of the stan-
Thls is well known _from the effective Lagrangian analysis of yorq4 model including the fermions. However, no complete
pion-nucleon physicf40]. , effective field theory analysis including the most general
Now we are in the position to resume the comparison otqplings of the fermions to the gauge bosons was given in
our findings for the number of independent low-energy CoNya¢ reference. Furthermore, only the constraint equations,

stants .in the electroweak chiral Lagrangian with the re.sult§]ot the equations of motion for the gauge fields, have been
found in Refs[10,11,2]. Furthermore, we want to clarify 54 to reduce the number of operators in the basis.

the role of the oblique correction paramet&sT, andU [2] The low-energy constants, andag are sometimes iden-
within our effective field theory analysis. _ tified with the oblique correction paramete®sand U [2].
Obviously the analysis presented in the preceding subsegypat s the relation of the above findings to the experimen-

tion is not affected by the presence of the fermions. One Cafyly determined values for the oblique paramét&sT, and
use the equations of motion to eliminate the same operatorg, quoted by the particle data groig9]?

The only difference is that these equations now depend on proy gy point of view it is not possible to directly iden-
a linear combination of external and fermionic currents. In tify the low-energy constantbyy,l;,, and s, or equiva-

particular, one can again remove the low-energy C%Stami%ntly, ag,a,, andag with the oblique correction parameters
l13 andl1,. This will renormalize the external currenl§ S T, andU. The reason is the following: the definition of
andJi as well as the coupling constamié; andcy . in Eqs.  the oblique parameters by Peskin and Takeuyéfiis in-
(2.104 and(2.1095 among other quantities. Hence, the com-tended to parametrize the effects of heavy new physés
plete low-energy analysis of a strongly interacting elec-yondthe standard model on the self-energies of the gauge
troweak symmetry breaking sector does not involve the lowbosons. In particular, it is assumed that there exists an el-
energy constants; andl,,, or equivalently, the low-energy ementary Higgs boson and that the full Lagrangian can be
constantsa; andag in the usual basis. These constants con-decomposed in the forms, =Lyt Lpew- This is also re-
tribute to the self-energies of the gauge bosons which are ndiected by the fact that one has always to specify a reference
observable anyway. Note, that the situation here is similar tvalue for the Higgs boson mass when quoting results for
the one described in the purely bosonic effective field theoryS, T, andU. In contrast to that, the parametrization of new
The low-energy constants? andp—1 in £,, Eq.(2.27), are physics by means of the electroweak chiral Lagrangian as-
of orderp®, however, there are terms ify, which renormal-  SUMes that the electroweak symmetry breaking is mediated
ize these low-energy constants as described in E2/67) by a strongly interacting theory. This might either be the
and (2.69. In the same way, removing; andl,, modifies  Standard model with a heavy Higgs boson or another, genu-
two of the coupling constantsgc and CHC at order p?. m_ely stron_gly mt_eractlng model like technicolor where no
Therefore, it is not possible to remove two of the parameter:'s'|Igg|s particle exists at all. In order to mak_e contact between
¢l andcll.. instead ofl;; andl,. It should be noted, how- U'€ WO descriptions one could try to mimic any strongly
ever, that the reduction of the number of operators does n lpteracting symmetry breaking sector by studying the large

affect the result for any physical quantity evaluated by em'céggﬁlsle?glsorgrrrx)?/sesﬂignlﬁ.i Ngteérgg\g?x)er:{ tLhea:hggf (i:r??r:}gt
ploying the effective Lagrangian. P y 998 p y

As already mentioned in the previous subsection, the ste ay, since fordMHHw’ thebH|ggs| s?rcr:ordbecom?s strr]ongly
to remove the two low-energy constamts andag from the Igte(;actmg an nlor!—pehr_tur atively. The decoupling theorem
basis was not taken in Reff10,11]. These authors were [6] does not apply in this case.
interested to parametrize the electroweak symmetry breaking
sector by means of an effective chiral Lagrangian involving
only the bosonic degrees of freedofwithout the usual ®The oblique paramet€F is often identified with the low-energy
Higgs boson The couplings of the fermions to the gauge constanta, which corresponds tp—1, or, depending on the mo-
bosons were assumed to have their standard model values. tfentum counting, to the low-energy constéfi| 1 in our basis.

dlipdulul, ... . (2.115

113006-13



ANDREAS NYFFELER AND ANDREAS SCHENK PHYSICAL REVIEW D362 113006

Let us go back to Eqg2.23 and(2.24 and assume that model, following the discussion in Refl6] to which we
fermions are included and that redundant terms htegret  refer for more details. The matching calculation will be pre-
been removed. The low-energy constants have the followingented in Sec. IV.
form: The Lagrangian of the standard model without fermions is

of the form
10 = 50N +1007 (). (2.116 1 1 \
L=5D,®'D, >~ smPOT0 + 7 (@1D)2
They contain a pole terms™MA., with A, =(u% %
1672) (1/(d—4)— 3[In(4m)+I"'(1)+1]), and a renormalized 1 1
low-energy constant{'"(u). Apart from redundancy the + rngZVWiﬁ FB#VBMV’ (3.9
constantss® are universal, i.e. independent of the underly- 9

ing theory. We now assume that the finite, renormalized low- L . S
energy constants can be decomposed as follows: Wheredb—(¢z) denotes the Higgs boson doublet which is

coupled to theSU(2), gauge fieldswi (a=1,2,3) and the
|i(k),r(lu):|i(k),SM(M)+|i(k),new(M), (2.117 U(1)y gauge fieldB, through the covariant derivative

a

7-
where the first terms describe the contributions for the stan- D,®=|d,—i EWi—i 5Bu|®. (3.2
dard model with a heavy Higgs boson, i.e. the results given

below for the bosonic sector up to ordet, and the second \We have again absorbed the coupling constgrtsdg’ into
terms describe new physics effects. In generalkfert the  the gauge fieldsw? and B,, respectively. The field
contributionsl{¥"*M(u) diverge forM,—, indicating that  strengths are defined analogously to E8s4) and(2.5). The
one enters the strongly interacting regime where the perturkiggs field ® transforms undeBU(2), gauge transforma-

bative analysis breaks down. tions in the following way:
The definition of S, T, and U given by Peskin and
Takeuchi[2] now amounts to settinf)""**( ) =0 for all i O—VD, VeSU(2), (3.3

andk except fork=4 andi=11,12 and 16. This introduces .

three finite parameters independent of each other to descrit@d undetU(1)y gauge transformations as follows:
new physics effects. At this point the effective Lagrangian o192 3.4

still involves a redundant set of operat@?$ which can be —€ ' (34
reduced by employing the equations of motion. Hence, one For m?>>0 the classical potential has its minimum at a

can again remove the operata@ds, and O4,. In the present nonzero valuebT®=m?\ and theSU(2), X U(1)y sym-

situation, however, this does not reduce the number of indeﬁnetry is spontaneously broken down ti(1),.,. Accord-
em:*

gegtrjaetgtrsparameters. It merely moves them to some Othen’igly, the field ® describes one massive mode, the Higgs
pTo clo;s,e this section we note that approoriate SoUrc article, and three Goldstone bosons which render the gauge
! 'on w pproprt Ufields W and Z massive. Finally, the spectrum contains the

terms 1:2:/ trr;enrernmc'ionislgrle gllven Ir’li I?]E{BZf].nge)r/] ?rreth massless photon. At tree level, the masses and the electric
gauge-invariant and yi€ld local equations of moton To ecoupling constane are given by the relations

fermion fields. These equations can then be used to eliminate
additional terms in the effective Lagrangian at orgérand m?g?
at orderp®. A complete analysis including the fermions and Mﬁ:2m2, M\ZN= ,
the corresponding source terms is, however, beyond the 4ax

scope of the present work.

WL C iRl
Z 4)\ )
IIl. A MANIFESTLY GAUGE-INVARIANT APPROACH
TO THE STANDARD MODEL gzg'z
2_
A. The Lagrangian and the gauge-invariant e _gz+g'2' (3.5

generating functional

The standard model with a heavy Higgs boson can bé&Ve will use the same definition of the weak mixing angle as
described by an effective Lagrangian as introduced in thén the effective field theory, cf. Eq2.14).
previous section. For this specific case, the corresponding In order to have nontrivial solutions of the equations of
low-energy constants can be calculated explicitly in perturmotion, we furthermore couple external sources to the gauge
bation theory if the coupling constant of the Higgs boson isfields and the Higgs boson. As in the preceding section we
not too large. The effective Lagrangian can be evaluated byvill couple sources only to gauge-invariant operators. Again
matching the standard model and the effective theory at lowve introduce another set of fields for the dynamical degrees
energies. In this section we will briefly introduce our gauge-of freedom which are already invariant under the non-
invariant approach to the bosonic sector of the standarébelian group SU(2), and, in parts, under the Abelian
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groupU(1)y as well. It is convenient to use a polar repre-
sentation for the Higgs doublet field

b= m RU
N ehas
where the unitary fieldJ, satisfyingUTU=1, describes the
three Goldstone bosons, while the radial compotfergpre-
sents the Higgs boson. Furthermore, we defineYtobarge
conjugate doublet

(3.6)

O=ir,0*. (3.7
We introduce the following operators:
~ ~ m
V,=i®'D,+i®'D, b= —RW,,
~ ~ m
V,=—®'D,0+0'D, b= ——RW],
- - m?2
V,=i®'D,»-i®'D, 0= —R*Z,, (3.9
and
+ 1 1—:y/2
Vi =5 (VLFiVi), (3.9

where theSU(2), gauge-invariant fieldstL and Z,, are
defined analogously to Eq$2.9—(2.11). Up to a constant
factor the operatorS/'M in Eq. (3.8 correspond to the cur-
rents of the global symmetrU(2)g.

PHYSICAL REVIEW D 62 113006

1

— aby /b
source V

1
KB+ 3203V | (3.12

1h<I>T<D
2 S 2wy

with external sourcef,K ,,, andJi(az 1,2,3). The phase
factor in Eq.(3.12 is defined by

so(X):eXP(Tf dYyGo(x—y)3,B,(y)|, (3.13
with
0 1 0
T={ -1 0 0], (3.14
0 00

andgGy(x—vy) is given by Eq(2.18. Since the vacuum in the
spontaneously broken phase corresponds to the Riug,
Green’s functions of the fieldP'® contain one-particle
poles of the Higgs boson, whereas thossa:i)tfvf'i have one-
particle poles of the gauge bosowsand Z.

In Ref. [32] it was shown to all orders in perturbation
theory that a phase factgr which is defined analogously to
Eq. (3.13 does not spoil the renormalizability of QED. Since
the proof did not rely on any particular feature of QED, the
same should be true for the present case as well. This is due
to the fact that the phase factor only contains the Abelian
gauge degree of freedom which does not affect the dynamics
of the theory. Since the operatdr'® and the currentS/z
from Eq. (3.8) have dimension less than four, source terms
involving these operators do not spoil the renormalizability
either. The reader should note, however, that we do not have

In terms of these composite fields the Lagrangian froma formal proof of renormalizability to all orders in perturba-

Eq. (3.1) reads

1m 2 2 4
£%=5 1| 9uRO,R- mR+2R
) 1
+RA W W, + 22,2,
nga Wa 4g/ZB/'“’BIU‘V' (31@

wherve‘w is defined similarly to Eq(2.29.
In order to calculate Green’s functions from which we

then can extract physical masses, coupling constants and
Smatrix elements, we have to introduce external source

which emit one-particle states of the Higgs field and the
gauge bosons. In analogy to the Abelian d&s8 we couple

sources to theSU(2) XU(1)y gauge-invariant operator
®Td and the field strengtB,,, . As discussed in the previ-
ous section, for the massive gauge bosons the situation

tion theory for the present case. As was shown in REd],
at the one-loop level everything works fine and on physical
grounds we expect this to happen at all orders.

Green'’s functions of the operators in E§.12 are, how-
ever, more singular at short distances thagauge-
dependentGreen'’s functions of the field®,W? , and B,
themselves. Time ordering of these operators gives rise to
ambiguities, and the corresponding Green’s functions are
only unique up to contact terms. In order to make the theory
finite, these contact terms of dimension four need to be
added to the Lagrangian which is then given by
£SM ‘CSM+‘Csource+[’§ource (3.19
The first term in Eq.(3.15 is defined in Eq.(3.10. The
€second term is given by

more involved. Compensatlng the residual gauge dependen% ere

of the currents\/M under theU(1)y gauge transformations
from Eqgs.(2.7) and(3.4)

V;—> (31])
by a phase factof36,37,33, we can write appropriate
SU(2), X U(1l)y gauge-invariant source terms for all the
fields as follows:

Fiwy*
eFiovs,

1 1 t 1 ab b
. Liource= — 5n® 0= 3K,,,B,,+J,0™V,, (316
A— Zq2
h=h+4v;;3,J, +c¢;;J;3,+4J535, (3.17)

K=Kt Caj(3,d7—3,37) = 2icgj(I1 3, —3,3,).

(3.18
The last term in Eq(3.15 is defined by
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o e L . . L o
LZouree™ ~vajiduli(dydy = duj )i, —i(d, 0, —duj,)i T+ ve(d,y —dj(dad, —duj,) = 5C4i(d,97- 3,37
fq gy, L Z z Z Z +1-2 +1= 1 1= 132
X(353, = 3,970+ 5Cai(3,95 = 0,37)(3,37= 9,37) + 1603553, 3,0+ 403534353, +3,3))

+C32(I200) 2+ A 1977231 3, 3700+ 203574353, +3,37) 3537+ cpph?+ Cpm?h +4c,550 373

v

+A4CHy M2 I, + Chz N IZI 7+ C 227, (3.19
|
where we introduced the quantities B. Tree level
1 At tree level, the generating functional for the bosonic
JiZE(JiiiJi), szji_ (3.20  sector of the standard model is given by
The quantitiedd,,j, andj, are defined analogously to Egs. Wsm[h,KW,Ji]:f AL su(RE WS, 29 A9,
(2.20 and(2.31). The contact terms i 2, will not con- (3.24
tribute to any physicaG-matrix elements.
For later use we introduce the quantities where R®, W;',i, g;', and Ali' are determined by the
equations of motion
V3 = o0V 32y
+ + -+ _ 1 ~
V=W, +4j,, Vi=Z,+4]7. (3.22 ~0OR=~ m2(R2—1)+y;y#+nyyi—h}R,

The generating functionaNVSM[h,K#,,,JZ] for the 3.25
gauge-invariant Green'’s functions is defined by the path in- . 2 g ..
tegral —dMW;f—MWR YV, *i(Z,,+ BMV)W;IIW;VZ#
Fi(9,ZI)W, +i(9,Z)W, +iZ,d W
e*WSM[h,K#V,Ji]:JA dM[(I),Wa,BM]effddXL'SM. -+ ( 12 ,U-) v ( M ) y2 M M
FIZAW, (2,20, +(Z,2)W,

(3.23
=2W, (WIW, - WIw), 3.2
Note that we still integrate over the original fieldawi, WuWu Wy =W W) (3.29
and B, in Eg. (3.23. Furthermore, we have absorbed an 5

. . . . e
appropriate  normalization factor into the measure _, > _pT (—M2R2YZ+T )+ —a K
du[®,W2 ,B,]. Derivatives of this functional with respect g 2R I 2Oy

to the fieldh generate Green’s functions of the scalar density .

®Td, derivatives with respect to the soursg,, generate +—=PT,,S,. (3.29
Green’s functions of the field streng®,,,, while deriva- ¢

tives with respect to],"j generate Green’s functions for the R

currentsVs, . -d,A,,=sPT,,T,—e%9,K, —€PT,S,. (3.28

In the spontaneously broken phase, these Green’s func-
tions have one-particle poles from the Higgs boson as well aBurthermore, the equations for the Goldstone boson field
the gauge bosons. Thus, one can extfaotatrix elements correspond to
for the physical degrees of freedom from the generating
functional in Eq.(3.23. Due to the equivalence theord#i] . J,R . . .
theseS-matrix elements will be identical to the ones obtained d.YV,=— 2“?37; +iZ, YV, FIVIWV,, (329
from those Green’s functions which are used in the usually
ergployed formalism. The presence of the contact terms in s R
L Sourcein EQ. (3.19 reflects the fact that the off-shell con- Z__ ol yE_giiTW T —i W
tinuation of theS-matrix is not unambiguously defined. Note IuYu= " 2R Ve BT 1 W) (330
that this is a general feature of any field theory and not par-
ticular to those involving a gauged symmetry. The continu-In order to simplify the notation we have omitted the pre-
ation we choose has the virtue of being gauge-invariant. ~ scription “cl” in the equations above. In Eq$3.25—(3.30
As was pointed out in Ref§22,32,14 it is possible to we have introduced the quantities
evaluate the path integral in E¢.23 without the need to
fix a gauge as will be shown below. Ay=0,A,—3d,A,, (3.3)
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T, =2Z, W W, +WiW ) —4ZW W, For the explicit evaluation of the one-loop contributions
P roop per to the generating functional in EB.34) it is very important
+2i(W;MW,:—W;MWJ)—Zi(de’fW; to choose an appropriate parametrization of the physical

modes and their quantum fluctuations. Otherwise the expres-

A+ +yp)— A+
—d W, W, —d W W, +d W W), 8332 gion for the differential operator becomes too complicated.

S,= _Udjjjf(J;J;+J;J;)+20djjJiJ;Jp— We introduce fluctuations, 7?2, WZ, andb, around the
o o o Higgs fieldR, the Goldstone boson field, the threeSU(2),
—2vgili(d,j, —d,j, )i, —i(d,j, —d.j )i, 1. gauge fielddV and theU (1)y gauge fieldB,, , respectively.

33 Furthermore, we collect the fluctuations of the gauge fields
333 | D : o=

in a vectorq,=(w,,b,). Following the steps described in
Ref.[16], the generating functional at the one-loop level can
then be written in the form

The projector P, has been defined in E(R.42. The quan-
tities ij and Z,, are defined analogously to Eq2.39
and (2.40. The covariant derivatives ird, W, .d,j; , 1
d,y, . andd,W;, are defined in the same way as in Eq. WSM[h*Kw-Ji]:J dIXL oyt Eln det(D + PP+ 5p)
(2.20.
_The equatioqs of motio(t_3.25)_—(3.3() have similar prop- —IndetPTP, (3.39
erties as those in the effective field theory, see the discussion ) ) ]
after Eq.(2.42 above. We only note here that the radial Where the solutions of the equations of moti@25—(3.28
variable R which is related to the massive Higgs boson ishave to be inserted. E¢3.36 represents all tree-level and
determined by Eq(3.25. Solutions for the massive gauge one-loop contributions of the bosonic sector of the standard
boson fieldstﬁ and 2, follow from Egs. (3.26 and moo!el. Note that in order to obtain E(R.36) we have used
(3.27). Finally, Eq.(3.28 determines the transverse compo- (€ identity
nent of the massless photon fiewlz PT,,.A,. The solu- Indet D=Inde(D+ PP+ 85)—Inde(PTP), (3.37
tions of the equations of motion for the physical degrees of ) . -
freedom in powers of the external sources can be found ifP rewrite the determinant deb, i.e. the product of all non-
Ref.[16]. zero eigenvalues of the differential operaf@r which ap-
pears in Eq(3.35. Equation(3.37), which is valid up to an
C. One-loop level irrelevant infinite constant, follows from the fact that zero
I _ , and non-zero eigenvectors are orthogonal to each other.
The one-loop contribution to the generating functional g eypjicit expressions for the components of the differ-
can be evaluated with the saddle-point method. If we write

the fluctuationsy around the classical fieldg®' as 7= F°! ential operatoD + PP’ + Jp, which we parametrize by

+vy, we obtain the following representation for the one-loop d 6 6,
approximation to the generating functional: BePP +su=| 87 D A
P— 14

. (3.38
efwsM[h,KM,JZ]:e*fddxﬁcsle dufyle- Wdxyy (334 s, A, D

nv

. i o ~ . can be found in Eq9.C1)—(C9) in Appendix C. The opera-
Gauge invariance implies that the operdiohas zero eigen- 5.« pp™ PTP. andss- are listed in Eqs(C20—(C22). The
values corresponding to fluctuatiogsvhich are equivalent ’ ’ P

to infinitesimal gauge transformations. Treating these Zer%x&matn_x of t_he differential pperat_dD+PP + dp from

modes appropriatelj22,16], see also Sec. Il A 2 above, one g.(3.39 is act/Lng on the 3-dimensional space of fluctua-
[ ’ . 1 — a

can evaluate the path-integral representation for the gener:ﬂpnsy_(f'” ,_qM). . .

ing functional at the one-loop level without the need to fix a W& would like to stress an important point here. At the

gauge and without introducing ghost fields. Up to an irrel-classical level only physical modes propagate. The classical

: |
evant infinite constant one obtains the following result for&0ldstone boson fieltd®’ represents th&U(2), gauge de-
the one-loop generating functional from E8.34): grees of freedom. At the quantum level, however, the situa-

tion is different. Quantum fluctuations around the classical
WSM[thw’JZ]:J' ddXﬁstr%'n del’f)—%ln detPTP. field U®, denoted by_na_, imply virtual Goldstone boson
modes propagating within loops. Note that these modes are
(3.39 absent in any gauge-dependent approach based on the uni-
The first term on the right-hand side represents the classic&®ry gauge. They are, however, necessary in order to ensure a
action which describes the tree-level contributions to thedecent high-energy behavior of the theory.
generating functional. In the second term, the determinant In order to separate the heavy Higgs boson mode from the

det D is defined as the product of all non-zero eigenvalued'dht modes of the Goldstone and the gauge bosons it is

of the operatod. The last term originates from the path USeful to diagonalize the differential operatd + PP
integral measure. The sum of the last two terms in@®5 + 8p. First, we introduce some additional quantities

corresponds to the one-loop contributions to the generating _ T - -

, e s D,,=D,,—8,d8,~ 9,07, (3.39
functional. The operatoP satisfies the relatiof?' D=DP
=0. O=D-5"d 15, (3.40
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9,=A,—48'd"15,. (3.41)
Using the identity
T'(D+PPT+ 6p)7=diagd,®,D,,) (3.42 where we denoted the pole term by
i) y uv/a .

9'?=g,?

1
1-39/°[A(2mp) + 5g’2]}. (3.52

here =4/ 1 1
W A, (2mp)=2 (———[|n(4w)+r'(1)+1]
1 —-d —-dl5,+d 160 19, 16721d—4 2
- _ -1
H D o | L (2mf) (353
0 0 S, + s5—Inl — . .
" (3.43 32m”
. - - . 2 ,2 .
and the fact that the transformation matf@shas unit deter- | "€ finite renormalization constangm®, ...,69'“ which

minant, one obtains the following result for the generatingapp_ear_in the Eq$3.49~(3.52 are determined by the renor-
functional: malization scheme, cf. Ref16].

With the renormalization conditions from Eq€3.45—
(3.52 and the corresponding relations for the sources,
the generating functional for the standard model,
1 WSM[h,KW,JZ]. can be renormalized at the one-loop level.
+ ZIndetD—1IndetP™P. (3.44) In this way we have complet_ely defined our theory at the

2 one-loop level. The expressiof8.44) for the generating
functional will be used as the starting point of the matching
calculation for the case of the standard model with a heavy
Higgs boson, which will be discussed in the next section.

1 1
WSM[h’KMV y\]i]: f ddXE SM+ §|n detd+ Eln det®

Equation(3.36) and the equivalent form in E@3.44) repre-
sent our result for the generating functional

WSM[h,KW,JZ] for the gauge-invariant Green’s functions
for the bosonic sector of the standard model. These formulas
encode the full tree-level and one-loop effects of the theory. IV. MATCHING
If one expands the generating functional up to a given order A. Evaluating the matching relation for the case
in powers of the external sources one can extractrapgint of a heavy Higgs boson
Green's functions for the gauge-invariant operators ) , )
+ a The effective Lagrangian for the case of a heavy Higgs
o'P, B,,, andV,,.

boson is determined by requiring that both the full and the

As noted ~ before, the generating functional effective theory yield the same Green'’s functions in the low-

Wsnh,K,,,J,] from Eq.(3.36 or Eq.(3.44 can be renor- energy region, i.e. by the matching relation:

malized by an appropriate choice of renormalization pre- e '

scriptions for the fields, the mass parametgr the coupling W [FE ?‘]:W [hK,, J2] 4.1)
constants, and the sources. The full list can be found in Ap- ety SML u el '

pendix B of Ref[16]. The relations between bare and renor-note that Eq.(4.1) should not be understood as an identity
malized fields, masses and coupling constants which will bgt rather as an asymptotic equality in the low-energy re-

needed in Sec. V are given by gion. See Refd.27,22 for a more detailed discussion of this
WE =W, (3.45  point. Furthermore, we note that in the standard model we

a K’ have introduced a sourcde coupled to the scalar density

B#=B;, (346  @'®, cf. Eq.(3.12. Therefore, in this specific case the ef-

fective Lagrangian will also contain terms involving a source
b=7Y¢ (347 — . . :
é T ' h, cf. Ref.[27]. As mentioned before, we will consider only
Zy= 1-(6g2+ 29, Y[ A (2m?)+ 52], (3.49  Green’s functions of gauge-invariant operators in the match-
ing relation(4.1). At low energies, these Green’s functions

. 1 5 o have non-local contributions involving only the vector
m"=my| 1— (24N +3gr+9,°) bosons, which are the light particles in the theory. These
contributions drop out of the matching relation. The remain-

X[AS(Zer)-F 6m2]—(Z¢,— 1)} (3.49 ing contributions involve the propagator of the heavy Higgs

boson and allow a systematic low-energy expansion. In order
to evaluate this expansion one has to understand the counting
of loops in the full theory and of the low-energy expansion in
the effective theory, cf. Ref22].

The loop expansion in the full theory generates a power

3 (gf+9/%)%+2g;
8 A

x:x,[l—(24>\,+3g$+g;2+

5 3 3 series in the coupling constarks g2, andg’?, while the
X[A(2m7)+6N]—2(Z, l)} (3.50 low-energy expansion produces powers of the momenta and
43 the gauge boson masskk, and M. It is, however, not
2_ 2 o2 2 2 possible to treat these six quantities as independent of each
g7 =gr| 1+ 3 grlA.(2m:)+ g ]}’ (3.5 other, since the gauge boson masses depend on the coupling
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constants through the relatiof3.5). These expressions also  In order to evaluate the low-energy constants, one can
indicate that it will not be very transparent to count masscalculate the generating functional in both the full and the
factors in terms of the quantitios, g2, andg’2 The loop  effective theory, and solve the matching relatighl). It
expansion in the full theory generates positive powers of théurns out, however, that the evaluation of the one-loop con-
coupling\, while the low-energy expansion produces nega_tributions to the generating functional in the effective theory
tive powers thereof. It is possible, however, to discard theor the case of a general coefficignt 1 in L‘g in Eq.(2.27
coupling constantg andg’ from the counting scheme. This is quite involved. Therefore, we proceed in a similar way as
is a consequence of the definition of the vector figAfsand  in the Abelian casg22] and make use of the fact that powers
B, in Eq. (3.2, which are scaled such that the coupling Of the constantx count the number of loops in the full
constants do not explicitly occur in the covariant derivative.theory. At leading t?gge_r in, i.e. A", we get contributions
As a result, these coupling constants naturally enter all loof® the parameters™" in the termsL, and £,. Only the
corrections only through the gauge boson maddgsand Parameters;”®in £, will, however, be relevant to evaluate
M, as well as through the weak mixing angle jp Re- the one—loop contribution toothe generating functional of the
garding the one-loop contributions to the generating func&fféctive theory up to ordex”. _ _
tional, this can readily be inferred from the results for the | N€ leading contributions ik to the effective Lagrangian
differential operators listed in Appendix C. With this book- ¢an be read off from the low-energy expansion of the clas-
keeping powers ok count the number of loops in the full Sical action of the full theory, i.e., from

theory. m?

In order to evaluate the low-energy expansion at a given J’ dixC Ssz dix| — —R*+ —W2 w2
) e 4\ 4q° " HVTHR

loop-level, we treat the covariant derivatiize,, the gauge

boson masseM,, and M;, the momenta and the external

. : . » 1.
sourcle‘L as in the effec;nve theory,zl.e. as quantities of_ order +——BuBu— EKuva+ Eéource )
p. The external sourck is of orderp<, while the scalar field 49
®, the mass parameten, the coupling constant, and the (4.3
external sourc& ,, are quantities of ordep’. 2

The Lagrangianfg,,c. Was defined in Eq.3.19. For
slowly varying external fields, the behavior of the massive
modeR is under control and the equation of motit®25
can be solved algebraically. The result is a series of local

If the coupling constank of the Higgs field is not too
strong, the low-energy constartsfrom Eq.(2.24) admit an
expansion in powers of the parameler

Ii=£Ii"ee+Iil_'°°p+)\li2_'°°p+ . 4.2 terms with increasing order ip?:
A R=1+r,+r,+---, r,=0(p"), (4.4)

corresponding to the loop expansion in the full theory. In this 1 1
case the accuracy of the effective field theory description is r,= _2( —Zyaya i pl, (4.5
controlled by the order of both the momentum and the cou- 2m7\ 4m e
pling constani. For values ol close to the strong coupling 1 1 2
region, one may consider higher orders in the expansion r4:——4(——yaya+ﬁ + —0r,.
(4.2). Large values of the momentum or the gauge boson 8m 47 mm 2m 4.6

masses may require including higher orders in 3. In
the following, we will determine the effective Lagrangian up Inserting the solution foR into the classical action E¢4.3

to orderp?, and the low-energy constants up to ordléri.e.  we obtain the following tree level contributions to the effec-
at the one-loop level. tive Lagrangian up to ordgr*:

mBMBW— 5 KBt CrntMPh+4C 1 35m23 3 + oz 23207

m?[ 1 . 1
t _
l:zree_ _ ﬁ( — Zyiyi-}— h|+ TQZWZVWZV-F

(4.7)

2

tree_ _
L=

4A( — 5Bl Cei(9,97=3,3,) — 2icg;i(3,, =3, 3,) 1= vy Ti(d,), —duj i,

1 .

—Zyiy;i‘Fh
o . . o o

—i(dud, a0 Hea(dady —dui) (g, —dij,) = 5C4(9,97 = 0,30(3,, = 3,3,)
1 - o

+ chj(aMJf— I3, 7= 0,30)+160553(3 1 3,) 2+ 40335433, +3,37) 2+ Cy50(3737)2

AV 197733, 3537+ 2055743, 3, +3,37) 3237+ cuph?+4ch 55033, +cpzsh 327 (4.8
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Hence, at leading order in the parameters and low-energy R—1 and by disregarding all operators which involve the

constants inC, are given by fluctuationsf for the radial componerR of the Higgs field.
2 Furthermore, we make the identificationd=m?/\ and p
v2=— p=1, g=9, g =g/, (4.9) =1, cf. Eq.(4.9. N .
A Note that the quantities on the left-hand side of the match-
and ing relation(4.12 involve the solutions of the equations of

motion in the effective theory, while those on the right-hand
— - — — side depend on the solutions of the equations of motion in
B the full theory. At the stationary point, however, the corre-
1 1 sponding corrections are of second order in the shift of the
Ch=—>+Cm\,  Cpw=—50j;+CriA\, fields and beyond the present accuracy. Thus, our notation
2 2 will not distinguish between the two solutions from now on.
The last three terms on the right-hand side of Egl2
S :_}C“JFC X (4.10 contain non-local contributions from loops which involve
z 21T Emzz only the light degrees of freedom. They are, however, can-
o _ celed by the corresponding contributions in the effective
wherec,, denotes the coefficient oPh in h,. Since there are theory on the left-hand side of the matching condition.
no custodial symmetry breaking effects in the standard The fact that all the infrared effects of the massless and
model at tree level we get=1. Note that the matching light particles cancel out of the matching relatigh12 is a
condition (4.1) determines the low-energy constants and theconsiderable advantage of the matching of Green's func-
sources in the effective theory. tions. In contrast to that, matchirfgmatrix elements in the
Fromggee in Eq. (4.8) we obtain the following tree-level full and the effective theory involves the evaluation of all
contributions to the low-energy constarisin £$ in Eq.  infrared effects. _
(2.49: For completeness sake, we list below all one-loop correc-
tions to the generating functional of the full theory which
tree 1 will contribute to the effective Lagrangian up to the orgér
s\’ ls~ =~ BaN (4.1 One obtains the following terms from the first determinant
on the right-hand side of Eq4.12 which involve only the
All other low-energy constants in £ vanish at tree level. Propagator of the massive Higgs mode:
From Eq.(4.8) we can also read off the tree-level contribu- 1 1 1 1
tions to the low-energy constants of the source terms at order- _ = = -1_N_ = -1 _ 2
p*. Only some of the 76 terms which appear in the general 2 In detd= 2 In detdp+ 2 Tr(dm"om) 4 Tr(dp"om))-

|tree— _
1

4\’

|tree— _
3

expressionZ; in Eq. (2.50 are non-zero at tree level for the (4.13
present case. It will not be necessary later on to list these N
contributions here explicitly. Here we used the decompositioth=d,+ op,,dy=—0

2 . . .
Now one can evaluate the one-loop contribution to the™ 2M”. The explicit form of o, can be inferred from Eq.
generating functional in the effective theory using the tech{C1). The second term in Ed4.13, a tadpole graph, is of

nique described in Sec. Il A2. At ordex?, the matching ©rderp? whereas the third term is of ordef.
relation (4.1) is of the form[cf. Eq. (3.44]; Mixed loops, which contain Higgs and Goldstone boson

propagators, are given by

1 — 1 — —
J dIX( Lo+ L4) + Eln detD+ = IndetD—IndetP™P

1 1
2 5Indet®=Inde(D~6d 15)
1 1
= f d’)L s+ 5 In detd+ 5 In det® 1 1 »
=§In detD — 5 Tr( oD~ 157d N

+ %In detD—IndetPTP. (4.12 1 Clden
+§Tr(5D 6'dy ondy)

The first terms on both sides of E@.12 represent the tree 1

level contributions in the effective and full theory, respec- = —1aTq—1\2

tively. The differential operators on the right-hand side, de- 4Tr(( D 767dn 7)) 4.14

scribing the one-loop contributions in the full theory, are

defined in Eqs(C1)—(C9), (3.39—(3.41), and (C21). The As noted above, the terfilndetD on the right-hand side

differential operators on the left-hand side, indicated with acancels against the corresponding contribution in the effec-

bar, represent the one-loop contributions in the effectiveive theory. The next term is of ordg?, whereas the last

theory. Using the iterative matching procedure describedwo terms lead to contributions of ordpf.

above, these differential operators can be inferred from the Finally, the following terms involve the gauge boson

corresponding operators in the full theory by taking the limitpropagators:
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In detD= IdtD+1T ~16D 4.1 b= 1+5A 2 2+19—2-1
—ne Inde 2r( ), (4.15 1= % (2m°) 121672
where we used the decompositidn, , D v+6D,,,6D,, |2=0,
=0O(p*. Again the first term on the rlght hand side of Eq.
(4.195 cancels against the corresponding contribution in the b 1 L2 A o) 2 19 1
effective theory. The second term is of orqx 37 8N «(2m®) 241672’
Finally we note that the difference between the contribu-
tion from the path integral measure in the full theory, I2=O,
IndetPTP, and in the effective theory, IndBt'P, in the
matching relation(4.12 is of orderp®. b L 1 19 1
Techniques to evaluate the low-energy expansion of the Is= 16| +5A o(2m? )+12 16
traces in Eqs(4.13, (4.14), and(4.15 are discussed in de-
tail in Ref.[27]. The results for the term@.13 and (4.14) I2=O,
can be inferred from the expressions given there. The evalu-
ation of the second term in E¢4.195, involving the gauge 11 1
bosons, proceeds in the same way with the result 15= —A8(2m2) 5 1672
1
ETr(D—15D)=f d*%| A (2m*)MEYa Y3 |b:_l 1
8 6167*
( A (2m?) + ) 11 1
16 167 N 2
| As(2m )+ == W’
X(MZ=MZ)Y3IV3 | +0(p°), b 2 1
416 l10= g Ae(2m) — o5 752
with 1%.=0,
d—4
A 2m2);“ In(4m)+T"(1)+1 1t 1A(z 2) 1
(2m%)= d—4 2[ (Am+ 1 (1)+1] 1441672
1 [2m? po_ Lt 1
+ mln — (4.17 13 12 162"
B. The bare effective L i I"—11
. e pare efrective Lagrangian 14— ‘TSEZ’
Collecting all contributions we obtain the following result
for the bare effective Lagrangian for the standard model with , 11
a heavy Higgs boson, up to ordet and up to)\?, i.e. at the 125=3A (2m?) + 721672
one loop level:
2, 1 2 |96=s? 3 A (2mP)+ oy
Wiw, +1zz WA W3, |"=——A L(2m?)— — t 1
T Tl 492 17 2881672
- B, +L3, (4.18 |b= A (2mP) + == ! (4.20
4g Ea ' 18 2881672 '
18 Note that only bare quantitie€oupling constants, masses,
5422 |-b(9i+£f1 (4.19 fields) appear in the result for the effective Lagrangian in
i

Eqgs.(4.18—(4.20.
In order to simplify the expressions for the effective La-
with the following results for the bare low-energy constantsgrangian and to compare our results with other calculations
Ib in the literature we have not explicitly written down the con-
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tributions from the source term&$ and £5 in Egs. (4.1  in Eq. (5.3 differs from unity and that it is uniquely deter-
and (4.19 respectively. The contributions including the mined. This can be traced back to our normalization of the
sources at tree-level are given in E¢4.7) and (4.8). All  gauge field,, in the covariant derivative in E¢3.2). Gauge
contributions from the source terms at the one-loop level cafvariance requires that this field is not renormalized, cf. Eq.
be calculated from Eqs4.13, (4.14, and (4.16, if one  (3.46. The same statement holds for the gauge figfg, cf.
inserts the explicit expressions for the differential operator€g. (3.45.
given in Appendix C. Note that we have not yet used the For the determination of the two-point functions in Egs.
equations of motion to reduce the number of terms in thé5.)—(5.3) we need the generating functional
basis ofL,. WSM[h,KW,Ji] up to second order in the external sources.
The result for the bare electroweak chiral Lagrangian inThe calculation of the physical masses and the coupling con-
the usually employed notation and the corresponding barstante% was performed in Ref.16] at the one-loop level.
low-energy constanlzxib in the usual basis at ordef can be  Below we will use the relations between the bare and physi-
found in App