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The electroweak chiral Lagrangian reanalyzed
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In this paper we reanalyze the electroweak chiral Lagrangian with particular focus on two issues related to
gauge invariance. Our analysis is based on a manifestly gauge-invariant approach that we introduced recently.
It deals with gauge-invariant Green’s functions and provides a method to evaluate the corresponding generat-
ing functional without fixing the gauge. First we show, for the case where no fermions are included in the
effective Lagrangian, that the set of low-energy constants currently used in the literature is redundant. In
particular, by employing the equations of motion for the gauge fields one can choose to remove two low-
energy constants which contribute to the self-energies of the gauge bosons. If fermions are included in the
effective field theory analysis the situation is more involved. Even in this case, however, these contributions to
the self-energies of the gauge bosons can be removed. The relation of this result to the experimentally
determined values for the oblique parametersS, T, and U is discussed. In the second part of the paper we
consider the matching relation between a full and an effective theory. We show how the low-energy constants
of the effective Lagrangian can be determined by matching gauge-invariant Green’s functions in both theories.
As an application we explicitly evaluate the low-energy constants for the standard model with a heavy Higgs
boson. The matching at the one-loop level and at next-to-leading order in the low-energy expansion is per-
formed employing functional methods.

PACS number~s!: 12.39.Fe, 11.15.Ex, 12.15.2y, 14.80.Bn
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I. INTRODUCTION

The symmetry breaking sector of the standard mode
still poorly understood from a theoretical point of view. Fu
thermore no direct experimental evidence of the Higgs bo
has been found so far. In this situation the method of eff
tive field theory has repeatedly been used in recent yea
analyze the symmetry breaking sector@1#. It provides a con-
venient and model independent parametrization of vari
scenarios which are discussed in the literature, regarding
nature of the spontaneous breaking of the electroweak s
metry. In this approach, the unknown physics is hidden
the low-energy constants of an effective Lagrangian, wh
describes the effective field theory. Effective Lagrangia
thereby allow a unified treatment of different parametriz
tions of new physics effects, such as oblique correction
gauge bosons self-energies@2,3# and anomalous triple@4#
and quartic@5# vertices of the gauge bosons.

The low-energy structure of a theory containing light a
heavy particle species which are separated by a mass ga
adequately be described by an effective field theory wh
contains only the light fields. In the case of the stand
model one can construct effective Lagrangians by introd
ing higher dimensional operators that preserve theSU(2)L
3U(1)Y gauge symmetry. In the presence of a light Hig
boson, i.e. in the decoupling case@6#, the symmetry is lin-
early realized and the corresponding effective Lagrang
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which contains the Higgs field, was presented in Ref.@7#. For
a strongly interacting symmetry breaking sector, i.e. in
non-decoupling case, the effective Lagrangian can be b
@8–11# in analogy to the chiral Lagrangian@12,13# for QCD
and it is therefore called electroweak chiral Lagrangian. T
use of effective Lagrangians might in fact be the only wa
apart from lattice calculations, to gain insight into strong
interacting theories for the electroweak symmetry break
sector, similarly to the situation with QCD at low energie
We note that by employing the electroweak chiral Lagran
ian it was shown recently@14# that present electroweak pre
cision data are still compatible with a strongly interacti
model of symmetry breaking with a scale of new physics
high as 3 TeV.

The purpose of this paper is to take another look at
electroweak chiral Lagrangian and to investigate two iss
related to gauge invariance where there are some subtl
involved, because one has to deal with off-shell quantit
According to Refs.@12,13# the effective field theory should
describe the physics of the underlying full theory at lo
energies. Symmetry principles thereby play a crucial role
the construction of the effective field theory and, apart fro
the occurrence of anomalies, the effective field theory can
described by an effective Lagrangian which respects th
~possibly broken! symmetries@15#. In order to preserve the
gauge symmetry even when dealing with off-shell quantit
we employ a manifestly gauge-invariant approach that w
introduced recently@16#. It deals with gauge-invarian
Green’s functions and provides a method to evaluate the
responding generating functional without fixing the gauge

The first topic is the analysis of the general effective fie
theory which describes a strongly interacting electrowe
s:
©2000 The American Physical Society06-1
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symmetry breaking sector. We are particularly interested
the question of how many independent, physically relev
parameters are contained in the effective Lagrangian. I
well known from chiral perturbation theory@13,17# that one
can use the equations of motion which are derived from
lowest order effective Lagrangian to remove redundant te
that appear at higher orders in the low-energy expans
This procedure is well defined within a functional approa
where one performs an expansion around the solutions o
classical equations of motion in the path-integral represe
tion of the generating functional of suitably chosen Gree
functions. It is only in this framework where we will use th
equations of motion later on. Equivalently, one can also
move terms in the effective Lagrangian by performing a
propriate reparametrizations of the fields and exter
sources in the path integral@18#.

In the usual gauge-dependent framework the equation
motion for the gauge fields are gauge-dependent. For
stance, contributions from the gauge-fixing terms and fr
the non-gauge-invariant source terms would appear in E
~2.34!–~2.36! below. It is doubtful whether these equatio
can then be used to eliminate redundant gauge-invar
terms from the effective Lagrangian. As a matter of fact,
do not know of any reference where this has been tried.
equations of motion in our approach are gauge-invaria
Employing them we first show for a purely bosonic effecti
field theory, i.e. when no fermions are included in the effe
tive Lagrangian, that the set of parameters currently use
the literature contains two redundant low-energy consta
which can be removed. In particular, one can choose to
move two low-energy constants which contribute to the s
energies of the gauge bosons which are not observable
way. If fermions are present, the situation is more involv
We will show that these two parameters renormalize the c
pling of the massive gauge bosons to charged and ne
currents and, thus, have no physical meaning in a full eff
tive Lagrangian analysis. The relation of this result to t
experimentally determined values for the oblique parame
S,T, andU @2# as quoted by the particle data group will b
discussed.

The second topic of this paper is to study the evaluat
of the low-energy constants in the effective Lagrangian fo
given underlying theory. Comparing the theoretical pred
tions for the low-energy constants for different models w
experimental constraints might help to rule out some of
underlying theories under consideration before direct effe
become visible. This point motivates to determine the val
of the low-energy constants in the effective theory for va
ous models. At low energies, the standard model with
heavy Higgs boson in the spontaneously broken phase
adequately be described by such an effective field theory
order to determine the effective Lagrangian one can requ
for instance, that corresponding Green’s functions in b
theories have the same low-energy structure. One can
this matching condition as the definition of the effective fie
theory. At this point the issue of gauge invariance is cruc
If gauge-dependent Green’s functions are used in this ma
ing procedure one has to make sure that no gauge arti
enter the low-energy constants of the effective Lagrangia
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Several groups@19–21# have performed such a matchin
calculation for the standard model with a heavy Higgs bos
in recent years, thereby extending the results which w
obtained a long time ago@8,9#. Gradually the importance to
maintain gauge invariance in the matching procedure w
recognized. Whereas the matching was performed w
gauge-dependent Green’s functions in Ref.@19#, the authors
of Refs. @20,21# proposed new methods to overcome the
gauge artifacts. See Ref.@22# for a more detailed account o
the development. The extension of the method propose
Ref. @20# to the two-loop level was discussed in Ref.@23#.
Nevertheless, the problems with gauge dependencies
not yet been fully resolved. In the meantime similar matc
ing calculations have been performed for various mod
@24–26# without considering the issue of gauge invarian
any further.

To avoid any problems with gauge dependencies
should in fact match only gauge-invariant quantities, such
S-matrix elements@20#. As it turns out, however, matching
S-matrix elements is quite cumbersome because one ha
deal with the whole infrared physics. Techniques which
volve Green’s functions are much easier to use. We there
propose to match Green’s functions of gauge-invariant fie
in order to determine the effective Lagrangian. In this w
no gauge artifacts can appear through the matching pr
dure and one can employ functional methods@27#. For the
Abelian Higgs model such a manifestly gauge-invaria
matching calculation has been performed in Ref.@22#. In the
present paper we show how one can determine the effec
Lagrangian for the standard model with a heavy Higgs bo
by matching gauge-invariant Green’s functions in the f
and the effective theory at low energies at the one-loop le
For this purpose we can use a generating functional
gauge-invariant Green’s functions for the bosonic sector
the standard model which was discussed in a recent p
@16#. In this way the starting point of the matching procedu
is well defined and gauge invariance is manifestly preser
throughout the whole calculation.

In view of the fact that all fits to electroweak precisio
data over the last couple of years tend to prefer a light Hi
boson,1 we will regard the standard model with a hea
Higgs boson merely as a model of a strongly interact
symmetry breaking sector, where, however, perturbat
theory can still be applied if the coupling constant is not t
strong. Thus, it serves as a testing ground for our gau
invariant method of matching. The corresponding values
the low-energy constants will also represent a reference p
for other strongly interacting models. As pointed out in R
@29#, it is very difficult to get any reliable estimate for th
low-energy parameters for genuinely strongly interact
models of the electroweak symmetry breaking sector.

This paper is organized as follows: In the next section
introduce the general effective field theory for a strong
interacting electroweak symmetry breaking sector within
gauge-invariant functional framework presented in Ref.@16#.

1For instance, at the Moriond 2000 meeting the valueMH

5(67233
160) GeV was presented@28#.
6-2
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THE ELECTROWEAK CHIRAL LAGRANGIAN REANALYZED PHYSICAL REVIEW D 62 113006
We discuss our choice of gauge-invariant operators and
corresponding source terms which emit one-particle state
the gauge bosons. We then determine the number of in
pendent low-energy constants by employing the equation
motion to remove redundant terms from the effective L
grangian. We sketch the inclusion of fermions in the effe
tive field theory and relate our findings to the experimenta
determined oblique parametersS, T, andU. In order to pre-
pare the matching calculation in the second part of this pa
we briefly recapitulate in Sec. III the main results from o
manifestly gauge-invariant approach to the standard mo
@16#. We calculate the generating functional for the gau
invariant Green’s functions in the bosonic sector up to
one-loop level. In this section we also present the renorm
ization prescriptions for the fields, the mass parameter
the coupling constants of the model. In Sec. IV we evalu
the matching condition between gauge-invariant Gree
functions in the full and the effective theory at low energ
at the one-loop level for the case of the standard model w
a heavy Higgs boson. The effective Lagrangian for
bosonic sector is determined up to orderp4 in the low-
energy expansion. In Sec. V we express the result for
effective Lagrangian in terms of the physical masses of
Higgs and the gauge bosons and the electric charge. Fin
we compare our results with those obtained by other grou
We summarize our findings in Sec. VI. The source ter
which appear in the general effective Lagrangian at ordep4

are listed in Appendix A. The relations between our set
operators for the electroweak chiral Lagrangian and the b
which is usually used in the literature can be found in A
pendix B. Some technical details needed for the calcula
of the one-loop generating functional in the standard mo
are presented in Appendix C.

II. EFFECTIVE FIELD THEORY

A. The general effective Lagrangian

In this section we will discuss the general effective fie
theory for the bosonic2 part of a strongly interacting elec
troweak symmetry breaking sector, closely following t
functional approach to the standard model introduced in R
@16#. The relation of our approach to the one that is usua
adopted in the literature@8–11# will be discussed below. Ac-
cording to Refs.@12,13# the effective field theory should de
scribe the physics of the underlying full theory at low en
gies. We assume that

p2,MW
2 ,MZ

2!M2, ~2.1!

wherep is a typical momentum andM is the mass scale fo
heavy particles in the underlying theory, e.g. a heavy Hig
boson in the standard model or a technirho in some tec
color model@31#. In general, symmetry principles are cruci
for the construction of the effective field theory and, ap
from the occurrence of anomalies, the effective field the

2The electroweak chiral Lagrangian including matter fields w
presented in Ref.@30#.
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can be described by an effective Lagrangian which resp
these~possibly broken! symmetries@15#. In our case this
Lagrangian is gauge-invariant and depends on the Golds
boson fieldŪ, confined to the sphereŪ†Ū51, theSU(2)L

gauge fieldsW̄m
a (a51,2,3), theU(1)Y gauge fieldB̄m , and

external sourcesK̄mn ,J̄m
a (a51,2,3)

Le f f5Le f f~W̄mn
a ,B̄mn ,Ū,D̄mŪ,D̄mD̄nŪ, . . . ;K̄mn ,J̄m

a !,

~2.2!

where the Goldstone boson doubletŪ is coupled to the
gauge fields through the covariant derivative

D̄mŪ5S ]m2 i
ta

2
W̄m

a 2 i
1

2
B̄mD Ū. ~2.3!

Note that we have absorbed the coupling constantsḡ andḡ8

into the gauge fieldsW̄m
a and B̄m , respectively. The field

strengths are given by

W̄mn
a 5]mW̄n

a2]nW̄m
a 1«abcW̄m

b W̄n
c , ~2.4!

B̄mn5]mB̄n2]nB̄m . ~2.5!

The fields and the sources in the effective theory have b
denoted with a bar in order to distinguish them from tho
occurring in the standard model which will be discussed
low. The Goldstone boson fieldŪ and the gauge fields
W̄m

a ,B̄m transform underSU(2)L gauge transformations in
the following way:

Ū→VŪ, VPSU~2!,

W̄m→VW̄mV †2 i ~]mV!V †, W̄m[W̄m
a ta

2
, ~2.6!

and underU(1)Y gauge transformations as follows:

Ū→e2 iv/2Ū,

B̄m→B̄m2]mv. ~2.7!

The effective Lagrangian in Eq.~2.2! describes the dy-
namics of the massive gauge bosonsW̄m

6 ,Z̄m , and the mass-

less photonĀm . In order to have nontrivial solutions of th
equations of motion, we furthermore couple external sourc
denoted byK̄mn and J̄m

a in Eq. ~2.2!, to the gauge fields. In
the applications that we will discuss below we will be forc
to deal with off-shell quantities. Therefore, we want to pr
serve the gauge symmetry, which is imposed in the const
tion of the effective Lagrangian, even in the presence
these external sources.

As discussed in detail for the Abelian Higgs model in R
@22#, for QED in Ref. @32#, and for the standard model i
Ref. @16#, the appropriate choice of the source terms is c
cial for a manifestly gauge-invariant analysis. The sour
will only respect the gauge symmetry, if they do not coup

s

6-3
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to the gauge degrees of freedom. Otherwise, one has to
pose constraints on the fields in order to solve the equat
of motion. Usually, this problem is cured by fixing a gaug
However, one can also turn the argument around and c
sider only those external sources which couple to gau
invariant operators. As we will see below, such a manifes
gauge-invariant treatment is in fact possible at the class
level as well as when quantum corrections are taken
account.

In this respect our approach to the effective field the
description of a strongly interacting electroweak symme
breaking sector differs from the one that is usually adop
in the literature@8–11#. Although the authors of these refe
ences also start with a gauge-invariant effective Lagrang
they then add gauge-fixing and Faddeev-Popov terms. S
these terms break the gauge symmetry these authors, as
as those of Refs.@19–21,23–26#, are then working with
gauge-dependent Green’s functions.

In order to write down appropriate source terms we w
first introduce fields for the dynamical degrees of freed
which are already invariant under the non-Abelian gro
SU(2)L and, in parts, under the Abelian groupU(1)Y as
well. It has been known for a long time@33–35# that all
fields in the standard model Lagrangian can be written, in
spontaneously broken phase, in a gauge-invariant way u
the unbrokenU(1)em. A similar approach can be employe
for the effective field theory description. Defining th
Y-charge conjugate doublet by

Ũ̄5 i t2Ū* , ~2.8!

we can introduce the following fields, see also Ref.@16#:

W̄m
15

i

2
„Ũ̄†~D̄mŪ !2~D̄mŨ̄ !†Ū…, ~2.9!

W̄m
25

i

2
„Ū†~D̄mŨ̄ !2~D̄mŪ !†Ũ̄…, ~2.10!

Z̄m5 i „Ũ̄†~D̄mŨ̄ !2Ū†~D̄mŪ !…, ~2.11!

Ām5B̄m1 s̄2Z̄m , ~2.12!

W̄m
65

1

2
~W̄m

1 7 iW̄ m
2 !, ~2.13!

which are invariant under theSU(2)L gauge transformation
from Eq.~2.6!. In Eq.~2.12! we used the following definition
of the weak mixing angle:

c̄2[cos2 ūW5MW
2 /MZ

2 , s̄2[12 c̄2. ~2.14!

In order to calculate Green’s functions from which w
then can extract physical masses, coupling constants
S-matrix elements, we have to introduce external sour
which emit one-particle states of the gauge bosons. In a
ogy to our effective field theory analysis of the Abelia
Higgs model@22# we couple a source to the field streng
11300
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B̄mn . For the massive gauge bosons the situation is m
involved. Whereas the fieldZ̄m is fully SU(2)L3U(1)Y

gauge-invariant, the charged gauge fieldsW̄m
6 have a residual

gauge dependence under theU(1)Y gauge transformations
from Eq. ~3.4!:3

W̄m
6→e7 ivW̄m

6 . ~2.15!

We can, however, compensate this gauge dependenc
multiplying the charged fieldsW̄m

6 by a phase factor
@36,37,32,16#. AppropriateSU(2)L3U(1)Y gauge-invariant
source terms for all the fields can then be written in t
following way:

K̄mnB̄mn , J̄m
1w̄1W̄m

21 J̄m
2w̄2W̄m

1 , J̄m
ZZ̄m , ~2.16!

with external sourcesK̄mn ,J̄m
6 , and J̄m

Z . The phase factor in
Eq. ~2.16! is defined by

w̄6~x!5expS 7 i E ddyG0~x2y!]mB̄m~y! D , ~2.17!

with

G0~x2y!5^xu
1

2h
uy&. ~2.18!

For computational convenience we are working in Euclide
space-time.

Using identities of the form

D̄mŪ5
i

2
Z̄mŪ2 iW̄m

1Ũ̄,

D̄mŨ̄52 iW̄m
2Ū2

i

2
Z̄mŨ̄,

D̄mD̄nŪ5S i

2
~]mZ̄n!2

1

4
Z̄mZ̄n2W̄m

2W̄n
1D Ū

1S 2 i d̄mW̄n
11

1

2
W̄m

1Z̄n2
1

2
Z̄mW̄n

1D Ũ̄,

D̄mD̄nŨ̄5S 2 i d̄mW̄n
21

1

2
Z̄mW̄n

22
1

2
W̄m

2Z̄nD Ū

1S 2
i

2
~]mZ̄n!2

1

4
Z̄mZ̄n2W̄m

1W̄n
2D Ũ̄,

~2.19!

where

d̄mW̄n
65~]m7 iB̄m!W̄n

6 , ~2.20!

3Note that theSU(2)L invariant fieldĀm from Eq. ~2.12! trans-

forms underU(1)Y as Ām→Ām2]mv, i.e. like an Abelian gauge
field.
6-4
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one can express the Lagrangian in terms of the fie
W̄m

6 ,Z̄m ,B̄m , and covariant derivatives thereof

Le f f5Le f f~W̄m
6 ,Z̄m ,B̄m , . . . ;K̄mn ,J̄m

6 ,J̄m
Z ,!. ~2.21!

As a matter of convenience we write the fieldB̄m in Eq.
~2.21! instead of the photon fieldĀm .

The generating functional in the effective field theory
given by the path integral

e2We f f[ K̄mn ,J̄m
6 ,J̄m

Z]5E dm@Ū,W̄m
a ,B̄m#e2*ddxLe f f.

~2.22!

Note that we still integrate over the original fieldsŪ,W̄m
a ,

and B̄m in Eq. ~2.22!. Furthermore, we have absorbed
appropriate normalization factor into the measu
dm@Ū,W̄m

a ,B̄m#. Derivatives of this functional with respec

to the sourceK̄mn generate Green’s functions of the fie
strengthB̄mn , while derivatives with respect toJ̄m

6 and J̄m
Z

generate Green’s functions for the gauge-invariant fie
w̄7W̄m

6 and Z̄m , respectively. As was pointed out in Ref
@22,32,16# it is possible to evaluate the path integral in E
~2.22! without the need to fix a gauge as will be show
below.

The effective LagrangianLe f f in Eq. ~2.21! is a sum of
terms with an increasing number of derivatives, mass fact
and powers of external sources, corresponding to an ex
sion in powers of the momenta and the masses,

Le f f5L21L41L61•••, ~2.23!

whereLk is of orderpk and has the general form

Lk5(
i

l i
(k)O i

(k) . ~2.24!

The coefficientsl i
(k) in Eq. ~2.24! represent the low-energ

constants of the effective theory and count as orderp0. The
operatorsO i

(k) involve the light fields and the sources
such a way that they respect theSU(2)L3U(1)Y gauge
symmetry.

In order to evaluate the low-energy expansion up to
given order, we follow the counting rules usually adopted
chiral perturbation theory@12,13# for the bookkeeping of the
terms in the effective Lagrangian. These rules are neces
for the internal consistency of the effective field theory. W
note that they are formulated completely within the fram
work of the effective field theory. In particular, there is n
expansion with respect to some heavy mass scale in the
derlying theory involved. We thus treat the covariant deriv
tive D̄m , the gauge boson massesMW andMZ and the mo-
menta as quantities of orderp, while the Goldstone boson
field Ū is of orderp0. In counting the massesMW andMZ as
order p, the low-energy expansion is carried out at a fix
ratio p2/MW

2 andp2/MZ
2 , and correctly reproduces all singu

larities associated with the gauge bosons. The consistenc
11300
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these rules requires that the coupling constantsḡ,ḡ8 and
therefore the electromagnetic coupling constantē, defined in
Eq. ~2.32! below, are also treated as quantities of orderp.
Note that this is different from the usual dimensional ana
sis: the coupling constants have dimension (mass)0, yet they
count as orderp in the low-energy expansion. This is simila
to chiral perturbation theory where the quark massesmq are
quantities of orderp2 @13# and where the electromagnet
coupling constante is counted as orderp if virtual photons
are included@38#. Our counting rules furthermore imply tha
cosūW and sinūW are treated as quantities of orderp0,
whereas the gauge fieldsW̄m

a ,B̄m and therefore also

W̄m
6 , Z̄m , and Ām count as quantities of orderp. Finally,

the external sourcesJ̄m
6 andJ̄m

Z count as quantities of orderp,

while the sourceK̄mn and the phase factorw̄6 are of order
p0.

In general, there are two different kinds of contributio
to the generating functional. On the one hand, one has t
level contributions given by the integral*ddxLe f f , which
has to be evaluated at the stationary point, i.e., with the
lutions of the equations of motion. On the other hand th
are contributions from loops, which ensure unitarity. Gene
power counting arguments show thatn-loop corrections are
suppressed by at least 2n powers of the momentum@12#. For
instance, tree-level contributions with one vertex fromLk
and any number of vertices fromL2 are of orderpk, while
one-loop corrections with one vertex fromLk and any num-
ber of vertices fromL2 are of orderpk12. On the other hand
graphs with more vertices fromLk8 where k8.2 or with
more loops are suppressed by additional powers of the
mentum. The corresponding expansion of the genera
functional is denoted by

We f f5W21W41W61•••, ~2.25!

whereWk is of orderpk.

1. The generating functional at orderp2

At orderp2 the effective Lagrangian can be written in th
form

L25L 2
01L 2

s , ~2.26!

with

L 2
05

v̄2

2 S W̄m
1W̄m

21 r̄
1

4
Z̄mZ̄mD1

1

4ḡ2
W̄ mn

a W̄ mn
a

1
1

4ḡ82
B̄mnB̄mn , ~2.27!

and

L 2
s52

1

2
K̄mnB̄mn12v̄2~ j̄ m

1W̄m
21 j̄ m

2W̄m
1!1 v̄2J̄m

ZZ̄m

14c̄Wv̄2J̄m
1J̄m

21 c̄Zv̄2J̄m
ZJ̄m

Z , ~2.28!
6-5
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where

W̄ mn
a 5]mW̄ n

a2]nW̄ m
a 1«abcW̄ m

b W̄ n
c , a51,2,3,

~2.29!

W̄m
3 5Z̄m1B̄m , ~2.30!

j̄ m
65w̄6J̄m

6 . ~2.31!

The LagrangianL 2
0 contains only the mass terms and t

kinetic terms of the gauge bosons in the effective theo
Note that in the general effective LagrangianL 2

s in Eq.
~2.28! there appear additional contact terms involving t
external sources only. The masses of the gauge bosons
weak mixing angle and the electric charge can be expre
through the quantitiesv̄,r̄,ḡ, andḡ8 as follows:

MW
2 5

v̄2ē2

4s̄2
, MZ

25 r̄
v̄2ē2

4s̄2c̄2
,

c̄25
ḡ2

ḡ21ḡ82
, ē25

ḡ2ḡ82

ḡ21ḡ82
. ~2.32!

The expression for the weak mixing anglec̄2 follows from
the requirement that the fieldZ̄m5W̄m

32B̄m is invariant un-
e

11300
.

the
ed

der gauge transformations. Similarly, the electric chargeē is

determined by the coupling of the charged gauge bosonW̄m
6

to the photon fieldĀm . The low-energy constantsv̄ and r̄

21 are of orderp0. Note thatr̄[MZ
2c̄2/MW

2 is the inverse of

the usualr-parameter. In allowingr̄Þ1 we do not assume
that custodial symmetry breaking effects vanish at lead
order in the low-energy expansion. Hence, we follow the fi
paper of Ref.@9# and Ref.@10#. Note that in the recent lit-
erature it became customary to include such a custodial s
metry breaking term only at orderp4, following the conven-
tions used in the second paper of Ref.@9# and the second

paper of Ref.@19#. Sincer̄21 is very small@39# this might
indeed be justified, if the low-energy expansion is carried
up to orderp4 or higher.

At order p2, the generating functional of the effectiv
field theory is given by

W2@K̄mn ,J̄m
6 ,J̄m

Z#5E ddxL2~W̄ m
a ,B̄m ;K̄mn ,J̄m

6 ,J̄m
Z!,

~2.33!

where the gauge fields satisfy the equations of motion
2d̄mW̄mn
6 52MW

2 Ȳn
66 i ~Z̄mn1B̄mn!W̄m

67 iW̄mn
6 Z̄m7 i ~]mZ̄m!W̄n

66 i ~]mZ̄n!W̄m
66 i Z̄nd̄mW̄m

67 i Z̄md̄mW̄n
6

2~Z̄mZ̄m!W̄n
61~Z̄mZ̄n!W̄m

662W̄m
6~W̄m

1W̄n
22W̄n

1W̄m
2!, ~2.34!

2]m~Z̄mn1B̄mn!52 c̄2MZ
2Ȳn

Z12Z̄m~W̄m
1W̄n

21W̄n
1W̄m

2!24Z̄nW̄m
1W̄m

212i ~W̄mn
1 W̄m

22W̄mn
2 W̄m

1!

22i ~ d̄mW̄m
1W̄n

22d̄mW̄m
2W̄n

12d̄mW̄n
1W̄m

21d̄mW̄n
2W̄m

1!, ~2.35!

2]mB̄mn5 s̄2MZ
2PTnmȲ m

Z2
ē2

c̄2
]mK̄mn . ~2.36!
es
of
Using relation~2.12! the equations of motion for the massiv
gauge fieldZ̄m and the photon fieldĀm can be obtained. The
constraints are given by

d̄mȲm
656 i Z̄mȲm

67 i r̄Ȳm
ZW̄m

6 , ~2.37!

]mȲ m
Z58i

1

r̄
~W̄m

1 j̄ m
22W̄m

2 j̄ m
1!. ~2.38!

They are obtained by varying the effective LagrangianL2

with respect to the Goldstone boson fieldŪ. In Eqs.~2.34!–
~2.38! we have introduced the quantities

W̄mn
6 5d̄mW̄n

62d̄nW̄m
6 , ~2.39!
Z̄mn5]mZ̄n2]nZ̄m , ~2.40!

Ȳm
65W̄m

614 j̄ m
6 , Ȳ m

Z5Z̄m14
1

r̄
J̄m

Z , ~2.41!

PTmn5dmn2
]m]n

h
. ~2.42!

The covariant derivatives ind̄mW̄mn
6 andd̄mȲm

6 are defined in
the same way as in Eq.~2.20!.

Several things about the equations of motion~2.34!–
~2.38! are worth notice. As discussed in Ref.@16# the equa-
tions of motion uniquely determine only the physical degre
of freedom since we did not fix a gauge. The equations
6-6
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motion can be rewritten in a form which only involves ful
SU(2)L3U(1)Y gauge-invariant fields. Solutions for th
massive gauge boson fieldsw̄7W̄m

6 follow from Eq. ~2.34!.
Suitable linear combinations of Eqs.~2.35! and~2.36! deter-
mine the gauge boson fieldZ̄m and the transverse compone
of the massless photon fieldĀm

T5PTmnĀn . Note that the
equations of motion do not determine the longitudinal co
ponent of the photon field and the phase of the gauge bo
fields W̄m

6 which correspond to theU(1)Y gauge degree o
freedom. Even more they do not determine the class
Goldstone boson fieldŪ either, since it corresponds to th
SU(2)L gauge degrees of freedom. Thus, gauge invaria
implies that these equations have a whole class of solut
in terms of the original fieldsŪ,W̄m

a ,B̄m . Every two repre-
sentatives are related to each other by a gauge transfo
tion. Nevertheless, the physical degrees of freedom
uniquely determined by these equations of motion. Mo
over, since the action is gauge-invariant, the generating fu
tional in Eq.~2.33! is uniquely determined for the given s
of source terms.

The most important point is the fact that the classi
Goldstone boson fieldŪ represents theSU(2)L gauge de-
grees of freedom. Thus, no Goldstone bosons are propa
ing at the classical level of the theory. All gauge-invaria
sources emit physical modes only. Moreover, Eqs.~2.37! and
~2.38!, which follow from the requirement that the variatio
of the Lagrangian with respect to the Goldstone boson fi
Ū vanishes, are not equations of motion, but constraints
pressing the fact that the gauge fieldsw̄7W̄m

6 , Z̄m , andĀm

couple to conserved currents. They can also be obtaine
taking the derivative of the equations of motion for the gau
fields. Note that we have already used the constraints
bring these equations of motion into the form given in E
~2.34!–~2.36!.

We note that the equations of motion can be solved
powers of the external sources, see Ref.@16#.

2. The generating functional at order p4

The one-loop contribution to the generating function
can be evaluated with the saddle-point method. If we w
the fluctuationsȳ around the classical fieldsF̄ cl as F̄5F̄ cl

1 ȳ, we obtain the following representation for the one-lo
approximation to the generating functional:

e2We f f[ K̄mn ,J̄m
6 ,J̄m

Z]5e2*ddxL e f f
cl E dm@ ȳ#e2(1/2)*ddxȳTD̃̄ ȳ.

~2.43!

Gauge invariance implies that the operatorD̃̄ has zero eigen-
values corresponding to fluctuationsȳ which are equivalent
to infinitesimal gauge transformations. Indeed, ifF̄cl,i is a
solution of the equation of motion, i.e., a stationary point
the classical action,

dSe f f

dF̄i U
F̄5F̄ cl

50, ~2.44!
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then any gauge transformation yields another equivalent
lution. The indexi in F̄cl,i labels the different fields. Thus
differentiating equation~2.44! with respect to the gauge pa
rametersvA one obtains

d2Se f f

dF̄ idF̄ j

dF̄ j

dvAU
F̄5F̄ cl

50. ~2.45!

The quadratic form which appears in Eq.~2.45! is identical

to the differential operatorD̃̄. If these zero modes are treate
properly@22,16#, one can evaluate the path-integral repres
tation for the generating functional at the one-loop lev
without the need to fix a gauge and without introduci
ghost fields. Up to an irrelevant infinite constant one obta
the following result for the generating functional of the e
fective field theory at orderp4:

~W21W4!@K̄mn ,J̄m
6 ,J̄m

Z#5E ddx~L21L4!1
1

2
ln det8 D̃̄

2
1

2
ln detP̄TP̄, ~2.46!

whereL4 is the effective Lagrangian of orderp4. The first
term on the right-hand side represents the classical ac
which describes the tree-level contributions of orderp2 and
p4 to the generating functional. The two determinants on
right-hand side of this equation represent one-loop contri
tions to the generating functional. The first determinant
scribes all one-loop contributions with vertices from the L

grangianL2 where det8 D̃̄ is defined as the product of a

non-zero eigenvalues of the operatorD̃̄. The second determi
nant originates from the path integral measure. The oper

P̄ satisfies the relationP̄TD̃̄5 D̃̄ P̄50. The fields in Eq.
~2.46! satisfy the equations of motion. At orderp4 the con-
tributions fromL4 to these equations of motion are not re
evant. Hence, they are given by Eqs.~2.34!–~2.38!. The ex-

plicit form of the differential operatorsD̃̄ and P̄ for the case
r̄Þ1 is very complicated and we will not write it down her

We note that the results forD̃̄ andP̄ for r̄51 can be inferred
from the corresponding differential operators in the stand
model, see the discussion after Eq.~4.12! below.

The most general effective Lagrangian at orderp4 is
given by

L45L 4
01L 4

s . ~2.47!

The first term can be written in the form

L 4
05(

i 51

18

l iOi , ~2.48!

where the operatorsOi are given by

O15~W̄m
1W̄m

2!~W̄n
1W̄n

2!,
6-7
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O25~W̄m
1W̄n

2!~W̄m
1W̄n

2!,

O35~Z̄mZ̄m!~W̄n
1W̄n

2!,

O45~Z̄mZ̄n!~W̄m
1W̄n

2!,

O55~Z̄mZ̄m!~Z̄nZ̄n!,

O65emnrsZ̄s~W̄r
2W̄mn

1 1W̄r
1W̄mn

2 !,

O75 i Z̄mn~W̄m
1W̄n

22W̄n
1W̄m

2!,

O85 iB̄mn~W̄m
1W̄n

22W̄n
1W̄m

2!,

O95 i Z̄m~ d̄mW̄n
1W̄n

22d̄mW̄n
2W̄n

1!,

O105 i Z̄n~ d̄mW̄m
1W̄n

22d̄mW̄m
2W̄n

1!,

O115Z̄mnZ̄mn ,

O125B̄mnZ̄mn ,

O135~ d̄mW̄m
1!~ d̄nW̄n

2!,

O145~]mZ̄m!~]nZ̄n!,

O155MW
2 S W̄m

1W̄m
21

1

4
Z̄mZ̄mD ,

O165MZ
2Z̄mZ̄m ,

O175W̄mn
a W̄ mn

a ,

O185B̄mnB̄mn . ~2.49!

We recall that we count the gauge fieldsW̄m
6 ,Z̄m and the

massesMW ,MZ as orderp in the low-energy expansion
therefore the custodial symmetry breaking termO16 is of the
order p4. The second term in Eq.~2.47! contains all contri-
butions involving external sources:

L 4
s5(

i 51

76

l i
sO i

s. ~2.50!

The operatorsO i
s are listed in Appendix A. Note, that w

considerCP-even terms only. The low-energy constantsl i

and l i
s are quantities of orderp0.

It is important to note, that the most general effecti
Lagrangian at this order is given as a linear combination o
maximal set of gauge-invariant terms of orderp4. One can
then eliminate redundant terms by using algebraic relati
of the form

E ddx~ d̄mW̄n
1!~ d̄nW̄m

2!5E ddxS 1

2
O81O13D ,

~2.51!
11300
a

s

which are readily verified by partial integration. On the oth
hand, the LagrangianL4 contributes only at the classica
level. Hence, the equations of motion~2.34!–~2.36! as well
as the constraints~2.37! and~2.38! can also be used to elimi
nate further redundant terms@13,17#. Equivalently, one can
also remove terms in the effective Lagrangian by perform
appropriate reparametrizations of the fields and exte
sources in the path integral@18#. Note that we have alread
eliminated all algebraically dependent terms from the li
given in Eq.~2.49! and in Appendix A. Thus, we only nee
to employ the equations of motion and the constraints
eliminate further redundant terms. Note that in our gau
invariant approach no gauge artifacts can enter through
procedure.

The constraints~2.37! and ~2.38! yield the following re-
lations between the operators in the LagrangianL4:

O10522~12 r̄ !O414O 4
s24O 6

s24O 46
s , ~2.52!

O135~12 r̄ !2O424~12 r̄ !O 4
s14~12 r̄ !O 6

s

116O 14
s 216O 17

s 116O 19
s 14~12 r̄ !O 46

s

216O 51
s 116O 53

s 116O 74
s , ~2.53!

O145
64

r̄2
~2O 10

s 2O 12
s !1

64

r̄2
~O 49

s 2O 52
s !1

16

r̄2
O 76

s ,

~2.54!

O 41
s 52~12 r̄ !O 4

s18O 14
s 24O 17

s 24O 51
s , ~2.55!

O 43
s 52~12 r̄ !O 6

s14O 17
s 28O 19

s 24O 53
s , ~2.56!

O 47
s 5

8

r̄
~2O 10

s 2O 12
s !1

4

r̄
~O 49

s 2O 52
s !, ~2.57!

O 48
s 52~12 r̄ !O 16

s 14O 25
s 24O 27

s 24O 55
s , ~2.58!

O 73
s 52~12 r̄ !O 46

s 14O 51
s 24O 53

s 28O 74
s , ~2.59!

O 75
s 52

8

r̄
~O 49

s 2O 52
s !2

4

r̄
O 76

s . ~2.60!

The equations of motion forW̄m
6 , Eq. ~2.34!, andW̄m

3 , Eq.
~2.35!, yield

O11528O118O2216O3116r̄O418O728O928O15

12c̄2S 1

r̄
22DO162O171O18132O 4

s232O 6
s

232O 46
s 216O 64

s 216
c̄2

r̄
O 66

s , ~2.61!
6-8
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O1258O128O218O328r̄O424O714O918O15

22c̄2S 1

r̄
21DO161O172O18216O 4

s116O 6
s

116O 46
s 116O 64

s 18
c̄2

r̄
O 66

s , ~2.62!

O 68
s 524O 1

s14O 2
s22O 5

s12r̄O 6
s2

32

r̄
O 10

s 1
16

r̄
O 12

s

18O 17
s 216O 19

s 12O 35
s 1O 36

s 24O 44
s 12O 46

s

2
8

r̄
~O 49

s 2O 52
s !28O 53

s 22O 64
s 216O 65

s , ~2.63!

O 70
s 528O 3

s14r̄O 4
s132O 14

s 216O 17
s 14O 34

s 24O 42
s

216O 51
s 22c̄2O 66

s 28
c̄2

r̄
O 67

s 2O 71
s . ~2.64!

Note that we have frequently employed partial integratio
to derive the Eqs.~2.52!–~2.64!. Furthermore, we have al
ready replaced all dependent terms on the right-hand sid
Eqs. ~2.61!–~2.64!. Equation~2.62! can be derived by ob
serving the identities

W̄mn
1 W̄mn

2 522O112O222O312O412O71O822O9

12O102
1

4
O112

1

2
O121

1

4
O172

1

4
O18, ~2.65!

and

W̄mn
1 W̄mn

2 52W̄n
1d̄mW̄mn

2 2W̄n
2d̄mW̄mn

1 , ~2.66!

which are valid up to partial integrations. Afterwards one c
employ the equation of motion~2.34! to substitute the ex-
pression ford̄mW̄mn

6 in Eq. ~2.66!. In the same way one ca
obtain the relation~2.63! for O 68

s . Similarly, performing par-
tial integrations in (O111O12) and (O 70

s 1O 71
s ) leads to

]m(B̄mn1Z̄mn) where the equation of motion~2.35! can be
applied in order to obtain Eqs.~2.61! and ~2.64!. Using the
relations~2.52!–~2.64! one can eliminate the terms on th
left-hand side of the corresponding equations from the se
terms in the LagrangianL4. This reduces the number of low
energy constants by 13. Note that one has to adjust the
ues of the low-energy constants of the remaining terms
cordingly. We will denote the modified low-energy constan

by l i8 and l i
s8 in order to distinguish them from the old one

Finally, there are terms in the LagrangianL4 which are
proportional to corresponding terms in the lowest order
grangianL2. These are the operatorsO15, O16, O17, O18,
O 64

s , O 65
s , O 66

s , O 67
s , andO 71

s . Following the interpreta-
tion given in Refs.@9,11# these terms lead to a renormaliz
tion of the low-energy constants and sources at orderp2

according to
11300
s

of

n

of

al-
c-
s

-

v̄2→ v̄e f f
2 5 v̄2S 112l 15

MW
2

v̄2 D , ~2.67!

r̄→ r̄e f f5 r̄22~ r̄21!l 15

MW
2

v̄2
18l 16

MZ
2

v̄2
, ~2.68!

ḡ 2→ḡ e f f
2 5ḡ 2~124l 17ḡ

2!, ~2.69!

ḡ8 2→ḡ8 e f f
2 5ḡ8 2~124l 18ḡ8 2!, ~2.70!

K̄mn→K̄mn;e f f5K̄mn22l 71
s J̄mn

Z , ~2.71!

J̄m
6→ J̄m;e f f

6 5 J̄m
6S 11S 1

2
l 64
s 22l 15D MW

2

v̄2 D , ~2.72!

J̄m
Z→ J̄m;e f f

Z 5 J̄m
ZS 11 l 66

s
MZ

2

v̄2
22l 15

MW
2

v̄2 D , ~2.73!

c̄W→ c̄W;e f f5 c̄WS 11~2l 152 l 64
s !

MW
2

v̄2 D 1
1

4
l 65
s

MW
2

v̄2
,

~2.74!

c̄Z→ c̄Z;e f f5 c̄ZS 112l 15

MW
2

v̄2
22l 66

s
MZ

2

v̄2 D 1 l 67
s

MZ
2

v̄2
.

~2.75!

Hence, we end up with the following set of independe
operators at orderp4:

O15~W̄m
1W̄m

2!~W̄n
1W̄n

2!,

O25~W̄m
1W̄n

2!~W̄m
1W̄n

2!,

O35~Z̄mZ̄m!~W̄n
1W̄n

2!,

O45~Z̄mZ̄n!~W̄m
1W̄n

2!,

O55~Z̄mZ̄m!~Z̄nZ̄n!,

O65emnrsZ̄s~W̄r
2W̄mn

1 1W̄r
1W̄mn

2 !,

O75 i Z̄mn~W̄m
1W̄n

22W̄n
1W̄m

2!,

O85 iB̄mn~W̄m
1W̄n

22W̄n
1W̄m

2!,

O95 i Z̄m~ d̄mW̄n
1W̄n

22d̄mW̄n
2W̄n

1!,
~2.76!

and

O 1
s , . . . ,O 40

s ,O 42
s ,O 44

s ,O 45
s ,O 46

s ,O 49
s , . . . ,

O 63
s ,O 69

s ,O 72
s ,O 74

s ,O 76
s . ~2.77!
6-9
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Thus, we obtain 9163572 independent low-energy con

stants which we denote byl i8 and l i
s8 .

As discussed above, sincer̄21 is tiny, some people se
r̄51 and instead add the operatorMZ

2Z̄mZ̄m to the basis at
orderp4. In order to facilitate the comparison with the liter
ture, we cover this case by including the term

O08MZ
2Z̄mZ̄m[O16, ~2.78!

with the corresponding low-energy constantl 08 into the basis
from Eq. ~2.76!. The total number of independent low
energy constants inL21L4 remains the same, if we trad
r̄21 for l 08 . The momentum counting, however, is differen
see the discussion after Eq.~2.32!.

Note that one cannot obtain additional relations betw
the operators inL4 from the equation of motion forB̄m , Eq.
~2.36!, since it contains non-local terms involving the proje
tion operator PTmn , cf. Eq.~2.42!. Let us consider this equa
tion in greater detail.

The presence of non-local terms in Eq.~2.36! results from
our coupling sources to the non-local charged gauge-bo
fields in Eq. ~2.28!. Indeed, switching off the sourcesJ̄m

6

yields

W̄m
650, ~2.79!

]mȲ m
Z50. ~2.80!

Hence, Eq.~2.36! simplifies to

2]mB̄mn5 s̄2MZ
2Ȳ n

Z2
ē2

c̄2
]mK̄mn . ~2.81!

Multiplying this equation byZ̄n one obtains by partial inte
gration

O1252s̄2O1618
s̄2

r̄
O 66

s 1
ē2

c̄2
Z̄mnK̄mn . ~2.82!

This relation involves the new operator

Z̄mnK̄mn , ~2.83!

which we did not consider because it is physically irreleva
In the case of the standard model the sourceKmn enters the
Lagrangian as in Eq.~3.12! below. As will be shown in Sec
IV, this in turn implies that the corresponding effective fie
theory involves the sourceK̄mn only through the single
source term introduced in Eq.~2.28!. As long as the fieldBm
describes a weakly interactingU(1)Y gauge field, this is in
fact true for any underlying theory. Hence, operators as
one shown in Eq.~2.83! need not be considered and E
~2.82! cannot be used to eliminate further redundant term

If the sourceK̄mn is switched off as well, Eq.~2.82! sim-
plifies to
11300
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O1252s̄2O1618
s̄2

r̄
O 66

s . ~2.84!

This relation can also be derived from Eqs.~2.61! and~2.62!
since the equations of motion now have the solutions

W̄m
650 ~2.85!

Ām50, ~2.86!

implying B̄m52 s̄2Z̄m and W̄ m
3 5 c̄2Z̄m . Equations~2.61!,

~2.62! and ~2.84! do, in fact, require Eq.~2.86! to be satis-
fied. This result shows clearly, that one should be carefu
using equations of motion to eliminate operators in the
fective Lagrangian, if~some of! their solutions vanish. In
doing so, one may accidentally remove terms that are
redundant at all.

In the remainder of this section we will compare our r
sults with those obtained in the literature@10,11#. Since no
source terms have been considered in these reference
will switch off all the sources for the moment. Furthermor
we have to take into account that in Ref.@11# the low-energy
constantr̄21 is treated as a quantity of orderp2. Thus, we
will compare our 10 low-energy constants

l 18 , . . . ,l 98 and r̄21 ~or equivalently l 08!,
~2.87!

with those obtained in the literature. The expression for
effective LagrangianL 2

0 in the notation which is usually
used in the literature and the relation between our se
operators inL 4

0 and the usual basis can be found in Appe
dix B. In Refs.@10,11# all operators inL 4

0 that are propor-
tional to terms in the lowest order LagrangianL 2

0 have been
discarded right at the beginning. Hence, the authors s
with 15 CP-even terms corresponding to the term
O1 , . . . ,O14 andO16 in Eq. ~2.49!, see also Eq.~B4!.

By making use of the equations of motion, tr(D̂mV̂m)
50 ~for notations see Appendix B!, corresponding to our
constraints~2.37! and ~2.38!, the number of terms was re
duced from 15 to 12 in these references. In fact, the th
relations

L1150, ~2.88!

L1250, ~2.89!

L135
1

4
B̄mnB̄mn1L11L42L52L61L71L8 ,

~2.90!

given in Ref.@11#4 correspond to Eqs.~2.52!–~2.54!, if we
set all sources to zero and assumer̄51 at leading order, i.e.
to

4We obtain a different sign of the termsL4 andL5 in Eq. ~2.90!
compared to Ref.@11#.
6-10
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O1050, O1350, O1450. ~2.91!

Note especially that Eq.~2.90! corresponds toO1450 in our
basis, cf. the relation between the two sets of operators w
is given in Eq.~B6!.

In addition to the constraints we furthermore use
equations of motion for the gauge fields~2.34! and~2.35! to
reduce the number of low-energy constants from 12 to
Since this step was not taken in Refs.@10,11# the set of
low-energy constants used in these references is redund

This is an important result and we would like to add so
comments. First of all, we stress again that we are study
for the moment a purely bosonic effective field theory whi
describes any underlying theory with the same symme
breaking pattern as the standard model, i.e. no fermions h
been included in the effective Lagrangian. In order to rea
compare our findings with Refs.@10,11# one has to conside
the fermions in the analysis, which was implicitly done
these references, see also Ref.@21#. We will come back to
this point below.

Using Eqs.~2.61! and ~2.62! we havechosento remove
the operatorsO11 andO12 from the effective Lagrangian in
Eq. ~2.49!. These operators contribute to the self-energies
the gauge bosons which are not observable anyway. In
basis which is usually used in the literature this correspo
to removing the operatorsL1 and L8 from the basis, see
Appendix B. Sometimes the corresponding low-energy c
stantsa1 and a8 are identified with the oblique correctio
parametersS and U @2#. Furthermore, the parameterT is
identified with the low-energy constanta0 which corre-
sponds tor̄21, or, depending on the momentum countin
to the low-energy constantl 08 in our basis. Before any con
clusions about the oblique parameters can be drawn, h
ever, one has to study the inclusion of fermions in the eff
tive field theory. This will be done below where we wi
compare our results with the experimentally determined v
ues for the oblique parametersS, T, andU.

Of course, within our functional approach the sour
terms have to be considered as well. Even in this case, h
ever, only the 10 low-energy constantsl 18 , . . . ,l 98 and r̄21
~or equivalently l 08) will contribute to physical quantities
like S-matrix elements, masses and decay constants of g
bosons. The first group of source terms which will obviou
not contribute to physical quantities are the contact te
O 65

s , O 67
s , O 69

s , O 72
s , O 74

s , andO 76
s with two powers of

the external sources, cf. Eq.~A3!, and all terms inL 4
s with

three or four powers of the fields and sources which con
at least one factor with an external source, i.e. the opera
O 1

s , . . . ,O 63
s in Eqs.~A1! and ~A2!. This is due to the fact

that in physicalS-matrix elements all external lines are am
putated from the Green’s functions. The corresponding lo
energy constants are thus similar to the constantshi in the
ordinary chiral Lagrangian@13#. Furthermore, with the help
of Eqs.~2.63!, ~2.64!, ~2.59!, and~2.60!, one can remove the
operatorsO 68

s ,O 70
s ,O 73

s , and O 75
s from the basis. Finally,

the operatorsO 64
s ,O 66

s andO 71
s lead only to a renormaliza

tion of the sourcesJ̄m
6 ,J̄m

Z , and K̄mn in the lowest order ef-
fective Lagrangian in Eq.~2.28!, cf. Eqs.~2.71!–~2.73!.
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In summary, in a purely bosonic effective field theo
with the same symmetry breaking pattern as the stand
model, there are only 10 instead of 12 physically relev
low-energy constants at orderp4 in the electroweak chira
Lagrangian. In particular, one can choose to remove
low-energy constantsl 11 andl 12 which contribute to the self-
energies of the gauge bosons. An additional number of
low-energy constants contributes to the off-shell behavior
our gauge-invariant Green’s functions. The latter low-ene
constants, however, do not enter physical quantities.

The situation is more involved, however, if fermions a
included in the analysis, since in that case the sourcesJ̄m

6 and

J̄m
Z also contain fermionic currents. We will now comment o

this point.

B. On the inclusion of fermions

The fermionic part of the effective Lagrangian is of th
form

L e f f
f 5L e f f

f ~CL
k ,uR

k ,dR
k ,Ū,DmCL

k ,DmuR
k ,

DmdR
k ,D̄mŪ, . . . ;ML

k ,NL
k ,MR

k ,NR
k !, ~2.92!

whereCL
k denotes the left-handed iso-doublet fields whiledR

k

and uR
k represent right-handed up- and down-type ferm

fields comprising leptons and quarks. Note that all our f
mion fields are weak eigenstates. The quantitiesML,R

k and
NL,R

k denote external sources coupling to these ferm
fields. As discussed for the bosonic part, the effective
grangian is a sum of terms with an increasing number
derivatives and powers of fields and sources correspon
to an expansion of the generating functional in powers of
momenta and the masses. In addition to the counting r
discussed above we require that fermion fields are treate
quantities of orderAp and fermion masses, denoted bymf

k ,
as of orderp. This ensures that the low-energy expansion
carried out at a fixed ratiomf

k/p.
The left-handed iso-doublet fields transform und

SU(2)L gauge transformations in the following way:

CL
k→V CL

k , VPSU~2!, ~2.93!

and underU(1)Y gauge transformations as follows:

CL
k→e2 iY(CL

k )v/2CL
k . ~2.94!

The iso-singlets transform underU(1)Y gauge transforma-
tions in the following way:

uR
k →e2 iY(uR

k )v/2uR
k ,

dR
k →e2 iY(dR

k )v/2dR
k . ~2.95!

The hypercharges for lepton fields areY(CL
k)521, Y(uR

k )
50 and Y(dR

k )522 while those for quark fields are
Y(CL

k)5 1
3 , Y(uR

k )5 4
3 and Y(dR

k )52 2
3 . The covariant de-

rivatives for the fermion fields in Eq.~2.92! are given by
6-11
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DmCL
k5S ]m2 i

ta

2
W̄m

a 2 i
Y~CL

k !

2
B̄mDCL

k , ~2.96!

Dm f R
k 5S ]m2 i

Y~ f R
k !

2
B̄mD f R

k , f 5u,d. ~2.97!

Following our approach to the bosonic sector, we c
rewrite the effective Lagrangian~2.92! in terms ofSU(2)L
invariant fields, which are defined as@32#

uL
k5 Ũ̄†CL

k , ~2.98!

dL
k5Ū†CL

k . ~2.99!

They transform underU(1)Y gauge transformations as

uL
k→e2 iY(uL

k )v/2uL
k ,

dL
k→e2 iY(dL

k )v/2dL
k , ~2.100!

whereY(uL
k)5Y(uR

k ) andY(dL
k)5Y(dR

k ).
At orderp2 the fermionic part of the effective Lagrangia

contains several terms

L 2
f 5L 2

f ,kin1L 2
f ,Y1L 2

f ,CC1L 2
f ,NC1L 2

f ,4F1L 2
f ,s.
~2.101!

They denote the kinetic part of the Lagrangian, the Yuka
couplings, the coupling to charged and neutral currents, fo
fermion interactions and source terms. The first four ter
can readily be inferred from the corresponding terms in
fermionic sector of the standard model@32#

L 2
f ,kin5(

k
~ d̄L

k iD” dL
k1ūL

k iD” uL
k1d̄R

k iD” dR
k 1ūR

k iD” uR
k !,

~2.102!

L 2
f ,Y5 v̄(

i j
~ ḡi j d̄L

i dR
j 1ḡ j i* d̄R

i dL
j 1h̄i j ūL

i uR
j 1h̄ j i* ūR

i uL
j !,

~2.103!

L 2
f ,CC5(

i j
cCC

i j ,L~W̄m
1 j m

L,i j 21W̄m
2 j m

L,i j 1!

1cCC
i j ,R~W̄m

1 j m
R,i j 21W̄m

2 j m
R,i j 1!, ~2.104!

L 2
f ,NC5(

i j
cNC

i j ,LZ̄mJm
L,i j 31(

i j
cNC

i j ,RZ̄mJm
R,i j 32 s̄2Jm

f ,QZ̄m ,

~2.105!

where

Dm f L,R
k 5~]m2 iQ f kĀm! f L,R

k , ~2.106!

j m
L/R,i j 15d̄L/R

i gmuL/R
j , ~2.107!

j m
L/R,i j 25ūL/R

i gmdL/R
j , ~2.108!
11300
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Jm
L/R,i j 35

1

2
~ ūL/R

i gmuL/R
j 2d̄L/R

i gmdL/R
j !, ~2.109!

Jm
f ,Q5(

k
~QukūL

kgmuL
k1Qdkd̄L

kgmdL
k

1QukūR
k gmuR

k 1Qdkd̄R
k gmdR

k !. ~2.110!

The electromagnetic charges are given by the quant
Qf k5 1

2 Y( f k). The Yukawa coupling constantsḡi j and h̄i j
count as quantities of orderp in the low-energy expansion
This ensures that fermion massesmf

k are treated as of orderp
as well. The constantscCC

i j andcNC
i j are of orderp0. Gauge-

invariant sources for fermions are readily constructed. We
not need to discuss this point here and refer the intere
reader to Ref.@32#.

A general effective Lagrangian analysis involves,a pri-
ori, all possible couplings between the fermions and
gauge bosons. Invariance underU(1) gauge transformation
completely determines only the coupling between fermio
and the photon. The coupling between fermions and the m
sive gauge bosons, on the other hand, is only restricted s
that the constantscCC

i j andcNC
i j vanish if the electromagnetic

charge is not conserved at the vertex. However, from exp
ment one knows that many of these low-energy constants
very small, e.g. the couplings of the massive gauge boson
right-handed fermions or those couplings which indu
flavor-changing neutral currents or lepton-number violatio
Therefore, in analogy to the low-energy constantr̄21 in the
bosonic sector, one might set these low-energy constan
L 2

f equal to zero and consider them only at orderp4 in the
effective Lagrangian. In general, however, these coupl
constants are already present at orderp2.

It is interesting to note that the coupling to charged a
neutral currents can readily be derived from Eq.~2.28! by
substituting

v̄2 j̄ m
1→ v̄2 j̄ m

11(
i j

cCC
i j ,L j m

L,i j 11(
i j

cCC
i j ,Rj m

R,i j 1 , ~2.111!

v̄2J̄m
Z→ v̄2J̄m

Z1(
i j

cNC
i j ,LJm

L,i j 31(
i j

cNC
i j ,RJm

R,i j 32 s̄2Jm
f ,Q .

~2.112!

For the case of four-fermion interactions this is also true.
substituting

v̄2 j̄ m
1→ v̄2 j̄ m

11(
i j

dCC
i j ,L j m

L,i j 11(
i j

dCC
i j ,Rj m

R,i j 1 , ~2.113!

v̄2J̄m
Z→ v̄2J̄m

Z1(
i j

dNC
i j ,LJm

L,i j 31(
i j

dNC
i j ,RJm

R,i j 32 s̄2Jm
f ,Q ,

~2.114!

all four-fermion interactions of the current-current type c
be generated from the last two terms in Eq.~2.28!. One
should note, however, that there are other four-fermion in
actions, which are not of this type and which cannot be g
6-12
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erated in this way. The same procedure works at orderp4.
Using our source terms given in Appendix A one can gen
ate a host of terms involving the interaction of fermion
currents. Again, a considerable number of the correspon
low-energy constants is, however, either irrelevant to the c
rent experimental situation or is very small. All terms invol
ing four powers of currents and/or gauge fields, for exam
contribute to eight-fermion processes only.

One should also note, that terms of orderp4 are already of
next-to-next-to-leading order if fermions are present. This
due to the fact that fermionic fields count as orderAp.
Hence, the effective Lagrangian also contains terms of o
p3, for example

d̄L
i iD” dL

i ūL
j uL

j , . . . . ~2.115!

This is well known from the effective Lagrangian analysis
pion-nucleon physics@40#.

Now we are in the position to resume the comparison
our findings for the number of independent low-energy c
stants in the electroweak chiral Lagrangian with the res
found in Refs.@10,11,21#. Furthermore, we want to clarify
the role of the oblique correction parametersS, T, andU @2#
within our effective field theory analysis.

Obviously the analysis presented in the preceding sub
tion is not affected by the presence of the fermions. One
use the equations of motion to eliminate the same opera
The only difference is that these equations now depend
a linear combination of external and fermionic currents. In
particular, one can again remove the low-energy const
l 11 and l 12. This will renormalize the external currentsJ̄m

Z

andJ̄m
6 as well as the coupling constantscCC

i j andcNC
i j in Eqs.

~2.104! and~2.105! among other quantities. Hence, the co
plete low-energy analysis of a strongly interacting ele
troweak symmetry breaking sector does not involve the lo
energy constantsl 11 andl 12, or equivalently, the low-energy
constantsa1 anda8 in the usual basis. These constants co
tribute to the self-energies of the gauge bosons which are
observable anyway. Note, that the situation here is simila
the one described in the purely bosonic effective field theo
The low-energy constantsv̄2 andr̄21 in L2, Eq. ~2.27!, are
of orderp0, however, there are terms inL4 which renormal-
ize these low-energy constants as described in Eqs.~2.67!
and ~2.68!. In the same way, removingl 11 and l 12 modifies
two of the coupling constantscCC

i j and cNC
i j at order p2.

Therefore, it is not possible to remove two of the parame
cCC

i j andcNC
i j instead ofl 11 and l 12. It should be noted, how

ever, that the reduction of the number of operators does
affect the result for any physical quantity evaluated by e
ploying the effective Lagrangian.

As already mentioned in the previous subsection, the s
to remove the two low-energy constantsa1 anda8 from the
basis was not taken in Refs.@10,11#. These authors were
interested to parametrize the electroweak symmetry brea
sector by means of an effective chiral Lagrangian involv
only the bosonic degrees of freedom~without the usual
Higgs boson!. The couplings of the fermions to the gaug
bosons were assumed to have their standard model value
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this respect, no complete effective Lagrangian analysis
attempted in these references. The constraint equations

relate tr(D̂mV̂m) to a four-fermion term which can be trans
formed further by employing the equations of motion for t

fermions. The quantity tr(D̂mV̂m) is then proportional to the
square of the fermion masses which are small for exte
light fermions. Only in this approximate sense the ter
L11,L12, andL13 have been removed from the basis in Re
@10,11#. The application of the equations of motion for th
gauge fields, on the other hand, leads to fermionic opera
which would modify the usual couplings of the fermions
the gauge bosons. Therefore, no reduction of the numbe
independent terms can be achieved in this framework. T
interplay of bosonic and fermionic operators when emplo
ing the equations of motion was also noted in Ref.@21#. In
that paper a heavy Higgs boson is integrated out of the s
dard model including the fermions. However, no comple
effective field theory analysis including the most gene
couplings of the fermions to the gauge bosons was give
that reference. Furthermore, only the constraint equatio
not the equations of motion for the gauge fields, have b
used to reduce the number of operators in the basis.

The low-energy constantsa1 anda8 are sometimes iden
tified with the oblique correction parametersS and U @2#.
What is the relation of the above findings to the experim
tally determined values for the oblique parameters5 S, T, and
U quoted by the particle data group@39#?

From our point of view it is not possible to directly iden
tify the low-energy constantsl 11,l 12, and l 16, or equiva-
lently, a0 ,a1, anda8 with the oblique correction paramete
S, T, andU. The reason is the following: the definition o
the oblique parameters by Peskin and Takeuchi@2# is in-
tended to parametrize the effects of heavy new physicsbe-
yond the standard model on the self-energies of the ga
bosons. In particular, it is assumed that there exists an
ementary Higgs boson and that the full Lagrangian can
decomposed in the formLf ull5LSM1Lnew. This is also re-
flected by the fact that one has always to specify a refere
value for the Higgs boson mass when quoting results
S, T, andU. In contrast to that, the parametrization of ne
physics by means of the electroweak chiral Lagrangian
sumes that the electroweak symmetry breaking is media
by a strongly interacting theory. This might either be t
standard model with a heavy Higgs boson or another, ge
inely strongly interacting model like technicolor where n
Higgs particle exists at all. In order to make contact betwe
the two descriptions one could try to mimic any strong
interacting symmetry breaking sector by studying the la
Higgs boson mass limit. Note, however, that one can
completely remove the Higgs particle from the theory in th
way, since forMH→`, the Higgs sector becomes strong
interacting and non-perturbatively. The decoupling theor
@6# does not apply in this case.

5The oblique parameterT is often identified with the low-energy

constanta0 which corresponds tor̄21, or, depending on the mo
mentum counting, to the low-energy constantl 08[ l 16 in our basis.
6-13
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Let us go back to Eqs.~2.23! and ~2.24! and assume tha
fermions are included and that redundant terms havenot yet
been removed. The low-energy constants have the follow
form:

l i
(k)5d i

(k)Le1 l i
(k),r~m!. ~2.116!

They contain a pole termd i
(k)Le , with L«8(md24/

16p2)„1/(d24)2 1
2 @ ln(4p)1G8(1)11#…, and a renormalized

low-energy constantl i
(k),r(m). Apart from redundancy the

constantsd i
(k) are universal, i.e. independent of the under

ing theory. We now assume that the finite, renormalized lo
energy constants can be decomposed as follows:

l i
(k),r~m!5 l i

(k),SM~m!1 l i
(k),new~m!, ~2.117!

where the first terms describe the contributions for the s
dard model with a heavy Higgs boson, i.e. the results gi
below for the bosonic sector up to orderp4, and the second
terms describe new physics effects. In general, fork>4 the
contributionsl i

(k),SM(m) diverge forMH→`, indicating that
one enters the strongly interacting regime where the per
bative analysis breaks down.

The definition of S, T, and U given by Peskin and
Takeuchi@2# now amounts to settingl i

(k),new(m)50 for all i
andk except fork54 andi 511,12 and 16. This introduce
three finite parameters independent of each other to des
new physics effects. At this point the effective Lagrangi
still involves a redundant set of operatorsO i

(k) which can be
reduced by employing the equations of motion. Hence,
can again remove the operatorsO11 andO12. In the present
situation, however, this does not reduce the number of in
pendent parameters. It merely moves them to some o
operators.

To close this section we note that appropriate sou
terms for the fermions are given in Ref.@32#. They are
gauge-invariant and yield local equations of motion for t
fermion fields. These equations can then be used to elimi
additional terms in the effective Lagrangian at orderp3 and
at orderp4. A complete analysis including the fermions an
the corresponding source terms is, however, beyond
scope of the present work.

III. A MANIFESTLY GAUGE-INVARIANT APPROACH
TO THE STANDARD MODEL

A. The Lagrangian and the gauge-invariant
generating functional

The standard model with a heavy Higgs boson can
described by an effective Lagrangian as introduced in
previous section. For this specific case, the correspon
low-energy constants can be calculated explicitly in pert
bation theory if the coupling constant of the Higgs boson
not too large. The effective Lagrangian can be evaluated
matching the standard model and the effective theory at
energies. In this section we will briefly introduce our gaug
invariant approach to the bosonic sector of the stand
11300
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model, following the discussion in Ref.@16# to which we
refer for more details. The matching calculation will be pr
sented in Sec. IV.

The Lagrangian of the standard model without fermions
of the form

L5
1

2
DmF†DmF2

1

2
m2F†F1

l

4
~F†F!2

1
1

4g2 Wmn
a Wmn

a 1
1

4g82
BmnBmn , ~3.1!

where F5(
f2
f1) denotes the Higgs boson doublet which

coupled to theSU(2)L gauge fieldsWm
a (a51,2,3) and the

U(1)Y gauge fieldBm through the covariant derivative

DmF5S ]m2 i
ta

2
Wm

a 2 i
1

2
BmDF. ~3.2!

We have again absorbed the coupling constantsg andg8 into
the gauge fieldsWm

a and Bm , respectively. The field
strengths are defined analogously to Eqs.~2.4! and~2.5!. The
Higgs field F transforms underSU(2)L gauge transforma-
tions in the following way:

F→VF, VPSU~2!, ~3.3!

and underU(1)Y gauge transformations as follows:

F→e2 iv/2F. ~3.4!

For m2.0 the classical potential has its minimum at
nonzero valueF†F5m2/l and theSU(2)L3U(1)Y sym-
metry is spontaneously broken down toU(1)em. Accord-
ingly, the field F describes one massive mode, the Hig
particle, and three Goldstone bosons which render the ga
fields W and Z massive. Finally, the spectrum contains t
massless photon. At tree level, the masses and the ele
coupling constante are given by the relations

MH
2 52m2, MW

2 5
m2g2

4l
,

MZ
25

m2~g21g82!

4l
,

e25
g2g82

g21g82
. ~3.5!

We will use the same definition of the weak mixing angle
in the effective field theory, cf. Eq.~2.14!.

In order to have nontrivial solutions of the equations
motion, we furthermore couple external sources to the ga
fields and the Higgs boson. As in the preceding section
will couple sources only to gauge-invariant operators. Ag
we introduce another set of fields for the dynamical degr
of freedom which are already invariant under the no
Abelian group SU(2)L and, in parts, under the Abelia
6-14
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group U(1)Y as well. It is convenient to use a polar repr
sentation for the Higgs doublet field

F5
m

Al
RU, ~3.6!

where the unitary fieldU, satisfyingU†U51, describes the
three Goldstone bosons, while the radial componentR repre-
sents the Higgs boson. Furthermore, we define theY-charge
conjugate doublet

F̃5 i t2F* . ~3.7!

We introduce the following operators:

Vm
1 5 i F̃†DmF1 iF†DmF̃5

m2

l
R2W m

1 ,

Vm
2 52F̃†DmF1F†DmF̃5

m2

l
R2W m

2 ,

Vm
3 5 i F̃†DmF̃2 iF†DmF5

m2

l
R2Zm , ~3.8!

and

Vm
65

1

2
~Vm

1 7 iVm
2 !, ~3.9!

where theSU(2)L gauge-invariant fieldsW m
a and Zm are

defined analogously to Eqs.~2.9!–~2.11!. Up to a constant
factor the operatorsVm

i in Eq. ~3.8! correspond to the cur
rents of the global symmetrySU(2)R .

In terms of these composite fields the Lagrangian fr
Eq. ~3.1! reads

L SM
0 5

1

2

m2

l F]mR]mR2m2R21
m2

2
R4

1R2S W m
1W m

21
1

4
ZmZmD G

1
1

4g2W mn
a W mn

a 1
1

4g82
BmnBmn , ~3.10!

whereW mn
a is defined similarly to Eq.~2.29!.

In order to calculate Green’s functions from which w
then can extract physical masses, coupling constants
S-matrix elements, we have to introduce external sour
which emit one-particle states of the Higgs field and
gauge bosons. In analogy to the Abelian case@27# we couple
sources to theSU(2)L3U(1)Y gauge-invariant operato
F†F and the field strengthBmn . As discussed in the previ
ous section, for the massive gauge bosons the situatio
more involved. Compensating the residual gauge depend
of the currentsVm

6 under theU(1)Y gauge transformation
from Eqs.~2.7! and ~3.4!

Vm
6→e7 ivVm

6 , ~3.11!

by a phase factor@36,37,32#, we can write appropriate
SU(2)L3U(1)Y gauge-invariant source terms for all th
fields as follows:
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L source
1 52

1

2
hF†F2

1

2
KmnBmn1Jm

a wabVm
b , ~3.12!

with external sourcesh,Kmn , andJm
a (a51,2,3). The phase

factor in Eq.~3.12! is defined by

w~x!5expS TE ddyG0~x2y!]mBm~y! D , ~3.13!

with

T5S 0 1 0

21 0 0

0 0 0
D , ~3.14!

andG0(x2y) is given by Eq.~2.18!. Since the vacuum in the
spontaneously broken phase corresponds to the valueR51,
Green’s functions of the fieldF†F contain one-particle
poles of the Higgs boson, whereas those ofwabVm

b have one-
particle poles of the gauge bosonsW andZ.

In Ref. @32# it was shown to all orders in perturbatio
theory that a phase factorw which is defined analogously to
Eq. ~3.13! does not spoil the renormalizability of QED. Sinc
the proof did not rely on any particular feature of QED, t
same should be true for the present case as well. This is
to the fact that the phase factor only contains the Abel
gauge degree of freedom which does not affect the dynam
of the theory. Since the operatorF†F and the currentsVm

a

from Eq. ~3.8! have dimension less than four, source ter
involving these operators do not spoil the renormalizabi
either. The reader should note, however, that we do not h
a formal proof of renormalizability to all orders in perturb
tion theory for the present case. As was shown in Ref.@16#,
at the one-loop level everything works fine and on physi
grounds we expect this to happen at all orders.

Green’s functions of the operators in Eq.~3.12! are, how-
ever, more singular at short distances than~gauge-
dependent! Green’s functions of the fieldsF,Wm

a , and Bm

themselves. Time ordering of these operators gives rise
ambiguities, and the corresponding Green’s functions
only unique up to contact terms. In order to make the the
finite, these contact terms of dimension four need to
added to the Lagrangian which is then given by

L SM5L SM
0 1L̂source

1 1L source
2 . ~3.15!

The first term in Eq.~3.15! is defined in Eq.~3.10!. The
second term is given by

L̂source
1 52

1

2
ĥF†F2

1

2
K̂mnBmn1Jm

a wabVm
b , ~3.16!

where

ĥ5h14v j j Jm
1Jm

21cj j Jm
ZJm

Z14Jm
a Jm

a , ~3.17!

K̂mn5Kmn1cB j~]mJn
Z2]nJm

Z!22icB j j~Jm
1Jn

22Jm
2Jn

1!.
~3.18!

The last term in Eq.~3.15! is defined by
6-15
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L source
2 52vd j jJn

Z@ i ~dm j n
12dn j m

1! j m
22 i ~dm j n

22dn j m
2! j m

1#1vd j~dm j n
12dn j m

1!~dm j n
22dn j m

2!2
i

2
cd j j~]mJn

Z2]nJm
Z!

3~Jm
1Jn

22Jm
2Jn

1!1
1

4
cd j~]mJn

Z2]nJm
Z!~]mJn

Z2]nJm
Z!116vJJ2~Jm

1Jm
2!214vJJJJ~Jm

1Jn
21Jm

2Jn
1!2

1cJJ2~Jm
ZJm

Z!214vJ2ZZJm
1Jm

2Jn
ZJn

Z12vJJZZ~Jm
1Jn

21Jm
2Jn

1!Jm
ZJn

Z1chhh
21cmhm

2h14chJJhJm
1Jm

2

14cmJJm
2Jm

1Jm
21chZZhJm

ZJm
Z1cmZZm

2Jm
ZJm

Z , ~3.19!
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where we introduced the quantities

Jm
65

1

2
~Jm

1 7 iJm
2 !, Jm

Z[Jm
3 . ~3.20!

The quantitiesdm j n
6 and j m

6 are defined analogously to Eq
~2.20! and~2.31!. The contact terms inL source

2 will not con-
tribute to any physicalS-matrix elements.

For later use we introduce the quantities

V m
a 5wabVm

b , ~3.21!

Y m
65W m

614 j m
6 , Y m

Z5Zm14Jm
Z . ~3.22!

The generating functionalW SM@h,Kmn ,Jm
a # for the

gauge-invariant Green’s functions is defined by the path
tegral

e2W SM[h,Kmn ,Jm
a ]5E dm@F,Wm

a ,Bm#e2*ddxL SM.

~3.23!

Note that we still integrate over the original fieldsF,Wm
a ,

and Bm in Eq. ~3.23!. Furthermore, we have absorbed
appropriate normalization factor into the measu
dm@F,Wm

a ,Bm#. Derivatives of this functional with respec
to the fieldh generate Green’s functions of the scalar dens
F†F, derivatives with respect to the sourceKmn generate
Green’s functions of the field strengthBmn , while deriva-
tives with respect toJm

a generate Green’s functions for th
currentsVm

a .
In the spontaneously broken phase, these Green’s f

tions have one-particle poles from the Higgs boson as we
the gauge bosons. Thus, one can extractS-matrix elements
for the physical degrees of freedom from the generat
functional in Eq.~3.23!. Due to the equivalence theorem@41#
theseS-matrix elements will be identical to the ones obtain
from those Green’s functions which are used in the usu
employed formalism. The presence of the contact term
L source

2 in Eq. ~3.19! reflects the fact that the off-shell con
tinuation of theS-matrix is not unambiguously defined. No
that this is a general feature of any field theory and not p
ticular to those involving a gauged symmetry. The contin
ation we choose has the virtue of being gauge-invariant.

As was pointed out in Refs.@22,32,16# it is possible to
evaluate the path integral in Eq.~3.23! without the need to
fix a gauge as will be shown below.
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B. Tree level

At tree level, the generating functional for the boson
sector of the standard model is given by

W SM@h,Kmn ,Jm
a #5E ddxL SM~Rcl,W m

cl,6 ,Z m
cl ,A m

cl!,

~3.24!

where Rcl, W m
cl,6, Z m

cl , and A m
cl are determined by the

equations of motion

2hR52Fm2~R221!1Y m
1Y m

21
1

4
Y m

ZY m
Z2ĥGR,

~3.25!

2dmW mn
6 52MW

2 R2Y n
66 i ~Zmn1Bmn!W m

67 iW mn
6 Zm

7 i ~]mZm!W n
66 i ~]mZn!W m

66 iZndmW m
6

7 iZmdmW n
62~ZmZm!W n

61~ZmZn!W m
6

62W m
6~W m

1W n
22W n

1W m
2!, ~3.26!

2]mZmn5PTnm~2MZ
2R2Y m

Z1Tm!1
e2

c2 ]mK̂mn

1
e2

c2PTnmSm , ~3.27!

2]mAmn5s2PTnmTm2e2]mK̂mn2e2PTnmSm . ~3.28!

Furthermore, the equations for the Goldstone boson fielU
correspond to

dmY m
6522

]mR

R
Y m

66 iZmY m
67 iY m

ZW m
6 , ~3.29!

]mY m
Z522

]mR

R
Y m

Z28i ~ j m
1W m

22 j m
2W m

1!. ~3.30!

In order to simplify the notation we have omitted the pr
scription ‘‘cl’’ in the equations above. In Eqs.~3.25!–~3.30!
we have introduced the quantities

Amn5]mAn2]nAm , ~3.31!
6-16
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Tm52Zr~W r
1W m

21W m
1W r

2!24ZmW r
1W r

2

12i ~W rm
1 W r

22W rm
2 W r

1!22i ~drW r
1W m

2

2drW r
2W m

12drW m
1W r

21drW m
2W r

1!, ~3.32!

Sm52vd j jJr
Z~Jr

1Jm
21Jr

2Jm
1!12vd j jJm

ZJr
1Jr

2

22vd j@ i ~dr j m
12dm j r

1! j r
22 i ~dr j m

22dm j r
2! j r

1#.

~3.33!

The projector PTmn has been defined in Eq.~2.42!. The quan-
tities W mn

6 and Zmn are defined analogously to Eqs.~2.39!
and ~2.40!. The covariant derivatives indmW m

6 ,dm j n
6 ,

dmY n
6 , anddmW mn

6 are defined in the same way as in E
~2.20!.

The equations of motion~3.25!–~3.30! have similar prop-
erties as those in the effective field theory, see the discus
after Eq. ~2.42! above. We only note here that the rad
variable R which is related to the massive Higgs boson
determined by Eq.~3.25!. Solutions for the massive gaug
boson fieldsw7W m

6 and Zm follow from Eqs. ~3.26! and
~3.27!. Finally, Eq.~3.28! determines the transverse comp
nent of the massless photon fieldA m

T5PTmnAn . The solu-
tions of the equations of motion for the physical degrees
freedom in powers of the external sources can be foun
Ref. @16#.

C. One-loop level

The one-loop contribution to the generating function
can be evaluated with the saddle-point method. If we w
the fluctuationsy around the classical fieldsF cl asF5F cl

1y, we obtain the following representation for the one-lo
approximation to the generating functional:

e2W SM[h,Kmn ,Jm
a ]5e2*ddxL SM

cl E dm@y#e2(1/2)*ddxyTD̃y. ~3.34!

Gauge invariance implies that the operatorD̃ has zero eigen-
values corresponding to fluctuationsy which are equivalent
to infinitesimal gauge transformations. Treating these z
modes appropriately@22,16#, see also Sec. II A 2 above, on
can evaluate the path-integral representation for the gen
ing functional at the one-loop level without the need to fix
gauge and without introducing ghost fields. Up to an irr
evant infinite constant one obtains the following result
the one-loop generating functional from Eq.~3.34!:

W SM@h,Kmn ,Jm
a #5E ddxL SM1

1

2
ln det8 D̃2

1

2
ln detPTP.

~3.35!

The first term on the right-hand side represents the class
action which describes the tree-level contributions to
generating functional. In the second term, the determin
det8 D̃ is defined as the product of all non-zero eigenvalu
of the operatorD̃. The last term originates from the pa
integral measure. The sum of the last two terms in Eq.~3.35!
corresponds to the one-loop contributions to the genera
functional. The operatorP satisfies the relationPTD̃5D̃P
50.
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For the explicit evaluation of the one-loop contributio
to the generating functional in Eq.~3.34! it is very important
to choose an appropriate parametrization of the phys
modes and their quantum fluctuations. Otherwise the exp
sion for the differential operator becomes too complicat
We introduce fluctuationsf , ha, wm

a , and bm around the
Higgs fieldR, the Goldstone boson fieldU, the threeSU(2)L

gauge fieldsWm
a and theU(1)Y gauge fieldBm , respectively.

Furthermore, we collect the fluctuations of the gauge fie
in a vectorqm

A8(wm
a ,bm). Following the steps described i

Ref. @16#, the generating functional at the one-loop level c
then be written in the form

W SM@h,Kmn ,Jm
a #5E ddxL SM1

1

2
ln det~D̃1PPT1dP!

2 ln detPTP, ~3.36!

where the solutions of the equations of motion~3.25!–~3.28!
have to be inserted. Eq.~3.36! represents all tree-level an
one-loop contributions of the bosonic sector of the stand
model. Note that in order to obtain Eq.~3.36! we have used
the identity

ln det8 D̃5 ln det~D̃1PPT1dP!2 ln det~PTP!, ~3.37!

to rewrite the determinant det8 D̃, i.e. the product of all non-
zero eigenvalues of the differential operatorD̃, which ap-
pears in Eq.~3.35!. Equation~3.37!, which is valid up to an
irrelevant infinite constant, follows from the fact that ze
and non-zero eigenvectors are orthogonal to each other.

The explicit expressions for the components of the diff
ential operatorD̃1PPT1dP , which we parametrize by

D̃1PPT1dP8S d d dn

dT D Dn

dm
T Dm

T Dmn

D , ~3.38!

can be found in Eqs.~C1!–~C9! in Appendix C. The opera-
tors PPT, PTP, anddP are listed in Eqs.~C20!–~C22!. The
333-matrix of the differential operatorD̃1PPT1dP from
Eq. ~3.38! is acting on the 3-dimensional space of fluctu
tions y5( f ,ha,qm

A).
We would like to stress an important point here. At t

classical level only physical modes propagate. The class
Goldstone boson fieldUcl represents theSU(2)L gauge de-
grees of freedom. At the quantum level, however, the sit
tion is different. Quantum fluctuations around the classi
field Ucl, denoted byha, imply virtual Goldstone boson
modes propagating within loops. Note that these modes
absent in any gauge-dependent approach based on the
tary gauge. They are, however, necessary in order to ens
decent high-energy behavior of the theory.

In order to separate the heavy Higgs boson mode from
light modes of the Goldstone and the gauge bosons i
useful to diagonalize the differential operatorD̃1PPT

1dP . First, we introduce some additional quantities

Dmn5Dmn2dm
Td21dn2qm

TQ21qn , ~3.39!

Q5D2dTd21d, ~3.40!
6-17
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qn5Dn2dTd21dn . ~3.41!

Using the identity

T T~D̃1PPT1dP!T5diag~d,Q,Dmn!, ~3.42!

where

T5S 1 2d21d 2d21dn1d21dQ21qn

0 1 2Q21qn

0 0 dmn

D ,

~3.43!

and the fact that the transformation matrixT has unit deter-
minant, one obtains the following result for the generat
functional:

W SM@h,Kmn ,Jm
a #5E ddxL SM1

1

2
ln detd1

1

2
ln detQ

1
1

2
ln detD2 ln detPTP. ~3.44!

Equation~3.36! and the equivalent form in Eq.~3.44! repre-
sent our result for the generating function
W SM@h,Kmn ,Jm

a # for the gauge-invariant Green’s function
for the bosonic sector of the standard model. These form
encode the full tree-level and one-loop effects of the theo
If one expands the generating functional up to a given or
in powers of the external sources one can extract anyn-point
Green’s functions for the gauge-invariant operat
F†F, Bmn , andVm

a .
As noted before, the generating function

W SM@h,Kmn ,Jm
a # from Eq.~3.36! or Eq.~3.44! can be renor-

malized by an appropriate choice of renormalization p
scriptions for the fields, the mass parameterm2, the coupling
constants, and the sources. The full list can be found in
pendix B of Ref.@16#. The relations between bare and reno
malized fields, masses and coupling constants which wil
needed in Sec. V are given by

Wm
a 5Wm

a,r , ~3.45!

Bm5Bm
r , ~3.46!

f5Zf
1/2f r , ~3.47!

Zf512~6gr
212gr8

2!@L«~2mr
2!1dz#, ~3.48!

m25mr
2F12

1

2
~24l r13gr

21gr8
2!

3@L«~2mr
2!1dm2#2~Zf21!G , ~3.49!

l5l rF12S 24l r13gr
21gr8

21
3

8

~gr
21gr8

2!212gr
4

l r
D

3@L«~2mr
2!1dl#22~Zf21!G , ~3.50!

g25gr
2F11

43

3
gr

2@L«~2mr
2!1dg2#G , ~3.51!
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g825gr8
2F12

1

3
gr8

2@L«~2mr
2!1dg82#G , ~3.52!

where we denoted the pole term by

L«~2mr
2!8

md24

16p2 S 1

d24
2

1

2
@ ln~4p!1G8~1!11# D

1
1

32p2 lnS 2mr
2

m2 D . ~3.53!

The finite renormalization constantsdm2, . . . ,dg82 which
appear in the Eqs.~3.49!–~3.52! are determined by the renor
malization scheme, cf. Ref.@16#.

With the renormalization conditions from Eqs.~3.45!–
~3.52! and the corresponding relations for the sources@16#,
the generating functional for the standard mod
W SM@h,Kmn ,Jm

a #, can be renormalized at the one-loop lev
In this way we have completely defined our theory at t
one-loop level. The expression~3.44! for the generating
functional will be used as the starting point of the matchi
calculation for the case of the standard model with a he
Higgs boson, which will be discussed in the next section

IV. MATCHING

A. Evaluating the matching relation for the case
of a heavy Higgs boson

The effective Lagrangian for the case of a heavy Hig
boson is determined by requiring that both the full and
effective theory yield the same Green’s functions in the lo
energy region, i.e. by the matching relation:

We f f@ h̄,K̄mn ,J̄m
a #5W SM@h,Kmn ,Jm

a #. ~4.1!

Note that Eq.~4.1! should not be understood as an ident
but rather as an asymptotic equality in the low-energy
gion. See Refs.@27,22# for a more detailed discussion of th
point. Furthermore, we note that in the standard model
have introduced a sourceh coupled to the scalar densit
F†F, cf. Eq. ~3.12!. Therefore, in this specific case the e
fective Lagrangian will also contain terms involving a sour
h̄, cf. Ref. @27#. As mentioned before, we will consider onl
Green’s functions of gauge-invariant operators in the mat
ing relation ~4.1!. At low energies, these Green’s function
have non-local contributions involving only the vect
bosons, which are the light particles in the theory. The
contributions drop out of the matching relation. The rema
ing contributions involve the propagator of the heavy Hig
boson and allow a systematic low-energy expansion. In or
to evaluate this expansion one has to understand the cou
of loops in the full theory and of the low-energy expansion
the effective theory, cf. Ref.@22#.

The loop expansion in the full theory generates a pow
series in the coupling constantsl, g2, and g82, while the
low-energy expansion produces powers of the momenta
the gauge boson massesMW and MZ . It is, however, not
possible to treat these six quantities as independent of e
other, since the gauge boson masses depend on the cou
6-18
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constants through the relations~3.5!. These expressions als
indicate that it will not be very transparent to count ma
factors in terms of the quantitiesl, g2, andg82. The loop
expansion in the full theory generates positive powers of
couplingl, while the low-energy expansion produces neg
tive powers thereof. It is possible, however, to discard
coupling constantsg andg8 from the counting scheme. Thi
is a consequence of the definition of the vector fieldsWm

a and
Bm in Eq. ~3.2!, which are scaled such that the couplin
constants do not explicitly occur in the covariant derivativ
As a result, these coupling constants naturally enter all l
corrections only through the gauge boson massesMW and
MZ as well as through the weak mixing angle sinuW. Re-
garding the one-loop contributions to the generating fu
tional, this can readily be inferred from the results for t
differential operators listed in Appendix C. With this boo
keeping powers ofl count the number of loops in the fu
theory.

In order to evaluate the low-energy expansion at a gi
loop-level, we treat the covariant derivativeDm , the gauge
boson massesMW and MZ , the momenta and the extern
sourceJm

a as in the effective theory, i.e. as quantities of ord
p. The external sourceh is of orderp2, while the scalar field
F, the mass parameterm, the coupling constantl, and the
external sourceKmn are quantities of orderp0.

If the coupling constantl of the Higgs field is not too
strong, the low-energy constantsl i from Eq. ~2.24! admit an
expansion in powers of the parameterl,

l i5
1

l
l i
tree1 l i

12 loop1l l i
22 loop1••• , ~4.2!

corresponding to the loop expansion in the full theory. In t
case the accuracy of the effective field theory descriptio
controlled by the order of both the momentum and the c
pling constantl. For values ofl close to the strong coupling
region, one may consider higher orders in the expans
~4.2!. Large values of the momentum or the gauge bo
masses may require including higher orders in Eq.~2.23!. In
the following, we will determine the effective Lagrangian u
to orderp4, and the low-energy constants up to orderl0, i.e.
at the one-loop level.
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In order to evaluate the low-energy constants, one
calculate the generating functional in both the full and t
effective theory, and solve the matching relation~4.1!. It
turns out, however, that the evaluation of the one-loop c
tributions to the generating functional in the effective theo
for the case of a general coefficientr̄Þ1 in L 2

0 in Eq. ~2.27!
is quite involved. Therefore, we proceed in a similar way
in the Abelian case@22# and make use of the fact that powe
of the constantl count the number of loops in the fu
theory. At leading order inl, i.e. l21, we get contributions
to the parametersl i

tree in the termsL2 and L4. Only the
parametersl i

tree in L2 will, however, be relevant to evaluat
the one-loop contribution to the generating functional of t
effective theory up to orderl0.

The leading contributions inl to the effective Lagrangian
can be read off from the low-energy expansion of the cl
sical action of the full theory, i.e., from

E ddxL SM5E ddxS 2
m4

4l
R41

1

4g2W mn
a W mn

a

1
1

4g82
BmnBmn2

1

2
K̂mnBmn1L source

2 D .

~4.3!

The LagrangianL source
2 was defined in Eq.~3.19!. For

slowly varying external fields, the behavior of the mass
modeR is under control and the equation of motion~3.25!
can be solved algebraically. The result is a series of lo
terms with increasing order inp2:

R511r 21r 41•••, r n5O~pn!, ~4.4!

r 25
1

2m2 S 2
1

4
Y m

a Y m
a 1ĥD , ~4.5!

r 452
1

8m4 S 2
1

4
Y m

a Y m
a 1ĥD 2

1
1

2m2 hr 2 .

~4.6!

Inserting the solution forR into the classical action Eq.~4.3!
we obtain the following tree level contributions to the effe
tive Lagrangian up to orderp4:
L 2
tree52

m2

2l S 2
1

4
Y m

a Y m
a 1ĥD1

1

4g2W mn
a W mn

a 1
1

4g82
BmnBmn2

1

2
KmnBmn1cmhm

2h14cmJJm
2Jm

1Jm
21cmZZm

2Jm
ZJm

Z ,

~4.7!

L 4
tree52

1

4l S 2
1

4
Y m

a Y m
a 1ĥD 2

2
1

2
Bmn@cB j~]mJn

Z2]nJm
Z!22icB j j~Jm

1Jn
22Jm

2Jn
1!#2vd j jJn

Z@ i ~dm j n
12dn j m

1! j m
2

2 i ~dm j n
22dn j m

2! j m
1] 1vd j~dm j n

12dn j m
1!~dm j n

22dn j m
2!2

i

2
cd j j~]mJn

Z2]nJm
Z!~Jm

1Jn
22Jm

2Jn
1!

1
1

4
cd j~]mJn

Z2]nJm
Z!~]mJn

Z2]nJm
Z!116vJJ2~Jm

1Jm
2!214vJJJJ~Jm

1Jn
21Jm

2Jn
1!21cJJ2~Jm

ZJm
Z!2

14vJ2ZZJm
1Jm

2Jn
ZJn

Z12vJJZZ~Jm
1Jn

21Jm
2Jn

1!Jm
ZJn

Z1chhh
214chJJhJm

1Jm
21chZZhJm

ZJm
Z . ~4.8!
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Hence, at leading order inl the parameters and low-energ
constants inL2 are given by

v̄25
m2

l
, r̄51, ḡ5g, ḡ85g8, ~4.9!

and

J̄m
65Jm

6 , J̄m
Z5Jm

Z , K̄mn5Kmn , h̄5h,

c̄h52
1

2
1cmhl, c̄W52

1

2
v j j 1cmJJl,

c̄Z52
1

2
cj j 1cmZZl. ~4.10!

wherec̄h denotes the coefficient ofv̄2h̄ in h2. Since there are
no custodial symmetry breaking effects in the stand
model at tree level we getr̄51. Note that the matching
condition ~4.1! determines the low-energy constants and
sources in the effective theory.

FromL 4
tree in Eq. ~4.8! we obtain the following tree-leve

contributions to the low-energy constantsl i in L 4
0 in Eq.

~2.48!:

l 1
tree52

1

4l
, l 3

tree52
1

8l
, l 5

tree52
1

64l
. ~4.11!

All other low-energy constantsl i in L 4
0 vanish at tree level.

From Eq.~4.8! we can also read off the tree-level contrib
tions to the low-energy constants of the source terms at o
p4. Only some of the 76 terms which appear in the gene
expressionL 4

s in Eq. ~2.50! are non-zero at tree level for th
present case. It will not be necessary later on to list th
contributions here explicitly.

Now one can evaluate the one-loop contribution to
generating functional in the effective theory using the te
nique described in Sec. II A 2. At orderl0, the matching
relation ~4.1! is of the form@cf. Eq. ~3.44!#:

E ddx~L21L4!1
1

2
ln detD̄1

1

2
ln detD̄2 ln detP̄TP̄

5E ddxL SM1
1

2
ln detd1

1

2
ln detQ

1
1

2
ln detD2 ln detPTP. ~4.12!

The first terms on both sides of Eq.~4.12! represent the tree
level contributions in the effective and full theory, respe
tively. The differential operators on the right-hand side, d
scribing the one-loop contributions in the full theory, a
defined in Eqs.~C1!–~C9!, ~3.39!–~3.41!, and ~C21!. The
differential operators on the left-hand side, indicated with
bar, represent the one-loop contributions in the effect
theory. Using the iterative matching procedure describ
above, these differential operators can be inferred from
corresponding operators in the full theory by taking the lim
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R→1 and by disregarding all operators which involve t
fluctuationsf for the radial componentR of the Higgs field.
Furthermore, we make the identificationsv̄25m2/l and r̄
51, cf. Eq.~4.9!.

Note that the quantities on the left-hand side of the mat
ing relation~4.12! involve the solutions of the equations o
motion in the effective theory, while those on the right-ha
side depend on the solutions of the equations of motion
the full theory. At the stationary point, however, the corr
sponding corrections are of second order in the shift of
fields and beyond the present accuracy. Thus, our nota
will not distinguish between the two solutions from now o

The last three terms on the right-hand side of Eq.~4.12!
contain non-local contributions from loops which involv
only the light degrees of freedom. They are, however, c
celed by the corresponding contributions in the effect
theory on the left-hand side of the matching condition.

The fact that all the infrared effects of the massless a
light particles cancel out of the matching relation~4.12! is a
considerable advantage of the matching of Green’s fu
tions. In contrast to that, matchingS-matrix elements in the
full and the effective theory involves the evaluation of a
infrared effects.

For completeness sake, we list below all one-loop corr
tions to the generating functional of the full theory whic
will contribute to the effective Lagrangian up to the orderp4.

One obtains the following terms from the first determina
on the right-hand side of Eq.~4.12! which involve only the
propagator of the massive Higgs mode:

1

2
ln detd5

1

2
ln detdm1

1

2
Tr~dm

21sm!2
1

4
Tr„~dm

21sm!2
….

~4.13!

Here we used the decompositiond5dm1sm ,dm52h

12m2. The explicit form ofsm can be inferred from Eq.
~C1!. The second term in Eq.~4.13!, a tadpole graph, is o
orderp2, whereas the third term is of orderp4.

Mixed loops, which contain Higgs and Goldstone bos
propagators, are given by

1

2
ln detQ[

1

2
ln det~D2dTd21d!

5
1

2
ln detD2

1

2
Tr~dD21dTdm

21!

1
1

2
Tr~dD21dTdm

21smdm
21!

2
1

4
Tr„~dD21dTdm

21!2
…. ~4.14!

As noted above, the term1
2 ln detD on the right-hand side

cancels against the corresponding contribution in the ef
tive theory. The next term is of orderp2, whereas the las
two terms lead to contributions of orderp4.

Finally, the following terms involve the gauge boso
propagators:
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1

2
ln detD5

1

2
ln detD̄1

1

2
Tr~D̄21dD!, ~4.15!

where we used the decompositionDmn5D̄mn1dDmn ,dDmn

5O(p4). Again the first term on the right-hand side of E
~4.15! cancels against the corresponding contribution in
effective theory. The second term is of orderp4.

Finally we note that the difference between the contrib
tion from the path integral measure in the full theor
ln detPTP, and in the effective theory, ln detP̄TP̄, in the
matching relation~4.12! is of orderp6.

Techniques to evaluate the low-energy expansion of
traces in Eqs.~4.13!, ~4.14!, and~4.15! are discussed in de
tail in Ref. @27#. The results for the terms~4.13! and ~4.14!
can be inferred from the expressions given there. The ev
ation of the second term in Eq.~4.15!, involving the gauge
bosons, proceeds in the same way with the result

1

2
Tr~D̄21dD!5E ddxS L«~2m2!MW

2 Y m
a Y m

a

1S 3

4
L«~2m2!1

1

16

1

16p2D
3~MZ

22MW
2 !Y m

3 Y m
3 D1O~p6!,

~4.16!

with

L«~2m2!8
md24

16p2 S 1

d24
2

1

2
@ ln~4p!1G8~1!11# D

1
1

32p2 lnS 2m2

m2 D . ~4.17!

B. The bare effective Lagrangian

Collecting all contributions we obtain the following resu
for the bare effective Lagrangian for the standard model w
a heavy Higgs boson, up to orderp4 and up tol0, i.e. at the
one loop level:

L25S 1

4l
23L«~2m2!1

1

4

1

16p2D ~2m2!

3S W m
1W m

21
1

4
ZmZmD1

1

4g2W mn
a W mn

a

1
1

4g82
BmnBmn1L 2

s , ~4.18!

L45(
i 51

18

l i
bOi1L 4

s , ~4.19!

with the following results for the bare low-energy consta
l i
b :
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l 1
b52

1

4l
15L«~2m2!1

19

12

1

16p2 ,

l 2
b50,

l 3
b52

1

8l
1

5

2
L«~2m2!1

19

24

1

16p2 ,

l 4
b50,

l 5
b5

1

16S 2
1

4l
15L«~2m2!1

19

12

1

16p2D ,

l 6
b50,

l 7
b5

1

6
L«~2m2!2

11

72

1

16p2 ,

l 8
b52

1

6

1

16p2 ,

l 9
b52

1

6
L«~2m2!1

11

72

1

16p2 ,

l 10
b 5

1

6
L«~2m2!2

11

72

1

16p2 ,

l 11
b 50,

l 12
b 5

1

12
L«~2m2!1

1

144

1

16p2 ,

l 13
b 52

1

12

1

16p2 ,

l 14
b 52

1

48

1

16p2 ,

l 15
b 53L«~2m2!1

1

4

1

16p2 ,

l 16
b 5s2S 3

4
L«~2m2!1

1

16

1

16p2D ,

l 17
b 52

1

24
L«~2m2!2

1

288

1

16p2 ,

l 18
b 5

1

24
L«~2m2!1

1

288

1

16p2 . ~4.20!

Note that only bare quantities~coupling constants, masse
fields! appear in the result for the effective Lagrangian
Eqs.~4.18!–~4.20!.

In order to simplify the expressions for the effective L
grangian and to compare our results with other calculati
in the literature we have not explicitly written down the co
6-21
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tributions from the source termsL 2
s and L 4

s in Eqs. ~4.18!
and ~4.19! respectively. The contributions including th
sources at tree-level are given in Eqs.~4.7! and ~4.8!. All
contributions from the source terms at the one-loop level
be calculated from Eqs.~4.13!, ~4.14!, and ~4.16!, if one
inserts the explicit expressions for the differential operat
given in Appendix C. Note that we have not yet used
equations of motion to reduce the number of terms in
basis ofL4.

The result for the bare electroweak chiral Lagrangian
the usually employed notation and the corresponding b
low-energy constantsai

b in the usual basis at orderp4 can be
found in Appendix B, Eqs.~B12! and ~B13!. Following the
conventions used in chiral perturbation theory@13# we have
included some additional, finite terms in our definition of t
pole termL«(2m2), Eq. ~4.17!, compared to the convention
used in Refs.@19–21#. Taking this into account the result
for the bare low-energy constantsa0

b , . . . ,a14
b agree with

those obtained in Ref.@19#.
The results for the bare low-energy constantsl 15

b ,l 17
b , and

l 18
b , or equivalently, the low-energy constantsa15

b ,a16
b , and

a17
b in Eq. ~B13!, which correspond to operators inL 4

0 that
are proportional to terms inL 2

0, agree with the results ob
tained in Ref.@21#.

In the following section we are going to express the b
effective Lagrangian from Eqs.~4.18!–~4.20! in terms of
physical quantities.

V. RENORMALIZATION

A. Physical input parameters from gauge-invariant
Green’s functions

In this section we want to express the bare parame
which appear in the effective Lagrangian~4.18!–~4.20!
through physical quantities. As physical input parameters
choose the masses of the Higgs and theW- and Z-bosons,
and the electric charge~on-shell scheme!. The physical mass
of the Higgs boson, which we denote byMH,pole

2 , is deter-
mined by the pole position of the two-point function

^0uT~F†F!~x!~F†F!~y!u0&. ~5.1!

The physical masses of theW-boson, MW,pole
2 , and the

Z-boson,MZ,pole
2 , are defined by the pole positions of th

two-point function

^0uT~V m
a !~x!~V n

b !~y!u0&. ~5.2!

As discussed in Ref.@16# one can define a renormalized ele
tric charge as the residue at the photon pole of the two-p
function

^0uTBmn~x!Brs~y!u0&. ~5.3!

We will denote the corresponding coupling constant byeres
2 .

As was shown in Ref.@16# by an explicit one-loop calcula
tion, the coupling constanteres

2 agrees with the usual resu
for the electric charge in the Thompson limit. We note th
the residue of the two-point function of the field strengthBmn
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in Eq. ~5.3! differs from unity and that it is uniquely deter
mined. This can be traced back to our normalization of
gauge fieldBm in the covariant derivative in Eq.~3.2!. Gauge
invariance requires that this field is not renormalized, cf. E
~3.46!. The same statement holds for the gauge fieldWm

a , cf.
Eq. ~3.45!.

For the determination of the two-point functions in Eq
~5.1!–~5.3! we need the generating function
W SM@h,Kmn ,Jm

a # up to second order in the external source
The calculation of the physical masses and the coupling c
stanteres

2 was performed in Ref.@16# at the one-loop level.
Below we will use the relations between the bare and ph
cal masses and electric charge which were obtained in
reference. Because we are interested here in expressin
bare effective Lagrangian from Eqs.~4.18!–~4.20! in terms
of physical quantities we will only write down the low
energy expansion of the physical quantities.

In order to determine the effective Lagrangian up to ord
p4 we need the physical Higgs boson massMH,pole

2 up to
orderp0

MH,pole
2 5MH

2
„11ldMH,0

2 1O~p2!…, ~5.4!

dMH,0
2 512L«~MH

2 !2
1

16p2 ~1223A3p!.

~5.5!

On the right-hand side of the equations only bare quanti
appear. Furthermore, we have introduced the abbreviatio

MH
2 [2m2, l[

1

8

e2

s2

MH
2

MW
2 , c2[

MW
2

MZ
2 . ~5.6!

For the physical masses of the gauge bosons,MW,pole
2 and

MZ,pole
2 , we need the low-energy expansion up to orderp4.

For theW-boson mass we get

MW,pole
2 5MW

2 S 11ldMW,0
2 1l

MW
2

MH
2 dMW,2

2 1O~p4! D ,

~5.7!

dMW,0
2 5212L«~MH

2 !1
1

16p2 , ~5.8!

dMW,2
2 5c1

WL«~MH
2 !1c2

W lnS MW
2

MH
2 D 1c3

W lnS MZ
2

MH
2 D 1c4

W

1c5
WFs lnS 11s

12s D G , ~5.9!

where

s5A124MW
2 /MZ

2, ~5.10!

and
6-22
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c1
W5

1

c2 S 2
272

3
c2112D ,

c2
W5

1

p2c6 S 2
13

4
c61

17

8
c42

7

24
c22

1

48D ,

c3
W5

1

p2c6 S 2
7

4
c41

7

24
c21

1

48D ,

c4
W5

1

p2c6 S 461

72
c62

7

12
c42

1

24
c2D ,

c5
W5

1

p2c6 S c61
17

12
c42

1

3
c22

1

48D . ~5.11!

For theZ-boson mass we obtain the expression

MZ,pole
2 5MZ

2S 11ldMZ,0
2 1l

MZ
2

MH
2 dMZ,2

2 1O~p4! D , ~5.12!

dMZ,0
2 5212L«~MH

2 !1
1

16p2 , ~5.13!

dMZ,2
2 5c1

ZL«~MH
2 !1c2

Z lnS MW
2

MH
2 D 1c3

Z1c4
ZFs lnS s21

s11D G ,
~5.14!

with

c1
Z52112c41

56

3
c21

44

3
,

c2
Z5

1

p2 S 2
7

2
c41

7

12
c21

1

24D ,

c3
Z5

1

p2 S 4c61
13

6
c42

7

18
c2D ,

c4
Z5

1

p2 S 2c61
17

6
c42

2

3
c22

1

24D .

~5.15!
11300
Note that the low-energy expansion for the physical gau
boson masses starts at orderp2 sinceMW

2 ,MZ
25O(p2). Fur-

thermore, the factorsdM2 in Eqs. ~5.4!–~5.14! count as
quantities of orderp0 in the low-energy expansion. Th
p2-weighted prefactors have been extracted explicitly.

Finally, we get the following relation between the phys
cal coupling constanteres

2 and the bare coupling constante2:

eres
2 5e2

„11e2de2
21O~p4!…, ~5.16!

de2
25214FL«~MH

2 !1
1

32p2 lnS MW
2

MH
2 D G2

19

3

1

16p2 .

~5.17!

We recall that the coupling constante2 is a quantity of order
p2 according to our momentum counting rules. The fac
de2

2 counts as orderp0 in the low-energy expansion. A
noted above the result foreres

2 agrees with the usual definitio
of the electric charge in the Thompson limit@42# in the ab-
sence of fermion contributions.

The expressions for the physical masses, Eqs.~5.4!, ~5.7!,
~5.12! and the coupling constanteres

2 , Eq. ~5.16!, are finite if
we insert the renormalization prescriptions~3.45!–~3.52! for
the bare quantities on the right-hand side. Of course, thi
true for the complete results for the masses, not only for
expressions after the low-energy expansion has been ca
out. Furthermore, in the limitg8→0, which impliesc2→1,
we getMW,pole

2 [MZ,pole
2 as expected.

B. The effective Lagrangian

We are now in the position to express the bare parame
which appear in the effective Lagrangian in Eqs.~4.18!–
~4.20! in terms of physical quantities using the relations fro
Eqs.~5.4!–~5.17!. Note that the gauge fieldsW m

6 ,Zm andBm

are not renormalized due to gauge invariance, cf. Eqs.~3.45!
and ~3.46!. At the one-loop level and up to orderp4 in the
low-energy expansion we obtain the following expression
the effective Lagrangian for the standard model with a he
Higgs boson:
L25S 2MW,pole
2

sp
2

eres
2 D S W m

1W m
21

1

4
ZmZmD1

sp
2

4eres
2

W mn
a W mn

a 1
cp

2

4eres
2

BmnBmn1L 2
s , ~5.18!

L45(
i 51

18

l iOi1L 4
s , ~5.19!

with

l 152L«2
2sp

2MW,pole
2

eres
2 MH,pole

2
2

1

2

1

16p2 lnS MH,pole
2

m2 D 1
1

16p2

5829A3p

12
,

l 250,
6-23
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l 352
1

2
L«2

sp
2MW,pole

2

eres
2 MH,pole

2
2

1

4

1

16p2 lnS MH,pole
2

m2 D 1
1

16p2

5829A3p

24
,

l 450,

l 552
1

16
L«2

sp
2MW,pole

2

8eres
2 MH,pole

2
2

1

32

1

16p2 lnS MH,pole
2

m2 D 1
1

16p2

5829A3p

192
,

l 650,

l 75
1

6
L«1

1

12

1

16p2 lnS MH,pole
2

m2 D 2
11

72

1

16p2 ,

l 852
1

6

1

16p2 ,

l 952
1

6
L«2

1

12

1

16p2 lnS MH,pole
2

m2 D 1
11

72

1

16p2 ,

l 105
1

6
L«1

1

12

1

16p2 lnS MH,pole
2

m2 D 2
11

72

1

16p2 ,

l 1150,

l 125
1

12
L«1

1

24

1

16p2 lnS MH,pole
2

m2 D 1
1

144

1

16p2 ,

l 1352
1

12

1

16p2 ,

l 1452
1

48

1

16p2 ,

l 1553L«1
3

2

1

16p2 lnS MH,pole
2

m2 D 1
1

4

1

16p2 2
1

4 S 12
cp

2

sp
2D dMW,2

2 2
1

4sp
2dMZ,2

2 12sp
2de2

2 ,

l 165sp
2S 3

4
L«1

3

8

1

16p2 lnS MH,pole
2

m2 D 1
1

16

1

16p2D ,

l 1752
1

24
L«2

1

48

1

16p2lnS MH,pole
2

m2 D 2
1

288

1

16p2 1
cp

2

32sp
2 dMW,2

2 2
1

32sp
2 dMZ,2

2 1
sp

2

4
de2

2 ,

l 185
1

24
L«1

1

48

1

16p2 lnS MH,pole
2

m2 D 1
1

288

1

16p2 2
cp

2

32sp
2 dMW,2

2 1
1

32sp
2 dMZ,2

2 1
cp

2

4
de2

2 .

~5.20!

The results for the low-energy constantsl 1 , l 3, andl 5 are obtained by expressing the bare coupling constantl which appears
in Eq. ~4.20! through physical quantities. In order to obtainl 15, l 17, andl 18 one has to express the bare quantitiesm2/l, g2,
andg82 in Eq. ~4.18! through physical quantities. The quantitiesdMW,2

2 , dMZ,2
2 , andde2

2 are defined in Eqs.~5.9!, ~5.14!, and
~5.17!, respectively. We use the on-shell definition for the weak mixing angle

cp
28

MW,pole
2

MZ,pole
2

, sp
2812cp

2 . ~5.21!
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The pole term ind54 dimensions is given by

L«8
md24

16p2 S 1

d24
2

1

2
@ ln~4p!1G8~1!11# D . ~5.22!

In order to simplify the expressions we have not explicitly written down the results for the source termsL 2
s andL 4

s in Eqs.
~5.18! and ~5.19!, respectively.

As discussed in Sec. II A 2 we can reduce the number of terms in the effective LagrangianL4 by making use of the
equations of motion in the effective field theory and by renormalizing the parameters and low-energy constants in th
order LagrangianL2. The source terms inL 4

s will thereby not affect the termsL 4
0 without sources. Switching off the source

altogether, we then obtain the following result for the effective Lagrangian:

L25
v̄e f f

2

2 S W m
1W m

21
1

4
ZmZmD1

1

4ḡe f f
2

W mn
a W mn

a 1
1

4ḡ8e f f
2

BmnBmn , ~5.23!

with

v̄e f f
2 54MW,pole

2
sp

2

eres
2 S 11

eres
2

sp
2 F11

6
L«1

11

12

1

16p2 lnS MH,pole
2

m2 D 1
11

72

1

16p22
1

8 S 12
cp

2

sp
2D dMW,2

2 2
1

8sp
2 dMZ,2

2 1sp
2de2

2G D ,

~5.24!

ḡe f f
2 5

eres
2

sp
2 S 11

eres
2

sp
2 F2

1

6
L«2

1

12

1

16p2 lnS MH,pole
2

m2 D 2
1

72

1

16p22
cp

2

8sp
2dMW,2

2 1
1

8sp
2 dMZ,2

2 2sp
2de2

2G D , ~5.25!

ḡ8e f f
2 5

eres
2

cp
2 S 11

eres
2

cp
2 F1

6
L«1

1

12

1

16p2 lnS MH,pole
2

m2 D 1
1

72

1

16p21
cp

2

8sp
2dMW,2

2 2
1

8sp
2 dMZ,2

2 2cp
2de2

2G D . ~5.26!

At order p4 we obtain the result

L45(
i 50

9

l i8Oi , ~5.27!

where the low-energy constantsl i8 corresponding to the independent terms in the LagrangianL4 are given by

l 085sp
2S 3

4
L«1

3

8

1

16p2 lnS MH,pole
2

m2 D 1
1

16

1

16p2D ,

l 1852
1

3
L«2

2sp
2MW,pole

2

eres
2 MH,pole

2
2

1

6

1

16p2 lnS MH,pole
2

m2 D 1
1

16p2

176227A3p

36
,

l 2852
2

3
L«2

1

3

1

16p2 lnS MH,pole
2

m2 D 2
1

18

1

16p2 ,

l 385
1

6
L«2

sp
2MW,pole

2

eres
2 MH,pole

2
1

1

12

1

16p2 lnS MH,pole
2

m2 D 1
1

16p2

178227A3p

72
,

l 4852
2

3
L«2

1

3

1

16p2 lnS MH,pole
2

m2 D 2
1

18

1

16p2 ,

l 5852
1

16
L«2

sp
2MW,pole

2

8eres
2 MH,pole

2
2

1

32

1

16p2 lnS MH,pole
2

m2 D 1
1

16p2

5829A3p

192
,

l 6850,
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l 7852
1

6
L«2

1

12

1

16p2 lnS MH,pole
2

m2 D 2
13

72

1

16p2 ,

l 8852
1

6

1

16p2 ,

l 985
1

6
L«1

1

12

1

16p2 lnS MH,pole
2

m2 D 1
13

72

1

16p2 . ~5.28!
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C. Discussion

Equations~5.23!–~5.28! represent our final result for th
effective Lagrangian for the standard model with a hea
Higgs boson, expressed through the physical masses o
Higgs boson, theW- and theZ-boson, as well as the electri
charge. The effective Lagrangian includes all contributio
at one-loop in the standard model and up to orderp4 in the
low-energy expansion.

Let us first discuss the lowest order LagrangianL2 in Eq.
~5.23! and the corresponding low-energy constants in E
~5.24!–~5.26!. Comparing with the general effective La
grangian in Eq.~2.27! we note thatr̄51. This is due to the
fact that in the standard model with a heavy Higgs boson
custodial symmetry violating effects inDr are proportional
to g82, i.e. they are of higher order in the momentum expa
sion. We recall thatg85O(p) according to the counting
rules discussed in Sec. II A.

The additional terms proportional toeres
2 /sp

2 in v̄e f f
2 ,ḡe f f

2 ,
Eqs. ~5.24!, ~5.25!, and the additional terms proportional
eres

2 /cp
2 in ḡ8e f f

2 , Eq. ~5.26!, deserve some comments. Em
ploying our counting rules these terms will contribute only
order p4. They originate from the low-energy constan
l 15, l 17, and l 18 in Eq. ~5.20! before removing redundan
terms from the effective Lagrangian. These low-energy c
stants are not independently observable and only renorm
the low-energy constantsv̄e f f

2 , ḡe f f
2 , andḡ8e f f

2 in the lowest
order LagrangianL2, nevertheless their contributions have
be kept in order to fully describe all effects for the standa
model with a heavy Higgs boson up to orderp4.

For convenience, we have included these contributi
into the low-energy constantsv̄e f f

2 , ḡe f f
2 , and ḡ8e f f

2 . Thus,

v̄e f f
2 contains terms of orderp0 andp2, while ḡe f f

2 and ḡ8e f f
2

contain terms of orderp2 andp4. Since we have chosen th
on-shell scheme, low-energy physics enters the effective
grangian after the renormalization through the input para
etersMW,pole, MZ,pole, and eres, leading to these nonana
lytic terms. We note that the same happens in ordinary ch
perturbation theory for low-energy QCD. The relations b
tween the parametersF and M in the effective Lagrangian
and the physical pion decay constantFp and the physical
pion massMp both contain a nonanalytic chiral logarithm
ln(Mp

2), see Ref.@13#.
Thus, it is important to distinguish between the gene

local effective Lagrangian with arbitrary bare low-ener
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constants that have to be determined from experiment f
the explicit result for the effective Lagrangian for a give
underlying theory, here the standard model with a hea
Higgs boson, evaluated in a given regularization and ren
malization scheme.

Next we turn to the result for the effective LagrangianL4

in Eq. ~5.27! and the corresponding low-energy constantsl i8

in Eq. ~5.28!. Since r̄51 we have 10 independent low
energy constants inL4. Only the low-energy constantsl 08
[ l 16, l 58 , l 68, and l 88 in Eq. ~5.28! are equal to their coun
terpartsl i in Eq. ~5.20! before the elimination of redundan
terms.

The low-energy constants in Eqs.~5.20! and ~5.28! have
the following general form:

l i5d iL«1 l i
r~m!,

l i85d i8L«1 l i8
r~m!, ~5.29!

i.e. they contain a pole term proportional toL« , cf. Eq.
~5.22!, and a scale dependent part. We denote the coup
constantsl i

r(m) andl i8
r(m) as renormalized low-energy con

stants. The renormalization group running of the coupl
constantsl i

r(m) and l i8
r(m) is determined by the coefficien

d i andd i8 of the respective pole term. These coefficients
determined by the one-loop divergences of the gauged n
linear sigma model described byL 2

0 and have been calcu
lated long time ago@8,9#. They are universal, i.e. indepen
dent of any underlying strongly interacting model with th
same symmetry breaking pattern as the standard model.
that we obtain these universal pole terms only after the ren
malization has been carried out in the standard model.
pole terms of the low-energy constantsl 1 , l 3, andl 5, which
receive a tree-level contribution in the standard model wit
heavy Higgs boson, have changed compared to the re
for the bare low-energy constants in Eq.~4.20! which contain
a term 1/l, wherel is the bare, divergent scalar couplin
constant.

The effective Lagrangian given in Eqs.~5.23!–~5.28! can
now be used to calculate physical quantities like scatter
amplitudes up to orderp4, by adding tree-level diagram
from L21L4 and contributions from one-loop graphs wi
the LagrangianL2. Note that the contributions from th
source terms and from the path integral measure have t
taken into account as well. As discussed above, the re
6-26
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malization has, however, been carried out already. In part
lar, there is no need to calculate once more the masses o
light particles, like theW or the Z-boson, in the effective
field theory. Note that the effective LagrangianL4 in Eqs.
~5.27! and ~5.28! contains pole termsL« even after the
renormalization. This fact is well known from chiral pertu
bation theory@12,13#. One-loop graphs with vertices fromL2
generate divergences which are canceled by the corresp
ing pole terms in the low-energy constants fromL4. In this
way, physical quantities will be finite.

We would like to add a few comments about the size
the renormalized low-energy constantsl i8

r(m) in Eq. ~5.28!.
First of all we note that due to the Veltman screening th
rem @43#, there are only logarithmic non-decoupling terms
the form ln(MH,pole

2 ) in the low-energy constantsl i8
r(m) in

Eq. ~5.28! at the one-loop level. In addition, the low-energ
constantsl 18

r(m), l 38
r(m), and l 58

r(m) contain a tree-leve
contribution proportional to 1/MH,pole

2 . Even though we as
sume that the Higgs boson is heavy, we cannot simply t
MH,pole→` and drop these terms. This would be equivale
to the assumption that the one-loop terms dominate over
tree-level contributions. Since our matching calculation w
done by using perturbation theory this is certainly not p
missible. The renormalized low-energy constantsl i8

r(m)
depend on a reference scalem. We will vary this scale be-
tween the mass of theZ-boson,MZ , and a value of 2 TeV,
which lies in the resonance region of a truly strongly int
acting symmetry breaking sector, e.g. this scale correspo
roughly to the mass of a technirho in technicolor mod
@31#. We thus follow the conventions usually adopted in c
ral perturbation theory@13# for QCD where the settingm
5M r is used to quote values for the renormalized lo
energy constants. The Higgs boson mass is varied betw
MZ and 2 TeV as well, although for Higgs boson mass
above 1 TeV the applicability of perturbation theory is ce
tainly questionable. We then find that the values of tho
renormalized low-energy constantsl i8

r(m) which receive
only contributions from loops are of the size which o
would expect from using naive dimensional analysis@44#,
i.e. they are of the order of1/(16p2). On the other hand, a
mentioned above, the low-energy constantsl 18

r(m), l 38
r(m),

and l 58
r(m) contain a tree-level contribution proportional

1/MH,pole
2 . For all values ofm in the range betweenMZ and

2 TeV this term dominates for Higgs boson masses belo
TeV. In fact, in the low-energy constantl 18

r(m) the tree level
and the one-loop term are of the same order of magnit
only for Higgs boson masses of the order of 2.5 TeV, due
an accidental cancellation in the one-loop contribution.

Some phenomenological consequences of the ana
presented here for models of a strongly interacting e
troweak symmetry breaking sector can be found in Ref.@45#.
In particular, we compare in that paper the results for
reduced set of independent low-energy constantsl i8

r(m) for
the standard model with a heavy Higgs boson with those
a simple technicolor model.

Finally, we would like to compare our result for the e
fective Lagrangian from Eqs.~5.23!–~5.28! for the standard
model with a heavy Higgs boson after the renormalizat
11300
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with those obtained in the literature@19–21#. As noted
above, the result for the bare effective Lagrangian in E
~4.18!–~4.20! agreed with the literature. In order to facilitat
the comparison we will use the usual notation for the el
troweak chiral Lagrangian and discuss the low-energy c
stantsai expressed through physical quantities as given
Appendix B, in Eq.~B16!, and the low-energy constantsai8
after the elimination of redundant terms as given in E
~B17!. First of all, the expression of the lowest order effe
tive LagrangianL2, Eq. ~B14!, agrees with Refs.@19–21#,
i.e. we haver̄51. At orderp4 our result for the pole terms
and the finite parts of the low-energy constantsai ,i
50, . . . ,14,given in Eq.~B16!, agrees with the results ob
tained in Refs.@19#. Note that we have included some fini
parts in the definition of the pole termL« , cf. Eq. ~5.22!,
compared to the conventions used in that reference.

Reducing the number of terms as outlined in Sec. II A
leads to the results for the low-energy constantsai8 as given
in Eq. ~B17!. Only the value of the low-energy constanta38
has changed compared toa3 in Eq. ~B16!. Note, however,
thata1 anda8 have disappeared from the list of independe
low-energy constants. In this respect our result differs fr
the literature since this further elimination of redunda
terms was not carried out in Refs.@19–21#.

Furthermore, the expressions forv̄e f f
2 , ḡe f f

2 , andḡ8e f f
2 in

L2 as given in Eqs.~5.24!, ~5.25!, and ~5.26!, respectively,
differ from the results obtained in Refs.@19–21#. This is due
to the fact that we went one step further in the low-ene
expansion of the mass for the Higgs boson in Eq.~5.4!, of
the masses for the gauge bosons in Eqs.~5.7!, ~5.12!, and of
the electric charge in Eq.~5.16!. As mentioned above this is
necessary in order to obtain all contributions in the effect
field theory up to orderp4, if the low-energy constants in th
effective Lagrangian are expressed through these phys
input parameters.

As was noted already in Ref.@19# the results for the low-
energy constants agree with those obtained in the ungau
O(4)-linear sigma model@13,27#, in all cases where such
comparison is possible. Note that there are more low-ene
constants in the present case, since the symmetry
SU(2)L3U(1)Y instead ofSU(2)L3SU(2)R for the case
of the sigma model. Employing a functional approach t
agreement can easily be inferred from the matching rela
~4.12!. After the diagonalization of the differential operato
in the full theory, those loops which contain gauge boso
are separated from the loops involving the Higgs and
Goldstone bosons. A similar observation was made in R
@21#. Since we count powers ofg2 andg82 as quantities of
orderp2, any correction from gauge-boson loops to the lo
energy constants inL4 must be of orderp6 in the effective
field theory. Therefore within the standard model with
heavy Higgs boson, the effects from gauge-boson loops
suppressed compared to the contributions from the Hi
and the Goldstone bosons.

VI. SUMMARY AND DISCUSSION

In this article we have reanalyzed the electroweak ch
Lagrangian which describes the low-energy structure o
6-27
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strongly interacting electroweak symmetry breaking sec
We have employed a manifestly gauge-invariant functio
approach that was introduced recently@16#. It is well suited
to analyze two issues related to gauge invariance where t
are some subtleties involved, because one has to deal
off-shell quantities. First, we determined the number of
dependent low-energy constants in the electroweak ch
Lagrangian. By employing the equations of motion we fou
that the set of parameters currently used in the litera
@10,11# is redundant. The second topic of this paper was
evaluation of the low-energy constants in the effective L
grangian by matching the full and effective theory at lo
energies. As an example we studied the standard model
a heavy Higgs boson6 where the calculation can be pe
formed by using perturbative methods.

We first introduced the effective field theory for th
bosonic part of a strongly interacting electroweak symme
breaking sector under the assumption thatp2,MW

2 ,MZ
2!M2,

wherep is a typical momentum andM is the mass scale fo
heavy particles in the underlying theory, e.g. a heavy Hig
boson in the standard model or a technirho in some tec
color model@31#. In order to preserve the gauge symme
we employed the gauge-invariant functional approach p
sented in Ref.@16#. Its essential feature is to consid
Green’s functions of gauge-invariant operators which ex
one-particle states of the photon, theW-, and theZ-boson,
respectively. The effective field theory is then described
an effective Lagrangian which is gauge-invariant and
pends on the Goldstone boson fieldŪ, the vector fields
W̄m

a ,B̄m , and external sources.
We have constructed the effective Lagrangian includ

appropriate source terms up to orderp4 in the low-energy
expansion. The lowest order effective LagrangianL2 in-
volves the four physical parametersē,MW , MZ , andr̄, cor-
responding to the electric charge, the masses of the ga
bosons and ther̄-parameter in the effective field theory, re
spectively. Furthermore, there are two additional low-ene
constants from the source terms. At orderp4 the effective
Lagrangian is given as a linear combination of a maximal
of gauge-invariant terms. One can then eliminate redund
terms by using algebraic relations which follow by part
integration. Since the LagrangianL4 contributes only at the
classical level one can also use the equations of motio
eliminate further redundant terms@13,17#. We note that in
our gauge-invariant approach no gauge artifacts can e
through this procedure, because there is no gauge-fixing
and the sources respect the gauge symmetry. Finally, t
are terms in the LagrangianL4 which are proportional to
corresponding terms in the lowest order LagrangianL2.
These terms lead to a renormalization of the low-energy c
stants and sources at orderp2 and therefore have no obser
able effect.

In this way we find that if one considers a purely boso

6Since all recent fits to electroweak precision data prefer a l
Higgs boson@28#, we regard the standard model with a heavy Hig
boson only as a testing ground for our method of matching.
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effective field theory with the same symmetry breaking p
tern as the standard model there are 10 physically rele
low-energy constants at orderp4 in the electroweak chira
Lagrangian. In particular, by employing the equations of m
tion of the gauge fields, one can choose to remove two lo
energy constants, usually denoted bya1 anda8 @10#, which
contribute to the self-energies of the gauge bosons. This
contrast to the number of 12 low-energy constants which
quoted in the literature@10,11#. An additional number of 63
low-energy constants contributes to the off-shell behavior
our gauge-invariant Green’s functions. The latter low-ene
constants, however, do not enter physical quantities.

If fermions are included the situation changes as follow
There are many more terms present in the effective Lagra
ian, including sources coupled to the fermions. Therefore
host of additional low-energy constants enters the effec
Lagrangian. Many of them are, however, strongly bound
by experiments or irrelevant to the current experimental s
ation. A complete effective field theory analysis includin
the fermions was beyond the scope of the present work. N
ertheless, even when fermions are included, it is possibl
eliminate the same two terms in the effective Lagrangian
order p4 which contribute to the self-energies of the gau
bosons. This will only lead to a renormalization of the exte
nal sources as well as the couplings of the gauge fields to
fermions. Hence, even in the presence of fermions, the c
plete low-energy analysis of a strongly interacting symme
breaking sector does not involve the low-energy constantsa1
anda8.

These two low-energy constants are often identified w
the oblique parametersSandU @2#. As discussed in Sec. II B
this identification is not possible. The oblique paramet
S, T, and U describe new physicsbeyond the standard
model with an elementary Higgs boson, whereas the lo
energy constants in the electroweak chiral Lagrangian
scribe any strongly interacting symmetry breaking sec
even if there is no Higgs boson at all. From the point of vie
of an effective Lagrangian analysis the parametrization
new physics effects by Peskin and Takeuchi amounts to
ting all low-energy constants to their standard model val
~assuming a heavy Higgs boson!, except for three parameter
contributing to gauge-boson self-energies. Employing
equations of motion one can still remove the terms cor
sponding toa1 anda8, however, two other low-energy con
stants will then differ from their values in the standard mod
and the total number of parameters to describe new phy
remains three.

In the second part of the paper we have investigated
issue of evaluating the effective Lagrangian for a given u
derlying theory. The effective field theory can be defined
requiring, for instance, that corresponding Green’s functio
in the full and in the effective theory have the same lo
energy structure. In order to make sure that no gauge
facts can enter in this matching procedure, we propose
match gauge-invariant Green’s functions. As an example
have considered the standard model with a heavy Higgs
son where the low-energy constants can explicitly be ca
lated using perturbative methods, if the scalar coupling c
stant is not too large. We briefly recapitulated the ma

t

6-28
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results from our manifestly gauge-invariant approach@16# to
the bosonic sector of the standard model. We then evalu
the matching condition at the one-loop level and at orderp4

in the low-energy expansion, employing functional tec
niques that have been discussed in detail in Ref.@27#. In this
way we obtained the effective Lagrangian expressed thro
bare quantities. The results agree with the literature@19–21#.

We then expressed the low-energy constants in the ef
tive Lagrangian through physical quantities. As physical
put parameters we chose the mass of the Higgs boson
masses of theW- and Z-boson, and the electric charge~on-
shell scheme! which have been extracted from two-poi
functions of appropriately chosen gauge-invariant opera
in Ref. @16#. We went one step further in the low-energ
expansion of the physical masses for the Higgs boson
the gauge bosons and the electric charge compared to R
@19–21#. In this way we obtained explicit expressions for t

effective low-energy constantsv̄e f f
2 , ḡe f f

2 , and ḡ8e f f
2 which

appear inL2. As discussed in Sec. V C this is necessary
order to obtain all contributions in the effective field theo
up to orderp4, if the low-energy constants in the effectiv
Lagrangian are expressed through these physical input
rameters. Furthermore, we removed the redundant term
the effective Lagrangian by the procedure outlined in S
II A 2.

The effective Lagrangian given in Eqs.~5.23!–~5.28! can
now be used to calculate physical quantities like scatte
amplitudes up to orderp4, by adding tree-level diagram
from L21L4 and contributions from one-loop graphs wi
the LagrangianL2. Note that the contributions from th
source terms and from the path integral measure have t
taken into account as well. The renormalization has, ho
ever, been carried out already. In particular, there is no n
to calculate once more the masses of the light particles,
the W or theZ-boson, in the effective field theory.

As was noted in Ref.@19# the results for the low-energ
constants at orderp4 agree with those obtained in the u
gaugedO(4)-linear sigma model@13,27#, in all cases where
such a comparison is possible. This can easily be unders
within our functional framework from the matching relatio
and the counting of powers ofg2 and g82 as quantities of
order p2. We note that this counting rule is needed for t
consistency of the effective field theory. Therefore within t
standard model with a heavy Higgs boson, the effects fr
gauge-boson loops are suppressed compared to the con
tions from the Higgs and the Goldstone bosons. The situa
is, however, different, if higher orders in the momentum e
pansion or in the loop expansion are evaluated or if ot
theories are considered. A well defined matching proced
which deals only with gauge-invariant quantities as propo
in this paper is mandatory in such cases.

Some phenomenological consequences of the ana
presented in this article for models of a strongly interact
electroweak symmetry breaking sector are discussed in
@45#. In particular, we compare in that paper the results
the reduced set of independent low-energy constantsl i8 ~in
the bosonic sector! for the standard model with a heav
Higgs boson with those for a simple technicolor model. T
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low-energy constants for the technicolor model have b
estimated assuming that the exchange of the lowest ly
resonances dominates the numerical values of the renor
ized low-energy constants in the resonance region. This
sumption works reasonably well for the coefficients in t
ordinary chiral Lagrangian for QCD@13,46# and can be jus-
tified using large-Nc arguments and constraints from su
rules @47#. Since the pattern of the low-energy constants
very different in these two models it may be misleading
mimic any strongly interacting symmetry breaking sector
a heavy Higgs boson as done in Ref.@39#. From our inves-
tigation we conclude, in accordance with Ref.@14#, that cur-
rent electroweak precision data do not really rule out su
strongly interacting models.
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APPENDIX A: SOURCE TERMS AT ORDER p4

In this Appendix we list all algebraically independe
CP-even source terms which appear at orderp4 in the elec-
troweak chiral Lagrangian in Eq.~2.50!. We have not yet
used the equations of motion to reduce the number of ter
The terms are grouped according to the total number of fie
and sources.

Terms with four powers of fields and external sources

O 1
s5~W̄m

1W̄m
2!~W̄n

1 j̄ n
21W̄n

2 j̄ n
1!,

O 2
s5~W̄m

1W̄n
2!~W̄m

1 j̄ n
21W̄n

2 j̄ m
1!,

O 3
s5~W̄m

1W̄m
2!~Z̄nJ̄n

Z!,

O 4
s5~W̄m

1W̄n
21W̄m

2W̄n
1!~Z̄mJ̄n

Z!,

O 5
s5~Z̄mZ̄m!~W̄n

1 j̄ n
21W̄n

2 j̄ n
1!,

O 6
s5~Z̄mZ̄n!~W̄m

1 j̄ n
21W̄m

2 j̄ n
1!,

O 7
s5~Z̄mZ̄m!~Z̄nJ̄n

Z!,

O 8
s5~W̄m

1W̄m
2!~ j̄ n

1 j̄ n
2!,

O 9
s5~W̄m

1W̄n
2!~ j̄ m

1 j̄ n
2!,

O 10
s 5~W̄m

1W̄n
2!~ j̄ m

2 j̄ n
1!,

O 11
s 5~W̄m

1 j̄ n
2!~W̄m

1 j̄ n
2!1~W̄m

2 j̄ n
1!~W̄m

2 j̄ n
1!,
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O 12
s 5~W̄m

1 j̄ m
2!~W̄n

1 j̄ n
2!1~W̄m

2 j̄ m
1!~W̄n

2 j̄ n
1!,

O 13
s 5~W̄m

1W̄m
2!~ J̄n

ZJ̄n
Z!,

O 14
s 5~W̄m

1W̄n
2!~ J̄m

ZJ̄n
Z!,

O 15
s 5~Z̄mJ̄m

Z!~W̄n
1 j̄ n

21W̄n
2 j̄ n

1!,

O 16
s 5~Z̄mJ̄n

Z!~W̄m
1 j̄ n

21W̄m
2 j̄ n

1!,

O 17
s 5~Z̄mJ̄n

Z!~W̄n
1 j̄ m

21W̄n
2 j̄ m

1!,

O 18
s 5~Z̄mZ̄m!~ j̄ n

1 j̄ n
2!,

O 19
s 5~Z̄mZ̄n!~ j̄ m

1 j̄ n
2!,

O 20
s 5~Z̄mZ̄m!~ J̄n

ZJ̄n
Z!,

O 21
s 5~Z̄mZ̄n!~ J̄m

ZJ̄n
Z!,

O 22
s 5~ j̄ m

1 j̄ m
2!~ j̄ n

1W̄n
21 j̄ n

2W̄n
1!,

O 23
s 5~ j̄ m

1 j̄ n
2!~ j̄ m

1W̄n
21 j̄ n

2W̄m
1!,

O 24
s 5~ J̄m

ZJ̄m
Z!~ j̄ n

1W̄n
21 j̄ n

2W̄n
1!,

O 25
s 5~ J̄m

ZJ̄n
Z!~ j̄ m

1W̄n
21 j̄ m

2W̄n
1!,

O 26
s 5~Z̄mJ̄m

Z!~ j̄ n
1 j̄ n

2!,

O 27
s 5~Z̄mJ̄n

Z!~ j̄ m
1 j̄ n

21 j̄ m
2 j̄ n

1!,

O 28
s 5~Z̄mJ̄m

Z!~ J̄n
ZJ̄n

Z!,

O 29
s 5~ j̄ m

1 j̄ m
2!~ j̄ n

1 j̄ n
2!,

O 30
s 5~ j̄ m

1 j̄ n
2!~ j̄ m

1 j̄ n
2!,

O 31
s 5~ J̄m

ZJ̄m
Z!~ j̄ n

1 j̄ n
2!,

O 32
s 5~ J̄m

ZJ̄n
Z!~ j̄ m

1 j̄ n
2!,

O 33
s 5~ J̄m

ZJ̄m
Z!~ J̄n

ZJ̄n
Z!. ~A1!

Terms with three powers of fields and external sources:

O 34
s 5 i J̄mn

Z ~W̄m
1W̄n

22W̄n
1W̄m

2!,

O 35
s 5 i Z̄mn~W̄m

1 j̄ n
22W̄n

1 j̄ m
22W̄m

2 j̄ n
11W̄n

2 j̄ m
1!,

O 36
s 5 iB̄mn~W̄m

1 j̄ n
22W̄n

1 j̄ m
22W̄m

2 j̄ n
11W̄n

2 j̄ m
1!,

O 37
s 5 i J̄mn

Z ~W̄m
1 j̄ n

22W̄n
1 j̄ m

22W̄m
2 j̄ n

11W̄n
2 j̄ m

1!,

O 38
s 5 i Z̄mn~ j̄ m

1 j̄ n
22 j̄ n

1 j̄ m
2!,
11300
O 39
s 5 iB̄mn~ j̄ m

1 j̄ n
22 j̄ n

1 j̄ m
2!,

O 40
s 5 i J̄mn

Z ~ j̄ m
1 j̄ n

22 j̄ n
1 j̄ m

2!,

O 41
s 5 i J̄n

Z~ d̄mW̄m
1W̄n

22d̄mW̄m
2W̄n

1!,

O 42
s 5 i J̄m

Z~ d̄mW̄n
1W̄n

22d̄mW̄n
2W̄n

1!,

O 43
s 5 i Z̄n~ d̄mW̄m

1 j̄ n
22d̄mW̄m

2 j̄ n
1!,

O 44
s 5 i Z̄m~ d̄mW̄n

1 j̄ n
22d̄mW̄n

2 j̄ n
1!,

O 45
s 5 i Z̄m~ d̄nW̄m

1 j̄ n
22d̄nW̄m

2 j̄ n
1!,

O 46
s 5 i Z̄n~ d̄m j̄ m

1W̄n
22d̄m j̄ m

2W̄n
1!,

O 47
s 5 i ~]mZ̄m!~W̄n

1 j̄ n
22W̄n

2 j̄ n
1!,

O 48
s 5 i J̄n

Z~ d̄mW̄m
1 j̄ n

22d̄mW̄m
2 j̄ n

1!,

O 49
s 5 i J̄m

Z~ d̄mW̄n
1 j̄ n

22d̄mW̄n
2 j̄ n

1!,

O 50
s 5 i J̄m

Z~ d̄nW̄m
1 j̄ n

22d̄nW̄m
2 j̄ n

1!,

O 51
s 5 i J̄n

Z~ d̄m j̄ m
1W̄n

22d̄m j̄ m
2W̄n

1!,

O 52
s 5 i J̄m

Z~ d̄m j̄ n
1W̄n

22d̄m j̄ n
2W̄n

1!,

O 53
s 5 i Z̄n~ d̄m j̄ m

1 j̄ n
22d̄m j̄ m

2 j̄ n
1!,

O 54
s 5 i Z̄m~ d̄m j̄ n

1 j̄ n
22d̄m j̄ n

2 j̄ n
1!,

O 55
s 5 i J̄n

Z~ d̄m j̄ m
1 j̄ n

22d̄m j̄ m
2 j̄ n

1!,

O 56
s 5 i J̄m

Z~ d̄m j̄ n
1 j̄ n

22d̄m j̄ n
2 j̄ n

1!,

O 57
s 5emnrsJ̄s

Z~W̄r
2W̄mn

1 1W̄r
1W̄mn

2 !,

O 58
s 5emnrsZ̄s~ j̄ r

2W̄mn
1 1 j̄ r

1W̄mn
2 !,

O 59
s 5emnrsZ̄s~W̄r

2 j̄ mn
1 1W̄r

1 j̄ mn
2 !,

O 60
s 5emnrsJ̄s

Z~ j̄ r
2W̄mn

1 1 j̄ r
1W̄mn

2 !,

O 61
s 5emnrsJ̄s

Z~W̄r
2 j̄ mn

1 1W̄r
1 j̄ mn

2 !,

O 62
s 5emnrsZ̄s~ j̄ r

2 j̄ mn
1 1 j̄ r

1 j̄ mn
2 !,

O 63
s 5emnrsJ̄s

Z~ j̄ r
2 j̄ mn

1 1 j̄ r
1 j̄ mn

2 !. ~A2!

Terms with two powers of fields and external sources:

O 64
s 5MW

2 ~W̄m
1 j̄ m

21W̄m
2 j̄ m

1!,

O 65
s 5MW

2 j̄ m
1 j̄ m

2 ,
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O 66
s 5MZ

2Z̄mJ̄m
Z ,

O 67
s 5MZ

2J̄m
ZJ̄m

Z ,

O 68
s 5W̄mn

1 j̄ mn
2 1W̄mn

2 j̄ mn
1 ,

O 69
s 5 j̄ mn

1 j̄ mn
2 ,

O 70
s 5Z̄mnJ̄mn

Z ,

O 71
s 5B̄mnJ̄mn

Z ,

O 72
s 5 J̄mn

Z J̄mn
Z ,

O 73
s 5~ d̄mW̄m

1!~ d̄n j̄ n
2!1~ d̄mW̄m

2!~ d̄n j̄ n
1!,

O 74
s 5~ d̄m j̄ m

1!~ d̄n j̄ n
2!,

O 75
s 5~]mZ̄m!~]nJ̄n

Z!,

O 76
s 5~]mJ̄m

Z!~]nJ̄n
Z!, ~A3!

where we introduced the quantities

j̄ mn
6 5d̄m j̄ n

62d̄n j̄ m
6 , ~A4!

J̄mn
Z 5]mJ̄n

Z2]nJ̄m
Z . ~A5!

APPENDIX B: THE ELECTROWEAK CHIRAL
LAGRANGIAN

It became customary in the literature to describe the lo
energy effective field theory of the bosonic sector of stron
interacting models of electroweak symmetry breaking
terms of the so called electroweak chiral Lagrangian, int
duced in Refs.@8–11#. Before we write down the effective
Lagrangian in the notation employed in these references
would like to add some comments. Following the first pap
of Ref. @9# and Ref.@10# we include a custodial symmetr
breaking term proportional tor̄21 already at orderp2 in the
low-energy expansion, cf. Eq.~2.27!. This is in contrast to
the recent literature which follows mostly the conventio
used in the second paper of Ref.@9# or those of the second
paper of Ref.@19#. These conventions may be recovered
our approach by settingr̄51. Furthermore, we include in th
list of operators at orderp4 the four termsO15, O16, O17,
and O18, cf. Eq. ~2.49!, which are proportional to corre
sponding terms inL2. The use of the equations of motio
and the renormalization of the low-energy constants inL2 in
order to reduce the number of terms inL4 will be discussed
later. Finally, no external sources have been introduced
Refs. @8–11,19–21#. We therefore list here only the term
L 2

0, Eq. ~2.27!, and L 4
0, Eq. ~2.48!, which do not contain

external sources.
Following Refs.@8–11# we introduce aSU(2) matrix no-

tation for the Goldstone bosons and the gauge fields:
11300
-
y

-

e
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in

Û5expS i
tapa

v̄ D PSU~2!,

Ŵ5Wm
a ta

2
, B̂5Bm

t3

2
,

D̂mÛ5]mÛ2 iŴmÛ1 iÛ B̂m ,

Ŵmn5]mŴn2]nŴn2 i @Ŵm ,Ŵn#. ~B1!

The effective Lagrangian can then be written in the follo
ing way:

L 2
05

1

4
v̄2 tr~D̂mÛ†D̂mÛ !2~ r̄21!

v̄2

8
@ tr~ T̂V̂m!#2

1
1

2ḡ2
tr~ŴmnŴmn!1

1

2ḡ82
tr~B̂mnB̂mn!, ~B2!

L 4
05(

i 50

17

aiLi , ~B3!

with the basic set of operators (CP-even terms only!:

L05
v̄2

4
ḡ82@ tr~ T̂V̂m!#2,

L152
1

2
Bmn tr~ T̂Ŵmn!,

L25 i
1

2
Bmn tr~ T̂@V̂m ,V̂n#!,

L352 i tr~Ŵmn@V̂m ,V̂n#!,

L452@ tr~V̂mV̂n!#2,

L552@ tr~V̂mV̂m!#2,

L652tr~V̂mV̂n!tr~ T̂V̂m!tr~ T̂V̂n!,

L752tr~V̂mV̂m!@ tr~ T̂V̂n!#2,

L85
1

4
@ tr~ T̂Ŵmn!#2,

L952 i
1

2
tr~ T̂Ŵmn!tr~ T̂@V̂m ,V̂n#!,

L1052@ tr~ T̂V̂m!tr~ T̂V̂m!#2,

L1152tr„~D̂mV̂m!2
…,

L1252tr~ T̂D̂mD̂nV̂n!tr~ T̂V̂m!,
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L1352
1

2
@ tr~ T̂D̂mV̂n!#2,

L145emnrs tr~ŴmnV̂r!tr~ T̂V̂s!,

L155MW
2 tr~D̂mÛ1D̂mÛ !,

L165tr~ŴmnŴmn!,

L175tr~B̂mnB̂mn!. ~B4!

In Eqs.~B2!–~B4! we used the building blocks

T̂5Ût3Û†, V̂m5~D̂mÛ !Û†,

D̂mV̂n5]mV̂n2 i @Ŵm ,V̂n#. ~B5!

We recall that we count the gauge coupling consta
g,g8 as orderp in the low-energy expansion, therefore th
custodial symmetry breaking termL0 is of the orderp4. Note
that we have used in Eqs.~B2!–~B5! a different convention
for the signs of the gauge coupling constants compared to
literature. Specifically, we haveg→2ḡ andg8→2ḡ8 com-
pared to Ref.@19#. Furthermore, we have again absorbed
gauge coupling constants into the gauge fields, cf. Eq.~2.3!.
Note that v̄ corresponds to the pion decay constantFp in
chiral perturbation theory.

The relations between the two sets of operators,Oi from
Eq. ~2.49! and theLi , read

L052 s̄2O16,

L15O82
1

2
O122

1

2
O18,

L252O8 ,

L3524O114O224O314O412O71O822O912O10,

L4522O122O222O42
1

4
O5 ,

L5524O122O32
1

4
O5 ,

L6522O42
1

2
O5 ,

L7522O32
1

2
O5 ,

L852O122O22O72O81
1

4
O111

1

2
O121

1

4
O18,

L9524O114O21O71O8 ,

L1052O5 ,
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L1152O131
1

2
O14,

L1252O102O14,

L1354O124O22O71
1

4
O111

1

2
O14,

L145 iO6 ,

L1552O15,

L165
1

2
O17,

L175
1

2
O18, ~B6!

which are valid up to partial integrations.
As discussed in Sec. II A 2 the equations of motion in t

effective field theory lead to relations between the opera
Li in L4, cf. the relations in Eqs.~2.52!–~2.64! between the
operatorsOi . From the constraint equations~2.37! and
~2.38!, which are equivalent to tr(D̂mV̂m)50 in the usually
employed notation, we obtain the following relations:

L1150, ~B7!

L1250, ~B8!

L135
c̄2

2s̄2
L01L31L42L52L61L72L9

2L152
1

2
L161

1

2
L17. ~B9!

The equations of motion for the gauge fields in Eqs.~2.34!
and ~2.35! lead to the relations

L15L322L152L16, ~B10!

L85
c̄2

2s̄2
L02L91L151

1

2
L16. ~B11!

For simplicity we have setr̄51 and switched off the exter
nal sources. The general relations can be inferred from E
~2.52!–~2.64! by making use of Eq.~B6! to convert the basis
with the operatorsOi into the basis with the operatorsLi .
Note that Eq.~B9! has changed compared to Eq.~2.90! be-
cause we have replaced above the operatorsL1 andL8 on the
right-hand side of the equation. Furthermore, we note that
get a different sign of the termsL4 andL5 in Eq. ~B9! com-
pared to Ref.@11#.

With the help of Eqs.~B7!–~B11! we can remove the
operatorsL1 , L8 , L11, L12, andL13 from the basis. Fur-
thermore, we can remove the termsL15, L16, and L17,
which are proportional to terms in the LagrangianL 2

0, by
6-32
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renormalizing the parameters and low-energy constant
the lowest order Lagrangian, cf. Eqs.~2.67!–~2.70!.

1. The effective Lagrangian for the standard model
with a heavy Higgs boson

The result for the bare effective Lagrangian from Eq
~4.18!–~4.20! for the standard model with a heavy Higg
boson translates into the following expression for the b
low-energy constantv̄b

2 in L2, Eq. ~B2!,

v̄b
25

m2

l F11lS 212L«~2m2!1
1

16p2D G . ~B12!

Furthermore we obtainr̄51 in Eq. ~B2!. The bare low-
energy constantsai

b in L4, Eq. ~B3!, are given by

a0
b52

3

4
L«~2m2!2

1

16

1

16p2 ,

a1
b52

1

6
L«~2m2!2

1

72

1

16p2 ,

a2
b52

1

12
L«~2m2!1

11

144

1

16p2 ,

a3
b5

1

12
L«~2m2!2

11

144

1

16p2 ,

a4
b5

1

6
L«~2m2!2

11

72

1

16p2 ,

a5
b5

1

16l
2

17

12
L«~2m2!2

35

144

1

16p2 ,

a11
b 52

1

24

1

16p2 ,

a15
b 5

3

2
L«~2m2!1

1

8

1

16p2 ,

a16
b 52

1

12
L«~2m2!2

1

144

1

16p2 ,

a17
b 52

1

12
L«~2m2!2

1

144

1

16p2 .

~B13!

All other bare low-energy constantsai
b vanish. Note that we

have included some additional, finite terms into our defi
tion of the pole termL«(2m2), cf. Eq. ~4.17!, compared to
the conventions used in Refs.@19–21#.

Inserting the physical masses and coupling constants f
Sec. V, the effective Lagrangian reads
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m

L25S MW,pole
2

sp
2

eres
2 D tr~D̂mÛ1D̂mÛ !1

sp
2

2eres
2

tr~ŴmnŴmn!

1
cp

2

2eres
2

tr~B̂mnB̂mn!, ~B14!

L45(
i 50

17

aiLi , ~B15!

with the non-vanishing low-energy constants

a052
3

4
L«2

3

8

1

16p2 lnS MH,pole
2

m2 D 2
1

16

1

16p2 ,

a152
1

6
L«2

1

12

1

16p2 lnS MH,pole
2

m2 D 2
1

72

1

16p2 ,

a252
1

12
L«2

1

24

1

16p2 lnS MH,pole
2

m2 D 1
11

144

1

16p2 ,

a35
1

12
L«1

1

24

1

16p2 lnS MH,pole
2

m2 D 2
11

144

1

16p2 ,

a45
1

6
L«1

1

12

1

16p2 lnS MH,pole
2

m2 D 2
11

72

1

16p2 ,

a55
1

12
L«1

sp
2MW,pole

2

2eres
2 MH,pole

2
1

1

24

1

16p2 lnS MH,pole
2

m2 D
2

1

16p2

152227A3p

144
,

a1152
1

24

1

16p2 ,

a155
3

2
L«1

3

4

1

16p2 lnS MH,pole
2

m2 D 1
1

8

1

16p2

2
1

8 S 12
cp

2

sp
2D dMW,2

2 2
1

8sp
2 dMZ,2

2 1sp
2de2

2 ,

a1652
1

12
L«2

1

24

1

16p2 lnS MH,pole
2

m2 D 2
1

144

1

16p2

1
cp

2

16sp
2 dMW,2

2 2
1

16sp
2 dMZ,2

2 1
1

2
sp

2de2
2 ,
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a1752
1

12
L«2

1

24

1

16p2 lnS MH,pole
2

m2 D 2
1

144

1

16p2

2
cp

2

16sp
2 dMW,2

2 1
1

16sp
2 dMZ,2

2 1
1

2
cp

2de2
2 . ~B16!

The pole term ind54 dimensions,L« , is defined in Eq.
~5.22!. We denoted the pole-masses of the Higgs boson,
W- and theZ-boson byMH,pole, MW,pole, and MZ,pole, re-
spectively. The electric charge is denoted byeres. The quan-
tities dMW,2

2 , dMZ,2
2 , and de2

2 are defined in Eqs.~5.9!,
~5.14!, and~5.17!, respectively. Furthermore, we use the o
shell definition for the weak mixing anglecp

2 ,sp
2 , cf. Eq.

~5.21!.
Finally, we can remove the redundant term

L1 , L8 , L11, L12, and L13 from the basis by employing
the Eqs.~B7!–~B11! and the termsL15,L16, and L17 by
renormalizing the parameters in the lowest order Lagrang
L 2

0. In this way we obtain the expression for the Lagrang
L2 as given in Eqs.~5.23!–~5.26! and the following results
for the 10 low-energy constants corresponding to indep
dent terms in the LagrangianL 4

0:

a0852
3

4
L«2

3

8

1

16p2 lnS MH,pole
2

m2 D 2
1

16

1

16p2 ,

a2852
1

12
L«2

1

24

1

16p2 lnS MH,pole
2

m2 D 1
11

144

1

16p2 ,

a3852
1

12
L«2

1

24

1

16p2 lnS MH,pole
2

m2 D 2
13

144

1

16p2 ,

a485
1

6
L«1

1

12

1

16p2 lnS MH,pole
2

m2 D 2
11

72

1

16p2 ,

a585
1

12
L«1

sp
2MW,pole

2

2eres
2 MH,pole

2
1

1

24

1

16p2 lnS MH,pole
2

m2 D
2

1

16p2

152227A3p

144
,

a6850,

a7850,

a9850,

a108 50,

a148 50. ~B17!

We have denoted the modified low-energy constants byai8 in
order to distinguish them from the old ones. Only the lo
energy constanta38 has changed in comparison with the va
11300
e

-

n
n

n-

-

ues given in Eq.~B16!. Note, however, thata1 anda8 have
disappeared from the list of independent low-energy c
stants.

The low-energy constants in Eqs~B16! and ~B17! have
the following general form:

ai5D iL«1ai
r~m!,

ai85D i8L«1ai8
r~m!, ~B18!

i.e. they contain a pole term proportional toL« and a scale
dependent part. We denote the coupling constantsai

r(m) and
ai8

r(m) as renormalized low-energy constants.

APPENDIX C: DIFFERENTIAL OPERATORS
IN THE STANDARD MODEL

The explicit results for the differential operatorsD̃
1PPT1dP andPTP which appear in Eq.~3.36! in Sec. III
are given below. In the following, upper case Latin indic
A,B, . . . run from 1 to 4, lower case Latin indicesa,b, . . .
run from 1 to 3, and Greek indicesa,b, . . . label the com-
ponents 1,2.

The components of the differential operatorD̃1PPT

1dP in Eq. ~3.38! are given by

d52h12m213m2~R221!1
1

4
Y m

a Y m
a 2ĥ, ~C1!

db52Y r
aD̂r

ab2
1

2
~D̂rYr!b, ~C2!

dTa5Y r
a]r1

1

2
~D̂rYr!a, ~C3!

Dab52~D̂rD̂r!ab1dab
„m2~R221!2ĥ…

1MW
2 R2dab1

1

4
Y r

aY r
b , ~C4!

dn
B5MWRỸ m

APT̃mn
AB , ~C5!

dm
T,A5MWPT̃mn

ABRỸ n
B , ~C6!

Dn
aB5 f aBcMWRY n

c12MW~]nR!daB

2sMZd4B
„2da3~]mR!1RTacW m

c
…PTmn , ~C7!

Dm
T,Ab52 f AbcMWRY m

c 12MW~]mR!dAb

1sMZdA4PTmn„RW n
cTcb22~]nR!d3b

…, ~C8!

Dmn
AB52dmn~D̃rD̃r!AB12 f ABcW mn

c 1~M̃2!ABPTmn

1MW
2 dABPLmn1PT̃ma

AC~M̃2!CD~R221!PT̃an
DB

1dA4dB4PTmrĴrsPTsn , ~C9!

where we introduced the quantities
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D̂m
ab5D m

ab1
1

2
«abcY m

c , ~C10!

D m
ab5]mdab2«abcW m

c , ~C11!

D̃m
AB5dAB]m2 f ABcW m

c , ~C12!

f ABc5H «abc, A5a, B5b,

0, A54 and/or B54,
~C13!

Ỹ m
A5S Y m

a

2
s

c
Y m

3 D , ~C14!

PT̃mn5diag~dmn ,dmn ,dmn ,PTmn!, ~C15!

PTmn5dmn2PLmn , PLmn5
]m]n

h
, ~C16!

M̃25S MW
2 0 0 0

0 MW
2 0 0

0 0 c2MZ
2 2csMZ

2

0 0 2csMZ
2 s2MZ

2

D , ~C17!

Ĵmn5g82vd j~dmnJk
aJk

a2Jm
aJn

a!. ~C18!

In the basis (f ,ha,qm
A) the differential operatorP which

creates zero modes can be written as follows:
ea

a

d-

n-

11300
S 0

MWRdaB

D̃ m
AB

D aB[Pa, ~C19!

whereaB are four arbitrary scalar functions. From this e
pression we obtain the following results for the different
operatorsPPT andPTP which appear in Eq.~3.36!:

PPT5S 0 0 0

0 MW
2 R2d ab 2MWRD̃ n

aB

0 MWD̃ m
AbR 2~D̃mD̃n!AB

D , ~C20!

PTP5S 2D m
acD m

cb1MW
2 R2d ab 0

0 2h
D . ~C21!

Furthermore, the operatordP is defined by

dP5diag~0,0,d A4d4BMW
2 PLmn!. ~C22!

Since we perform a saddle-point approximation in t
path integral, the fields which appear in the list of different
operators in Eqs.~C1!–~C9! obey the equations of motion
~3.25!–~3.30!. We have used this fact to simplify the expre
sions of those operators which correspond to the fluctuat
ha of the Goldstone bosons. Furthermore, it is important
ensure that the full differential operatorD̃1PPT1dP is Her-
mitian, i.e. satisfies the relation (y,@D̃1PPT1dP#y8)
5(y8,@D̃1PPT1dP#y) for arbitrary fluctuation vectors
y,y8.
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