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We analyze the basic hard exclusive processesrijiey-transition and the pion and nucleon electromag-
netic form factors, and discuss the analytic continuation of QCD formulas from the spag@fii® to the
timelike regiong?>0 of the relevant momentum transfers. We describe the construction of the timelike
version of the coupling constant . We show that due to the analytic continuation of the collinear logarithms,
each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference
effects which are shown to be very small. We find no sources forKtfi@ctor-type enhancements in the
perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic
form factor, we use a QCD sum rule inspired model and show that there are noncanceling Sudakov double
logarithms which result in &-factor-type enhancement in the timelike region.

PACS numbsefs): 13.40.Gp, 11.10.Hi, 12.38.Cy

[. INTRODUCTION shown there that, by using the parametrization for,(Q?)
in the spacelike region, it is possible to construct R§g?)
Within the factorization framework, perturbative QCD an expansion in the timelike region in which all the

has been applied to various processes involving large md-w?/L?)N terms are resummed explicitly, and, what is most
mentum transfers, both in the spaceligg=—Q?<0 (for  important, the transformation into the timelike regioe
reviews, we refer to Refd.1-6]) and the timelikeq®>0 ducesthe magnitude of each particular term of thé Bx-
regions(see, for example, Ref§7—10]). Note that the run- pansion. Another well-studied example related to the ana-
ning coupling constant(?) is usually defined with refer- lytic continuation into the timelike region is the cross section
ence to some Euclidea(spacelike configuration of mo- of the Drell-Yan(DY) processAB— y* X. In this case, the
menta of scaleu. For large spacelike, this produces no im factors associated with the continuation of the Sudakov
special complications. One simply uses the renormalizatiomlouble logarithmg a In?(Q%/m?)N result in am?-enhanced
group to resum the logarithmic  corrections correction which gives rise to th€ factor[15] increasing in
[ as(1?)IN(Q% 12N that appear in higher orders of perturba- turn the result of the perturbative QCD calculation by the
tion theory, arriving at an expansion in the effective couplingfactor of 3 to bring the DY cross section in agreement with
constanta(Q?) which, in the one-loop approximation, is experiment.

given by[1] For elastic form factors, existing experimental dgté&—
18] show a considerable enhancement of the timelike form
A factors over their spacelike counterparts. In the present pa-
ay(Q?) = , (1)  per, we study the possible sources of such an enhancement.
(11— 2N¢/3)In(Q?/A?) To disentangle different aspects of the analytic continuation

into the timelike region, we proceed step by step, beginning
with N; being the number of active flavors ard denoting  with the simplest cases and then going on to more compli-
AQCP. In general, theA -parametrization ofr((Q?) is a se- cated ones. We start with a discussion of the analytic con-
ries expansion in 1/ [whereL=In(Q%A?)], and the defini- tinuation into the timelike region of the UV logarithms
tion of A is fixed only if theO(1/L?) term is added to Eq. In(Qzl,u,é) inducing theQ? dependence of the running cou-
(1) [11]. Continuing the logarithms into the region of time- pling constant as(Q?). We take the cleanest case of
like g, one should deal with théw terms InQ%u?) R(e*e”—hadrong, in which no other types of logarithms
—In(Q%u?) =i, which may produce large higher-order cor- appear and review in Sec. Il the continuation procedure for
rections. In the case of tiR ratio fore* e~ — hadrons pro- R(e*e” —hadrons) as given in Refgl3,14. In Sec. lll, we
cess, this problem was discussed in R¢I2—-14. It was  consider another fundamental procesg:y— w°. At the

leading logarithm level, only the collinear logarithms

In(Qzl,uﬁ) are important whileag can be treated as a con-

*Also at Laboratory of Theoretical Physics, JINR, Dubna, 141980stant. So, this is another “clean situation” which gives an

Russia. opportunity to concentrate on the study of the analytic con-
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tinuation of the collinear logarithms which induce tQ¥ In the MS scheme, the coefficienty are known up td
dependence of the pion distribution amplitugg(x,Q?). In =3 [27,28. Using Eq.(2) and the definition oD, one can
Sec. IV, we briefly discuss the effects due to the analytidelate R2°"(s), the perturbative QCD version d(s), di-
continuation of the Sudakov double logarithms. We considefectly to D?P(Q?)

first the cross section of the Drell-Yan proce#sB

—utu”X. In this case, the double logs?(®%u?) appear ocoyey L [T ocp, 9O

on a diagram by diagram basis but cancel after resumming R¥H(s)= 27 ) _oic D (0)7' @)
over all diagrams of a given order. However, thé terms

generated by the analytic continuation survive and, as alThe integration contour in Eq4) goes below the real axis
ready mentioned, produce an enhancement due ti flae-  from —s—ie to some poinQ? in the deep spacelike region
tor. We contrast this outcome with the case of the hard conand then above the real axis tes+ie, i.e., in the region
tribution to the pion electromagnetic form factor, in which where the functiorD(s) is analytic.

the inducedn? terms cancel together with the double logs.  In shorthand notatior) —R=®[D]. The actual calcula-
For this reason, the modification of the hard term of the piortion is very simple if one represenig(Q?) through an ex-
form factor in the timelike region is only affected by the pansion in 1/InQ%A?), i.e., via theA parametrization. The

analytic continuation of the UV and collinear logarithms. latter results from the QCD Gell-Mann—Low equation
These effects are discussed in Sec. V. In Sec. VI, we study

the analytic continuation of the hard PQCD contribution to  L=In(Q*A?)
the nucleon form factor. Both in the pion and the nucleon

. ! o 2

case, we find that the effects due to the continuation into the 47 n Eln LI N bobo— by ﬁ+o( 2)
timelike region are very small. Experimentally, however, the boas bg 4 bg 4 %s/s
timelike nucleon form factor is essentially larger than its (5)

spacelike counterpart. This discrepancy may be regarded as

an indication that the hard contribution does not dominatevhere b, are B-function coefficientsby=11—2N;/3 [1],
the form factors at accessible momentum transfers. An alteiy, = 102— 38N;/3 [29], b}'S=2857/2- 5033N/18
native scenario discussed in many pagé&-2§ is that in +325N$/54 [30].

the few GeV? region the form factors are dominated by the |nverting Eq.(5) by iterations and reexpanding the result

soft mechanism. In Sec. VII, we study the analytic continu-in 1/ we get theA parametrization for the running coupling
ation effects for the soft contribution to the pion electromag-constant

netic form factor within the local quark-hadron duality

model motivated by the QCD sum rule analysis of Refs. 4 L, 1 b, b,by—b?
[19-21,26. We show that at the one loop level, there are  a4(Q?%) = bl 1- T+ = L7— —SLli+t———
explicit non-canceled double logarithms?(@%/u?) which B L bg bo
produce ther? terms in the timelike region, giving rise to a

K-factor-type enhancement. + O(1IL3)] , 6)

Il. CONTINUATION OF ag INTO THE TIMELIKE
REGION FOR R(ete™—hadrons,s) wherel ;= (b /b3)In(boL)—A [31,32. To fix the functional
dependence ofr(Q?) on Q?, one should specify the inte-

; _ +a— +a— +,, -
The ratioR(s)=c(e e —hadrons)é(e e —u p ), gration constaniA. The standardor “popular”) choice is

characterizing the total cross section fe” annihilation

into hadrons, provides the simplest example of the analytic b

continuation of the effective QCD coupling constantinto APOP="1|n bo (7)

the timelike region. The standard procedysee, e.g., Ref. b

[27], and references cited thergiis to calculate the Adler ) ) ) )

function D(Q? by taking the derivative D(Q?)  Which gives the shortest expressidm (bg)In(L) for L;. A

=Q2dI1/dQ? of the vacuum polarizatiofil (Q?) related to ~ clear disadvantage of this choice is that it guarantees a rather

R(s) by large 1L2 correction toas, which results in a large differ-
ence between “© and AN-C. As argued in Ref{13], a more

1 : . .
R(s)= m[H(—erie)—H(—s—ie)]. @ appropriate(optimal choice is
b _
In perturbative QCDD(Q?) is given by thea(Q?) expan- Aopt:_;m bol, (8)
sion bo
2 2)\2 wherelL is the average value of the logarithmwithin the
DQCD(QZ):Z e2 1+ a,S(Q ) +d2 aS(Q ) i g — g
g J T T region under study, e.gL,=4 corresponding taxg/7~0.1.
3 For this choice, the ratih; /L is smaller than 7% and Eq.
+d as(Q%) . 3 (6) has 1% accuracy in the whole regibe- 3, with the total
oo ' correction to the simplest formuld) being less than 10%.
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The A parameters corresponding to differexis are re-
lated by
A2 A e(Al AZ)IZ (9)
In particular,

A OPL= A PO/ b1/205, (10)

Taking L=4 we get A°f;_,~AP°%1.73. In connection

PHYSICAL REVIEW D 62113001

paring to analytically continue an approximate expression it
makes sense to take care of the convergence quality of the
original expansion in the spacelike region. If there are cor-
rections which are under our full control and we can make
them small, then we should use this opportunity and make
them small.

Now one can substitute(Q?) in Eq. (3) by its A pa-
rametrization to get an l/expansion for the Adler function
D(Q?). For each term of this expansion, the integélcan

with the discussion above, we want to stress here that préde calculated explicitlyfsee also Ref.33])

1-1, (11)
LT S Lo/ 1 Lg=tli-17 12
L—U—;[w arctanls/m) ]| n2=_arctari s)—L—s st (12)

In(L,/Ly)  IN(VLZ2+72/Lg)— (Ls/m)[ w/2—arctariLg/7)]+1

L2 L2+ 72 n2
In(VLZ+ 72/Lg) — (Lg/marctarim/Ly) +1  Lg/L, L w2 5 72 13
= = ——t et —+
L§+772 L2 L§ g

! Lot (14)
Bl S i G
L2 L2+7%2 L2 L2
1 (1 1 ( d )”2 1 1 L w? n(n+1)+ 15
L (n=D!dLs) 124472 LD L2 6 '

where Lg=In(s/A?), L(,—In(o/Az) and we assume that better than any other. In fact, expansid) converges bet-

s>0. Furthermorel =
on theA choice in theA parametrization.

Using Eq.(6) and incorporating Eqg11)—(15) (as well
as their generalizations forah/L3, InL/L3, etc) one obtains
the expansion foR?P(s)

RQCP(s) = > egf 1+k§‘,1 A D[ (s )X (16)
5 =

in which all the (?/L?)N terms are resummed.

As noted in Ref[13], the application of theb operation
normally violates nonlinear relation®[ 1/L2]# (®[1/L])2,
etc. However, it respects linear relatiod§ A+B]=®[A]
+®[B], ®[NA]=AD[A], and

d
dLs

dD

(DdL

-7 ®[D]. 17

ghb ’bllbo is a constant depending ter than the generating expans@h for D(o) because, as it

follows from Egs.(12)—(15), (D[as] is always smaller than
. Moreover, ([ oY1) YNTD< (D[ aN])N, i.e., the ef-

fective expansion parameter decreases in higher orders.
Thus, if one succeeded in obtaining a god}‘jexpansion for
D(o) (with all dy being small numbejsthen the resulting
®[ '] expansion forROCY(s) is even better, and the best
thing to do is to leave it as it is.

The timelike analogue of the simpleAt parametrization
for ag(Q?) [Eq. (1)] is then

- 4 [ IN(q%/A?)
ag(q?) = b—o[g — arctarﬁ —

=-—alctal ———————— .
bo In(q%/A?)

s>A2

(18

In particular, this relation was used to explicitly obtain This function has a finite value both @f=A? andg?=0

®[1/L"] in Eq. (15). As a result, expansiofil6) is not an
expansion in powers of some particular parameiepriori,

The well-known deficiency of the perturbative expansion
for DCP(Q?) in powers ofas(Q?) is the presence of the

there is no reason to believe that a power series expansion isiphysical singularity aQ?=A? induced by the Landau
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pole of 1/InQ%A?). As a consequenc&R®°“"(s) as calcu- between ay(Q?) and the modified spacelike coupling
lated from Eq.(4), also has unphysical features: namely, it;S(Qz) (taken at mirror momenjds rather smallless than
does not vanish on the negative real axis. In particular, sublo%) for all values ofQ2.
stituting 1L, into the integral(4) and taking negative we Thus, using the\ parametrization for the effective QCD
get coupling constant in the spacelike region, we obtained an
explicit expansion for the timelike quantitR°°°(s). One
i — 0(— A?<s=<0), (19) may question, though, the reliability of the above formulas in
olseg the region of small momenta)|~A. In particular, a rapid
change ofag in the smallg® region [compare ag(A?)
=2m/by andag(0)=4m/by] is as suspicious as the Landau
pole of ag(Q?). Evidently, they both are artifacts of the ana-
lytic continuation procedure applied outside the applicability
region. It is well known that the physic&(s) vanishes be-
low the two-pion threshold and approaches the perturbative
value only for values o§ marginally larger tham\ 2. So, one
ocD may argue that.a more realigtic procedure is to intggrate
BQCD(QZ):QZJ"” R~¥"(s) ds 20 ROCP(s) in the dispersion relatiof20) from some effective
0 (s+Q??2 thresholds, rather than from zero. Taking, e.go=A?, one
would get another effective spacelike coupling, call it

(this transformation will be denoted aR—D), then @s(Q?). It vanishes atQ’=0, but is essentially constant
DQCP(Q?) is free from the unphysical singularities @ aS(QZ)/me.lAin a wide rangeA’<Q*<30A% of mo-
= A2, For instance, combining the two transformatiom ( menta. Hencea(Q?) effectively “freezes” at small mo-

which results in an unphysical cut 8f°5(s) in the region
— A2<s=<0. Furthermore, applying Eg4) to the pole term
DP%(Q?)=A?/(Q?>— A?) one obtains the result coinciding
with the right-hand side RHS of E(L9). Hence, if one now
postulates thaD®“P(Q?) is given by integratingR>(s)
over the physical regios>0 only, i.e., if one takes

—R—D)=(D=D) one would get menta(see also Refd37-39,33).
47 4 1 A? ) _(Qz) I1l. COLLINEAR LOGARITHMS AND DISTRIBUTION
_— = — - = ,
boln(QZIAz) b In(Q2/A2) QZ—AZ s AMPLITUDES IN THE TIMELIKE REGION
(21) The logarithmic dependence on the large momentum

scale Q? may also appear through mass logarithms
In(Q%?), wherem is some mass or an infrared regulariza-
Nion parameter. Note that the standard PQCD factorization

which coincides with the pole-free expression for the run-
ning coupling constant proposed by Shirkov and Solovtso
[34]. However, since th® — R operation does not respect
nonlinear relations, thB=D transformation acting on 1L, T(Q2/m?) =t(Q% u? 2

’ 4 ) @) (23)
would not produce theith power of the RHS of Eq(21).

Hence, ag cannot serve as an expansion parameter of &orks only in a single-logarithm situation, when there may

power series. Noting that both—R and R—D convert ~appear just one I¢/n?) factor per each loop. These collin-
derivatives with respect to the logarithm of the initial vari- €ar logarithms can be absorbed into the renormalization of
able into derivatives with respect to the logarithm of thethe long-distance functiofdistribution amplitudg ¢ (u?). In

resulting variable we obtain particular, takingu?=Q?, one arrives at the description in
terms ofQ2-dependent functiong(Q?). Again, if the large
1 1 dn! 1 momentum is timelike, the collinear logarithms @Q¥(m?)
T:(_l)n(n——l)' i acquire the imaginary partis, and we may ask how one
L2 Loz Le2 should define theQ?-dependent distribution amplitudes
a1 1 A2 »(Q?) in the timelike region.
=(—1)" — (__ ) To approach this problem, let us consider the simplest
(n—=1)! dngl Loz Q—A2 example of a hard exclusive proces& production iny* y

22) collisions. Its PQCD expansion starts at zero ordeswdn

This relation was given in a recent paper by Shirk8%], n_
see also Ref[36] for a related discussion of perturbation to(x,Q%) = xQ?’
theory expansions in the timelike and spacelike regions.

For moderate values d@?, the modification due to the 5.4 the leading PQCD resuH#0] for the largeQ? behavior
continuation into the timelike region is numerically rather o ine form factor is
significant: forag=0.3 thew?/L? terms changers by more
than 20%, i.e., they are more importaffor an optimal A (1o (X) pr
choice of theA parameterthan the two-loop corrections in Fo,(Q%)= _Wf Pl dx=—2
the A parametrizatior(6). On the other hand, the difference T 3 Jo xQ? 3Q2

(24)

ly. (25
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The nonperturbative information here is accumulated in

the same integral

X
@l )dx
X

(26)

1 11
)

PHYSICAL REVIEW D 62113001

1
[F(§.X)]+=F(§,X)—5(§—X)f0 F({x)dZ. (32

Since the asymptotic distribution amplitude is the eigen-
function of the evolution kerneV(¢,x) corresponding to
zero eigenvalue

that appears in the one-gluon-exchange diagram for the pion

electromagnetic form factg#1-43. The value ofl depends
on the shape of the pion distribution amplituge(x). In
particular, using the asymptotic ford1,42

¢21x) =61 X(1—x) 27

Jol V(&,X) p*(x)dx=0, (33

the coefficient € +In x) of the In@Q%u?) term vanishes after
the x integration withe?{x). Hence, the size of the one-loop

gives 15°=3. If one takes instead the Chernyak-Zhitnitsky correction for the asymptotic distribution amplitudegisin-

model[44]
eS4(x) =30f ,x(1—x)(1—2x)?, (28

the integrall , increases by a sizable factor of 5/%“=5.

dependent and is determined only by the remaining terms
(for a detailed discussion of their structure, see R&3)).

In this section, we want to concentrate on @ depen-
dence induced by collinear logarithms, which in this process
start to appear at the one-loop level. The UV logarithms

This difference can be used for an experimental discriminashifting the argument ofr, appear only at two-loop order.

tion between the two competing models for the pion distri-

bution amplitude.

At one loop, theMS coefficient function for they* y
— 79 form factor was calculated in Reff45-47 and was
found to be

§+In x) IN(Q?% u?)

1 «@
2.2\ _ s
t(x,Q% u?) XQZ[HCFZW

1

9
+ = 2y _
2Inx

2

xInx
2(1—x)

R

In full compliance with the factorization theorer%8,40
(see also Refd49-51]), the one-loop contribution contains
no Sudakov double logarithms®@? of the large momentum
transferQ. Physically, this result is due to the color neutral-

Hence, analyzing the leading collinear logarithms
[asIn(QYu®) N we will treat g as a constant. The factoriza-
tion theorem means essentially that the leading logarithms
[asIn(QYu?)]N exponentiate in higher orders producing a
factor which can be absorbed into the renormalization of the
pion distribution amplitude

¢(p?)—exd —IN(Q* u?)VI® ¢(1?). (34)

Now, taking a timelike momentur®?= —q?, we would get
an extra* iz term: InQ%u?)—In(g¥ u?) *ir and

exd —In(Q% u?) V]—exd —In(q?/ n?)V]exd imV].
(35)

The first exponential corresponds to the standard evolution
of the pion distribution amplitude from the scalé€ to the

ity of the pion. In the axial gauge, the Sudakov double logascaleq?. The second exponential is specific for the timelike
rithms appear in the box diagram but they are canceled byinematics. In our approximation, it ig? independent and
similar terms from the quark self-energy corrections. Incan be treated as a conversion factor for the transition from a

Feynman gauge, the double logarithm$Q@3 do not appear

“spacelike” distribution amplitudep to its timelike counter-

in any one-loop diagram. It is easy to check that the tembarts;

containing the logarithm 1%/ «?) has the form of a convo-
lution

1C
xQ? F

of the lowest-ordef“Born” ) termty(&,Q?) = 1/£Q? and the
kernel

s 3+I
2mi2 X

11
—J’OﬁV(f,X)dE (30)

023

V(EN =5

Cr

1
1]

§
;0(§<x)( vay:

31

governing the evolution of the pion distribution amplitude.
The “+"-operation is defined here, as usuaPk], by

o.=exgxinV]®e. (36)

In general, “timelike” distribution amplitudes have both real
and imaginary parts. However, sint& ¢®=0, the space-
like asymptotic distribution amplitude does not differ from
its timelike counterpart.

To estimate the effect of phases, let us consider the case
when the spacelike distribution amplitude is given by the
Chernyak-Zhitnitsky(CZ) model[44], which can be repre-
sented as

(37

where ¢*=6f_x(1—x) and ¢,=24f  x(1—x)[1—-5x(1
—X)] is the next eigenfunction of thé kernel corresponding
to the eigenvalue,= 2 o/ 7. The timelike distribution am-
plitude is then

©“"= p*+ @y,
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FIG. 1. One-loop reduced diagrams for the DY process cross section calculated as imaginary part of the forward scattering amplitude.
(a),(b) Virtual vertex corrections(c),(d) Real gluon emission corrections.

PS= st gti(25N8)s (39  Fig. l(gl) conta_ins_the_—lnz(—s/n?) term, wheres=(xpy
+ypg)“=xyS is timelike, and the resulting contribution
and thel integral for this function is contains arr? term. The real emission diagram Figc), in
turn, contains the f{—u/n?) term, whereu= (xpy—ypg)?
TE2=3+42e"1(2518)s (39 =-—xySis now spacelike, and there is ne? term in this
- contribution.
Its absolute magnitude For the hard PQCD contribution to the pion electromag-

netic form factor(which is considered in more detail in the
next sectiof, the situation is completely different. In this
case, the initial state of the hard subprocess is represented by

a qa pair with momentaxp and (1— Qp. After the hard

scattering subprocess, one deals withggpair with the final
momentump’ shared in fractiongyp’ and (1-y)p’. In
Feynman gauge, the double logarithmg&(@f/.?), where
IV. SUDAKOV LOGARITHMS AND K FACTOR Q2= —(p— p/)Z’ appear when the reduced diagrams have
Small radiative corrections in the timelike version of the the structure of those shown in Fig. 2. One can easily check
v* y—a® process are in strong contrast with the largethat the relevant momentum transfers in all four cases have
K-factor value found for the Drell=Yan procesB— y*X.  the structuret;=(x;p—y;p’)*=—xy;Q? resulting in the
These corrections originate from the Sudakov double logagouble logs IA(—t;/u?). When the momentum transfey
rithms [ agn*(Q%m?)TN. In the spacelike region, the double =p’—p is spacelike, all;;’s are spacelike, whereas for a
logarithms due to the virtual gluon exchanges exponentiatémelike g, all tj;'s are timelike as well. In the latter case, one

- 24 25
|ICZ|=5\/1—2—55ir12(3—6as (40)

is slightly smaller(by 2% if ag=0.3) than the spacelike
valuel“?=5,

into the Sudakov form factor has? terms for each particular diagram. The double loga-
o o rithms in Figs. 2a) and Zb) [2(c) and Zd)] differ in sign
S(Q?/m?) =g~ as N (QTmY)/3m (41)  because the soft gluon interacts in the final state with quarks

) of opposite color charge. Hence, due to the color neutrality
(again, we treals as a constait In the DY process, the o the pion, the double logs Q% u?) cancel for the sum of
photon momentum is timelike, and the logarithm@¥)  the diagrams of a given order. For timelikg they cancel
acquires thet i additional term, so that one has together with the accompanying? terms.

. Thus, even for a timelike momentum transtgrthere is
12 12 2 ’
Lf=—L"x2iml + o (42) no K factor for the perturbative QCOPQCD hard contri-
The imaginary parts of the two conjugate diagrams shown irpu_tlon to the pion electromagnetic form factor. Aft_er cancel-
Figs. Xa), 1(b) cancel, the double log.2 from Fig. 1a) Iathn of the St_Jdakov dou_ble logs, only the_ evqlutlon—relqteq
nfollinear logarithms remain, and the situation is rather simi-

1(b)] is also canceled by the real gluon emission diagra
[1(0)] y g J lar to the simplest case of thg* y— 7% form factor.

Fig. 1(c) [1(d)] while the 7% term survives and leads, after
exponentiation, to a large factor exfp2may/3]~2. The Cru- ;5,4\ FORM FACTOR IN THE PERTURBATIVE QCD
cial technical observation here is that the real emission dia- APPROACH

grams giveL - without 7 terms. This can be easily under-
stood looking at the reduced diagrams for the virtual vertex The general PQCD factorization formula for the pion
correction and real gluon emission. Take for definiteness, thelectromagnetic form factor at large momentum transfer
Feynman gauge. Then the virtual vertex correction diagranmeads

(e Epw @g=p d9p (d-0)p d9p" dxp  (1-yp’ FIG. 2. One-loop reduced dia-

grams for the hard PQCD contri-

bution to the pion electromagnetic

form factor, which contain the

xp ' xp w.o xp w xp W' Sudakov double logarithms in
a) b) c) ]

Feynman gauge.
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1 1
Q0= [ax [ et )

XT(X,y,Q% ué ,ud) oy, uf ,ui)dy,
(43

PHYSICAL REVIEW D 62113001

We already discussed in the previous section that all the
Sudakov double logarithms 3Q% u?) cancel and that only
the collinear single-logarithms I@(Zl,u,zz) remain. Comparing
Eq. (45) with the one loop correction to thg* y— #° hard
scattering amplitude, Eq29), one can easily notice many
similarities in the structure of the one-loop corrections in

where u¢ is the factorization scale for the collinear loga- these two cases. In particular, the zcogffi_ci[aatkln(xy)] in
rithms andug is the renormalization scale for the UV loga- front of the evolution logarithm I'Q7/uz) is the sum[3/2
rithms. The hard scattering amplitude is given by an expan+Inx]+[3/2+Iny] of terms corresponding to the convolu-

sion in ag

27Cras(ud)

Xy QN

+ as(/'LZR)
27

T(x,y,Q%)=

XTO(x,y,Q% puf ,uR) +0(ad)|. (44

The one-loop correctiom™)(x,y,Q?,u2 ,u3) was calcu-

lated using the dimensional regularization in several paper
[54-59 which differ from each other by a particular choice
of renormalization and factorization prescriptions. These dif
ferences(and also typos and mistakewere discussed in

Refs. [68-60,39. In the MS subtraction scheme, supple-

mented by the requirement that both thg and ¢ ,(x) are

process-independent functions, the one-loop correction h

the form

bo
TO=CeTFxy, Q% ud) + 5 TH(xy.Q% 1)

+(Ce=Ne/2) TAX,Y),

2

TF=[3+ In(xy)]ln(Q—2 + EInz(xy)wL EIn(xy)
mE] 2 2

xInx yiny 14
2(1-x) 2(1-y) 3

2
TB:_m(Q—z) —In(xy)+§, (49)
MR
TA=Liy(1—x)— L|2(x)+|n(1—X)|n( 1_y> 3

+

(x+y—2xy)In(1—x)+2xyIn(x)

(x—y)?

_ 2 o 2

+(1 X)X“+(1-y)y
X—y

X[IN(1—=x)In(y) —Liy(1—x)+Liy(x)]

+{x<y} (46)

(we use here notations similar to those of R&1l]). As
usual,Li, is the dilogarithm(Spence function.

tion of the tree level term %i with the kernels
V(x,£)8(n—y) and 8(x— &)V(7,y) [see Eq(30)] inducing

the evolution of the pion distribution amplitudes(x,,ué)

and ¢(y,u2). In a sense, the collinear logarithms indicate
that the pion structure is probed at a scale proportiong).to
However, one should remember that since the asymptotic
wave function does not evolve, the coefficient accompanying
the evolution logarithm Irt[)zl,uﬁ) vanishes if the pion wave
function has the asymptotic shape. As a result, the choice of
4 in that case does not affect the size of the one-loop cor-
rection. The latter comes from several sources which can be
identified in a way similar to the detailed analysis of the one
loop correction for they* y— «r° form factor given in Ref.
[53].

In addition to the evolution term proportional to
A (Qzl,uﬁ), there is a rather large positive correction due to
t%e% In?(xy) term and even larger negative contributions cor-
responding to the constant term14/3 and the logarithmic
term 3 In(xy). As explained in Ref[53], in the y* y— 7°
case, the; In?x term is a result of a positive fx evolution-
related contribution and a negative} In?x Sudakov-related
term. As we emphasized earlier, the SudakddQf double
logs should cancel, otherwise there is no PQCD factoriza-
tion. However, when several scales are involved, sud@%as
and xy@ in our case, there may be a remnant such as
In?(xy). In the pion form factor case, there is another scale
xQ?, the quark virtuality, whence the single logarithmsIn
+Iny. The latter give a rather large negative contribution.
There are also large negative constants9(2 in the y* v
— % case and-14/3 in the pion form factor cagewhich
are anothefand numerically very importahimanifestation
of the Sudakov effects in the impact parameter space. In full
analogy with the results of Ref[53], these [and the
In?(xy),In(xy) termd result from convoluting thé-space ver-
sion Ko(yXxyQ?b?) of the one-gluon exchange propagator
and theb-space Sudakov form factoiS(x,bQ), S(y,bQ)
(exact one-loop expressions are given in R&8]). In the
practically important case of the asymptotic wave function,
the total correction due to tHE™ term is negative and equal
to —(71/18)x¢/7r; as one could expect, it is approximately
twice larger than that in the* y— 7° case.

The situation is reversed in the case of the UV relatéd
term: it is dominated by large positive contributions. In full
accordance with the renormalization group, the UV loga-
rithm In(Q%u3) is accompanied by tha-function coefficient
by. It generates the running of the effective QCD coupling
ag, ‘'suggesting” that we should use some scale propor-
tional to Q? as its argument. According to Brodsky, Lepage,
and Mackenzi€BLM) [62], one should choose the argument
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of the effective coupling constant in such a way as to absorlwhere the “averaging” procedurg- - - ) stands for integra-
all the terms proportional tb, from the next loop correc- tion with ¢, (X)¢,(y)/xXy. This gives a universal
tion. Taken literally, the BLM prescription in our case cor- x,y-independent scalgg=agQ, which depends now on the

responds to using th@escaled gluon virtuality shape of the distribution amplitude. For the asymptotic wave
function, as we have seen, the average valueofdn-3/2,
p2=xy QP e MB~xy(Q/2.3)2 (47) F;gl};:e the “outside the integral” BLM scale (see also Ref.
as the argument af;. The rescaling factoe®®~2.3 reflects MRl o pa= Q2 €733~ (e75%Q?)/20. (48)

the fact that theMS scheme measures the momenta in ) )
“wrong” units. To cure this effect, one may introduce a AS argued above, in the “pop” treatment, the facer*® is
version of the minimal subtraction scheme which measurelrgely compensated by the NLO correctionsu¢Q?), and,
momenta in more “physical” unitsA yn,s= e5Ays. This hence the essential \(lrtuallty of the “hard gluon” exchanged
choice is similar to using the, coupling of Brodskyet al. beétween the quarks is “only” by a factor of 20 smaller than
[39] [note that their relation aV(Q)zaQ"_S(e*E”GQ) Q<, the nqmlna! momentum transfer to the pion. Neverthe-
X[1-2N aM_S/ﬂ'] includes a next-to-leading ordéNLO) !es;, despite this _S|zable resqalmg _factor, the PQQD factor-
3 ¢Ts 9 zation approach is fully consistent in the asymptotic sense:
correctio]. One should remember, however, that the actua]lor a sufficiently largeQ? one can calculate the short-
expansion parameter for switching from the leading to thedistance amplitude perturbatively in terms of an arbitrarily

next-to-leading level is 1/IP%/A?) rather thanas as a - 2 ; :
" o = . small expansion parameters(Q</20). For comparison, in
whole. As a result, the “nonphysical” nature of the modified the case of Chernyak-Zhitnitsky wave function

minimal subtraction 1S) scheme is almost totally compen-
sated by the nonoptimal “popular” choice for the analytic (INX)| jcz= -

form of ag(Q?). As discussed in Sec. I\ P~ AP°/1.74. As

a result, A2l s~1.3A2%. Due to the compensation of two and ag’~a372.3: the essential gluon virtualities are 100
opposite corrections, the standatd® parameter is rather times smaller tharQ®. In this case, one should not expect
close to the genuine Aqcp’ parameter of the PHY®'  €arly applicability of PQCD.

scheme in which the coupling<(k?) corresponding to the Wg wo_uld like to emphasize that the reason fo_r such a
vertex with the gluon momentumk is given by dra§t'|c shift of the BLM scale to very lowg values is the
41/, IN(K¥A?) without sizable next-to-leading order correc- Positive large value of thg” correction: forug=Q and
tions. In other words, using the NLO expressiondarin the ~ @-=¢%, the T? term contributes the NLO correction
popular form is equivalent to adding a negative term 10as/m. One may be tempted to combine the large positive
—(bllbg)InL to T#, partially compensating the “5/3" con- T# term and a sizable negativVE® term to end up with a

stant. ForL~4, this reduces 5/3 by a factor of 3. Choosing Smaller total correction-6as/ . Physically, though, these
“PHYS” vs MS and “opt’ vs “pop” one reduces both corrections have a completely different nature: as argued

F . .
types of corrections which iterate in higher orders. As state@P0Ve, theT™ term comes primarily from the Sudakov ef-
earlier, if the size of some corrections is under our control, if€CtS: Since the latter exponentiate, one deals here with the

is preferable to keep them small rather than rely on cancef = type series in which the sign of the corrections alter-
lation of large terms. The closenesszbg‘ﬁ}Ys to A%a means hates. On the other hand, the UV corrections form a geomet-

that discussing the PQCD applicability region one shoulc{IC series summed into 1/t3ksar5). Hence, there is nodoubt

S . hat a partial cancellation of the; terms will be followed by
el pop -
compare th parameter of t.hMS scheme with the ac an amplified total correction at the? level. Leaving the
tual (unrescalefigluon virtuality xy Q°.

However, taking the argument of the effective CouplingphyS|caIIy unrelated Sudakov and UV corrections separate

constant proportional teyQ? one faces the following prob- and addressing the region of experimentally accessible val-

> : Y -~ _ues ofQ?<10 Ge\?, one should taker at an infrared scale
lem: since the integration is over all the momentum fractions

in the range &x,y=1, the “short-distance” amplitude in ~ A (where it freezes at a value close to)XaBd supplement

H —daglm__ H
this case always gets contributions from the infrared regior'ﬁhe result by the exponentiate” s ~0.7 of the negative

of arbitrarily small virtualities. In this sense, such an “inside one-loop corrections induced by tiespace Sudakov ef-

the integral” BLM prescription contradicts the spirit of the fects. Turning to the timelike momenta, we cannot find any

PQCD factorization ideology which aims at a perfect sepa>o"'°>> of enhancement: for thie ~A region we see no

ration of the short-distance and long-distance efféat$east ghtirecgo:ceelrﬁl(?ez;r:giri]n:zIiléer:eh?cfrrgzevch\ﬁug roigrb?atr;no-
in perturbation theorny The consistent PQCD approach is to P J ' 9

P ta, the continuation ofrs(a2Q? converts 1L into
apply the BLM prescription to the form factor as a whole, MeM& lion otrg(apQ) €O
i.e., “outside the integral.” In this case, one should choosel/(L+im) and the ratio Fizg" e/ FREE™" is 1AL+ 7?/L2,

ur from the requirement that one should get zero for i.e., the timelike term is suppressed compared to the space-

like one.
c Since the structure of the evolution corrections for the
Q2 u2) —In(xy) + = ), pion form factors is esse!"mally |dent|callt0 that of they
(Q7ug) (xy) 3 —° form factor, to continue the evolution logarithms, we
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can use the approach outlined in Sec. Ill. The first step is to
write the solution of the evolution equati$48,41,4Q as an

expansion over Gegenbauer polynomi@l§?(2x—1), the 0 9g Lzt
eigenfunctions of the LO kern&l©(x,y; ay): ’

R

0.96
$(x,Q%)=¢™x)| 1+ 2, az(Q*)CHA(2x~1)|, (49 0.94
k=1
0.92
where $(x) =6x(1—x) is the asymptotic distribution am- 0.9

. . 2 .
gllél;r?]elgf;\?glstlgs{ T:ttie(rsr]egenbauer momeafs( Q<) have 3 1 ¢ 8 10
b g t [GeV?]

aZ(Q?) = a5 o) exi — yaIn(Q? 1g) ] (50) FIG. 3. The ratio of the timelike form factdiF"{q?= —t)|
over the spacelike onE"™{Q?=t) in the case of the CZ model
(we treatag as a constant herewith v, being the corre- (dashed lingfor the pion distribution amplitude witkx((Q?) fixed
sponding anomalous dimensions aag(u3) the Gegen- to 0.3. The solid line represents the result for the asymptotic distri-
bauer moments of the initial distribution amplitude bution amplitude.

oo VI. EVOLUTION PHASES OF THE NUCLEON
bo(X)=(X)| 1+ >, aZ(ud)Ci(2x—1)|. (51) DISTRIBUTION AMPLITUDES AND THE NUCLEON
k=1 FORM FACTOR

This representation is very convenient to perform the ana- 1 N€ nucleon form factor in the leading order can be
lytic continuation to the timelike region of?2. Indeed, castin the forn{4]
changing Q?>— —qg?, one obtains the natural shift [@f)
—In(g?)+i, so that 1 _ 1 1
Q4Gu(Q2)=a[4ﬂa5(Q2)]z|fN|2fO [dx] fo [dy]
a5 (Q%)—ag(—g®)=az(|g%)e "%, (52

X

7 14
where 221 & Ti(X; %‘HES & Ti(X; M)}

Ook=T Y2k (53 (54

H — N 2\ i
From Eq.(52) it is obvious that the only interesting and where(N)the azmphtudesTi(xj ’yj)—f_ﬁ( )({Xi},Q_ ) TH(X},
potentially enhancing effect is due to the phasgs, since 1Y} ¢ ({y},Q°) represent _COﬂV0|(U,\;E)|0nS dfy with the ap-
they can destroy some fine tuning of the coefficiafigu2)  Propriate distribution amplitudes'™ ({x},Q“) evaluated-

and produce a positive interference. But in order to realizd€"m by term for each contributing diagrafmarked by the

this possibility, one should start with a situation when therdndex “i”). The nucleon distribution amplitude can be rep-

are negative coefficients, Sa&g(ﬂg)<0, while the corre- resented as an expansion over symmetrlzed combinations

sponding phase is close tg e.g.,8,~ . Such a situation is  P({x}) of Appell polynomials(for more details, we refer to
hard to imagine. Even th@unrealisti¢ CZ distribution am-  [6,67))
plitude hasag[,u3=(0.5 GeVY]=2/3, while other models
are closer to the asymptotic distribution amplitude, though *
all models providea,>0. Furthermore, the phasé, is dMNUxE, Q%) = 2 {x}) > BL(Q)D,({x}), (55
25/18x¢, so one needs a prohibitively large valug~2.5 n=0
for the coupling constant. In Fig. 3 we plot the ratio TL/SL
for the pion form factor in the CZ model, taking the frozen wjth
value a4(Q?) =0.3. As one can see, the absolute value of
F"24g?) in the timelike region is reduced. , , - -
To conclude, the perturbative contribution to the pion Bn(Q%) =Bn(ug)exd — v IN(Q/ ug) ], (56)
form factor,F"4Q?), with a realistic distribution amplitude
(which is close to the asymptotic one, see R¢E8—66)  and eigenfunctions
produces no sizable effects in analytically continuing to
timelike g2 values. The only potential effect is due to the

- - m+n=M
substitution a¢(Q?) — ag(gq?)which results in a 10%- Po(x)= ok 52 2%, x 5
reduction of the form factor. ) m%o mnfmn(5,2,241,X3), S
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1 1 1.1

cozortimized o del 0.00s] Heterotic model Loo] GGoPHmized 1 de]

0.996 0.996 1.06

0.994h 0.994 1.04

0.992 0.992 1.02///
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 20 25 30 35 40

£ [GeV?] t [GeV?] £ (GeVY]

0.998

FIG. 4. Ratio of the timelikgwith t=g?) to the spacelikéwith t=Q?) hard form factors of the nucleon using three different nucleon
distribution amplitudesChernyak-Ogloblin-Zhitnitsky, heterotic and Gari-Stefanis models

where F,(5,2,2 X1 ,x3) are the Appell polynomials Here

5 ) 1 (so(so )

faF-(Q%)=— po(s,s’,Q%)dsds.  (60)
~ as (3 a?Jo Jo

Ya(M)= 7| 5 Crt+27,(M)Cg |, (58)
) ) ) . The latter is given by19-21]

are the associated anomalous dimensions of trilinear quark
operators with the quantum numbers of the nucleon contain- 3 412 1 (d\3 1
ing external derivatived67]. In Eq. (55 ¢?{{x})=120 pols,s’ t):—[tz(—) +—t3(—) _
X1X,X3 denotes the asymptotic distribution amplitude of the T4 \dt dt/ |\[(s+s'+t)2—4ss
nucleon ancBn(,uﬁ) are expansion coefficients for some ini- (61
tial distribution amplitude

" Here the duality intervals, corresponds to the effective
N o threshold for the higher excited states and the “continuum”
B8 ({x}) = ¢>as({x})n§0 Bu(mo)Pa({X})- (59 i the channels with the axial current quantum numbers.
In principle, the value of, is fixed by the ratio of the
Again, the representation given by E&9) is very con-  nonperturbative power corrections to ttieading perturba-
venient to analyze the analytic continuation of thard part  tive term in the operator product expansi@DPE for the
of) the nucleon form factor into the timelike region @.  correlator. In what follows, we use the valeg~0.7 Ge\?
ContinuingQ?— — g2 one obtains in Eq(56) the same shift which has been extracted in the pioneering pd@ét from
as in Eq.(52) with 6,= ay(B0/4)y, . Specifying the particu- the QCD sum rule analysis of the correlator of two axial
lar values of the coefficient8,, we can calculate the ratio of currents. The LD prescription for this correlator just implies
timelike to the spacelike form factors for several modelsthe relation
known in the literature. In Fig. 4 we display the ratio of the
timelike to the spacelike form factors of the nucleon for three so=4m?f2, (62
different nucleon distribution amplitudes: Chernyak-
Ogloblm_-Zhltnltsk_y,_ heterotic - and _Gar|-Stefan|§6,69]. betweens, and the pion decay constahf . This relation
From this figure, it is clear that there is no enhancement due . ) .
. . . : eénsures that the Ward identity for the pion form factor
to the analytic continuation except from a marginal factor of
order 1.03 for the GS model.
F.(0)=1 (63)
VIl. SOFT TERMS FOR THE PION FORM FACTOR IN
THE LOCAL DUALITY APPROACH is satisfied within the LD approach.
Performing the integral on the RHS of E§0) we get the
So far, we have discussed only the hard PQCD contribuexplicit analytic expression for the pion form factor
tions to the hadronic form factors. But as argued in Refs.

[19-25, the dominant contribution at intermediate values of )
the momentum transfel®2<10 Ge\? is generated by the FLO(Q?)=1— 1+6s/Q
soft contribution which involves no hard gluon exchanges. i (1+4s,/Q%)%?
As a model for the soft contribution, we use the local duality

(LD) approximation in which it is assumed that the pion originally obtained in Refs[21,70. Note that fort=0.6

form factor is dual to the free quark spectral dengi§, 70 Ge\2, expression(64) is in good agreement with existing
data(see Fig. 5.
A simplified version of the LD model is based on using
10ne can also expandl,({x}) over the polynomials proposed in the “duality triangle” instead of the “duality square.” In
Ref. [68]; the particular choice of the basis is not essential for ourthis approact{19,20,26, one uses the variables=s; +s,
purposes. ands; —s,, introducing the reduced spectral density

(64)
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T QP (QP) [GeVT] T QPE(Q7) [GeVT] i
od 1 o)

I SN ool A

0.2 i ) 0.2 \\\\‘f\\\\;\~

4 6
2 2
@ [GeV?] @ [GeV]
FIG. 5. Left part: Comparison of different LD models for the pion form factor. The solid line represents the triangle LD model and the
dashed line the square LD model. Right part: Comparison with available experimental data frofiy R&.of the pion form factor with
(dashed lingand without(solid line) the Sudakov exponential in the “triangle LD approach.”

— S
po(S,Q%)= fo po(S—s',s',Q?)ds’. (65)

The LD relation, Eq.(60), is then substituted by its “tri-
angle” version(TrLD)

S
FAQ)=F"P(Q%)= JO po(S,.Q%)dS  (66)

2¢2
I

with Sy=\/2s,. The latter condition means that the areas of

the integration regions overands’ in the two approaches
are the samésee Refs[20] and[26,21] for more details

1

TrLD; 2y —
Fr (@) V2(1+Q%25y)2

(68)

As one can see from the left part of Fig. 5 the difference
between the two models in the region of intere%1
Ge\?) is very small.

A. Sudakov effects due to the electromagnetic vertex
in F;I;I’LD (QZ)
The crucial feature of the soft contribution is that it is
accompanied by the Sudakov form factor. In other words, the

Using Eqgs(61) and(65) we can easily calculate the spec- 4 ple logarithmsr In(Q?) do not cancel in this case.

tral densityp(S,Q?)

The one-loop radiative corrections to the spectral density
po(S,t=Q?) have been calculated by one of (&.P.B)

_ S4(25+30Q?) [74]. To analyze the Sudakov effects in the Feynman gauge,
po(S,Qz)=—23 (67)  we need only the result for the gluon correction to the elec-
2(25+Q7%) tromagnetic vertex (accompanied by the appropriate
1/2-insertions of self-energies into the quark lines, which
producing gives an UV-finite result
AEM-vertex, (g t) t t t2(6S+ 5t)
— =2|Liy == | —In| 1+ =|In| 2+ = _—
(asCrl27) po(Sit) 25+t S S SP(25+3t)
e 2+t L (1)} 1. 2t%(6S+ 5t) | (2+ t)( 1+2t(28+5t)
n =|—Li —|In 2l st =m5a
S 2 S2(25+3t) S/l 2 S(25+3t)
oL ) nl 14 SI 2)r2(65+5t)| (1+ 28)t2(428+55t) 5t (69)
isl == | —In —1|In(2) | =——In — .
225+t t S2(25+3t) t /gs?(2s+3t) 4S

The leading asymptotics of this expression in the largagime i$

2A similar correction was obtained in the light-cone QCD sum rule apprfash
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2
+0

n1+2—s S

2 0
(70 (78)

A EM—verte>g( St) asCr [
— — = I
po(St) e 2T

|n£)_ Im[FTrLD—SudaKO\(qZ)]:

1
s ios

So, we model the Sudakov corrections in the following waywith

_ c 2 ~ ~ q°
FSUdaKO\(SyQZ)ZPO(S,QZ)eXF{ o alzsﬂ-F In2 1+ S_S :| ;(S)’Lg:k(){s,qz) =p0( S,qZ)CO{ as(qZ)CF |n|:2_S - 1:|) y
(71) (79
The modified spectral density is then used to model the soft —,qako o~ o\ s ~ 5 q°
term corrected by the Sudakov effects Poim (5,05 =po(S,q°)sin| —as(q*)Ce In 25 1)
(80)
1
F'7I'TrLD-Sudako\(Q2)E 2f2 JSO%UdakO\(S,QZ)dS. (72) 5 ,
7T J0 ~ o — 2 as(q°)Ce
Po(S,49)=po(S,—q7)exp — — —
On the right part of Fig. 5 we show for comparison predic-
tions forQ?F"P(Q?) and forQ?F ["-P-Sudakoy 32y One can 9
see from this figure that the Sudakov effects in the electro- X | In? 25~ 1} - 7TZ> .
magnetic vertex redud@s expectexthe soft contribution in
the spacelike region by 6-20%. [Here a(q?) is the lowest-order model expressiéiB) for
o . as in the timelike regimé.
B. Model dependence of the soft term in timelike region Using this model we obtain results, depicted on the LHS

As we have seen in the previous subsection for spacelikef Fig. 7. After adding the analytically continued expression

values of the momentum transfe?>0) both LD models for the hard scatterindperturbative part, including also
give rather close results for the pion form factor@t=1  transverse momentum effectSudakowv-intrinsic effects

Ge\2. But if we analytically continue these two models into [76], we arrive at the result, shown on the RHS of Fig. 7.
the timelike region ¢>=—Q?>0), we obtain absolutely
different results for both R& .(g?)] and InfF .(q?)]: VIll. CONCLUSIONS

In this paper, we investigated various aspects of the ana-

2
REFP(g?)]=1— 0(q2—450)ﬂ, (73)  Iytic continuation procedure from the spacelike to the time-
(1-4s0/g%)%? like region of momentum transfers for several processes in
QCD. We concentrated on studying several types of logarith-
1—6s4/0> mic contributions InQ?) capable of producing-i in the

IM[F°(0?)]= 6(4s0—q?%) timelike region. In the case of the ultraviolet logarithms, we

(74) .

2

(4s9/9%— 1)

a 7*Fr(q?) [GeV’]
REFI™P(g?)]= m (75) 4

Im[FI"P(g?)]=0. (76)
We see that in the resonance regiaif<4 Ge\?) the 5
differences between these two models are rather large, and ,' },ﬁ
we can actually say nothing about the true behavior of W/
F,(g?) in this region. On the other hand, in the regigh 4
=6 Ge\ the differences between the two models are less
than the experimental uncertaintiesee Fig. 6, and hence 2 4 6
we can use them, at least as a first approximation, to model q2 [GeVQ]
F.(g%). Furthermore, in the case of the “triangle LD” we
have an explicit analytic expression for the Sudakov effects FIG. 6. Comparison of the analytic continuation to the timelike

which we can now continue into the timelike region regiong®=—Q?>0 for two different LD models of the pion form
factor. The solid line shows the result f¢qF .(g?)|, obtained

from the “square LD model,” together with the real part of it
pol"qdeako\(ng)ds (dotted ling, whereas the prediction of the “triangle LD model”
' for g?F ,(g?) is represented by the dashed line. The experimental
(77 data are taken from Ref16].

|
|
|
I
|
|
|
I
I

2

1

2¢2
mfsJo

Rd: F TrLD—SudaKO\( q2) ] —
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q2F7r<q2) (GeV, 2] quﬂ(qZ) (GeV, 2]

6.5 7 7 8.5 9 9.5 10 6.5 7 7 8 8.5 9 9.5 10

.5 8 .5
¢* [GeV?] q* [GeV?]
FIG. 7. The LHS shows the analytically continued expression for the pion form factor to the timelike g8gionQ?>0 with (dashed
line) and without(solid line) the Sudakov exponential in the “triangle LD approach.” The RHS shows the results for the total pion form

factor in the timelike domain comprising the soft part within the “triangle LD approach” and the hard one, calculated iV&ef.
Experimental data are taken from REE6].

reviewed the construction of the effective QCD couplingsuggested by the QCD sum rule studies performed earlier in
constant for the timelike region. The major result here is thathe lowest(zerg order inag. We included thexg correction

the transition from a spacelike to the mirror timelike momen-which, as expected, contains the Sudakov double logarithms.
tum only decreases the effective coupling constant. Studyingp the timelike region the latter produce non-canceling posi-
the collinear logarithms, we established that in this case eadive 7 terms which result in &-factor-type enhancement.
eigenfunction¢,(x) of the evolution equation acquires a Our results for the soft contribution are in good agreement
phase factore'®n. The phase vanishes for the asymptoticW'th existing expgnmental data} on the plon.elec'tromag_netlc
wave function, and there are no changes in this most realistferm factor both in the spacelike and the timelike regions.
situation. But even in the case of the Chernyak-Zhitnitsky\Ne regard this agreement as another indication that soft con-

wave function, the interference effects are very small and’gnbuﬂons dominate the form factors at currently accessible

again, they decrease rather than increase the timelike cont/iomentum transfers.

bution compared to the spacelike one. In the case of the pion
electromagnetic form factor, we emphasized that tHe
terms which may appear in the timelike region on the dia- This work was supported in part by the U.S. Department
gram by diagram level cancel in the total sum together withof Energy under Contract No. DE-AC05-84ER40150; Rus-
the double logarithms which generated them. Thus, we foundian Foundation for Fundamental Reseaf@mnant No. 00-

no sources for th&-factor-type enhancements in the hard 02-16696, Heisenberg-Landau Program, and by the COSY
gluon exchange perturbative QCD contributions to the hadForschungsproject lluh/Goeke. Two of ugA.B. and A.R)
ronic form factors. However, the situation completely are highly indebted to Professor Klaus Goeke for the warm
changes if one considers the soft contribution. We investihospitality in Institut fu Theoretische Physik Il, Ruhr-
gated the simplest case of the pion electromagnetic form fadJniversita Bochum, where the major part of this work was
tor. To this end, we incorporated the local duality modeldone.
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