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Form factors and QCD in spacelike and timelike regions
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We analyze the basic hard exclusive processes, thepg* g-transition and the pion and nucleon electromag-
netic form factors, and discuss the analytic continuation of QCD formulas from the spacelikeq2,0 to the
timelike regionq2.0 of the relevant momentum transfers. We describe the construction of the timelike
version of the coupling constantas . We show that due to the analytic continuation of the collinear logarithms,
each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference
effects which are shown to be very small. We find no sources for theK-factor-type enhancements in the
perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic
form factor, we use a QCD sum rule inspired model and show that there are noncanceling Sudakov double
logarithms which result in aK-factor-type enhancement in the timelike region.

PACS number~s!: 13.40.Gp, 11.10.Hi, 12.38.Cy
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I. INTRODUCTION

Within the factorization framework, perturbative QC
has been applied to various processes involving large
mentum transfers, both in the spacelikeq252Q2,0 ~for
reviews, we refer to Refs.@1–6#! and the timelikeq2.0
regions~see, for example, Refs.@7–10#!. Note that the run-
ning coupling constantas(m

2) is usually defined with refer-
ence to some Euclidean~spacelike! configuration of mo-
menta of scalem. For large spacelikeq, this produces no
special complications. One simply uses the renormaliza
group to resum the logarithmic correction
@as(m

2)ln(Q2/m2)#N that appear in higher orders of perturb
tion theory, arriving at an expansion in the effective coupli
constantas(Q

2) which, in the one-loop approximation, i
given by @1#

as~Q2!5
4p

~1122Nf /3!ln~Q2/L2!
, ~1!

with Nf being the number of active flavors andL denoting
LQCD. In general, theL-parametrization ofas(Q

2) is a se-
ries expansion in 1/L @whereL5 ln(Q2/L2)], and the defini-
tion of L is fixed only if theO(1/L2) term is added to Eq
~1! @11#. Continuing the logarithms into the region of time
like q, one should deal with theip terms ln(Q2/m2)
→ln(Q2/m2)6ip, which may produce large higher-order co
rections. In the case of theR ratio for e1e2→ hadrons pro-
cess, this problem was discussed in Refs.@12–14#. It was
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shown there that, by using theL parametrization foras(Q
2)

in the spacelike region, it is possible to construct forR(q2)
an expansion in the timelike region in which all th
(p2/L2)N terms are resummed explicitly, and, what is mo
important, the transformation into the timelike regionre-
ducesthe magnitude of each particular term of the 1/L ex-
pansion. Another well-studied example related to the a
lytic continuation into the timelike region is the cross secti
of the Drell-Yan~DY! processAB→g* X. In this case, the
ip factors associated with the continuation of the Sudak
double logarithms@as ln2(Q2/m2)#N result in ap2-enhanced
correction which gives rise to theK factor @15# increasing in
turn the result of the perturbative QCD calculation by t
factor of 3 to bring the DY cross section in agreement w
experiment.

For elastic form factors, existing experimental data@16–
18# show a considerable enhancement of the timelike fo
factors over their spacelike counterparts. In the present
per, we study the possible sources of such an enhancem
To disentangle different aspects of the analytic continuat
into the timelike region, we proceed step by step, beginn
with the simplest cases and then going on to more com
cated ones. We start with a discussion of the analytic c
tinuation into the timelike region of the UV logarithm
ln(Q2/mR

2) inducing theQ2 dependence of the running cou
pling constant as(Q

2). We take the cleanest case
R(e1e2→hadrons!, in which no other types of logarithm
appear and review in Sec. II the continuation procedure
R(e1e2→hadrons) as given in Refs.@13,14#. In Sec. III, we
consider another fundamental process:g* g→p0. At the
leading logarithm level, only the collinear logarithm
ln(Q2/mF

2) are important whileas can be treated as a con
stant. So, this is another ‘‘clean situation’’ which gives
opportunity to concentrate on the study of the analytic c

0
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tinuation of the collinear logarithms which induce theQ2

dependence of the pion distribution amplitudewp(x,Q2). In
Sec. IV, we briefly discuss the effects due to the analy
continuation of the Sudakov double logarithms. We consi
first the cross section of the Drell-Yan processAB
→m1m2X. In this case, the double logs ln2(Q2/m2) appear
on a diagram by diagram basis but cancel after resumm
over all diagrams of a given order. However, thep2 terms
generated by the analytic continuation survive and, as
ready mentioned, produce an enhancement due to theK fac-
tor. We contrast this outcome with the case of the hard c
tribution to the pion electromagnetic form factor, in whic
the inducedp2 terms cancel together with the double log
For this reason, the modification of the hard term of the p
form factor in the timelike region is only affected by th
analytic continuation of the UV and collinear logarithm
These effects are discussed in Sec. V. In Sec. VI, we st
the analytic continuation of the hard PQCD contribution
the nucleon form factor. Both in the pion and the nucle
case, we find that the effects due to the continuation into
timelike region are very small. Experimentally, however, t
timelike nucleon form factor is essentially larger than
spacelike counterpart. This discrepancy may be regarde
an indication that the hard contribution does not domin
the form factors at accessible momentum transfers. An a
native scenario discussed in many papers@19–26# is that in
the few GeV2 region the form factors are dominated by t
soft mechanism. In Sec. VII, we study the analytic contin
ation effects for the soft contribution to the pion electroma
netic form factor within the local quark-hadron duali
model motivated by the QCD sum rule analysis of Re
@19–21,26#. We show that at the one loop level, there a
explicit non-canceled double logarithms ln2(Q2/m2) which
produce thep2 terms in the timelike region, giving rise to
K-factor-type enhancement.

II. CONTINUATION OF as INTO THE TIMELIKE
REGION FOR R„e¿eÀ\hadrons,s…

The ratioR(s)5s(e1e2→hadrons)/s(e1e2→m1m2),
characterizing the total cross section ofe1e2 annihilation
into hadrons, provides the simplest example of the anal
continuation of the effective QCD coupling constantas into
the timelike region. The standard procedure~see, e.g., Ref.
@27#, and references cited therein! is to calculate the Adler
function D(Q2) by taking the derivative D(Q2)
5Q2dP/dQ2 of the vacuum polarizationP(Q2) related to
R(s) by

R~s!5
1

2p i
@P~2s1 i e!2P~2s2 i e!#. ~2!

In perturbative QCD,D(Q2) is given by theas(Q
2) expan-

sion

DQCD~Q2!5(
q

eq
2H 11

as~Q2!

p
1d2S as~Q2!

p D 2

1d3S as~Q2!

p D 3

1•••J . ~3!
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In the MS scheme, the coefficientsdi are known up toi
53 @27,28#. Using Eq.~2! and the definition ofD, one can
relate RQCD(s), the perturbative QCD version ofR(s), di-
rectly to DQCD(Q2)

RQCD~s!5
1

2p i E2s2 i e

2s1 i e

DQCD~s!
ds

s
. ~4!

The integration contour in Eq.~4! goes below the real axis
from 2s2 i e to some pointQ2 in the deep spacelike regio
and then above the real axis to2s1 i e, i.e., in the region
where the functionD(s) is analytic.

In shorthand notation,D→R[F@D#. The actual calcula-
tion is very simple if one representsas(Q

2) through an ex-
pansion in 1/ln(Q2/L2), i.e., via theL parametrization. The
latter results from the QCD Gell-Mann–Low equation

L[ ln~Q2/L2!

5
4p

b0as
1

b1

b0
2

lnS as

4p D1D1
b2b02b1

2

b0
3

as

4p
1O~as

2!,

~5!

where bk are b-function coefficientsb051122Nf /3 @1#,
b15102238Nf /3 @29#, b2

MS52857/225033Nf /18
1325Nf

2/54 @30#.
Inverting Eq.~5! by iterations and reexpanding the resu

in 1/L we get theL parametrization for the running couplin
constant

as~Q2!5
4p

b0L H 12
L1

L
1

1

L2 FL1
22

b1

b0
2

L11
b2b02b1

2

b0
4 G

1O~1/L3!J , ~6!

whereL15(b1 /b0
2)ln(b0L)2D @31,32#. To fix the functional

dependence ofas(Q
2) on Q2, one should specify the inte

gration constantD. The standard~or ‘‘popular’’ ! choice is

Dpop5
b1

b0
2

ln b0 ~7!

which gives the shortest expression (b1 /b0
2)ln(L) for L1. A

clear disadvantage of this choice is that it guarantees a ra
large 1/L2 correction toas , which results in a large differ-
ence betweenLLO andLNLO. As argued in Ref.@13#, a more
appropriate~optimal! choice is

Dopt5
b1

b0
2

ln b0L̄, ~8!

where L̄ is the average value of the logarithmL within the
region under study, e.g.,L̄54 corresponding toas /p;0.1.
For this choice, the ratioL1 /L is smaller than 7% and Eq
~6! has 1% accuracy in the whole regionL.3, with the total
correction to the simplest formula~1! being less than 10%.
1-2



pr

n it
the

or-
ke

ake

FORM FACTORS AND QCD IN SPACELIKE AND . . . PHYSICAL REVIEW D 62 113001
The L parameters corresponding to differentD ’s are re-
lated by

L25L1e(D12D2)/2. ~9!

In particular,

Lopt5Lpop/L̄b1/2b0
2
. ~10!

Taking L̄54 we get Loptu L̄54'Lpop/1.73. In connection
with the discussion above, we want to stress here that
t

g

in

on

11300
e-

paring to analytically continue an approximate expressio
makes sense to take care of the convergence quality of
original expansion in the spacelike region. If there are c
rections which are under our full control and we can ma
them small, then we should use this opportunity and m
them small.

Now one can substituteas(Q
2) in Eq. ~3! by its L pa-

rametrization to get an 1/L expansion for the Adler function
D(Q2). For each term of this expansion, the integral~4! can
be calculated explicitly~see also Ref.@33#!
1→1, ~11!

1

Ls
→ 1

p
@p/22arctan~Ls /p!#us.L25

1

p
arctan~p/Ls!5

1

Ls
H 12

1

3

p2

Ls
2

1•••J , ~12!

ln~Ls /L0!

Ls
2

→
ln~ALs

21p2/L0!2~Ls /p!@p/22arctan~Ls /p!#11

Ls
21p2 U

s.L2

5
ln~ALs

21p2/L0!2~Ls /p!arctan~p/Ls!11

Ls
21p2

5
Ls /L0

Ls
2 H 12

p2

Ls
2

1•••J 1
5

6

p2

Ls
4

1•••, ~13!

1

Ls
2
→ 1

Ls
21p2

5
1

Ls
2 H 12

p2

Ls
2

1•••J , ~14!

1

Ls
n
→~21!n

1

~n21!! S d

dLs
D n22 1

Ls
21p2

5
1

Ls
n H 12

p2

Ls
2

n~n11!

6
1•••J , ~15!
ers.

t

on
where Ls5 ln(s/L2), Ls5 ln(s/L2), and we assume tha

s.0. Furthermore,L05eDb0
2/b1/b0 is a constant dependin

on theD choice in theL parametrization.
Using Eq.~6! and incorporating Eqs.~11!–~15! ~as well

as their generalizations for ln2 L/L3, lnL/L3, etc.! one obtains
the expansion forRQCD(s)

RQCD~s!5(
q

eq
2H 11 (

k51
dkF@~as /p!k#J ~16!

in which all the (p2/L2)N terms are resummed.
As noted in Ref.@13#, the application of theF operation

normally violates nonlinear relationsF@1/L2#Þ(F@1/L#)2,
etc. However, it respects linear relationsF@A1B#5F@A#
1F@B#, F@lA#5lF@A#, and

FF dD

dLs
G5

d

dLs
F@D#. ~17!

In particular, this relation was used to explicitly obta
F@1/Ln# in Eq. ~15!. As a result, expansion~16! is not an
expansion in powers of some particular parameter.A priori,
there is no reason to believe that a power series expansi
 is

better than any other. In fact, expansion~16! converges bet-
ter than the generating expansion~4! for D(s) because, as it
follows from Eqs.~12!–~15!, F@as

N# is always smaller than
as

N . Moreover, (F@as
N11#)1/(N11),(F@as

N#)1/N, i.e., the ef-
fective expansion parameter decreases in higher ord
Thus, if one succeeded in obtaining a goodas

N expansion for
D(s) ~with all dN being small numbers!, then the resulting
F@as

N# expansion forRQCD(s) is even better, and the bes
thing to do is to leave it as it is.

The timelike analogue of the simplestL parametrization
for as(Q

2) @Eq. ~1!# is then

ãs~q2!5
4

b0
Fp2 2arctanS ln~q2/L2!

p D GU
s.L2

5
4

b0
arctanS p

ln~q2/L2!
D . ~18!

This function has a finite value both atq25L2 andq250.
The well-known deficiency of the perturbative expansi

for DQCD(Q2) in powers ofas(Q
2) is the presence of the

unphysical singularity atQ25L2 induced by the Landau
1-3
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pole of 1/ln(Q2/L2). As a consequence,RQCD(s) as calcu-
lated from Eq.~4!, also has unphysical features: namely,
does not vanish on the negative real axis. In particular, s
stituting 1/Ls into the integral~4! and taking negatives we
get

1

Ls
U

s,0

→u~2L2<s<0!, ~19!

which results in an unphysical cut ofPQCD(s) in the region
2L2<s<0. Furthermore, applying Eq.~4! to the pole term
Dpole(Q2)5L2/(Q22L2) one obtains the result coincidin
with the right-hand side RHS of Eq.~19!. Hence, if one now
postulates thatDQCD(Q2) is given by integratingRQCD(s)
over the physical regions.0 only, i.e., if one takes

D̃QCD~Q2!5Q2E
0

` RQCD~s!

~s1Q2!2
ds ~20!

~this transformation will be denoted asR→D̃), then
D̃QCD(Q2) is free from the unphysical singularities atQ2

5L2. For instance, combining the two transformationsD

→R→D̃)[(D⇒D̃) one would get

4p

b0ln~Q2/L2!
⇒ 4p

b0
S 1

ln~Q2/L2!
2

L2

Q22L2D [ās~Q2!,

~21!

which coincides with the pole-free expression for the ru
ning coupling constant proposed by Shirkov and Solovt
@34#. However, since theD→R operation does not respe
nonlinear relations, theD⇒D̃ transformation acting on 1/Ls

n

would not produce thenth power of the RHS of Eq.~21!.
Hence, ās cannot serve as an expansion parameter o
power series. Noting that bothD→R and R→D̃ convert
derivatives with respect to the logarithm of the initial va
able into derivatives with respect to the logarithm of t
resulting variable we obtain

1

LQ2
n 5~21!n

1

~n21!!

dn21

LQ2
n21

1

LQ2

⇒~21!n
1

~n21!!

dn21

dLQ2
n21 S 1

LQ2

2
L2

Q22L2D .

~22!

This relation was given in a recent paper by Shirkov@35#,
see also Ref.@36# for a related discussion of perturbatio
theory expansions in the timelike and spacelike regions.

For moderate values ofQ2, the modification due to the
continuation into the timelike region is numerically rath
significant: foras*0.3 thep2/L2 terms changeas by more
than 20%, i.e., they are more important~for an optimal
choice of theD parameter! than the two-loop corrections in
the L parametrization~6!. On the other hand, the differenc
11300
t
b-

-
v

a

between ãs(Q
2) and the modified spacelike couplin

ās(Q
2) ~taken at mirror momenta! is rather small~less than

10%! for all values ofQ2.
Thus, using theL parametrization for the effective QCD

coupling constant in the spacelike region, we obtained
explicit expansion for the timelike quantityRQCD(s). One
may question, though, the reliability of the above formulas
the region of small momentauqu;L. In particular, a rapid
change of ãs in the small-q2 region @compare ãs(L

2)
52p/b0 andãs(0)54p/b0] is as suspicious as the Landa
pole ofas(Q

2). Evidently, they both are artifacts of the an
lytic continuation procedure applied outside the applicabi
region. It is well known that the physicalR(s) vanishes be-
low the two-pion threshold and approaches the perturba
value only for values ofs marginally larger thanL2. So, one
may argue that a more realistic procedure is to integr
RQCD(s) in the dispersion relation~20! from some effective
thresholds0 rather than from zero. Taking, e.g.,s05L2, one
would get another effective spacelike coupling, call
âs(Q

2). It vanishes atQ250, but is essentially constan
âs(Q

2)/p'0.1 in a wide rangeL2&Q2&30L2 of mo-
menta. Hence,âs(Q

2) effectively ‘‘freezes’’ at small mo-
menta~see also Refs.@37–39,33#!.

III. COLLINEAR LOGARITHMS AND DISTRIBUTION
AMPLITUDES IN THE TIMELIKE REGION

The logarithmic dependence on the large moment
scale Q2 may also appear through mass logarithm
ln(Q2/m2), wherem is some mass or an infrared regulariz
tion parameter. Note that the standard PQCD factorizatio

T~Q2/m2!5t~Q2/m2! ^ w~m2! ~23!

works only in a single-logarithm situation, when there m
appear just one ln(Q2/m2) factor per each loop. These collin
ear logarithms can be absorbed into the renormalization
the long-distance function~distribution amplitude! w(m2). In
particular, takingm25Q2, one arrives at the description i
terms ofQ2-dependent functionsw(Q2). Again, if the large
momentum is timelike, the collinear logarithms ln(Q2/m2)
acquire the imaginary part6 ip, and we may ask how one
should define theQ2-dependent distribution amplitude
w(Q2) in the timelike region.

To approach this problem, let us consider the simpl
example of a hard exclusive process:p0 production ing* g
collisions. Its PQCD expansion starts at zero order inas

t0~x,Q2!5
1

xQ2
, ~24!

and the leading PQCD result@40# for the large-Q2 behavior
of the form factor is

Fg* gp~Q2!5
4p

3 E
0

1wp~x!

xQ2
dx [

4p f p

3Q2
I 0 . ~25!
1-4
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The nonperturbative information here is accumulated
the same integral

I 05
1

f p
E

0

1wp~x!

x
dx ~26!

that appears in the one-gluon-exchange diagram for the
electromagnetic form factor@41–43#. The value ofI depends
on the shape of the pion distribution amplitudewp(x). In
particular, using the asymptotic form@41,42#

wp
as~x!56 f px~12x! ~27!

gives I 0
as53. If one takes instead the Chernyak-Zhitnits

model @44#

wp
CZ~x!530f px~12x!~122x!2, ~28!

the integralI 0 increases by a sizable factor of 5/3:I 0
CZ55.

This difference can be used for an experimental discrimi
tion between the two competing models for the pion dis
bution amplitude.

At one loop, theMS coefficient function for theg* g
→p0 form factor was calculated in Refs.@45–47# and was
found to be

t~x,Q2;m2!5
1

xQ2 H 11CF

as

2pF S 3

2
1 ln xD ln~Q2/m2!

1
1

2
ln2 x2

x ln x

2~12x!
2

9

2G J . ~29!

In full compliance with the factorization theorems@48,40#
~see also Refs.@49–51#!, the one-loop contribution contain
no Sudakov double logarithms ln2Q2 of the large momentum
transferQ. Physically, this result is due to the color neutra
ity of the pion. In the axial gauge, the Sudakov double lo
rithms appear in the box diagram but they are canceled
similar terms from the quark self-energy corrections.
Feynman gauge, the double logarithms ln2 Q2 do not appear
in any one-loop diagram. It is easy to check that the te
containing the logarithm ln(Q2/m2) has the form of a convo
lution

1

xQ2
CF

as

2pS 3

2
1 ln xD5E

0

1 1

jQ2
V~j,x!dj ~30!

of the lowest-order~‘‘Born’’ ! term t0(j,Q2)51/jQ2 and the
kernel

V~j,x!5
as

2p
CF F j

x
u~j,x!S 11

1

x2j D
1

j̄

x̄
u~j.x!S 11

1

j2xD G
1

~31!

governing the evolution of the pion distribution amplitud
The ‘‘1’’-operation is defined here, as usual@52#, by
11300
n

on

-
-

-
y

.

@F~j,x!#15F~j,x!2d~j2x!E
0

1

F~z,x!dz. ~32!

Since the asymptotic distribution amplitude is the eige
function of the evolution kernelV(j,x) corresponding to
zero eigenvalue

E
0

1

V~j,x!was~x!dx50, ~33!

the coefficient (32 1 ln x) of the ln(Q2/m2) term vanishes after
thex integration withwas(x). Hence, the size of the one-loo
correction for the asymptotic distribution amplitude ism in-
dependent and is determined only by the remaining te
~for a detailed discussion of their structure, see Ref.@53#!.

In this section, we want to concentrate on theQ2 depen-
dence induced by collinear logarithms, which in this proce
start to appear at the one-loop level. The UV logarith
shifting the argument ofas appear only at two-loop order
Hence, analyzing the leading collinear logarithm
@as ln(Q2/m2)#N we will treatas as a constant. The factoriza
tion theorem means essentially that the leading logarith
@as ln(Q2/m2)#N exponentiate in higher orders producing
factor which can be absorbed into the renormalization of
pion distribution amplitude

w~m2!→exp@2 ln~Q2/m2!V# ^ w~m2!. ~34!

Now, taking a timelike momentumQ252q2, we would get
an extra6 ip term: ln(Q2/m2)→ln(q2/m2)6ip and

exp@2 ln~Q2/m2! V#→exp@2 ln~q2/m2!V#exp@6 ipV#.
~35!

The first exponential corresponds to the standard evolu
of the pion distribution amplitude from the scalem2 to the
scaleq2. The second exponential is specific for the timeli
kinematics. In our approximation, it isq2 independent and
can be treated as a conversion factor for the transition fro
‘‘spacelike’’ distribution amplitudew to its timelike counter-
partsw̃6

w̃65exp@6 ipV# ^ w. ~36!

In general, ‘‘timelike’’ distribution amplitudes have both re
and imaginary parts. However, sinceV^ was50, the space-
like asymptotic distribution amplitude does not differ fro
its timelike counterpart.

To estimate the effect of phases, let us consider the c
when the spacelike distribution amplitude is given by t
Chernyak-Zhitnitsky~CZ! model @44#, which can be repre-
sented as

wCZ5was1w2 , ~37!

where was56 f p x(12x) and w2524f p x(12x)@125x(1
2x)# is the next eigenfunction of theV kernel corresponding
to the eigenvalueg25 25

18 as /p. The timelike distribution am-
plitude is then
1-5
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FIG. 1. One-loop reduced diagrams for the DY process cross section calculated as imaginary part of the forward scattering a
~a!,~b! Virtual vertex corrections.~c!,~d! Real gluon emission corrections.
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w̃6
CZ5was1e6 i (25/18)asw2 ~38!

and theI integral for this function is

Ĩ 6
CZ5312e6 i (25/18)as. ~39!

Its absolute magnitude

u Ĩ CZu55A12
24

25
sin2S 25

36
asD ~40!

is slightly smaller ~by 2% if as50.3) than the spacelike
value I CZ55.

IV. SUDAKOV LOGARITHMS AND K FACTOR

Small radiative corrections in the timelike version of t
g* g→p0 process are in strong contrast with the lar
K-factor value found for the Drell–Yan processAB→g* X.
These corrections originate from the Sudakov double lo
rithms @asln

2(Q2/m2)#N. In the spacelike region, the doub
logarithms due to the virtual gluon exchanges exponent
into the Sudakov form factor

S~Q2/m2!5e2as ln2(Q2/m2)/3p ~41!

~again, we treatas as a constant!. In the DY process, the
photon momentum is timelike, and the logarithm ln(Q2/m2)
acquires the6 ip additional term, so that one has

2L2→2L262ipL1p2. ~42!

The imaginary parts of the two conjugate diagrams show
Figs. 1~a!, 1~b! cancel, the double logL2 from Fig. 1~a!
@1~b!# is also canceled by the real gluon emission diagr
Fig. 1~c! @1~d!# while the p2 term survives and leads, afte
exponentiation, to a largeK factor exp@2pas/3#;2. The cru-
cial technical observation here is that the real emission
grams giveL2 without p2 terms. This can be easily unde
stood looking at the reduced diagrams for the virtual ver
correction and real gluon emission. Take for definiteness,
Feynman gauge. Then the virtual vertex correction diagr
11300
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x
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Fig. 1~a! contains the2 ln2(2s/m2) term, wheres5(xpA
1ypB)25xyS is timelike, and the resulting contributio
contains ap2 term. The real emission diagram Fig. 1~c!, in
turn, contains the ln2(2u/m2) term, whereu5(xpA2ypB)2

52xyS is now spacelike, and there is nop2 term in this
contribution.

For the hard PQCD contribution to the pion electroma
netic form factor~which is considered in more detail in th
next section!, the situation is completely different. In thi
case, the initial state of the hard subprocess is represente
a qq̄ pair with momentaxp and (12x)p. After the hard
scattering subprocess, one deals with aqq̄ pair with the final
momentump8 shared in fractionsyp8 and (12y)p8. In
Feynman gauge, the double logarithms ln2(Q2/m2), where
Q252(p2p8)2, appear when the reduced diagrams ha
the structure of those shown in Fig. 2. One can easily ch
that the relevant momentum transfers in all four cases h
the structuret i j 5(xip2yj p8)252xiyjQ

2, resulting in the

double logs ln2(2tij /m
2). When the momentum transferq

5p82p is spacelike, allt i j ’s are spacelike, whereas for
timelike q, all t i j ’s are timelike as well. In the latter case, on
hasp2 terms for each particular diagram. The double log
rithms in Figs. 2~a! and 2~b! @2~c! and 2~d!# differ in sign
because the soft gluon interacts in the final state with qua
of opposite color charge. Hence, due to the color neutra
of the pion, the double logs ln2(Q2/m2) cancel for the sum of
the diagrams of a given order. For timelikeq, they cancel
together with the accompanyingp2 terms.

Thus, even for a timelike momentum transferq, there is
no K factor for the perturbative QCD~PQCD! hard contri-
bution to the pion electromagnetic form factor. After canc
lation of the Sudakov double logs, only the evolution-relat
collinear logarithms remain, and the situation is rather sim
lar to the simplest case of theg* g→p0 form factor.

V. PION FORM FACTOR IN THE PERTURBATIVE QCD
APPROACH

The general PQCD factorization formula for the pio
electromagnetic form factor at large momentum trans
reads
-
-
c

FIG. 2. One-loop reduced dia
grams for the hard PQCD contri
bution to the pion electromagneti
form factor, which contain the
Sudakov double logarithms in
Feynman gauge.
1-6
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Fp
hard~Q2!5E

0

1

dxE
0

1

w~x,mF
2 ,mR

2 !

3T~x,y,Q2,mF
2 ,mR

2 ! w~y,mF
2 ,mR

2 !dy,

~43!

where mF is the factorization scale for the collinear log
rithms andmR is the renormalization scale for the UV loga
rithms. The hard scattering amplitude is given by an exp
sion in as

T~x,y,Q2!5
2pCFas~mR

2 !

xyQ2Nc
F11

as~mR
2 !

2p

3T(1)~x,y,Q2,mF
2 ,mR

2 !1O~as
2!G . ~44!

The one-loop correctionT(1)(x,y,Q2,mF
2 ,mR

2) was calcu-
lated using the dimensional regularization in several pap
@54–59# which differ from each other by a particular choic
of renormalization and factorization prescriptions. These
ferences~and also typos and mistakes! were discussed in
Refs. @58–60,39#. In the MS subtraction scheme, supple
mented by the requirement that both theas and wp(x) are
process-independent functions, the one-loop correction
the form

T(1)5CFTF~x,y,Q2,mF
2 !1

b0

2
Tb~x,y,Q2,mR

2 !

1~CF2Nc/2! TA~x,y!,

TF5@31 ln~xy!# lnS Q2

mF
2 D 1

1

2
ln2~xy!1

5

2
ln~xy!

2
x ln x

2~12x!
2

y ln y

2~12y!
2

14

3
,

Tb52 lnS Q2

mR
2 D 2 ln~xy!1

5

3
, ~45!

TA5Li 2~12x!2Li 2~x!1 ln~12x!lnS y

12yD2
5

3

1
1

~x2y!2 S ~x1y22xy!ln~12x!12xy ln~x!

1
~12x!x21~12y!y2

x2y

3@ ln~12x!ln~y!2Li 2~12x!1Li 2~x!# D
1$x↔y% ~46!

~we use here notations similar to those of Ref.@61#!. As
usual,Li 2 is the dilogarithm~Spence! function.
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We already discussed in the previous section that all
Sudakov double logarithms ln2(Q2/m2) cancel and that only
the collinear single-logarithms ln(Q2/mF

2) remain. Comparing
Eq. ~45! with the one loop correction to theg* g→p0 hard
scattering amplitude, Eq.~29!, one can easily notice man
similarities in the structure of the one-loop corrections
these two cases. In particular, the coefficient@31 ln(xy)# in
front of the evolution logarithm ln(Q2/mF

2) is the sum@3/2
1 ln x#1@3/21 ln y# of terms corresponding to the convolu
tion of the tree level term 1/jh with the kernels
V(x,j)d(h2y) andd(x2j)V(h,y) @see Eq.~30!# inducing
the evolution of the pion distribution amplitudesw(x,mF

2)
and w(y,mF

2). In a sense, the collinear logarithms indica
that the pion structure is probed at a scale proportional toQ.
However, one should remember that since the asympt
wave function does not evolve, the coefficient accompany
the evolution logarithm ln(Q2/mF

2) vanishes if the pion wave
function has the asymptotic shape. As a result, the choic
mF in that case does not affect the size of the one-loop c
rection. The latter comes from several sources which can
identified in a way similar to the detailed analysis of the o
loop correction for theg* g→p0 form factor given in Ref.
@53#.

In addition to the evolution term proportional t
ln(Q2/mF

2), there is a rather large positive correction due
the 1

2 ln2(xy) term and even larger negative contributions c
responding to the constant term214/3 and the logarithmic
term 5

2 ln(xy). As explained in Ref.@53#, in the g* g→p0

case, the1
2 ln2 x term is a result of a positive ln2 x evolution-

related contribution and a negative2 1
2 ln2 x Sudakov-related

term. As we emphasized earlier, the Sudakov ln2 Q2 double
logs should cancel, otherwise there is no PQCD factori
tion. However, when several scales are involved, such asQ2

and xyQ2 in our case, there may be a remnant such
ln2(xy). In the pion form factor case, there is another sc
xQ2, the quark virtuality, whence the single logarithms lnx
1ln y. The latter give a rather large negative contributio
There are also large negative constants (29/2 in the g* g
→p0 case and214/3 in the pion form factor case!, which
are another~and numerically very important! manifestation
of the Sudakov effects in the impact parameter space. In
analogy with the results of Ref.@53#, these @and the
ln2(xy),ln(xy) terms# result from convoluting theb-space ver-
sion K0(AxyQ2b2) of the one-gluon exchange propagat
and theb-space Sudakov form factorsS(x,bQ), S(y,bQ)
~exact one-loop expressions are given in Ref.@53#!. In the
practically important case of the asymptotic wave functio
the total correction due to theTF term is negative and equa
to 2(71/18)as /p; as one could expect, it is approximate
twice larger than that in theg* g→p0 case.

The situation is reversed in the case of the UV relatedTb

term: it is dominated by large positive contributions. In fu
accordance with the renormalization group, the UV log
rithm ln(Q2/mR

2) is accompanied by theb-function coefficient
b0. It generates the running of the effective QCD coupli
as , ‘‘suggesting’’ that we should use some scale prop
tional toQ2 as its argument. According to Brodsky, Lepag
and Mackenzie~BLM ! @62#, one should choose the argume
1-7
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of the effective coupling constant in such a way as to abs
all the terms proportional tob0 from the next loop correc-
tion. Taken literally, the BLM prescription in our case co
responds to using the~rescaled! gluon virtuality

mR
25xyQ2 e25/3'xy~Q/2.3!2 ~47!

as the argument ofas . The rescaling factore5/6'2.3 reflects
the fact that theMS scheme measures the momenta
‘‘wrong’’ units. To cure this effect, one may introduce
version of the minimal subtraction scheme which measu
momenta in more ‘‘physical’’ unitsLphys5e5/6LMS. This
choice is similar to using theaV coupling of Brodskyet al.
@39# @note that their relation aV(Q)5as

MS(e25/6Q)
3@12 2

3 Ncas
MS/p# includes a next-to-leading order~NLO!

correction#. One should remember, however, that the act
expansion parameter for switching from the leading to
next-to-leading level is 1/ln(Q2/L2) rather thanas as a
whole. As a result, the ‘‘nonphysical’’ nature of the modifie
minimal subtraction (MS) scheme is almost totally compen
sated by the nonoptimal ‘‘popular’’ choice for the analyt
form of as(Q

2). As discussed in Sec. II,Lopt'Lpop/1.74. As
a result,LPHYS

opt '1.3LMS
pop. Due to the compensation of tw

opposite corrections, the standardLMS
pop parameter is rathe

close to the genuine ‘‘LQCD’’ parameter of the PHYSopt

scheme in which the couplingas(k
2) corresponding to the

vertex with the gluon momentumk is given by
4p/b0 ln(k2/L2) without sizable next-to-leading order corre
tions. In other words, using the NLO expression foras in the
popular form is equivalent to adding a negative term
2(b1 /b0

2)ln L to Tb, partially compensating the ‘‘5/3’’ con-
stant. ForL;4, this reduces 5/3 by a factor of 3. Choosi
‘‘PHYS’’ vs MS and ‘‘opt’’ vs ‘‘pop’’ one reduces both
types of corrections which iterate in higher orders. As sta
earlier, if the size of some corrections is under our contro
is preferable to keep them small rather than rely on can
lation of large terms. The closeness ofLPHYS

opt to LMS
pop means

that discussing the PQCD applicability region one sho
compare theL parameter of theMSpop scheme with the ac
tual ~unrescaled! gluon virtuality xyQ2.

However, taking the argument of the effective coupli
constant proportional toxyQ2 one faces the following prob
lem: since the integration is over all the momentum fractio
in the range 0<x,y<1, the ‘‘short-distance’’ amplitude in
this case always gets contributions from the infrared reg
of arbitrarily small virtualities. In this sense, such an ‘‘insid
the integral’’ BLM prescription contradicts the spirit of th
PQCD factorization ideology which aims at a perfect se
ration of the short-distance and long-distance effects~at least
in perturbation theory!. The consistent PQCD approach is
apply the BLM prescription to the form factor as a who
i.e., ‘‘outside the integral.’’ In this case, one should choo
mR from the requirement that one should get zero for

K 2 ln~Q2/mR
2 !2 ln~xy!1

5

3L ,
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where the ‘‘averaging’’ procedurê••• & stands for integra-
tion with wp(x)wp(y)/xy. This gives a universa
x,y-independent scalemR5aRQ, which depends now on the
shape of the distribution amplitude. For the asymptotic wa
function, as we have seen, the average value of lnx is 23/2,
hence the ‘‘outside the integral’’ BLM scale is~see also Ref.
@39#!

mR
2 uw5was5Q2 e25/323'~e25/3Q2!/20. ~48!

As argued above, in the ‘‘pop’’ treatment, the factore25/3 is
largely compensated by the NLO corrections toas(Q

2), and,
hence the essential virtuality of the ‘‘hard gluon’’ exchang
between the quarks is ‘‘only’’ by a factor of 20 smaller tha
Q2, the nominal momentum transfer to the pion. Neverth
less, despite this sizable rescaling factor, the PQCD fac
ization approach is fully consistent in the asymptotic sen
for a sufficiently largeQ2 one can calculate the shor
distance amplitude perturbatively in terms of an arbitrar
small expansion parameteras(Q

2/20). For comparison, in
the case of Chernyak-Zhitnitsky wave function

^ lnx&uwCZ527
3

and aR
CZ'aR

as/2.3: the essential gluon virtualities are 10
times smaller thanQ2. In this case, one should not expe
early applicability of PQCD.

We would like to emphasize that the reason for such
drastic shift of the BLM scale to very lowmR values is the
positive large value of theTb correction: formR5Q and
wp5wp

as, the Tb term contributes the NLO correctio
10as /p. One may be tempted to combine the large posit
Tb term and a sizable negativeTF term to end up with a
smaller total correction;6as /p. Physically, though, these
corrections have a completely different nature: as arg
above, theTF term comes primarily from the Sudakov e
fects. Since the latter exponentiate, one deals here with
e2kFas type series in which the sign of the corrections alt
nates. On the other hand, the UV corrections form a geom
ric series summed into 1/(12kbas). Hence, there is nodoub
that a partial cancellation of theas terms will be followed by
an amplified total correction at theas

2 level. Leaving the
physically unrelated Sudakov and UV corrections sepa
and addressing the region of experimentally accessible
ues ofQ2&10 GeV2, one should takeas at an infrared scale
;L ~where it freezes at a value close to 0.3! and supplement
the result by the exponential;e24as /p;0.7 of the negative
one-loop corrections induced by theb-space Sudakov ef
fects. Turning to the timelike momenta, we cannot find a
sources of enhancement: for theuku;L region we see no
other choice rather than to take the frozen valueas;0.3 both
in the spacelike and timelike regions, while for large m
menta, the continuation ofas(aF

2Q2) converts 1/L into
1/(L1 ip) and the ratiouFhard

timelikeu/Fhard
spacelikeis 1/A11p2/L2,

i.e., the timelike term is suppressed compared to the sp
like one.

Since the structure of the evolution corrections for t
pion form factors is essentially identical to that of theg* g
→p0 form factor, to continue the evolution logarithms, w
1-8
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can use the approach outlined in Sec. III. The first step i
write the solution of the evolution equation@48,41,40# as an
expansion over Gegenbauer polynomialsCn

3/2(2x21), the
eigenfunctions of the LO kernelV(0)(x,y;as):

f~x,Q2!5fas~x!F11 (
k51

`

a2k
p ~Q2!C2k

3/2~2x21!G , ~49!

wherefas(x)56x(12x) is the asymptotic distribution am
plitude of the pion. The Gegenbauer momentsa2k

p (Q2) have
a simple evolution pattern

a2k
p ~Q2!5a2k

p ~m0
2!exp@2g2k ln~Q2/m0

2!# ~50!

~we treatas as a constant here!, with g2k being the corre-
sponding anomalous dimensions anda2k(m0

2) the Gegen-
bauer moments of the initial distribution amplitude

f0~x!5fas~x!F11 (
k51

`

a2k
p ~m0

2!C2k
3/2~2x21!G . ~51!

This representation is very convenient to perform the a
lytic continuation to the timelike region ofQ2. Indeed,
changing Q2→2q2, one obtains the natural shift ln(Q2)
→ln(q2)1ip, so that

a2k
p ~Q2!→a2k

p ~2q2!5a2k
p ~ uq2u!e2 id2k, ~52!

where

d2k[pg2k . ~53!

From Eq. ~52! it is obvious that the only interesting an
potentially enhancing effect is due to the phasesd2k , since
they can destroy some fine tuning of the coefficientsa2k

p (m0
2)

and produce a positive interference. But in order to rea
this possibility, one should start with a situation when the
are negative coefficients, say,a2

p(m0
2),0, while the corre-

sponding phase is close top, e.g.,d2'p. Such a situation is
hard to imagine. Even the~unrealistic! CZ distribution am-
plitude hasa2

p@m0
25(0.5 GeV)2] 52/3, while other models

are closer to the asymptotic distribution amplitude, thou
all models providea2.0. Furthermore, the phased2 is
25/18as , so one needs a prohibitively large valueas;2.5
for the coupling constant. In Fig. 3 we plot the ratio TL/S
for the pion form factor in the CZ model, taking the froze
value as(Q

2)50.3. As one can see, the absolute value
Fp

hard(q2) in the timelike region is reduced.
To conclude, the perturbative contribution to the pi

form factor,Fp
hard(Q2), with a realistic distribution amplitude

~which is close to the asymptotic one, see Refs.@63–66#!
produces no sizable effects in analytically continuing
timelike q2 values. The only potential effect is due to th
substitution ās(Q

2)→ãs(q
2)which results in a 10%-

reduction of the form factor.
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VI. EVOLUTION PHASES OF THE NUCLEON
DISTRIBUTION AMPLITUDES AND THE NUCLEON

FORM FACTOR

The nucleon form factor in the leadingas order can be
cast in the form@4#

Q4GM
N ~Q2!5

1

54
@4pās~Q2!#2u f Nu2E

0

1

@dx#E
0

1

@dy#

3F2(
i 51

7

ei Ti~xj ,yj !1(
i 58

14

ei Ti~xj ,yj !G ,

~54!

where the amplitudesTi(xj ,yj )5f (N)($x%,Q2)TH
i ($x%,

$y%)f (N)($y%,Q2) represent convolutions ofTH
i with the ap-

propriate distribution amplitudesf (N)($x%,Q2) evaluated-
term by term for each contributing diagram~marked by the
index ‘‘i ’’ !. The nucleon distribution amplitude can be re
resented as an expansion over symmetrized combinat
F̃($x%) of Appell polynomials~for more details, we refer to
@6,67#!

f (N)~$x%,Q2!5fas~$x%! (
n50

`

Bn~Q2!F̃n~$x%!, ~55!

with

Bn~Q2!5Bn~m0
2!exp@2g̃n ln~Q2/m0

2!#, ~56!

and eigenfunctions

F̃k~xi !5 (
m,n50

m1n5M

cmn
k Fmn~5,2,2;x1 ,x3!, ~57!

FIG. 3. The ratio of the timelike form factoruFp
hard(q252t)u

over the spacelike oneFp
hard(Q25t) in the case of the CZ mode

~dashed line! for the pion distribution amplitude withas(Q
2) fixed

to 0.3. The solid line represents the result for the asymptotic dis
bution amplitude.
1-9
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FIG. 4. Ratio of the timelike~with t5q2) to the spacelike~with t5Q2) hard form factors of the nucleon using three different nucle
distribution amplitudes~Chernyak-Ogloblin-Zhitnitsky, heterotic and Gari-Stefanis models!.
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whereFmn(5,2,2;x1 ,x3) are the Appell polynomials.1 Here

g̃n~M !5
as

4p S 3

2
CF12hn~M !CBD , ~58!

are the associated anomalous dimensions of trilinear q
operators with the quantum numbers of the nucleon cont
ing external derivatives@67#. In Eq. ~55! fas($x%)5120
x1x2x3 denotes the asymptotic distribution amplitude of t
nucleon andBn(m0

2) are expansion coefficients for some in
tial distribution amplitude

f0
(N)~$x%!5fas~$x%! (

n50

`

Bn~m0
2!F̃n~$x%!. ~59!

Again, the representation given by Eq.~59! is very con-
venient to analyze the analytic continuation of the~hard part
of! the nucleon form factor into the timelike region ofQ2.
ContinuingQ2→2q2 one obtains in Eq.~56! the same shift
as in Eq.~52! with dn[as(b0/4)gn . Specifying the particu-
lar values of the coefficientsBn we can calculate the ratio o
timelike to the spacelike form factors for several mod
known in the literature. In Fig. 4 we display the ratio of th
timelike to the spacelike form factors of the nucleon for thr
different nucleon distribution amplitudes: Chernya
Ogloblin-Zhitnitsky, heterotic and Gari-Stefanis@6,69#.
From this figure, it is clear that there is no enhancement
to the analytic continuation except from a marginal factor
order 1.03 for the GS model.

VII. SOFT TERMS FOR THE PION FORM FACTOR IN
THE LOCAL DUALITY APPROACH

So far, we have discussed only the hard PQCD contri
tions to the hadronic form factors. But as argued in Re
@19–25#, the dominant contribution at intermediate values
the momentum transfersQ2<10 GeV2 is generated by the
soft contribution which involves no hard gluon exchang
As a model for the soft contribution, we use the local dua
~LD! approximation in which it is assumed that the pi
form factor is dual to the free quark spectral density@21,70#

1One can also expandF̃n($x%) over the polynomials proposed i
Ref. @68#; the particular choice of the basis is not essential for
purposes.
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f p
2 Fp~Q2!5

1

p2E0

s0E
0

s0
r0~s,s8,Q2!dsds8. ~60!

The latter is given by@19–21#

r0~s,s8,t !5
3

4 F t2S d

dtD
2

1
1

3
t3S d

dtD
3G 1

A~s1s81t !224ss8
.

~61!

Here the duality intervals0 corresponds to the effectiv
threshold for the higher excited states and the ‘‘continuum
in the channels with the axial current quantum numbers.

In principle, the value ofs0 is fixed by the ratio of the
nonperturbative power corrections to the~leading! perturba-
tive term in the operator product expansion~OPE! for the
correlator. In what follows, we use the values0'0.7 GeV2

which has been extracted in the pioneering paper@71# from
the QCD sum rule analysis of the correlator of two ax
currents. The LD prescription for this correlator just impli
the relation

s054p2f p
2 , ~62!

betweens0 and the pion decay constantf p . This relation
ensures that the Ward identity for the pion form factor

Fp~0!51 ~63!

is satisfied within the LD approach.
Performing the integral on the RHS of Eq.~60! we get the

explicit analytic expression for the pion form factor

Fp
LD~Q2!512

116s0 /Q2

~114s0 /Q2!3/2
, ~64!

originally obtained in Refs.@21,70#. Note that for t*0.6
GeV2, expression~64! is in good agreement with existin
data~see Fig. 5!.

A simplified version of the LD model is based on usin
the ‘‘duality triangle’’ instead of the ‘‘duality square.’’ In
this approach@19,20,26#, one uses the variablesS5s11s2
ands12s2, introducing the reduced spectral density

r

1-10



nd the

FORM FACTORS AND QCD IN SPACELIKE AND . . . PHYSICAL REVIEW D 62 113001
FIG. 5. Left part: Comparison of different LD models for the pion form factor. The solid line represents the triangle LD model a
dashed line the square LD model. Right part: Comparison with available experimental data from Refs.@72,73# of the pion form factor with
~dashed line! and without~solid line! the Sudakov exponential in the ‘‘triangle LD approach.’’
o

c

ce

is
the

sity

ge,
ec-
te
ich
r̄0~S,Q2![E
0

S

r0~S2s8,s8,Q2!ds8. ~65!

The LD relation, Eq.~60!, is then substituted by its ‘‘tri-
angle’’ version~TrLD!

Fp~Q2!.Fp
TrLD~Q2!5

1

p2f p
2 E0

S0
r̄0~S,Q2!dS ~66!

with S05A2s0. The latter condition means that the areas
the integration regions overs ands8 in the two approaches
are the same~see Refs.@20# and @26,21# for more details!.

Using Eqs.~61! and~65! we can easily calculate the spe
tral densityr̄0(S,Q2)

r̄0~S,Q2!5
S2~2S13Q2!

2~2S1Q2!3
~67!

producing
11300
f

-

Fp
TrLD~Q2!5

1

A2~11Q2/2S0!2
. ~68!

As one can see from the left part of Fig. 5 the differen
between the two models in the region of interest (Q2*1
GeV2) is very small.

A. Sudakov effects due to the electromagnetic vertex
in F p

TrLD
„Q2

…

The crucial feature of the soft contribution is that it
accompanied by the Sudakov form factor. In other words,
double logarithmsas ln2(Q2) do not cancel in this case.

The one-loop radiative corrections to the spectral den
r̄0(S,t5Q2) have been calculated by one of us~A.P.B.!
@74#. To analyze the Sudakov effects in the Feynman gau
we need only the result for the gluon correction to the el
tromagnetic vertex ~accompanied by the appropria
1/2-insertions of self-energies into the quark lines, wh
gives an UV-finite result!:
DEM-vertexr̄~S,t !

~asCF/2p!r̄0~S,t !
52FLi 2S S

2S1t D2 lnS 11
t

SD lnS 21
t

SD G S 11
t2~6S15t !

S2~2S13t !
D

1F ln2S 21
t

SD2Li 2~1!G S 11
2t2~6S15t !

S2~2S13t !
D lnS 21

t

SD S 2
1

2
1

2t~2S15t !

S~2S13t ! D
12FLi 2S t

2S1t D2 lnS 11
2S

t D ln~2!G t2~6S15t !

S2~2S13t !
lnS 11

2S

t D t2~42S155t !

8S2~2S13t !
2

5t

4S
. ~69!

The leading asymptotics of this expression in the larget regime is2

2A similar correction was obtained in the light-cone QCD sum rule approach@75#.
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DEM-vertexr̄~S,t !

r̄0~S,t !
→

t→`

2
asCF

2p F lnS 11
t

2SD G2

1OS ln
t

SD .

~70!

So, we model the Sudakov corrections in the following w

r̄0
Sudakov~S,Q2!. r̄0~S,Q2!expF2

asCF

2p
ln2S 11

Q2

2SD G .
~71!

The modified spectral density is then used to model the
term corrected by the Sudakov effects

Fp
TrLD-Sudakov~Q2![

1

p2f p
2 E0

S0
r̄0

Sudakov~S,Q2!dS. ~72!

On the right part of Fig. 5 we show for comparison pred
tions forQ2Fp

TrLD(Q2) and forQ2Fp
TrLD-Sudakov(Q2). One can

see from this figure that the Sudakov effects in the elec
magnetic vertex reduce~as expected! the soft contribution in
the spacelike region by 6–20 %.

B. Model dependence of the soft term in timelike region

As we have seen in the previous subsection for space
values of the momentum transfer (Q2.0) both LD models
give rather close results for the pion form factor atQ2*1
GeV2. But if we analytically continue these two models in
the timelike region (q252Q2.0), we obtain absolutely
different results for both Re@Fp(q2)# and Im@Fp(q2)#:

Re@Fp
LD~q2!#512u~q224s0!

126s0 /q2

~124s0 /q2!3/2
, ~73!

Im@Fp
LD~q2!#5u~4s02q2!

126s0 /q2

~4s0 /q221!3/2
,

~74!

Re@Fp
TrLD~q2!#5

1

A2~12q2/2S0!2
, ~75!

Im@Fp
TrLD~q2!#50. ~76!

We see that in the resonance region (q2,4 GeV2) the
differences between these two models are rather large,
we can actually say nothing about the true behavior
Fp(q2) in this region. On the other hand, in the regionq2

*6 GeV2 the differences between the two models are l
than the experimental uncertainties~see Fig. 6!, and hence
we can use them, at least as a first approximation, to m
Fp(q2). Furthermore, in the case of the ‘‘triangle LD’’ w
have an explicit analytic expression for the Sudakov effe
which we can now continue into the timelike region

Re@Fp
TrLD-Sudakov~q2!#5

1

p2f p
2 E0

S0
r̄0,Re

Sudakov~S,q2!dS,

~77!
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Im@Fp
TrLD-Sudakov~q2!#5

1

p2f p
2 E0

S0
r̄0,Im

Sudakov~S,q2!dS,

~78!

with

r̄0,Re
Sudakov~S,q2!5 r̃0~S,q2!cosS ãs~q2!CF lnF q2

2S
21G D ,

~79!

r̄0,Im
Sudakov~S,q2!5 r̃0~S,q2!sinS 2ãs~q2!CF lnF q2

2S
21G D ,

~80!

r̃0~S,q2![r̄0~S,2q2!expH 2
ãs~q2!CF

2p

3S ln2F q2

2S
21G2p2D J .

@Here ãs(q
2) is the lowest-order model expression~18! for

as in the timelike regime.#
Using this model we obtain results, depicted on the LH

of Fig. 7. After adding the analytically continued expressi
for the hard scattering~perturbative! part, including also
transverse momentum effects~Sudakov1intrinsic effects!
@76#, we arrive at the result, shown on the RHS of Fig. 7

VIII. CONCLUSIONS

In this paper, we investigated various aspects of the a
lytic continuation procedure from the spacelike to the tim
like region of momentum transfers for several processe
QCD. We concentrated on studying several types of logar
mic contributions ln(Q2) capable of producing6 ip in the
timelike region. In the case of the ultraviolet logarithms, w

FIG. 6. Comparison of the analytic continuation to the timeli
regionq252Q2.0 for two different LD models of the pion form
factor. The solid line shows the result foruq2Fp(q2)u, obtained
from the ‘‘square LD model,’’ together with the real part of
~dotted line!, whereas the prediction of the ‘‘triangle LD model
for q2Fp(q2) is represented by the dashed line. The experime
data are taken from Ref.@16#.
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FIG. 7. The LHS shows the analytically continued expression for the pion form factor to the timelike regionq252Q2.0 with ~dashed
line! and without~solid line! the Sudakov exponential in the ‘‘triangle LD approach.’’ The RHS shows the results for the total pion
factor in the timelike domain comprising the soft part within the ‘‘triangle LD approach’’ and the hard one, calculated in Ref@76#.
Experimental data are taken from Ref.@16#.
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reviewed the construction of the effective QCD coupli
constant for the timelike region. The major result here is t
the transition from a spacelike to the mirror timelike mome
tum only decreases the effective coupling constant. Study
the collinear logarithms, we established that in this case e
eigenfunctionfn(x) of the evolution equation acquires
phase factoreidn. The phase vanishes for the asympto
wave function, and there are no changes in this most real
situation. But even in the case of the Chernyak-Zhitnits
wave function, the interference effects are very small a
again, they decrease rather than increase the timelike co
bution compared to the spacelike one. In the case of the
electromagnetic form factor, we emphasized that thep2

terms which may appear in the timelike region on the d
gram by diagram level cancel in the total sum together w
the double logarithms which generated them. Thus, we fo
no sources for theK-factor-type enhancements in the ha
gluon exchange perturbative QCD contributions to the h
ronic form factors. However, the situation complete
changes if one considers the soft contribution. We inve
gated the simplest case of the pion electromagnetic form
tor. To this end, we incorporated the local duality mod
o

11300
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-
h
d

-

i-
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suggested by the QCD sum rule studies performed earlie
the lowest~zero! order inas . We included theas correction
which, as expected, contains the Sudakov double logarith
In the timelike region the latter produce non-canceling po
tive p2 terms which result in aK-factor-type enhancemen
Our results for the soft contribution are in good agreem
with existing experimental data on the pion electromagne
form factor both in the spacelike and the timelike region
We regard this agreement as another indication that soft c
tributions dominate the form factors at currently accessi
momentum transfers.
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