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Quark-gluon plasma as a condensate af (3) Wilson lines
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Effective theories for the thermal Wilson line are constructed irSB&l{N) gauge theory at nonzero tem-
perature. | propose that the order of the deconfining phase transiti@{XjrWilson lines is governed by the
behavior ofSU(N) Wilson lines. In a mean field theory, the free energy in the deconfined phase is controlled
by the condensate fa(N) Wilson lines. Numerical simulations on the lattice, and the mean field theory for
Z(3) Wilson lines, suggest that about any finite temperature transition in QCD the dominant correlation length
increases by a large, uniform factor, of order five.

PACS numbds): 12.38.Mh, 11.10.Wx

A new phase of matter, the quark-gluon plasma, might be LTx) L(x)=1, defL(x))=1. (2
produced in the collisions of large nuclei at very high ener-
gies. By asymptotic freedom, the pressure approaches thgithout quarks, the allowed gauge transformations are peri-
ideal gas value in the limit of high temperature, and so it isodic up to an element of a globZ(N) symmetry[3]:
natural to think of the high temperature phase of QCD as a
gas of quasiparticlefl,2]. L(x)—exp2mi/N)QT(X)L(x)Q(x), 3
It is known, however, that the high temperature phase of a
purely glue theory is like the low temperature phase of a spi) (x)=((x,0). L(x) transforms as an adjoint field under
system. The magnetization in the high temperature phase @cal SU(N) gauge transformations in three dimensions, and
SU(N) gauge theory is (N) spin, proportional to the trace a5 a vector under global(N) transformations.
of the thermal Wilson ling3]. Effective theories fot (x) are dictated by the symmetries
In this paper | construct effective Lagrangians for theof Eq. (3). | begin with the nonlinear form, where E¢p) is
thermal Wilson line, considered as a f@lU(N) matrix, 8 taken as a constraint dn. | construct an effective theory in
well as its trace. This leads to novel sigma models of adjointhree spatial dimensions, valid for distanced/T, by cou-
SU(N) fields. Although the critical behavior is inexorably pjing the gauge potentials for static magnetic fields, the
governed by the fixed point c(N) spins[3], the SU(N)  A.(x)’s, to the Wilson line,L(x):
spins can be important. In particular, they help explain why
the order of the deconfining transition appears to change with 1 1
N: from second order foN=2 [4—6], to weakly first order Lo== tr(GiZj)jLTZal tr|DiL|%, aj=—+.... (9
for N=3 [7-10], and to first order foN=4 [11,12. Fur- 2 9
ther, the picture of the high temperature phase is turned on
its head: the pressure is not due to quasipartided, butis  The first term is the standard Lagrangian for statjdields
a potential for a condensate @&{N) Wilson lines. A mean [by choiceA; has dimensions of mass; all Lagrangians have
field theory then suggests that because the deconfining tragimensions ofmass*]. In the second term, | start with the
sition in pure glueSU(3) is weakly first order, QCD is near €lectric part of the gauge Lagrangiarr|D;Aq|?, and as-
a critical point. About the transition, the dominant correla-sume that it transmutes into a gauge invariant kinetic term
tion lengths increase by a large factor, of order fi9¢ for L(x). This is the continuum form of the lattice model of
| concentrate on the pure glue theory; later | argue whyBanks and Ukaw#l4].
this is legitimate, using the lattice data and the effective Notice the factor off2 in front of the kinetic term forl.
theory. The thermal Wilson line 83,13 This arises because the Wilson line is a phase in color space,
and so every element is a dimensionless pure number. Thus
ur in any effective Lagrangian, dimensions can only be made
L(x)=P exp{ igf Ag(X,7) dr), 1 up by powers of the temperatufe
0 Consider the somewhat peculiar limit in which one drops
the coupling to theA;’s, by takingg—0, but retainsL # 1.
whereP is path orderingg is the gauge coupling constant, Then Eq.(4) reduces a nonlinear sigma model in three di-
A, is the time component of the vector potential in the fun-mensions, with Lagrangian-tr|4;L|2. With the constraints
damental representatior,is the coordinate for three spatial of Eq. (2), the theory is invariant unddr— QL Q,, where
dimensions, and represents Euclidean time at a temperature(),; and{(), are independent, consta®BtJ(N) matrices. This
T. The Wilson line in Eq(1) is a product ofSU(N) matri- is an enhanced global symmetry $fJ(N) X SU(N) [times
ces, and so is itself 8U(N) matrix, satisfying the usual globaZ(N) symmetry. As a sigma model, it is
possible to impose other constraints upoibeyond those of
Eq. (2). For example, requiring ltr to be some fixed number
*Email address: pisarski@bnl.gov produces a sigma model on a symmetric sgdés.
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At nonzero couplingL. is simply an adjoint field under There are also a wide variety of kinetic terms possible.
the localSU(N) symmetry. Even with the constraints of Eq. These include |g;trL|?, |s;trL?|2, and |trL|?tr|D;L|?,

(2), the reduced symmetry implies that many more termsmongst others. At one loop order, the kinetic term in B.
arise: instead of kr being fixed, as for symmetric space, is renormalized, and terms such as these may be generated;
arbitrary traces, such asLft for integer p, are allowed. present calculations cannot distinguish thg2s]. Even for
Mathematically, ttP is related to the trace of the Wilson line g=0, none of these new kinetic terms are invariant under
in higher representatiorj46]. SU(N) X SU(N).

At one loop order, the terms up to fourth orderfig have The potential in Eq(5) is only illustrative. In perturbation
been computed. The quadratic termir(A2) [17,18, is the  theory, one expands about-1, which does not allow one
Debye mass for the gluon. Fdi=4, there are two indepen- to uniquely fix the coefficients of a potential far. Through
dent quartic terms;- (tr(AS))Z and ~tr(A3) [19,20, which  numerical simulations, effective theories fap [20] and L
represent a potential f&,. From Eq.(1), it is easy to turn a  could be matched by comparing physical correlation lengths

potential forA, into one forL: at an intermediate temperature scale, say, at several times the
critical temperature.
L1=TAC,trL |2+ c,trL? >+ cj(trL[2)?). (5) Now consider a point of second order transition, where

Io(T)—0. Then powers of. are suppressed, and it is sen-
sible to construct a linear sigma model. This is done by in-
troducing a block spir., formed by a gauge covariant aver-
age ofL over some region of spa¢24]. Any SU(N) matrix
can be written as

Expanding to ~Aj fixes c,=—(4+3/7)/9, c,=+(1
+3/7%)136, andc,=0. The rational terms i, andc, are
from the Debye mass, while thosel/n? arise from quartic
terms in the potential foA,. Only two constants;, andcy,
are needed to fit three terms in tAg potential. IfN; flavors _
of massless quarks are included,andc, change, whilec) L) =1(x)1+2il ;(x)t%, (8)
is then nonzero.

The signs ofc, andc, are interesting. A$~—92AS, a wheret? are the generators U(N), anda=1 ... (N?

positive Debye mass corresponds to negatiyeThe cou- 1) For generaN, | andT, are complex valued, and Eq.
pling c, is like the quartic term i, and so positive. Nega- (2) imposesN2+ 1 constraints.
tive ¢, favors condensation in a direction in whigl | is | start with the case of two colors, which is special. Four

maximized. This happens whénis an element of the center constraints of Eq(2) are satisfied in an especially simple

[21], manner: the imaginary parts bfandTa vanish. This leaves
(Ly=exp 2] IN)l oL, (6)  ©one constraint, which i$2+12=1; thus| andT, form a

vector representation U(2) X SU(2)=0(4). After aver-
j=0...(N—1). Different j are the usualN degenerate aging, the constraint on th@(4) norm is Io~st, as is typical in
vacua of the brokeZ(N) global symmetry. a linear model. Averaging still leavésandl , as real valued
In Eq. (6) | introduce an expectation valug=(l), where fields,_ tho_ugh. Up to quartic order, the most general La-
| is defined in Eq(8). In perturbation theoryly=1, butlyis ~ 9rangianis
a function of temperature; it vanishes at the critical tempera-

ture, T., and in the confined phase, foT,.. 1 s 1 ) - 9 =2

| assume that in the deconfined phase; T, the stable L=5t(Gj)+ 5 (g + DT =my(1°+T5)
vacuum is that which maximize#rL|?, so thatL condenses
as in Eq.(6). An expectation value for a field in the funda- =Ml 24 N (124 T2)24+ N, 14+ N5 1712, 9

mental representation always breaks the gauge symmetry,
but uniquely for an adjoint field, a vacuum expectation value ] ] ] o~ o
proportional to the unit matrix does not: E8). is invariant  1hel-field is a color singlet, whild , is an adjointSU(2)
under arbitrary local gauge rotations. Similarly, the adjoint/ield- The terms~m; and\, areO(4) symmetric; with the
covariant derivative in Eq(4) is D,L=a,L —ig[A,,L], so kinetic terms, they correspond to the gauged nonlinear sigma
with Eq. (6), the static magnetic gluons do not acquire amodel of Eq.(4). The other terms:-m,, X, and\3, corre-
mass wherl condenses,,#0. Thus Eq.(6) is the nonper- spond to the potential for the Wilson line in E(@.~A factor
turbative statement that electric screening does not genera@é T has been absorbed into the definitionl aind | , .
screening for static magnetic fielfi3,20,23. When N=3, the constraints of Eq(2) are nonlinear.
The terms in Eq(5) are invariant under a global symme- Since a sum of two special unitary matrices is not necessarily
try of U(1). There are also terms which reduce tbigl) to  special unitary, the averagemust be taken to be a complex
Z(N). For N=3, the simplest examples include NN matrix. ThusL includes a complex valued, color sin-
glet field, I, which I call aZ(N) spin, and a complex valued,
deL+c.c, (trL)®+c.c, tL(trL?)+c.c.. (70  color adjoint field,l ,, which I call aSU(N) spin.
Linear models like Eq(9) can be written down foilN
The first term, dét, is SU(3) X SU(3) symmetric, while the =3, although there is a plethora of terms. At quartic order
others are onh\5U(3) symmetric. there is one term which i©(2N?) symmetric, (t£7L)?,
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another which isSU(N) X SU(N) symmetric, tr{TL)?, and  the deconfined phase is controlled by a potential for the

terms which are only invariant und&U(N), such as | Z(N) Wilson lines. For three colors, this [8,11]

=lata): V= (= 2b, |12+ by(13+ (1%)3) + ([122)b, T4 . (1)
2y2 T 12 2:(TH)2
(9% 1 H3+ee, 1Pl +cc., | is complex valued, so whem,# 0, the global symmetry is
reduced fromO(2) to Z(3). Thecouplingb; must be small
for the transition to be weakly first ord¢€81], so for now |
ignore it, considering the potential just as a functionbgf

o ) . gandb4. This is similar to the case of two colors, whéris a
phase transition: | assume that while only @N) |-spins real field, and the potential is just a sum of two termd,| 2

condense(l)=1,#0, the transition is driven by the behavior and ~ b, [32].

of the SU(N) T,-spins. This picture is based on the nonlinear In speaking of the Wilson line, I implicitly assume that it

model: at weak coupling, Eq4) dominates other terms, s nossible to extract a renormalized val@8] from the bare

2 . .
such as Eq(5), by ~1/g°. Now certainly all coupling con- 4, antity[34]. If so, then giveno(T) and the pressure, one
stants change witff, as can be seen from the temperaturec, (4 fit to a potential like Eq(11); for example, is it nec-
dependence of the Debye md4s§]. Nevertheless, | assume essary to include higher powers lofn 12

that theSU(N) | ,-spins dominate right down to the point of  The novel aspect of Eq11) is my insistence that because
the deconfining phase transition. The only purpose of termgis a dimensionless field, the dimensionsimust be made
such as Eq(5) is to ensure that condensation which respectsp by the temperatur. In mean field theoryb, is taken as
the localSU(N) symmetry, Eq(6), is favored. constant, and, varies with temperature, vanishing 8.
For two colors, the influence of tH@U(2) T,-spins on the  The pressure is given by the minimum of the potential,
Z(2) I-spins is subtle. Assume that only tb€4) symmetric =b§b4T4, and vanishes in the confined phas$e; T.. That
mass,m;, changes. The phase transition in a gaugéi{2) is, with the overallT# in the potential, the pressure is like a
model is known from lattice studies of the electroweak phaseas of quasiparticles, albeit with a variable number of de-
transition[25]. | assume that one is always in an extremegrees of freedom, which vanish @ .
type-Il regime, so that the second orde¢4) transition of At high temperatureb,—1 so thatl;—1. The quartic
the model withg=0 (the pointB, of Fig. (1) in [25]) is  coupling is fixed by the ideal gas limit: ifi,,=p/T* asT
washed out by confinement of non-Abelian gauge fields. The-«, b,=n... Lattice simulationg4—10] find that thep/T*
only transition is a point at which th&(2) |-spins become is relatively flat down to a scale which is several tims
massless; th&U(2) T,-spins are always massive. Lattice (call it «T.); the same is found from resummations of per-
studies confirm a second order transition in #{&) univer-  turbation theory2]. (« might be defined as the lowest value
sality clasg5]. where ly~1.) Hence | assume thdi, and b, are slowly

For N=3, the SU(N) T,-spins can have first order tran- varying down toxT. _ _
sitions. This is because in the absence of gauge fields, BétweenxT.andT., | assume thab, is essentially con-
SU(N)XSU(N) spin models have first order transitions stant, whileb, varies. In_p_artlcular, tﬁe tr_ace of the enfrgy
both in mean field theorj26] and in an expansion about 4 Momentum - tensor, divided byT", is (e—3p)/T"
— e dimensiong25]. As suggested ifi25], in the extreme =Td(bsb,)/dT. Lattice simulations find that this quantity
type-Il regime, confinement of the gauge fields need nohas a peak just abovk, [4-10; this is then due to the rapid
wash out the first order transition &U(N)x SU(N) spins  variation ofb, with temperaturg32].
(above the poinB; in Fig. (2) of [25]), and so the deconfin-  In theZ(N) mean field theory, the pressure includes only
ing transition can remain first order. In particular, the transi-the contribution of the potential, and nothing from fluctua-
tion can be of first order al—. This is in accord with a  tions in the effective fields, either from tt#&N) I-spins or
lattice analysis of Gocksch and Né#7,28, and contrary to  the SU(N) T,-spins. Fluctuations in these fields do, of
previous speculatiofil1,30. course, contribute to the pressure at all temperatures. Since
For three colors, this implies that the deconfining transi-by construction the pressure in the mean field approximation
tion is of first order not only because of cubic invarialB§  vanishes folT<T., one condition for its validity is that the
as in Eq.(7), but because of the dynamics@U(?;)Ta-spins. pressure in the confined phase is small. This is what present
Relative to the ideal gas, the latent heat for three colors ifttice simulations find. Physically, these fields do not con-
~1/3[7]. As could have been guessed from the lattice datdfibute_much to the pressure because they are heavy: the
alone, perhaps the deconfining transition is weakly first ordeBUN) | ,-spins are always so, and tA¢N) |-spins are usu-
for N=3 because it is near the second order transition foally so. For two or three colors, tHespins do become light
N=2. Thus it is of value to know how the latent heat for in a narrow band in temperature abduyt, where mean field
N=4 compares to that foN=3: is it more strongly first theory fails[32].
order, such as-(N—2)/N asN—2, or more weakly first Ignoring fluctuations about the mean field theory is also
order, like~1/N asN—oo [11]? justified from the viewpoint of an expansion in a large num-
Whatever the order of the deconfining phase transitionber of colorsN— [27,30,33. The free energy in the con-
one can write a mean field theory in which the free energy irfined phase is of order one, while itisN? in the deconfined

w2, 11?2, w(T2 w(HZT2. (10

These models give a qualitative picture of the deconfinin
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phase. The term-N? in the free energy is due entirely to the  If the chiral order parameter &, then it couples t&(3)
condensate, taking,~ 1 andb,~NZ2. Even though there are |-spins through the coupling |I|?tr(WT¥). Lattice simula-
~N2 of them, theSU(N) T,-spins only contribute to the tions find that the chiral and deconfining transitions occur at
pressure at-1, since they are bound into color singlet glue- approximately the same temperature. This naturally results if

eni ; _ this coupling constant is positive, as condensation in one
E?QI]I;. TheZ(N) I-spins also contribute-1 to the free en field tends to suppress condensation in the other. Coherent

scillations in thd-field couple to light mesons through such
: 'have .conce.ntrated on the pure glue theory becquse n% term, and can produce large fluctuations in the average
merical simulations have demonstrated the following re

; “pion momentuni37].
markable property7,8]. If p/(n..T*) is plotted versug /T, This uniform increase in correlation lengths ndaris a

the resulting curve is nearly univer;al, and looks very similarunique prediction of th&(3) mean field theory. In quasipar-
whether or not there are dynamical quarks present. Thgcje models of the quark-gluon plasma, the pressure is tuned
present model predicts that the pressure is the same becayg&anish aff, by the introduction of a bag constant. In order
the (renorr_nallzec[33]) Wilson line is the same. In terms of o the energy to decrease @&s-T, , though, the quasipar-
the potential, Eq(11), the differences in the ideal gas values, ticles must become heavier, not lighter; that is, instead of
n., are absorbed intb,, with the sameb,(T/T). increasing, most correlation lengths decrefdsé].

Quarks act like a background magnetic field for the real At nonzero quark chemical potential, presumably there
part of| [14,36. Because the pure glue transition is weaklyis little change if the quarks are hot and dilute: for small
first order, it is not difficult for quarks to wipe out the de- /T, theZ(3) I-spins should still exhibit nearly second order
confining transition altogether, leaving either a chiral transi-behavior. | contrast this with th@ossible critical endpoint
tion or just crossover behavior. Even so, what is relevanof the chiral transition in the.—T plane[38]. The correla-
here is that for three colors and two or three flavors oftion length of the sigma meson truly diverges at the critical
quarks, the pressure far<T. is always much smaller than endpoint, but this only occurs at one special valueuof
that forT>T,; that is, up, down, and strange quarks act likeMoreover, the sigma meson does not dominate the free en-
a weak magnetic field for th&(3) |-spins. ergy, nor generic particle production. For cold, dense quark

| thus come to the central physical point of this paper. Thematter,u>T, | do not see whyZ(3) I-spins should domi-
lattice tells us that the deconfining transition in pure gluenate the free energy. o
SU(3) theory is close to the second order transition for ! conclude by noting that the generalization of the Debye
SU(2); further, that the effects of quarks are small, exceptNass term-~trAg, to real scattering processes produces hard
close toT,. | suggest that what is important is not whether theérmal loops[39]. This is then the I'rSt term in an infinite
the weakly first order transition persists with quarks, but thaf€ries of such terms, continuingtrA,, etc. The natural ex-
the nearly second order transition very well might. In the Pansion is not in powers @,, but in powers of the Wilson
pure glue theory, a§—T; , the ratio of the screening mass "€ @S in Eq.(5). It is then of great interest to know the

) analytic continuation of the Wilson line to real scattering
to the temperature decreases by a factor of ten: fro?b at

I 7 . ) processe$40].
T~2T; to ~.25 atT~T¢ [9]. Similarly, the string tension | benefited from discussions with K. Eskola, F. Gelis, K.

at T~T, is ten times smaller than that at zero temperatur&ajantie, F. Karsch, C. P. Korthals-Altes, M. Laine, D.
[9]. With quarks, the increase in the correlation lengthifisr  Miller, S. Ohta, A. Peshier, D. H. Rischke, M. Wingafer
presumably less; maybe not ten, but perhaps a factor of fivehe argument if21]), L. Yaffe, and, especially, M. Creutz.
or so. And most importantly, if the pressure beldw is  This work was supported by DOE Grant No. DE-AC02-
small, it might be justified to use th#(3) mean field theory. 76CH00016.
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