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Quark-gluon plasma as a condensate ofZ„3… Wilson lines
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Effective theories for the thermal Wilson line are constructed in anSU(N) gauge theory at nonzero tem-
perature. I propose that the order of the deconfining phase transition forZ(N) Wilson lines is governed by the
behavior ofSU(N) Wilson lines. In a mean field theory, the free energy in the deconfined phase is controlled
by the condensate forZ(N) Wilson lines. Numerical simulations on the lattice, and the mean field theory for
Z(3) Wilson lines, suggest that about any finite temperature transition in QCD the dominant correlation length
increases by a large, uniform factor, of order five.

PACS number~s!: 12.38.Mh, 11.10.Wx
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A new phase of matter, the quark-gluon plasma, might
produced in the collisions of large nuclei at very high en
gies. By asymptotic freedom, the pressure approaches
ideal gas value in the limit of high temperature, and so i
natural to think of the high temperature phase of QCD a
gas of quasiparticles@1,2#.

It is known, however, that the high temperature phase
purely glue theory is like the low temperature phase of a s
system. The magnetization in the high temperature phas
SU(N) gauge theory is aZ(N) spin, proportional to the trace
of the thermal Wilson line@3#.

In this paper I construct effective Lagrangians for t
thermal Wilson line, considered as a fullSU(N) matrix, as
well as its trace. This leads to novel sigma models of adjo
SU(N) fields. Although the critical behavior is inexorab
governed by the fixed point ofZ(N) spins @3#, the SU(N)
spins can be important. In particular, they help explain w
the order of the deconfining transition appears to change
N: from second order forN52 @4–6#, to weakly first order
for N53 @7–10#, and to first order forN>4 @11,12#. Fur-
ther, the picture of the high temperature phase is turned
its head: the pressure is not due to quasiparticles@1,2#, but is
a potential for a condensate ofZ(N) Wilson lines. A mean
field theory then suggests that because the deconfining
sition in pure glueSU(3) is weakly first order, QCD is nea
a critical point. About the transition, the dominant corre
tion lengths increase by a large factor, of order five@9#.

I concentrate on the pure glue theory; later I argue w
this is legitimate, using the lattice data and the effect
theory. The thermal Wilson line is@3,13#

L ~x!5P expS igE
0

1/T

A0~x,t! dt D , ~1!

whereP is path ordering,g is the gauge coupling constan
A0 is the time component of the vector potential in the fu
damental representation,x is the coordinate for three spatia
dimensions, andt represents Euclidean time at a temperat
T. The Wilson line in Eq.~1! is a product ofSU(N) matri-
ces, and so is itself aSU(N) matrix, satisfying
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L†~x! L ~x!51, det„L ~x!…51. ~2!

Without quarks, the allowed gauge transformations are p
odic up to an element of a globalZ(N) symmetry@3#:

L ~x!→exp~2p i /N!V†~x!L ~x!V~x!, ~3!

V(x)5V(x,0). L (x) transforms as an adjoint field unde
local SU(N) gauge transformations in three dimensions, a
as a vector under globalZ(N) transformations.

Effective theories forL (x) are dictated by the symmetrie
of Eq. ~3!. I begin with the nonlinear form, where Eq.~2! is
taken as a constraint onL . I construct an effective theory in
three spatial dimensions, valid for distances@1/T, by cou-
pling the gauge potentials for static magnetic fields,
Ai(x)’s, to the Wilson line,L (x):

L05
1

2
tr~Gi j

2 !1T2a1 truDiL u2, a15
1

g2
1 . . . . ~4!

The first term is the standard Lagrangian for staticAi fields
@by choice,Ai has dimensions of mass; all Lagrangians ha
dimensions of~mass!4#. In the second term, I start with th
electric part of the gauge Lagrangian,;truDiA0u2, and as-
sume that it transmutes into a gauge invariant kinetic te
for L (x). This is the continuum form of the lattice model o
Banks and Ukawa@14#.

Notice the factor ofT2 in front of the kinetic term forL .
This arises because the Wilson line is a phase in color sp
and so every element is a dimensionless pure number. T
in any effective Lagrangian, dimensions can only be ma
up by powers of the temperatureT.

Consider the somewhat peculiar limit in which one dro
the coupling to theAi ’s, by takingg→0, but retainsLÞ1.
Then Eq.~4! reduces a nonlinear sigma model in three
mensions, with Lagrangian;tru] iL u2. With the constraints
of Eq. ~2!, the theory is invariant underL→V1LV2, where
V1 andV2 are independent, constantSU(N) matrices. This
is an enhanced global symmetry ofSU(N)3SU(N) @times
the usual globalZ(N) symmetry#. As a sigma model, it is
possible to impose other constraints uponL beyond those of
Eq. ~2!. For example, requiring trL to be some fixed numbe
produces a sigma model on a symmetric space@15#.
©2000 The American Physical Society01-1
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At nonzero coupling,L is simply an adjoint field unde
the localSU(N) symmetry. Even with the constraints of E
~2!, the reduced symmetry implies that many more ter
arise: instead of trL being fixed, as for symmetric spac
arbitrary traces, such as trL p for integer p, are allowed.
Mathematically, trL p is related to the trace of the Wilson lin
in higher representations@16#.

At one loop order, the terms up to fourth order inA0 have
been computed. The quadratic term,;tr(A0

2) @17,18#, is the
Debye mass for the gluon. ForN>4, there are two indepen
dent quartic terms,;„tr(A0

2)…2 and ;tr(A0
4) @19,20#, which

represent a potential forA0. From Eq.~1!, it is easy to turn a
potential forA0 into one forL :

L15T4
„c2utrL u21c4utrL2u21c48~ utrL u2!2

…. ~5!

Expanding to ;A0
4 fixes c252(413/p2)/9, c451(1

13/p2)/36, andc4850. The rational terms inc2 andc4 are
from the Debye mass, while those;1/p2 arise from quartic
terms in the potential forA0. Only two constants,c2 andc4,
are needed to fit three terms in theA0 potential. IfNf flavors
of massless quarks are included,c2 andc4 change, whilec48
is then nonzero.

The signs ofc2 andc4 are interesting. AsL;2g2A0
2, a

positive Debye mass corresponds to negativec2. The cou-
pling c4 is like the quartic term inA0, and so positive. Nega
tive c2 favors condensation in a direction in whichutrL u2 is
maximized. This happens whenL is an element of the cente
@21#,

^L &5exp~2p i j /N!l 01, ~6!

j 50 . . . (N21). Different j are the usualN degenerate
vacua of the brokenZ(N) global symmetry.

In Eq. ~6! I introduce an expectation value,l 05^ l &, where
l is defined in Eq.~8!. In perturbation theory,l 051, but l 0 is
a function of temperature; it vanishes at the critical tempe
ture,Tc , and in the confined phase, forT,Tc .

I assume that in the deconfined phase,T.Tc , the stable
vacuum is that which maximizesutrL u2, so thatL condenses
as in Eq.~6!. An expectation value for a field in the funda
mental representation always breaks the gauge symm
but uniquely for an adjoint field, a vacuum expectation va
proportional to the unit matrix does not: Eq.~6! is invariant
under arbitrary local gauge rotations. Similarly, the adjo
covariant derivative in Eq.~4! is DiL5] iL2 ig@Ai ,L #, so
with Eq. ~6!, the static magnetic gluons do not acquire
mass whenL condenses,l 0Þ0. Thus Eq.~6! is the nonper-
turbative statement that electric screening does not gene
screening for static magnetic fields@13,20,22#.

The terms in Eq.~5! are invariant under a global symme
try of U(1). There are also terms which reduce thisU(1) to
Z(N). For N53, the simplest examples include

detL1c.c., ~ trL !31c.c., trL ~ trL2!1c.c. . ~7!

The first term, detL , is SU(3)3SU(3) symmetric, while the
others are onlySU(3) symmetric.
11150
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There are also a wide variety of kinetic terms possib
These include u] i trL u2, u] i trL

2u2, and utrL u2truDiL u2,
amongst others. At one loop order, the kinetic term in Eq.~3!
is renormalized, and terms such as these may be gener
present calculations cannot distinguish them@23#. Even for
g50, none of these new kinetic terms are invariant un
SU(N)3SU(N).

The potential in Eq.~5! is only illustrative. In perturbation
theory, one expands aboutL;1, which does not allow one
to uniquely fix the coefficients of a potential forL . Through
numerical simulations, effective theories forA0 @20# and L
could be matched by comparing physical correlation leng
at an intermediate temperature scale, say, at several time
critical temperature.

Now consider a point of second order transition, whe
l 0(T)→0. Then powers ofL are suppressed, and it is se
sible to construct a linear sigma model. This is done by
troducing a block spinL , formed by a gauge covariant ave
age ofL over some region of space@24#. Any SU(N) matrix
can be written as

L ~x!5 l ~x!112i l̃ a~x!ta, ~8!

where ta are the generators ofSU(N), and a51 . . . (N2

21). For generalN, l and l̃ a are complex valued, and Eq
~2! imposesN211 constraints.

I start with the case of two colors, which is special. Fo
constraints of Eq.~2! are satisfied in an especially simp
manner: the imaginary parts ofl and l̃ a vanish. This leaves
one constraint, which isl 21 l̃ a

251; thus l and l̃ a form a
vector representation ofSU(2)3SU(2)5O(4). After aver-
aging, the constraint on theO(4) norm is lost, as is typical in
a linear model. Averaging still leavesl and l̃ a as real valued
fields, though. Up to quartic order, the most general L
grangian is

L5
1

2
tr~Gi j

2 !1
1

2
~] i l !

21truDi l̃ u22m1~ l 21 l̃ a
2!

2m2l 21l1~ l 21 l̃ a
2!21l2 l 41l3 l 2 l̃ a

2. ~9!

The l -field is a color singlet, whilel̃ a is an adjointSU(2)
field. The terms;m1 andl1 areO(4) symmetric; with the
kinetic terms, they correspond to the gauged nonlinear sig
model of Eq.~4!. The other terms,;m2 , l2 andl3, corre-
spond to the potential for the Wilson line in Eq.~5!. A factor
of T has been absorbed into the definition ofl and l̃ a .

When N>3, the constraints of Eq.~2! are nonlinear.
Since a sum of two special unitary matrices is not necessa
special unitary, the averageL must be taken to be a comple
N3N matrix. ThusL includes a complex valued, color sin
glet field, l , which I call aZ(N) spin, and a complex valued
color adjoint field,l̃ a , which I call aSU(N) spin.

Linear models like Eq.~9! can be written down forN
>3, although there is a plethora of terms. At quartic ord
there is one term which isO(2N2) symmetric, (trL†L )2,
1-2
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another which isSU(N)3SU(N) symmetric, tr(L†L )2, and

terms which are only invariant underSU(N), such as (l̃
[ l̃ ata):

~ u l u2!2, l tr~ l̃ †!2l̃ 1c.c., l 2 tr~ l̃ †!21c.c.,

~ tr l̃ † l̃ !2, utr l̃ 2u2, tr~ l̃ † l̃ !2, tr~ l̃ †!2 l̃ 2. ~10!

These models give a qualitative picture of the deconfin
phase transition: I assume that while only theZ(N) l -spins
condense,̂l &[ l 0Þ0, the transition is driven by the behavio
of theSU(N) l̃ a-spins. This picture is based on the nonline
model: at weak coupling, Eq.~4! dominates other terms
such as Eq.~5!, by ;1/g2. Now certainly all coupling con-
stants change withT, as can be seen from the temperatu
dependence of the Debye mass@18#. Nevertheless, I assum
that theSU(N) l̃ a-spins dominate right down to the point o
the deconfining phase transition. The only purpose of te
such as Eq.~5! is to ensure that condensation which respe
the localSU(N) symmetry, Eq.~6!, is favored.

For two colors, the influence of theSU(2) l̃ a-spins on the
Z(2) l -spins is subtle. Assume that only theO(4) symmetric
mass,m1, changes. The phase transition in a gaugedSU(2)
model is known from lattice studies of the electroweak ph
transition @25#. I assume that one is always in an extrem
type-II regime, so that the second orderO(4) transition of
the model withg50 ~the point B2 of Fig. ~1! in @25#! is
washed out by confinement of non-Abelian gauge fields. T
only transition is a point at which theZ(2) l -spins become
massless; theSU(2) l̃ a-spins are always massive. Lattic
studies confirm a second order transition in theZ(2) univer-
sality class@5#.

For N>3, theSU(N) l̃ a-spins can have first order tran
sitions. This is because in the absence of gauge fie
SU(N)3SU(N) spin models have first order transition
both in mean field theory@26# and in an expansion about
2e dimensions@25#. As suggested in@25#, in the extreme
type-II regime, confinement of the gauge fields need
wash out the first order transition ofSU(N)3SU(N) spins
~above the pointB3 in Fig. ~2! of @25#!, and so the deconfin
ing transition can remain first order. In particular, the tran
tion can be of first order asN→`. This is in accord with a
lattice analysis of Gocksch and Neri@27,28#, and contrary to
previous speculation@11,30#.

For three colors, this implies that the deconfining tran
tion is of first order not only because of cubic invariants@3#,
as in Eq.~7!, but because of the dynamics ofSU(3) l̃ a-spins.
Relative to the ideal gas, the latent heat for three color
;1/3 @7#. As could have been guessed from the lattice d
alone, perhaps the deconfining transition is weakly first or
for N53 because it is near the second order transition
N52. Thus it is of value to know how the latent heat f
N54 compares to that forN53: is it more strongly first
order, such as;(N22)/N as N→2, or more weakly first
order, like;1/N asN→` @11#?

Whatever the order of the deconfining phase transiti
one can write a mean field theory in which the free energy
11150
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the deconfined phase is controlled by a potential for
Z(N) Wilson lines. For three colors, this is@3,11#

V5~22b2 u l u21b3~ l 31~ l * !3!1~ u l u2!2!b4T4 . ~11!

l is complex valued, so whenb3Þ0, the global symmetry is
reduced fromO(2) to Z(3). Thecouplingb3 must be small
for the transition to be weakly first order@31#, so for now I
ignore it, considering the potential just as a function ofb2
andb4. This is similar to the case of two colors, wherel is a
real field, and the potential is just a sum of two terms,;b2l 2

and;b4l 4 @32#.
In speaking of the Wilson line, I implicitly assume that

is possible to extract a renormalized value@33# from the bare
quantity @34#. If so, then givenl 0(T) and the pressure, on
could fit to a potential like Eq.~11!; for example, is it nec-
essary to include higher powers ofl in V?

The novel aspect of Eq.~11! is my insistence that becaus
l is a dimensionless field, the dimensions inV must be made
up by the temperatureT. In mean field theory,b4 is taken as
constant, andb2 varies with temperature, vanishing atTc .
The pressure is given by the minimum of the potential,p
5b2

2b4T4, and vanishes in the confined phase,T,Tc . That
is, with the overallT4 in the potential, the pressure is like
gas of quasiparticles, albeit with a variable number of d
grees of freedom, which vanish atTc .

At high temperature,b2→1 so thatl 0→1. The quartic
coupling is fixed by the ideal gas limit: ifn`5p/T4 as T
→`, b45n` . Lattice simulations@4–10# find that thep/T4

is relatively flat down to a scale which is several timesTc
~call it kTc ); the same is found from resummations of pe
turbation theory@2#. (k might be defined as the lowest valu
where l 0'1.! Hence I assume thatb2 and b4 are slowly
varying down tokTc .

BetweenkTc andTc , I assume thatb4 is essentially con-
stant, whileb2 varies. In particular, the trace of the energ
momentum tensor, divided byT4, is (e23p)/T4

5T](b2
2b4)/]T. Lattice simulations find that this quantit

has a peak just aboveTc @4–10#; this is then due to the rapid
variation ofb2 with temperature@32#.

In theZ(N) mean field theory, the pressure includes on
the contribution of the potential, and nothing from fluctu
tions in the effective fields, either from theZ(N) l -spins or
the SU(N) l̃ a-spins. Fluctuations in these fields do,
course, contribute to the pressure at all temperatures. S
by construction the pressure in the mean field approxima
vanishes forT,Tc , one condition for its validity is that the
pressure in the confined phase is small. This is what pre
lattice simulations find. Physically, these fields do not co
tribute much to the pressure because they are heavy:
SU~N! l̃ a-spins are always so, and theZ(N) l -spins are usu-
ally so. For two or three colors, thel -spins do become ligh
in a narrow band in temperature aboutTc , where mean field
theory fails@32#.

Ignoring fluctuations about the mean field theory is a
justified from the viewpoint of an expansion in a large nu
ber of colors,N→` @27,30,35#. The free energy in the con
fined phase is of order one, while it is;N2 in the deconfined
1-3
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phase. The term;N2 in the free energy is due entirely to th
condensate, takingb2;1 andb4;N2. Even though there are
;N2 of them, theSU(N) l̃ a-spins only contribute to the
pressure at;1, since they are bound into color singlet glu
balls. TheZ(N) l -spins also contribute;1 to the free en-
ergy.

I have concentrated on the pure glue theory because
merical simulations have demonstrated the following
markable property@7,8#. If p/(n`T4) is plotted versusT/Tc ,
the resulting curve is nearly universal, and looks very sim
whether or not there are dynamical quarks present.
present model predicts that the pressure is the same bec
the ~renormalized@33#! Wilson line is the same. In terms o
the potential, Eq.~11!, the differences in the ideal gas value
n` , are absorbed intob4, with the sameb2(T/Tc).

Quarks act like a background magnetic field for the r
part of l @14,36#. Because the pure glue transition is weak
first order, it is not difficult for quarks to wipe out the de
confining transition altogether, leaving either a chiral tran
tion or just crossover behavior. Even so, what is relev
here is that for three colors and two or three flavors
quarks, the pressure forT,Tc is always much smaller tha
that forT.Tc ; that is, up, down, and strange quarks act li
a weak magnetic field for theZ(3) l -spins.

I thus come to the central physical point of this paper. T
lattice tells us that the deconfining transition in pure g
SU(3) theory is close to the second order transition
SU(2); further, that the effects of quarks are small, exc
close toTc . I suggest that what is important is not wheth
the weakly first order transition persists with quarks, but t
the nearly second order transition very well might. In th
pure glue theory, asT→Tc

1 , the ratio of the screening mas
to the temperature decreases by a factor of ten: from;2.5 at
T;2Tc to ;.25 atT;Tc

1 @9#. Similarly, the string tension
at T;Tc

2 is ten times smaller than that at zero temperat
@9#. With quarks, the increase in the correlation length forl is
presumably less; maybe not ten, but perhaps a factor of
or so. And most importantly, if the pressure belowTc is
small, it might be justified to use theZ(3) mean field theory.
ff
.

e

et

, Z
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If the chiral order parameter isC, then it couples toZ(3)
l -spins through the coupling1u l u2tr(C†C). Lattice simula-
tions find that the chiral and deconfining transitions occur
approximately the same temperature. This naturally resul
this coupling constant is positive, as condensation in o
field tends to suppress condensation in the other. Cohe
oscillations in thel -field couple to light mesons through suc
a term, and can produce large fluctuations in the aver
pion momentum@37#.

This uniform increase in correlation lengths nearTc is a
unique prediction of theZ(3) mean field theory. In quasipar
ticle models of the quark-gluon plasma, the pressure is tu
to vanish atTc by the introduction of a bag constant. In ord
for the energy to decrease asT→Tc

1 , though, the quasipar
ticles must become heavier, not lighter; that is, instead
increasing, most correlation lengths decrease@1,2#.

At nonzero quark chemical potential,m, presumably there
is little change if the quarks are hot and dilute: for sm
m/T, theZ(3) l -spins should still exhibit nearly second ord
behavior. I contrast this with the~possible! critical endpoint
of the chiral transition in them2T plane@38#. The correla-
tion length of the sigma meson truly diverges at the criti
endpoint, but this only occurs at one special value ofm.
Moreover, the sigma meson does not dominate the free
ergy, nor generic particle production. For cold, dense qu
matter,m@T, I do not see whyZ(3) l -spins should domi-
nate the free energy.

I conclude by noting that the generalization of the Deb
mass term,;trA0

2, to real scattering processes produces h
thermal loops@39#. This is then the first term in an infinite
series of such terms, continuing;trA0

4, etc. The natural ex-
pansion is not in powers ofA0, but in powers of the Wilson
line, as in Eq.~5!. It is then of great interest to know th
analytic continuation of the Wilson line to real scatterin
processes@40#.

I benefited from discussions with K. Eskola, F. Gelis,
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