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O(a?T",a’I') binding effects in orthopositronium decay
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We present a new, simplified analysis of the low-energy electron-positron interaction, and use the resulting
effective theory to calculate the binding effects that contribute to the decal/ @fterthopositronium through
O(a®In aT). We express the total decay rate in terms of the annihilation rate for a free electron and positron
at threshold, which has just recently been computed to sufficient precisiorO@dl") result corrects errors
in a previous analysis.

PACS numbd(s): 12.20.Ds, 11.10.Gh

There has been long standing uncertainty regarding a posve do not take the cutoff to infinity at the end of the calcu-
sible disagreement between theoretical and experimental dé&tion; rather it is held fixed at a value of order the electron’s
terminations of the orthopositronium ground-state decay ratenass. Consequently, no divergences occur, and the resulting
[1]. A discrepancy here could have important implications.energy eigenvalue problem can be solved nonperturbatively
For example, it might indicate a failure of perturbative ex-Using simple numerical methods—for example, by evaluat-
pansions ina, the fine structure constant of quantum elec-iNg the matrix elements of the Hamiltonian using a finite
trodynamics(QED); or it could signal the presence of new ba_15|_s set, and then solving a matrix elgenvalut_a problem. This
physical phenomena beyond QED. The decay rate is culiminates thg need for bound—stqte perturbation theory. An—
rently of particular interest because important parts of th?ther feature is that only physical inputs—on-shell scattering
theoretical calculation have recently been completed: in RefMPlitudes, for example—are required from full QED, and

[1] the annihilation rate for a free electron and positron attherefore gauge and QED-regulator independence are ex-

. 5 . _ plicit. Finally, our approach can be adapted in a natural way
threshold is ca!cu_lated througd(ma), wherem |s_the elec to multielectron systems such as helium, where the lack of an
tron mass. This is two powers @f beyond leading order.

: exact zero-order solution and the complexity of bound state
Here we convert this decay rate for a free electron and po

. . o Sﬁerturbation theory makes a nonperturbative solution par-
itron into the decay rate for a positronium atom, the electron:[icumﬂy convenient.

positron bound state. We also calculate new contributions at \we now proceed to the effective Hamiltonian. We work

O(a’Inal). in the center-of-momentum frame of the electron and posi-
Traditionally, precision bound-state calculations havetron, and consider only states of orbital angular momentum 0

been formulated within the context of quantum field theory.(SStateg;, and spin 1(triplet- or ortho-states In order to

A Bethe-Salpeter analysis is an example; more recently, thghake use of the threshold results[ii, we give the photon

nonrelativistic QED (NRQED) effective field theory ap- a small mass\, which is taken to O after the determination

proach has often been us¢a,4]. It is, however, much sim-  of the local operator coefficients; the three final-state photons

pler to recast the problem within the familiar framework of are not given a mass.

nonrelativistic quantum mechani¢8]. Long-range QED in- We begin with Hamiltonian

teractions correspond to standard long-range potentials in the

nonrelativistic Hamiltonian, while short-distance effects are p2  p*

described by a small number of local operators whose coef- H~ ™ m +V+iw 1)

ficients must be determined by comparing with the complete,

relativistic formulation of QED. Here we relate the short- . .

distance coefficients in the positronium Hamiltonian to thewf?erfv ??ﬁwarﬁ I;Iern;man. Po;ﬁgtlew aci:o;mts Iflort:]he

threshold annihilation rate computed [ih], thereby obtain- etects ot three-photon decay, whisaccounts O“;‘ other
interactions. To determine corrections throu@Qlia“I") or

ing the full Hamiltonian needed for computing the decayO 3T d retai | inilation t that
rate. The decay rate enters our formalism through the non= («°T'), we need retain only nonannihilation terms that con-

Hermiticity of our Hamiltonian and the complex energiestribu‘tle to the %ositroniuns_state binding energy through
that resultT = — 2 ImE. O(a™m) or O(a@>m), respectively. We writ&/ as the sum of

The methods used in this paper are new to QED applicat—hree terms,

tions, and have a number of desirable features. A finite ul-
traviolet cutoff is built into our Hamiltonian. This cutoff ex-

cludes high-momentum states that are poorly described b\X/
the nonrelativistic dynamics. Unlike traditional approachesC

V(E)=Vo+ Vet Vid E), (2

here the Coulomb potentid, and the leading relativistic
orrectionsV g are given by
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N AT [1—K|? @
exp — .
2m? 2A2

We have introduced Gaussian factors to suppress the potentials at high momentum. Typically we take the ultraviolet cutoff
A~m, although our final decay rate {and must be A independent. With potentialé, andV,, in place, our Hamiltonian
correctly reproduces the QED amplitude for one-photon exchange and one-photon virtual annihilation to lowest and first order
in (v/c)? (of the electroi V ,E) accounts for one-loop radiative corrections:
2
i p
'exp ——| |k
p p( 2 A2> k)

m/4
p2/m+V,—E

IV EYK) = — L( pz) | (p2Im+Vo—E)|
= exp —— m+Vo—E)In

14a2I [ —K| [1-K|? +a2 . 224D [1-K|? 5
a2 Tz SR T e | gt ain2eDiexy — T n ) ©
|
V,.{E) gives in positronium the analogue of the nonrecoilwhere
Lamb shift and the recoil Salpeter correction in hydrogen.
The final term is a local operator accounting for effects at
high momentum; parametéris a counterterm which will be Ho(E) = p—2+V E)— i(E—V )2 ©
determined shortly. olB)= m ( 4m 0/

The annihilation of the electron and positron occurs over
distances of ordeAx~1/m, which are much smaller than
wavelengths typical of the electron and positron in the atom, _ 1
A=~ 1/am. Thus the annihilation potenti&V consists entirely W(E) =W+t 35— (E=Vo)(Wo+Wy). (10
. ) . X : m
of short-distance interactions, which, to the order of interest,
can be parametrized f@ states as follows:

PotentialsV [Egs.(2), (3), (4), (5)], Vo [EQ. (3)], andW [Eq.
(6)] are given above, and

<I|W|k>=A(O) (1+ aAM + o?AP) + o3 AR))
E 1 —k|? (HWolky=(I|W,|k)/AD=AOex =K (11
+(B(°)+aB(1))E}ex -] ©® ° ' 202 )

We will adjust parameterd®, A A andB© so that
our Hamiltonian reproduces QED results for electron-
positron annihilation into three photons. Since determinatio
of A® and of B® requires the as-yet unknow®(ma®)
threshold annihilation rate, and the leading term in the mo-
mentum expansion for th®(ma?) rate, respectively, we
simply setA®®=B1)=0. Doing so introduces an error in the D=— 7
decay rate oD(°T).

The p* operator in Eq(1) is ill-defined at high momenta.
To regulate this operator, we replace it by an energy depen-
dent potential[3]: The Hermitian HamiltonianHy(E) is accurate through

O(a®m).
p*—m2[E—(V+iW)]2 (7) The parameters iW are determined by considering the
imaginary part of theSwave scattering amplitude foze
Keeping only the relevant parts of this expression, our final, 3, .eg with electron momentunk in the center-of-

ParameteD in Eq. (5) is tuned to correctly reproduce the

ne-loop contribution t@e— ee threshold scattering, and is
ound to be

—121A m 5(mﬂ
. (12)

36 m A T3ln

effective Hamiltonian is therefore momentum frame; the optical theorem relates this amplitude
o to the free-particle annihilation rate. For smillthe imagi-
H(E)=Hg(E)+iW(E) (8) nary part of this amplitude can be parametrized as
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K2 4 m X
T(k)z% 1+IBE+O — +a 2X+a0+a15+0 ?

+a?(1+21n2 rnz+2 m 1I m+b +0 A +0(a® 13

a’l ( n))\z ao)\ 3n)\ 0 m (). (13

We defineZ(k) using nonrelativistic normalization for the external partic|@$. Parameterd,, B, ag, a;, by are deter-
mined using QED perturbation theof§].

We now calculateZ in our Hamiltonian theory, and adjust the unknown parameters to reproduce the QED result order by
order ina andk?. Matching at lowest order i implies that

AO=75 BO=p+m? A2 (14)

AM and A® are determined by matching ti@(a) andO(a?) contributions inZ{(0), respectively; we obtain

A= +—1 (A +3 A + 7+ A }\+O —)\2 15
=3t =31m/ 3w a5 m WOl ) (15
AD—p. 1[4/A 3A -1 1|A 1 44\/6 |2A2 ) A\S
R A ey B St ety Y R AL m
7|A 5616 2A% 2\ 37 1I ) 7 |[A 83 11y3 11\[A\?
13t 27 | Vg 7)) T3 3 T8 \m) [ T\ 2ar 127 T a8)lm
. 25 4\/3+17 5I ) 1 . 2 . 49 33 1 (A)‘2+O A 16
27 37 18 6" 3V ¥ 6r 27 3)\m m (16

Here y=—4(1)=0.577216 is the Euler constant and  Then the decay rate, to first order i, is
= [dxInx texp(—x?)erf(x)2=0.051428. Having determined
all the necessary parameters, we can now safely sdl. = —2<¢0|V_V(Eo)|l//o> (19
Now that our Hamiltonian is completely specified we fi-
nally solve for the decay rate, given by the imaginary part of
the ground-state energy eigenvalue. Note that due to the =Ty
presence of the cutoff, no divergences occur when calculat-
ing matrix elements, and no intricate limiting procedures are . (1) ) (1) Eo
necessary to solve the eigenvalue problem—renormalization (14 aAT) +BH aB]
is automatic. To avoid dealing with non-Hermitian matrices
we choose to work only to first order in the annihilation
potential W; higher-order terms are suppressed by several
powers ofa beyond the precision of interest.
We first solve the eigenvalue problem fid, where  (O)=(ig|Olhg),  (S3(r))=(m*a®/Bm)M 4,
(av (1) 83(r))=(m*a®/8m)M, andT, is the lowest order
Ho(Eo) | o) =Eo | to), (17) 1S decay rate. The cutoff operators,(r) and é‘i(r)z
— V2 \(r)/4w are defined by Fourier transform:
to obtain the ground-state energy and wave function. The 5
energy dependence #f, is easily handled by iterating the 4—7Tex _a o (r)zlerf Ar 21)
eigenvalue equation, starting with an approximate energy in > 2A2 A r \/_ '
Hy; the answer converges to adequate precision after only a
few iterations. The eigenfunctions for our energy-dependenThe matrix element#l,, M, in Eq. (19) can be evaluated
Hamiltonian must be normalized so thig] for any S state ofH, and the corresponding decay rate com-
puted using this equation. We used bases consisting of 30 to
dHo 60 Gaussians, with varying widths, to diagonalldg. The
(ol 1— a_E|¢°> =1. (18 numerical eigenvalues accurately reproduce 8¢ spec-
E=Ep trum throughO(a°m) [6]. Our ground-state results, for sev-

14+ oA+ @2A@) 4 43AG)

X a®M 1+ (14 aAD) azMz] (20)
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TABLE |. Matrix elements and corrections to the ground-state  TABLE Il. Corrections to decay rate @t =m as a function of
decay rate evaluated at *=137.03599976 as a function of cutoff «. Here AM=a,+2.444821528, AP =h,—2a,+2.444822,

A. To determineX, we setap=a;=by=0. +6.179923, andr, = 1/137.03599976 is the physical valueof
A/m Ml M2 XF o X]"(ls) XF(ZS) XF(3S)
0.25 17839.5823 18.4265 0.5846 0.08 0.5362 2.1012 2.4437
0.5 18249.0812 37.6279 0.8518 0.04 0.7299 2.3607 2.7094
1.0 18405.3892 75.8182 0.8867 0.02 0.8282 2.4870 2.8373
15 18410.4321 113.7030 0.8323 0.01 0.8749 2.5449 2.8949
2.0 18375.7156 151.2649 0.5852 Qphys 0.8867 2.5591 2.9089

0.005 0.8962 2.5703 2.9198
0.0025 0.9057 2.5812 2.9305
eral values of\, are shown in Table I; there we introduce the _.g 0.913 2588 2.936

dimensionless paramet¥-, defined for anysS state by

The coefficient ofe In « is independent of the cutoff. The
nonlogarithmic term ofO(«°I') is cutoff dependent, since

r'(ng= F—g 1+ aag+a?| 3(1+aag)lna+by—2a, we have neglected contributions from the cutoff-dependent
n A® andB™). Using the values foa, andl' in Ref.[1], the
O(a®In aT) contribution amounts to 2:410°° us !, To-
_ ﬁ_ ia In2a+Xp(nS) (22) gether with a small contribution from five-photon decay of
4n? 2w : ' 0.73x10°° ws ! [11], this brings the current theoretical

prediction for the decay rate #=7.039967(10) us .

This definition anticipates the leadingfIn a [9] and &®In« After completing our calculation, we learned of an inde-
[10] contributions, which are correctly reproduced by ourPendentanalysis @(a’in al’) contributions to positronium
numerical analysis. The final results ff are almost inde- decay by Kniehl and Penifi2]. Our result,—0.665 for the
pendent ofA, while the changes in the matrix elements from co€fficient independent dd,, disagreed with their original
oneA to the next are two orders of magnitude larger than ~ result, —(4/5+8In 2/3)/m=—0.8430. To verify our analy-
itself. Renormalization theory guarantees thatlependence SiS. we compared it with published results@(a°In ) con-

due to the matrix elements cancels, in the final answerfibutions to muonium hyperfine splitiniFS). The HFS
againstA dependence due to coefficie®t&), A® ands(®  results involve the same operators, with different coeffi-
in the annihilation potentiaW. The residualA dependence Ci€nts, as those con?rlbutlng at the same relative order in the
in X, is due to our approximations in potentialandWw, the _decay_ rate. Te_rms in the orthopositronium de_cay rate not
dominant effect being @ (°T") where we have left out the nvolving a, arise from second-order perturbations 4,
contributions fromA® andB™). These contributions can be With the leading decay operator,

large if A is set much different fronm, as is evident from

Table I; but they are of orderxaI'; whenA~m. The A or :2<V’a°GbG(r)> + < aVrad> (24)
dependence of our answers would be 100 times smaller Lo (%)) JE |’

(=1/a) were we to includA® andB™) in our analysis, or

even just theA -dependent parts of these couplings. whereG is the Coulomb Green'’s function with the ground

Our calculation is nonperturbative in potentdland so  state pole removed, and expectation values are taken be-
automatically includes order®I" (and higher-ordgrcorrec-  tween unperturbed Coulomb eigenfunctiods,q can be ex-
tions to the decay rate. To facilitate comparison with othermpressed as
calculations, we suppressed these higher-order effects by ex-
trapolating our analysis ta=0. Our results for\ =m and a Viad= 50201+ §@?0,+ (:In2—35) 2?05, (25
range ofa’s are shown in Table II, along with the extrapo-
lated values for §, 2S, and 3 decay rates. The results are where
accurate to within 1 in the last digit shown. Thé& tesult
agrees well with the analytic result ji].

Since the analysis would be complete throu@tbe°I") 1 i p>  a m,/2
with the inclusion of the operators parametrizedAfy) and 0,= e o —alr—E
B™), and since neither of these operators generates factors of Py
Ina, the complete contribution in the decay rate of
O(a®lnal’) is already present, along with that of
O(a®In?al’). By examining thea dependence oKy, we
find |

(1105/k)y=—In

7Tamr2 2m, r

(26)

1
) <||03|k>:_2-
m

3||—\
=N

Xr(1S)=0.913-0.665a In a+O(a). (23

=
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The reduced mas®, equalsm/2 in positronium. The logarithmic parts of the matrix elements for the second-order perturba-
tions can be inferred, for the most part, directly from the HFS pajle3d4:

% 59 —41Ina—8(—In2+3/M4)Ina, i=1,
zwzsi—(r»+<‘;—(;‘> ~Sxi mfat@in2-Dina, =2, 27)
(8°() 2Ina, =3,

The only exception is the coefficient (2 Ir2) of Ina for  in complete agreement with our numerical result.

O,. A partial analysis in Ref.14] gives (2 In2+-2) in place Soon after performing this additional check, we received
of (2 In2-1). We have calculated the full contribution ana- word from the authors of Ref12] that they had found a
lytically, and find the result shown in ER7) [15]. We have contribution missing from their analysis which accounts for
also verified the results in E€7) by direct numerical evalu- the original disagreement. At the same time, we learned that
ation, using our Gaussian basis set. Nonlogarithmic terms gt third group[16] has also calculated tH®(a°In al’) con-
0(a®,al) are cutoff dependent, but the logarithmic termstributions and arrived at the same answer.

were cutoff independent, as expected. Combining our ana- We thank the authors of RefL] for sharing their results
lytic results with those in Ref1], our Eq.(23) becomes with us before they were published, and acknowledge discus-
sions with B. Kniehl and A. Penin. We also thank Patrick

X (1S) = 1_1_ E h2+81in2— %9) Eln o, (28 Labelle for several conyersations. This work was supported
8 3 30/ 7 by a grant from the National Science Foundation.
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