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O„a2G,a3G… binding effects in orthopositronium decay

Richard J. Hill* and G. Peter Lepage†
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~Received 2 March 2000; published 24 October 2000!

We present a new, simplified analysis of the low-energy electron-positron interaction, and use the resulting
effective theory to calculate the binding effects that contribute to the decay rateG of orthopositronium through
O(a3ln a G). We express the total decay rate in terms of the annihilation rate for a free electron and positron
at threshold, which has just recently been computed to sufficient precision. OurO(a2G) result corrects errors
in a previous analysis.

PACS number~s!: 12.20.Ds, 11.10.Gh
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There has been long standing uncertainty regarding a
sible disagreement between theoretical and experimenta
terminations of the orthopositronium ground-state decay
@1#. A discrepancy here could have important implicatio
For example, it might indicate a failure of perturbative e
pansions ina, the fine structure constant of quantum ele
trodynamics~QED!; or it could signal the presence of ne
physical phenomena beyond QED. The decay rate is
rently of particular interest because important parts of
theoretical calculation have recently been completed: in R
@1# the annihilation rate for a free electron and positron
threshold is calculated throughO(ma5), wherem is the elec-
tron mass. This is two powers ofa beyond leading order
Here we convert this decay rate for a free electron and p
itron into the decay rate for a positronium atom, the electr
positron bound state. We also calculate new contribution
O(a3ln a G).

Traditionally, precision bound-state calculations ha
been formulated within the context of quantum field theo
A Bethe-Salpeter analysis is an example; more recently,
nonrelativistic QED ~NRQED! effective field theory ap-
proach has often been used@2,4#. It is, however, much sim-
pler to recast the problem within the familiar framework
nonrelativistic quantum mechanics@3#. Long-range QED in-
teractions correspond to standard long-range potentials in
nonrelativistic Hamiltonian, while short-distance effects a
described by a small number of local operators whose c
ficients must be determined by comparing with the comple
relativistic formulation of QED. Here we relate the sho
distance coefficients in the positronium Hamiltonian to t
threshold annihilation rate computed in@1#, thereby obtain-
ing the full Hamiltonian needed for computing the dec
rate. The decay rate enters our formalism through the n
Hermiticity of our Hamiltonian and the complex energi
that result:G522 ImE.

The methods used in this paper are new to QED appl
tions, and have a number of desirable features. A finite
traviolet cutoff is built into our Hamiltonian. This cutoff ex
cludes high-momentum states that are poorly described
the nonrelativistic dynamics. Unlike traditional approach
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we do not take the cutoff to infinity at the end of the calc
lation; rather it is held fixed at a value of order the electro
mass. Consequently, no divergences occur, and the resu
energy eigenvalue problem can be solved nonperturbati
using simple numerical methods—for example, by evalu
ing the matrix elements of the Hamiltonian using a fin
basis set, and then solving a matrix eigenvalue problem. T
eliminates the need for bound-state perturbation theory.
other feature is that only physical inputs—on-shell scatter
amplitudes, for example—are required from full QED, a
therefore gauge and QED-regulator independence are
plicit. Finally, our approach can be adapted in a natural w
to multielectron systems such as helium, where the lack o
exact zero-order solution and the complexity of bound st
perturbation theory makes a nonperturbative solution p
ticularly convenient.

We now proceed to the effective Hamiltonian. We wo
in the center-of-momentum frame of the electron and po
tron, and consider only states of orbital angular momentum
(S-states!, and spin 1~triplet- or ortho-states!. In order to
make use of the threshold results in@1#, we give the photon
a small mass,l, which is taken to 0 after the determinatio
of the local operator coefficients; the three final-state phot
are not given a mass.

We begin with Hamiltonian

H'
p2

m
2

p4

4m3
1V1 iW ~1!

whereV andW are Hermitian. PotentialW accounts for the
effects of three-photon decay, whileV accounts for all other
interactions. To determine corrections throughO(a2G) or
O(a3G), we need retain only nonannihilation terms that co
tribute to the positroniumS-state binding energy throug
O(a4m) or O(a5m), respectively. We writeV as the sum of
three terms,

V~E!5V01Vrel1Vrad~E!, ~2!

where the Coulomb potentialV0 and the leading relativistic
correctionsVrel are given by

^ l uV0uk&5
24pa

u l 2ku21l2
expS 2

u l 2ku21l2

2L2 D , ~3!
©2000 The American Physical Society01-1
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^ l uVreluk&5F 4pa

u l 2ku21l2 S 2

3m2
u l 2ku22

1

2m2
~ l 21k2!D 2

4pa

2L2
1

4pa

4m2

~ l 22k2!2

~ u l 2ku21l2!2GexpS 2
u l 2ku21l2

2L2 D
1

4pa

2m2
expS 2

u l 2ku2

2L2 D . ~4!

We have introduced Gaussian factors to suppress the potentials at high momentum. Typically we take the ultraviol
L'm, although our final decay rate is~and must be! L independent. With potentialsV0 andVrel in place, our Hamiltonian
correctly reproduces the QED amplitude for one-photon exchange and one-photon virtual annihilation to lowest and fi
in (v/c)2 ~of the electron!. Vrad(E) accounts for one-loop radiative corrections:

^ l uVrad~E!uk&5
8a

3pm2
^ l uexpS 2

p2

4L2D pi ~p2/m1V02E!lnS m/4

p2/m1V02E
D pi expS 2

p2

4L2D uk&

1
14a2

3m2
ln

u l 2ku
m/2

expS 2
u l 2ku2

2L2 D 1
a2

m2
$2 74

15 1 2
3 ln 21D%expS 2

u l 2ku2

2L2 D . ~5!
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Vrad(E) gives in positronium the analogue of the nonrec
Lamb shift and the recoil Salpeter correction in hydrog
The final term is a local operator accounting for effects
high momentum; parameterD is a counterterm which will be
determined shortly.

The annihilation of the electron and positron occurs o
distances of orderDx'1/m, which are much smaller tha
wavelengths typical of the electron and positron in the ato
l'1/am. Thus the annihilation potentialW consists entirely
of short-distance interactions, which, to the order of intere
can be parametrized forS states as follows:

^ l uWuk&5A(0)F ~11aA(1)1a2A(2)1a3A(3)!

1~B(0)1aB(1)!
E

mGexpS 2
u l 2ku2

2L2 D . ~6!

We will adjust parametersA(0), A(1), A(2), andB(0) so that
our Hamiltonian reproduces QED results for electro
positron annihilation into three photons. Since determinat
of A(3) and of B(1) requires the as-yet unknownO(ma6)
threshold annihilation rate, and the leading term in the m
mentum expansion for theO(ma4) rate, respectively, we
simply setA(3)5B(1)50. Doing so introduces an error in th
decay rate ofO(a3G).

The p4 operator in Eq.~1! is ill-defined at high momenta
To regulate this operator, we replace it by an energy dep
dent potential@3#:

p4→m2@E2~V1 iW!#2. ~7!

Keeping only the relevant parts of this expression, our fi
effective Hamiltonian is therefore

H~E!5H0~E!1 iW̄~E! ~8!
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where

H0~E!5
p2

m
1V~E!2

1

4m
~E2V0!2, ~9!

W̄~E!5W1
1

2m
~E2V0!~W01W1!. ~10!

PotentialsV @Eqs.~2!, ~3!, ~4!, ~5!#, V0 @Eq. ~3!#, andW @Eq.
~6!# are given above, and

^ l uW0uk&[^ l uW1uk&/A(1)[A(0)expS 2
u l 2ku2

2L2 D . ~11!

ParameterD in Eq. ~5! is tuned to correctly reproduce th
one-loop contribution toeē→eē threshold scattering, and i
found to be

D52ApF2121

36

L

m
29

m

L
1

5

3 S m

L D 3G . ~12!

The Hermitian HamiltonianH0(E) is accurate through
O(a5m).

The parameters inW are determined by considering th
imaginary part of theS-wave scattering amplitude foreē

→3g→eē, with electron momentumk in the center-of-
momentum frame; the optical theorem relates this amplit
to the free-particle annihilation rate. For smallk, the imagi-
nary part of this amplitude can be parametrized as
1-2



der by

RAPID COMMUNICATIONS

O(a2G,a3G) BINDING EFFECTS IN ORTHOPOSITRONIUM DECAY PHYSICAL REVIEW D 62 111301~R!
T~k!5T0H F11b
k2

m2
1OS k4

m4D G1aF2
m

l
1a01a1

l

m
1OS l2

m2D G
1a2F ~112 ln 2!

m2

l2
12a0

m

l
2

1

3
ln

m

l
1b01OS l

mD G1O~a3!J . ~13!

We defineT(k) using nonrelativistic normalization for the external particles@7#. ParametersT0 , b, a0 , a1 , b0 are deter-
mined using QED perturbation theory@5#.

We now calculateT in our Hamiltonian theory, and adjust the unknown parameters to reproduce the QED result or
order ina andk2. Matching at lowest order ina implies that

A(0)5T0 , B(0)5b1m2/L2. ~14!

A(1) andA(2) are determined by matching theO(a) andO(a2) contributions inT(0), respectively; we obtain

A(1)5a01
1

Ap
F4

3 S L

mD13S L

mD 21G1Fa12
7

12
1S L

mD 22G l

m
1OS l2

m2D , ~15!

A(2)5b022a11
1

Ap
F4

3 S L

mD13S L

mD 21Ga01
1

3
ln

L

m
1

1

pAp
H F2

44A6

81 S g2 ln
2L2

3m2
22D G S L

mD 3

1F7

3
ln

L

m
1

56A6

27 S g2 ln
2L2

3m2
2

2

7D 2
37

15
1

1

3
ln 22

7

6
gG S L

mD J 1S 83

24p
2

11A3

12p
1

11

48D S L

mD 2

1S 25

2p
2

4A3

3p
1

17

18
2

5

6
ln 22

1

3
g1

2

Ap
k D 1S 49

6p
2

3A3

2p
2

1

4D S L

mD 22

1OS l

mD . ~16!
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Here g52c(1)50.577216 is the Euler constant andk
[*dx ln x21exp(2x2)erf(x)250.051428. Having determine
all the necessary parameters, we can now safely setl50.

Now that our Hamiltonian is completely specified we
nally solve for the decay rate, given by the imaginary part
the ground-state energy eigenvalue. Note that due to
presence of the cutoff, no divergences occur when calcu
ing matrix elements, and no intricate limiting procedures
necessary to solve the eigenvalue problem—renormaliza
is automatic. To avoid dealing with non-Hermitian matric
we choose to work only to first order in the annihilatio
potential W̄; higher-order terms are suppressed by sev
powers ofa beyond the precision of interest.

We first solve the eigenvalue problem forH0,

H0~E0! uc0&5E0 uc0&, ~17!

to obtain the ground-state energy and wave function. T
energy dependence ofH0 is easily handled by iterating th
eigenvalue equation, starting with an approximate energ
H0; the answer converges to adequate precision after on
few iterations. The eigenfunctions for our energy-depend
Hamiltonian must be normalized so that@8#

^c0u12
]H0

]E
uc0&U

E5E0

51. ~18!
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Then the decay rate, to first order inW̄, is

G522^c0uW̄~E0!uc0& ~19!

5G0H F11aA(1)1a2A(2)1a3A(3)

1@ 1
2 ~11aA(1)!1B(0)1aB(1)#

E0

m G
3a2M11 1

2 ~11aA(1)! a2M2J ~20!

where ^O&[^c0uOuc0&, ^dL
3 (r )&[(m3a5/8p)M1 ,

^avL(r )dL
3 (r )&[(m4a5/8p)M2 andG0 is the lowest order

1S decay rate. The cutoff operatorsvL(r ) and dL
3 (r )5

2¹2vL(r )/4p are defined by Fourier transform:

4p

q2
expS 2

q2

2L2D→vL~r ![
1

r
erfS Lr

A2
D . ~21!

The matrix elementsM1 , M2, in Eq. ~19! can be evaluated
for anySstate ofH0 and the corresponding decay rate co
puted using this equation. We used bases consisting of 3
60 Gaussians, with varying widths, to diagonalizeH0. The
numerical eigenvalues accurately reproduce the3S1 spec-
trum throughO(a5m) @6#. Our ground-state results, for sev
1-3



e

u

m

e

e

ll

e
e

-
re

rs
o
f

ent

of
l

e-

l

ffi-
the
not

d
be-

te
ff

RAPID COMMUNICATIONS

RICHARD J. HILL AND G. PETER LEPAGE PHYSICAL REVIEW D62 111301~R!
eral values ofL, are shown in Table I; there we introduce th
dimensionless parameterXG , defined for anyS state by

G~nS![
G0

n3 S 11aa01a2F 1
3 ~11aa0!ln a1b022a1

2
b

4n2
2

3

2p
a ln2a1XG~nS!G D . ~22!

This definition anticipates the leadinga2ln a @9# anda3ln2a
@10# contributions, which are correctly reproduced by o
numerical analysis. The final results forXG are almost inde-
pendent ofL, while the changes in the matrix elements fro
oneL to the next are two orders of magnitude larger thanXG

itself. Renormalization theory guarantees thatL dependence
due to the matrix elements cancels, in the final answ
againstL dependence due to coefficientsA(1), A(2), andB(0)

in the annihilation potentialW. The residualL dependence
in XG is due to our approximations in potentialsV andW, the
dominant effect being atO(a3G) where we have left out the
contributions fromA(3) andB(1). These contributions can b
large if L is set much different fromm, as is evident from
Table I; but they are of order 13a3G0 whenL'm. TheL
dependence of our answers would be 100 times sma
('1/a) were we to includeA(3) andB(1) in our analysis, or
even just theL-dependent parts of these couplings.

Our calculation is nonperturbative in potentialV and so
automatically includes ordera3G ~and higher-order! correc-
tions to the decay rate. To facilitate comparison with oth
calculations, we suppressed these higher-order effects by
trapolating our analysis toa50. Our results forL5m and a
range ofa ’s are shown in Table II, along with the extrapo
lated values for 1S, 2S, and 3S decay rates. The results a
accurate to within 1 in the last digit shown. The 1S result
agrees well with the analytic result in@1#.

Since the analysis would be complete throughO(a3G)
with the inclusion of the operators parametrized byA(3) and
B(1), and since neither of these operators generates facto
ln a, the complete contribution in the decay rate
O(a3ln a G) is already present, along with that o
O(a3ln2a G). By examining thea dependence ofXG , we
find

XG~1S!50.91320.665a ln a1O~a!. ~23!

TABLE I. Matrix elements and corrections to the ground-sta
decay rate evaluated ata215137.03599976 as a function of cuto
L. To determineXG , we seta05a15b050.

L/m M1 M2 XG

0.25 17839.5823 18.4265 0.5846
0.5 18249.0812 37.6279 0.8518
1.0 18405.3892 75.8182 0.8867
1.5 18410.4321 113.7030 0.8323
2.0 18375.7156 151.2649 0.5852
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The coefficient ofa ln a is independent of the cutoffL. The
nonlogarithmic term ofO(a3G) is cutoff dependent, since
we have neglected contributions from the cutoff-depend
A(3) andB(1). Using the values fora0 andG0 in Ref. @1#, the
O(a3ln a G) contribution amounts to 2.431025 ms21. To-
gether with a small contribution from five-photon decay
0.7331025 ms21 @11#, this brings the current theoretica
prediction for the decay rate toG57.039967(10)ms21.

After completing our calculation, we learned of an ind
pendent analysis ofO(a3ln aG) contributions to positronium
decay by Kniehl and Penin@12#. Our result,20.665 for the
coefficient independent ofa0, disagreed with their origina
result, 2(4/518 ln 2/3)/p520.8430. To verify our analy-
sis, we compared it with published results onO(a3ln a) con-
tributions to muonium hyperfine splitting~HFS!. The HFS
results involve the same operators, with different coe
cients, as those contributing at the same relative order in
decay rate. Terms in the orthopositronium decay rate
involving a0 arise from second-order perturbations ofVrad
with the leading decay operator,

dG

G0
52

^VradG̃d3~r !&

^d3~r !&
1 K ]Vrad

]E L , ~24!

whereG̃ is the Coulomb Green’s function with the groun
state pole removed, and expectation values are taken
tween unperturbed Coulomb eigenfunctions.Vrad can be ex-
pressed as

Vrad5
2
3 a2O11 7

6 a2O21~ 1
6 ln 22 37

30 !a2O3 , ~25!

where

O15
1

pamr
2

pi S p2

2mr
2

a

r
2ED ln

mr /2

p2/2mr2a/r 2E
pi ,

~26!

^ l uO2uk&5
1

mr
2

ln
u l 2ku

mr
, ^ l uO3uk&5

1

mr
2

.

TABLE II. Corrections to decay rate atL5m as a function of
a. Here A(1)5a012.444821528, A(2)5b022a112.444822a0

16.179923, andaphys51/137.03599976 is the physical value ofa.

a XG(1S) XG(2S) XG(3S)

0.08 0.5362 2.1012 2.4437
0.04 0.7299 2.3607 2.7094
0.02 0.8282 2.4870 2.8373
0.01 0.8749 2.5449 2.8949
aphys 0.8867 2.5591 2.9089
0.005 0.8962 2.5703 2.9198
0.0025 0.9057 2.5812 2.9305
→0 0.913 2.588 2.936
1-4
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The reduced massmr equalsm/2 in positronium. The logarithmic parts of the matrix elements for the second-order pert
tions can be inferred, for the most part, directly from the HFS papers@13,14#:

S 2
^OiG̃d3~r !&

^d3~r !&
1 K ]Oi

]E L D→ a

p
3H 24 ln2a28~2 ln 213/4!ln a, i 51,

ln2a1~2 ln 221!ln a, i 52,

2 lna, i 53,

~27!
a-

s
s

n
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for
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us-
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The only exception is the coefficient (2 ln 221) of lna for
O2. A partial analysis in Ref.@14# gives (2 ln 212) in place
of (2 ln 221). We have calculated the full contribution an
lytically, and find the result shown in Eq.~27! @15#. We have
also verified the results in Eq.~27! by direct numerical evalu-
ation, using our Gaussian basis set. Nonlogarithmic term
O(a0,a1) are cutoff dependent, but the logarithmic term
were cutoff independent, as expected. Combining our a
lytic results with those in Ref.@1#, our Eq.~23! becomes

XG~1S!5
11

8
2

2

3
ln 21S 8 ln 22

229

30 D a

p
ln a, ~28!
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in complete agreement with our numerical result.
Soon after performing this additional check, we receiv

word from the authors of Ref.@12# that they had found a
contribution missing from their analysis which accounts
the original disagreement. At the same time, we learned
a third group@16# has also calculated theO(a3ln aG) con-
tributions and arrived at the same answer.

We thank the authors of Ref.@1# for sharing their results
with us before they were published, and acknowledge disc
sions with B. Kniehl and A. Penin. We also thank Patri
Labelle for several conversations. This work was suppor
by a grant from the National Science Foundation.
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