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Topological effects in our brane world from extra dimensions
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The theories in which our world presents a domain wall~brane! embedded in large extra dimensions predict
new types of topological defects. These defects arise due to the fact that the brane on which we live sponta-
neously breaks isometries of the extra space giving mass to some graviphotons. In many cases the correspond-
ing vacuum manifold has nontrivial homotopies—this gives rise to topologically stable defects in four dimen-
sions, such as cosmic strings and monopoles that carry gravimagnetic flux. The core structure of these defects
is somewhat peculiar. Because of the fact that the translation invariance in the extra direction~s! is restored in
their core, they act as ‘‘windows’’ to the extra dimensions. We also discuss the corresponding analogue of the
Alice strings. Encircling such an object one would get transported onto a parallel brane.

PACS number~s!: 11.25.Mj
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I. INTRODUCTION

In the conventional Kaluza-Klein approach@1# the Uni-
verse has a topologyM4^ K, where M4 is our four-
dimensional Minkowski space andK is some compact mani
fold, with the volume typically set by a fundamental Plan
length l Pf

51/MPf
. Isometries ofK are then seen as gaug

symmetries of an effective four-dimensional theory, with t
role of the gauge fields played by extra components of
graviton ~the so-called graviphotons!. In the theories where
our world is a domain wall~brane! embedded in the extradi
mensional space@2,3# the situation drastically changes. Firs
the domain wall allows one@4# to choose a much larger siz
of the extra dimensions,R@ l Pf

. Second, since the branes a

localized inK, they spontaneously break all or a part of t
isometries ofK; the corresponding graviphotons get mass
In our four-dimensional world this breaking is seen as
Higgs effect, where the role of the Goldstone bosons
sorbed by the Higgs mechanism is played by the zero mo
of the broken translational invariance@5,6#.

~In addition in the presence of branesand gravity, the
space-time is not a direct productM4^ K strictly speaking,
due to the gravitational field of the brane. However, at le
for the spaces with the co-dimensionN>2, this effect is of
little importance for the present purposes, and can be
nored. An example of a solution including gravity whic
describes a single brane onM4^ S1 is given in @7#.!

The purpose of the present work is to study possible m
roscopic topological consequences of the above picture
four-dimensional physics. Our starting point is the followin
four observations on which we would like to elaborate.

~i! If the topology ofK is nontrivial and so is that of the
0556-2821/2000/62~10!/106001~8!/$15.00 62 1060
e

s.
a
-

es

t

g-

c-
or

target spaceT ~i.e. the space of fundamental fields1!, there
emerge topologically nontrivial mappingsK→T which are
characterized by various moduli. The moduli become d
namical fields of the low-energy four-dimensional theory.

~ii ! The number of the moduli is equal to or larger th
the number of the symmetries of the theory broken by
mapping under consideration. If the topological number
the mappingK→T is larger than one, this gives rise to ‘‘pa
allel’’ branes and the ‘‘horizontal’’ proliferation of the low
energy four-dimensional fields~multiple generations!. Even
for the unit topological number of the mappingK→T, the
number of the moduli may be significantly larger than t
number of the broken isometries. This phenomenon co
sponds to dynamical symmetries and their Goldstone bos

~iii ! Topology of the moduli space is typically nontrivia
too. In other words, the space of the effective low-ene
four-dimensional fields is topologically nontrivial. This gen
erates physically observable topological defects in our wo

~iv! Inclusion of gravity and its interplay with nontrivia
topology leads to peculiar effects.

1These ‘‘fundamental fields’’ must not be confused with the lo
energy four-dimensional fields; rather the ‘‘fundamental fields’’ a
those of which the domain wall is built. In fact, they need not
‘‘fields’’ since one can consider the emergence of the brane i
wider context of, say, string theory. If the original set-up is sup
symmetric, the mappingK→T may or may not preserve a part o
supersymmetry@3,8#. In the former case the low-energy theory
the moduli fields on the domain wall is supersymmetric. In the la
case this theory is nonsupersymmetric. Of particular interest is
case when the mapping with the unit topological charge
Bogomol’nyi-Prasad-Sommerfield~BPS! saturated, while those
with higher topological charges are non-BPS saturated@9#.
©2000 The American Physical Society01-1
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In this work we will focus on those moduli that corre
spond to the spontaneously broken isometries ofK. Let G be
an isometry group ofK. A given domain wall breaks this
group down to a subgroupH. ThenG/H defines a vacuum
manifold; if homotopies of this manifold are nontrivial, th
theory admits topologically nontrivial stable configuration
This structure has a simple geometric meaning, as seen
rectly from the high-dimensional Universe. Assume, for de
niteness, that the brane at hand is a three-brane. Then i
point onK. The space of all possible locations of the brane
K itself. Now imagine thatpn(K)Þ0. In other words,K
containsn-dimensional closed surfaces that cannot be c
tracted to a point inK.

For n51 and 2, such surfaces can be mapped on
spatial boundary of ourM4. Such configurations will be to
pologically nontrivial; they cannot be deformed to a trivi
vacuum continuously. They correspond to a constant cha
of the position of the brane onK as we travel around a close
surface in 311 dimensions. For instance, atn51 the con-
figuration we will deal with is a cosmic string. Windin
around such a string, the four-dimensional observer w
make a full circle onK along the extra dimension.

An intriguing question is what is the core structure
such defects? Usually the broken symmetries get restore~at
least, partially! in the core of the topological defects. Th
symmetries in question are the translations in the extra sp
Their restoration would mean that there is a ‘‘hole’’ in th
domain wall—in a sense, the topological defects open a d
in the extra space and can link together ‘‘parallel’’ bra
worlds.

The organization of the paper is as follows. In Sec. II
discuss strings, Sec. III is devoted to monopoles, Sec.
deals with the Alice strings, in Sec. V we briefly discu
proliferation of moduli ~some of them may be related t
dynamical rather than geometrical symmetries!. Finally, the
graviphoton mass is considered in the Appendix.

II. THE KALUZA-KLEIN COSMIC STRING

In this section we consider the simplest defect of the ty
discussed above, the Kaluza-Klein cosmic string. Althou
this structure has nothing to do with the classical Kalu
Klein set-up @1#—it exists only in the theories with the
branes—we keep the name ‘‘Kaluza-Klein,’’ since this stri
carries a magnetic flux of the graviphoton field. The ma
netic flux connects the Kaluza-Klein monopoles.

The simplest possibility with nontrivialp1 is to assume
that K5S1. This has the isometry groupG5U(1), broken
by the brane down to identity. The brane position onS1 is
parametrized by one scalar modulusy. This position can
slowly vary withxm , the four-dimensional space-time poin
Thus, the four-dimensional observer will perceivey(xm) as a
low-energy scalar field onM4. The target space ofy is ob-
viously a circleS1. The corresponding fundamental grou
p1(S1)5Z.

We will be interested in the configurations in which th
brane sweeps a full circle aroundK5S1 as we travel along a
four-dimensional closed path at infinity. Let 0<y,L ~the
points 0 andL are identified!, t is time ofM4, while r, u, and
10600
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z are the spatial coordinates onM4 (r and u are the polar
coordinates!. The Kaluza-Klein cosmic string oriented alon
the z axis then corresponds to the following asymptotic co
figuration:

u5
2pny

L
, ~1!

wheren is an integer, the winding number.
In the absence of gravity, such a configuration has a lo

rithmically divergent energy at larger. This divergence
comes from the long-range gradient energy of the Goldst
field living on the brane. At distances@L the only relevant
degree of freedom describing the brane dynamics is
Goldstone modex[ATy(xm) of the broken translational in
variance. HereT is the brane tension~energy per unit three-
surface!. The low-energy Lagrangian obviously has the for
~modulo higher derivatives!

Leff5T„]my~x!…„]my~x!…. ~2!

It is clear that the configuration~1! corresponds to the
winding of the Goldstone field and results in the logarithm
cally divergent energy per unit length of the string,

E;L2T n logr, ~3!

wherer is the maximal distance in the direction perpendic
lar to thez axis along which the string is aligned, andL is the
size of the fifth dimension. Such logarithmically diverge
energy is typical for global cosmic strings. In the case
hand it simply indicates that in the absence of gravity
Kaluza-Klein cosmic strings would be global@10#.

However, in actuality this divergence is compensated
the graviphoton field, which takes a pure gauge form at
finity

Au5
n

g
, ~4!

whereg51/(MPf
L) is an effective gauge coupling. The to

pological defect we deal with here is of the type of a loc
Abrikosov-Nielsen-Olesen string@11#.

We pause here to make an important remark. In the to
logically trivial sector the graviphoton gets mass through
Higgs mechanism—the spontaneous breaking of U~1!. Say,
if the original space is five-dimensional, the graviphot
mass squared is proportional to the brane tension and
versely proportional to the four-dimensional Planck ma
M p

25MPf

3 L ~details are given in the Appendix!

MV
25

T

M p
2

. ~5!

Analogous formulas can be obtained for generalp-branes in
the D-dimensional space-time. Although the above conc
sion has been reached in an effective field theory, it is qu
general and must be applicable to D-branes in string the
too—in the presence of D-branes graviphotons will beco
1-2
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massive. In the weak coupling limit the D-brane tension
very large, it grows asT;M str

4 /gstr and, at the same time, th
Planck mass scales asM p

2;M str
2 /gstr

2 . Assembling these fac
tors we obtain that the graviphoton mass scales as

MV
2;gstrM str

2 . ~6!

The fact that this mass is proportional togstr, rather than to
gstr

2 , is a pure D-brane effect; it is due to the fact that t
Born-Infeld action describing the D-brane dynamics is p
portional to 1/gstr.

Returning to the field configuration~1!,~4!, we observe
that the magnetic flux is trapped in the core of the Kalu
Klein string. Therefore, such strings must be able to end
the Kaluza-Klein monopoles. This leads us to the conclus
that in the brane scenarios the Kaluza-Klein monopoles
not stable; rather, they get connected by the Kaluza-K
cosmic strings and annihilate.

Infinite isolated cosmic strings can also exist. At lar
distances the behavior of the Kaluza-Klein cosmic string
similar to the conventional gauge strings in U~1! theories.
The core structure of these objects is somewhat pecu
however.

Normally the order parameter responsible for the symm
try breaking must vanish in the core where the U~1! symme-
try gets restored. However, in the case at hand the o
parameter is the position of the brane onK5S1. Thus, we
expect a ‘‘hole’’ in the brane at the location of the defe
This hole is a domain onM4 where the translational invari
ance onK is restored. In the case at hand this is thez axis.
This domain acts as a ‘‘window’’ in the extra dimensions

In the case when the brane is a topological soliton of
type considered in Ref.@8# the nature of the hole is easy t
visualize. Let us discuss, for instance, the theory of one f
damental fieldF, with a non-simply connected target spac
One can consider, for instance, a real scalar fieldF defined
modulo 2p on M4^ S1. Assume that the potential is

V5
1

2 S C

11b cosF D 2

, C5
2p

L
, ~7!

and the constantb is positive and slightly less than 1. Th
theory admits a stable soliton solution defined by the eq
tion

2p

L S y2y01
L

2D5F1b sinF. ~8!

Herey0 is the soliton center. The solutionF(y) interpolates
betweenF50 andF52p as y2y0 varies from2L/2 to
1L/2. By choosing the parameterb sufficiently close to 1,
one regulates the width of the brane in they direction making
it as small as it is desired. SinceF is periodic such solitons
are perfectly compatible with the compactness ofK.

Now let us makey0 a slowly varying function ofxm . The
cosmic string lying along thez axis is formed ify0 changes
from 0 toL as we wind around thez axis in the perpendicula
plane. If we are sufficiently far from thez axis the brane
soliton has the form following from Eq.~8!. However, atr
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→0 the location of the brane on the circleK is ill-defined.
This means that atr→0 the fundamental field configuratio
continuously evolves from Eq.~8! to

2p

L S y2y01
L

2D5F. ~9!

The latter corresponds to the brane completely smeared
K, so thaty0 loses its meaning of the brane center. The wid
of the brane in theK direction becomesL. The field configu-
ration ~9! has an excess of potential energy—this is stand
for the core of the string. An observer approaching the c
mic string will leave our brane and fillK entirely.

The whole construction can be viewed as a circu
‘‘staircase’’—split our three-dimensional space in a s
quence of two-dimensional planes attached to the gi
string; passing from one plane to another we simultaneou
shift in the fifth direction, as shown in Fig. 1. In fact, th
picture is somewhat more contrived, since the slicesy50
andy52pR[L must be identified, but this is impossible t
show in the figure.

If originally there were several branes onK @this would
correspond to higher windings ofF(y)# at r→0 the proper
field configuration must evolve to

2pn

L S y2y01
L

2D5F, ~10!

where n is the winding number. Near the position of th
cosmic string alln branes fuse together. The constructi
with several ‘‘parallel’’ branes may be promising from
phenomenological standpoint@9#.

III. THE MONOPOLES

Let us now pass to the discussion of nontrivialp2(K).
We will show that the brane can create certain topologica
stable configurations which appear as monopoles in four
mensions. Again, we will focus on the simplest manifo

FIG. 1. K5U(1) Kaluza-Klein string as a ‘‘staircase.’’ Ou
three-dimensional space is represented as an ensemble of p
attached to the string which lies along thez axis ~see a slice on the
left!. As we move from one plane to another we simultaneou
shift in the fifth direction. A full winding corresponds to the shi
from y50 to y52pR[L.
1-3
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with nontrivial p2, the two-sphereK5S2. The brane breaks
the isometries ofK. The symmetry breaking pattern onK is
SU(2)→U(1). Correspondingly, the position of the bran
on S2 can be characterized by two angular coordinate
,uK,p and 0,fK,2p. In the low-energy four-
dimensional theoryuK(xm) and fK(xm) become the Gold-
stone fields. To parametrizeM4, instead oft,r ,u,z of Sec. II
we now introduce the spherical coordinatesr ,u,f. Since the
brane can fluctuate and move onS2, the anglesuK andfK
are slowly varying functions ofr ,u,f and our Minkowski
time t. The topologically stable monopole configuration
given by the following mapping:

uK5u, and fK5f, ~11!

at r sufficiently far from the monopole core, plus the appr
priate configuration of the graviphoton fields. The gene
structure is the same as that of the ’t Hooft-Polyakov mo
poles @12# in the Georgi-Glasow model. This configuratio
carries a topological charge since it corresponds to the m
ping (S2)K→(S2)M4

, where the second sphere is the spa

boundary of the spatial part ofM4.
At r approaching zero the symmetry must be restored,

the ‘‘former’’ brane must delocalize onK much in the same
way as in the cosmic string example~Sec. II!. Thus, the core
of the monopole presents an exit intoK5S2. If there are
several ‘‘parallel’’ branes, the monopole core will conne
all of them. In a sense, this is an even more interesting ob
than the string of Sec. II since it is fully localized onM4.
The mass of such a monopole is expected to be of orde

Mmonopole;~ATR2!MPf
, ~12!

where R is the radius ofS2. The monopole mass can b
much lighter than the fundamental Planck scale, since in
scenario the productATR2 depends on dynamical details o
the underlying theory, and can well be small. Finding t
monopole would be an exciting endeavor since one co
channel signals to/from other branes through its core.

IV. THE ALICE STRINGS FROM THE BRANES

In this section we will deal withK5S2, but nontrivialp1,
rather thanp2. In the example of Sec. III, the brane wa
represented by a point onK5S2. What happens if the bran
is represented by two or morerigidly connected points? Fo
instance, assume the brane to be described by two iden
points in the opposite poles of the two-sphere. After one
the isometries ofS2 is broken, the surviving symmetry the
is U(1)3Z2, since one can interchange the poles witho
affecting the expectation value of the brane position mod
on K. Strictly speaking, the surviving symmetry is not th
direct product, however, sinceZ2 flips the sign of the U~1!
generator. This sign-flipping results in the existence of Al
strings@13# in the four-dimensional spaceM4.

To see that this is indeed the case, let the surviving U~1!
generator bet3 ~the third Pauli matrix!. Then Z2 can be
represented as
10600
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UZ2
5exp$2~ i /2!pt2%,

so thatUZ2

21t3UZ2
52t3. The vacuum manifold contains un

shrinkable paths which start at the identity and end atUZ2
.

This can be parametrized by a group transformation

Uq5exp$2~ i /2!qt2%, qP@0,p#. ~13!

The Alice string configuration is obtained by identifyingq
with the angleu/2 in M4 introduced in Sec. II. In other
words, as one winds once around thez axis in M4 ~far away
from the axis! the position moduli onK drift from the north
to the south pole~which are identified!. This configuration is
obviously topologically stable.

In this way the opposite points onK interchange places
when one travels once around the string~far away from the
string axis!. If such an observer completes his/her journ
and comes back to the point of departure, he/she will fi
U~1! charges to be conjugated. Indeed, assume the travel
adiabatic. The wave function of any state will track the o
server’s position so that the wave function will acquire t
gauge factor

c~u!5~Uq!qc~0!, ~14!

whereq is the U~1! charge of the state under considerati
measured in the units of the fundamental charge. One
measure the U~1! charge at the beginning and the end of t
journey by acting byt3 on statesuc(0)& and uc(2p)&, re-
spectively, assuming the travel to be adiabatic. However

uc~u52p!&5~UZ2
!quc~0!&.

For all oddq

t3uc~u52p!&5~21!uc~u52p!&,

while for evenq

t3uc~u52p!&5~11!uc~u50!&.

For instance, if we transport a fermion in the fundamen
representation of the original SU~2! around the string, its
U~1! charge will flip the sign. This is typical behavior for th
Alice strings.

In the present case the emerging Alice string has a cl
cut geometric interpretation~see Fig. 2!. The conserved U~1!
is nothing but the rotation ofS2 around the axis connectin
the north and south poles. Traveling around the string~i.e.
winding around thez axis in M4) interchanges the north
south poles and thus, the angular momentum of any s
One can visualize this as a loop made of a Mo¨bius strip.

In a similar manner one can get strings which interchan
two gauge groups~or possibly more than two!. Let us con-
sider, for example, the case when the original gauge sym
try G ~related to the isometries ofK) is broken down to a
subgroupH3H. We want to have aZ2 subgroup ofG which
does not commute withH3H in order to generate aZ2
string such that after making a full turn we exchange t
H ’s. This will have a very spectacular effect—if such
1-4
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string passes between a source and a detector measurin
flux of charged particles~charged with respect to one of th
gauge groups only!, the detector will see only a half of th
beam. The reason is that half of the particles will be tra
formed into particles charged with respect to a second gr
and our detector will not see them. What half will under
the transition depends on the history of how the detector
the source were prepared.

How to make such a string? Take the manifoldG/(H
3H). By definition there is a pointA on this manifold which
is stable underH3H—so if we put a brane at this point th
H3H subgroup ofG remains unbroken. ConsiderG as an
ensemble of 2n32n matrices andH asn3n. Take now the
group element

T5S 0 I

I 0D , ~15!

where I is the n3n identity matrix. One can see thatT2

51 while T interchanges twoH subgroups. The antipoda
point B is constructed by acting byeipT on A. We then con-
sider the cosetG/(H3H) with the branes placed at bot
points A and B. Besides the unbroken symmetryH3H the
group Z2 is also unbroken—it interchangesA and B ~with
one brane this symmetry would be broken!. Moreover, this
Z2 does not commute withH3H. The Alice string is ob-
tained by splitting our space in planes and attaching th
along the lineeiuT/2A for u between 0 and 2p. In principle,

FIG. 2. S2 with two branes at antipodal points. The Alice strin
is given by the large semicircle connecting these two points.
(311)-dimensional space is distributed all over the semicircle
such a way that a plane attached to the Alice string at angleu is
connected to the point on the semicircle parametrized by the a
q5u/2. Making a full 2p rotation of the plane we one moves fro
the north to the south pole onS2 and by this changes the sign of th
U~1! generator.
10600
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one may try to considerZN strings by invokingH3..3H
symmetry with N copies of H and the cosetG/(H3..
3H).

~Let us parenthetically note that there may occur obstr
tions to construction of the Alice strings, see e.g.@14#. Clas-
sification of all possible Alice strings within the brane sc
narios is an interesting question.!

V. PROLIFERATION OF MODULI

The effective theories considered so far were those of
geometric moduli related to the isometries ofK. The number
of moduli can be much larger, however, since in the giv
fundamental theory responsible for the brane formation sy
metries may be dynamical. The nontrivial topology of t
moduli space can be much more contrived than that ofK.
Here we will discuss a simple example of this phenomen

Assume thatK5S2 and the underlying theory is the non
linear O~3! sigma-model, with the fundamental fieldnW where
nW 251. The combined action, including gravity, is

S5MPf

4 E d4xd2yAGR(6)1E d4xd2yAGF1

2
GMN]MnW ]NnW G

1••• , ~16!

where MPf
and R(6) are the six-dimensional fundament

Planck mass and the scalar curvature, respectively, the
stand for the possible fermion terms if the theory is sup
symmetric, and finallyM ,N50,1,2,3,4,5.

Now we consider classical solutions of the equations
motions with nontrivial topology, depending onx4 and x5
where x4,5 parametrizeS2. These are nothing but th
Polyakov-Belavin instantons@15#.

Using the standard stereographic projection

W5
n11 in2

11n3
~17!

one can introduce a complex fieldW depending on a com
plex variablez (S2 is the Kähler manifold allowing for the
complex structure!

W~z!5)
i 51

K
z2bi

z2ai
, ~18!

where z is the complex coordinate on CP1, and K is the
winding number. Moreover,bi andai are complex numbers
2K altogether, representing the moduli parameters of
soliton.

Now we can make them coordinate-dependent:

W~z,xm!5)
i 51

K
z2bi~x!

z2ai~x!
. ~19!

The action can be written as~note that]zW̄50)

e
n

le
1-5
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E d4x
dzdz̄

~11uzu2!2
AgF u]zWu2

~11uWu2!2
1Gmn

]mW]nW̄

~11uWu2!2

1Gmz
]zW]mW̄

~11uWu2!2
1c.c.G . ~20!

We see that

]zW5W(
i 51

K F 1

z2bi
2

1

z2ai
G ,

]mW5W(
i 51

K F ]mai

z2ai
2

]mbi

z2bi
G . ~21!

Substituting this in the action we get an effective Lagrang
describing the dynamics of the collective coordina
~moduli! ai(x) andbi(x),

S@a,b#5E d4xAgGmn@Fi j ~a,b!]mai]nā j1Bi j ~a,b!

3~]mai]nb̄ j1]mbi]nā j !1Hi j ~a,b!]mbi]nb̄ j #,

~22!

whereFi j ,Bi j ,Hi j represent a metric on the 2K-dimensional
moduli space. We do not know the explicit form of the me
ric on the multi-instanton moduli space~i.e. atK.1). It is
known, however, that this moduli space is a Ka¨hler mani-
fold.

In the case ofS2 we have three graviphotons—the gau
symmetry is SU~2!—but we have an arbitrary number of th
Goldstone modes providedK can be chosen at will. IfK
51, the Goldstone action for the modulia and b can be
easily found. We can introduce two new collective coor
nates:X5a2b @the size of the instanton and U~1! orienta-
tion# andY5(a1b)/2 ~the position of the center!.

We will work in the approximation whena and b are
small in which case we explore only a small patch onS2
which is an open region of the plane. The action of the SU~2!
generators in this limit is nothing but a U~1! rotation~which
will be our unbroken symmetry! and two translations@the
non-Abelian nature of the SU~2! is not seen in this approxi
mation#.

The action~22! in this case can be written as a sum of tw
independent actions, for theX field2

SX;E d4x lnuXu2u]mXu2, ~23!

and for theY field

2Here the logarithmic dependence on the size of instanton in
metric is related to the well-known fact that the measure on

moduli space has the formdXdX̄/uXu2 as dictated by the conforma
invariance of the classical action.
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SY;E d4xu]mYu2. ~24!

After the inclusion of the graviphotons the action for theY
fields becomes3

~]mY1Am
1!~]mȲ1Am2!.

We arrive at the Georgi-Glashow model SU(2)→U(1). Let
us note that the modulusX does not mix with the gravipho
ton, onlyY does. This is because it isY that is transformed by
two broken symmetries of SU~2!.

For K.1 we have more massless particles. In the sup
symmetric case we have not only bosonic zero modes,
fermionic as well. The latter are chiral, so we can cre
several generations of the chiral matter. This example sh
that having a topological defect within a brane world sc
nario may not only open a window to extra dimensions b
can also create a large number of light fields. To this end,
topological defect at hand must have a large enough to
logical charge, i.e. a large dimension of its moduli space

VI. CONCLUSIONS

In the theories where our world is trapped on the brane~s!
embedded in large compact extra dimensions the Kalu
Klein scenarios get drastically modified. Since the bra
break isometries of the extra spaceK, the graviphotons be-
come massive via an analog of the Higgs mechanism
addition, a nontrivial topology of the compact spaceK gets
entangled with the topology of our world, giving rise t
strings~in case of nontrivialp1) and monopoles~nontrivial
p2) of a special geometric nature~we call them Kaluza-
Klein defects, although they can appearonly in the presence
of branes!. In the core of the Kaluza-Klein defects the fu
symmetry ofK gets restored, so that their cores represen
natural channel of exit intoK. If there are several ‘‘parallel’’
branes, they may get connected through the core of
monopole or the axis of the strings. We have considered
types of strings, the Abrikosov-Nielsen-Olesen string and
Alice string.

A large number of additional moduli may~and usually
do! naturally emerge, which have a dynamical rather th
geometric origin. This results in the proliferation of matt
trapped on the branes. The number of moduli is proportio
to the topological number of the mapping which need n
necessarily be unity. The topology of the moduli space
typically more contrived than that ofK. Implications of this
observation for the topological defects observable in
world are yet to be studied.

The original motivation@2# for introducing brane worlds
was the desire to localize matter in a ‘‘ transverse’’ space
a small volume embedded in a noncompact space of

e
e

3This is not a manifestly SU~2! invariant expression because w
neglected higher order terms inY. If one does the calculation taking
into account that the soliton is onS2, rather than onR2, the full
SU~2! invariant action can be recovered.
1-6
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infinite volume. The latter was then replaced by a comp
space of a large size@4,5#, where the branes were suppos
to accomplish the same mission of localization. At pres
the importance of this aspect of the brane scenario
localization—fades away, as, on the one hand, people sta
realize that other aspects of the brane scenarios may be
tentially instrumental, and on the other hand, extra space
exceedingly smaller sizes are emerging in various theo
~e.g.@16#!. Other goals which might be achieved in the bra
world scenarios are taking over; they are~i! supersymmetry
breaking and separation of chiralities~i.e. making our matter
chiral starting from a nonchiral set! @3#; ~ii ! hierarchies in the
supersymmetry breaking parameters and mass param
@9#; ~iii ! generation of a mass term for the graviphotons@5,6#;
~iv! proliferation of matter, i.e. the ‘‘parallel’’ matter genera
tions. The topological defects of the special type, discus
in this paper, is one more new aspect.
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APPENDIX: BRANES MAKE GRAVIPHOTONS MASSIVE

The brane-Higgs effect has been already discusse
@5,6#. Here we present it for completeness and also giv
detailed derivation of the graviphoton mass. Let us start fr
the simplest situation: consider a domain wall in the fiv
dimensional spaceM43S1 with four noncompact coordi-
nates x0 ,x1 ,x2 ,x3 and one compact~fifth! coordinatex4
5y. Imagine that the domain wall is made of a scalar fie
F; the combined action including gravity is

S5MPf

3 E d4xdyAGR(5)1E d4xdyAG

3F1

2
GMN]MF]NF1V~F!G ~A1!

where MPf
and R(5) are the five-dimensional Planck ma

and the scalar curvature, respectively, andM ,N50,1,2,3,4.
The Greek lettersm,n50,1,2,3 are reserved for the fou
dimensional indices. The signature is (2,1,1,1,1). The
explicit form of the potentialV(F) is not important here—
the only thing we have to know is that the target space h
nontrivial topology and there are topologically stable clas
cal solutions. For example one can consider the potential~7!.
Let us forget about gravity for a moment. The domain w
F0(y) in the fifth direction is given by the solution of th
classical equations
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d2F0

dy2
2V8~F0!50, ~A2!

with the first integral

1

2 S dF0

dy D 2

2V~F0!50, ~A3!

which gives us the tension~energy density inM4) of the
domain wall

T5E dyF1

2 S dF0

dy D 2

1V~F0!G5E dyS dF0

dy D 2

. ~A4!

The solution of the classical equation~A2! depends on one
parameter—the position of the domain wall along the fi
direction F05F0(y2fR), wherefP@0,2p) and R is the
radius ofS1. If we consider now the spectrum of small fluc
tuations of the scalar field, the parameterf will become the
collective coordinate in the expansion around the dom
wall background,

F~x,y!5F0„y2Rf~x!…1 (
nÞ0

fn~x!vn~y!. ~A5!

Here only non-zero modesvn(y) orthogonal to the zero
modev0(y)5(dF0 /dy) are included in the sum. It is eas
to see thatf(x) is a Goldstone field, independently of th
form of the potential this field will be massless at the qua
tum level. The reason is simple—the Goldstone theor
guarantees that there is a massless field if a global cont
ous symmetry is broken. In our case we deal with a ‘‘tran
lational’’ global U~1! symmetry

f→f1e, ~A6!

where the anglef is related to the fifth coordinatey as y
5Rf. This symmetry is broken by the solutionF0„y
2Rf(x)…. Correspondingly, the zero modef(x) represents
the Goldstone boson with the action

S@f#5
1

2E d4xdy]mF0]mF0

5
R2

2 E d4xdyS dF0

dy D 2

]mf]mf5
f f

2

2 E d4x]mf]mf,

~A7!

where the Goldstone coupling constantf f
2 is defined as

f f
2 5R2E dy~F08!25TR2. ~A8!

If one has a multisoliton solution~for example, a system
of the BPS saturated domain walls or D-branes! one has
several Goldstone bosons corresponding to independen
sitions of these solitons.
1-7



ar

r
t

vi
s
e
n
tr

u

be

nt

sive

G. DVALI, IAN I. KOGAN, AND M. SHIFMAN PHYSICAL REVIEW D 62 106001
Let us now take gravity into account. Using the stand
Kaluza-Klein decomposition of the metric~let us note that
we use the anglef as the fifth coordinate now!

ds25gmndxmdxn1R2~df1Amdxm!2, ~A9!

one gets the metric tensorsGMN andGMN,

GMN5S gmn1R2AmAn R2Am

R2An R2 D ,

~A10!

GMN5S gmn 2Am

2An R221AmAmD .

It easy to see that now the global U~1! becomes local, it
becomes a special diffeomorphism

f→f1e~x!, xm→xm , ~A11!

so that only the componentGm45R2Am is changed unde
this transformation. One can see that this is the case from
expression for the general diffeomorphism

xM→xM1eM, GMN→GMN1]MeN1]NeM ,
~A12!

or, even easier, from Eq.~A9! which immediately gives the
gauge transformation of the vector fieldAm→Am2]me. In
this paper we are not interested in thegmn part of the metric.
Even though in the presence of a brane it may be nontri
andy dependent it will not affect the properties of the cla
sical solution for the scalar field itself~because we assum
that the scalar field depends only on the fifth coordinate a
therefore, it does not matter how the four-dimensional me
depends ony).

In the absence of the brane one can get the fo
dimensional action by substituting Eq.~A10! into Eq. ~A1!.
B
-

D

v.
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Assuming that the fields do not depend ony one gets the
four-dimensional Einstein-Hilbert plus Maxwell action~we
can call it the Kaluza-Klein action!

SKK5M p
2E d4xAgR(4)2

1

4e2E d4xAgFmnFmn,

~A13!

where the Planck massM p
252pRMPf

3 and the U~1! coupling

constant is 1/e25M p
2R252p(MPf

R)3.
If we take into account the scalar action, there will

three terms,

1

2
G44]yF0]yF01G4m]yF0]mF01

1

2
Gmn]mF0]nF0 .

~A14!

After taking into account that

]mF052]yF0R]mf ~A15!

and integrating over the fifth direction taking into accou
Eq. ~A4!, one gets a generalization of Eq.~A7!, so that in-
stead of]mf we have]mf1Am and the combined action

S52
1

4e2E d4xAgFmnFmn1
1

2
f f

2 E d4xAg~]mf1Am!

3~]mf1Am!. ~A16!

The latter tells us that the graviphoton becomes a mas
vector particle with the mass

MV
25 f f

2 e25
T

M p
2

. ~A17!
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