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There exist two versions of the covariant Schwinger term in the literature. They only differ by a sign.
However, we shall show that this is an essential difference. We shall caréhlting all signs into account
review the existing quantum field theoretical computations for the covariant Schwinger term in order to
determine the correct expression.

PACS numbd(s): 11.30.Rd

[. INTRODUCTION er’'s formulas predict the same anomaly in space-time, but
their Schwinger terms differ by a sign. The higher cochains
One essential feature of chiral gauge theories is the viofwith more than 2 ghostsseem to be unrelated. We shall
lation of gauge invariance when chirdVeyl) fermions are  give an answer to which of the two formulas is correct, in the
qguantized. This loss of gauge invariance results in nonsense that it is reproduced by a full quantum field theoretic
invariance of the vacuum functional in an external gaugecalculation.
field under gauge transformations and in non-conservation The easiest way to do this calculation would be to com-
(anomalous divergent@f the corresponding gauge current pute one of the higher covariant anomalies in some quantum
in a Lagrangian(or space-timg formulation (“anomaly” field theoretic setting, because these higher covariant anoma-
[1-3]), or in anomalous contributions to the equal-time com-lies are given by completely different expression§lifi] and
mutators of the generators of time-independent gauge tranft4]. However, although it has been claimed that the higher
formations in a Hamiltonian formulatiofiSchwinger term”  cochains can have a physical meaning, this is far from un-
or ‘“commutator anomaly,” [4-9]). One regularization derstood. It is therefore not sound to use these terms to argue
scheme, where all the anomalous terms are related to funevhich of the two formulas is correct. Instead, we shall use
tional derivatives of the vacuum functional, leads to the sothe sign of the Schwinger term as a referee.
called consistent anomalies. These anomalies have to obey We shall use three methods to determine the correct ex-
certain consistency conditions because of their relation t@ression for the covariant Schwinger term. They all have to
functional derivatived10]. One way of determining these be used with care since we are after the sign difference be-
consistent anomalie@p to an overall constants provided tween Tsutsui’'s and Kelnhofer’s predictions. The first two
by the descent equations of Stora and Zunjitib,12. They = methods are to apply the quantum field theoretical calcula-
provide a simple algebraic scheme—based on some getion schemes that have been used by AddW| and by
metrical considerations—for the computation of the consisHosono and Sefl8], respectively.
tent chiral anomaly in the space-time formalism and for the The third method is the one by Weg&9], relating the
corresponding equal-time commutator anomaly, theSchwinger term{consistent or covariapin any even dimen-
Schwinger term(as well as for higher cochain terins sional space-time with the corresponding space-time
On the other hand, it is possible to choose a gaugeanomaly. This method was used by Schwielha€] for the
covariant regularization for the gauge current. This covariantonsistent case and by Kelnhofel] in the covariant case.
current cannot be related to a functional derivative of theThus, by using the expression for the covariant anomaly
vacuum functionalbecause of the gauge non-invariance of(which everyone agrees pithe covariant Schwinger term
the lattej. As a consequence, the covariant current anomalgan be determined. Again, care has to be taken. For this, we
does not obey the consistency condition. Nevertheless, thefest perform the calculation in the consistent formalism and
exists a covariant counterpart for each consistent cochain iset conventions so the result agrees with what is predicted by
the descent equations. The first derivation of an algebraithe descent equations. The corresponding covariant compu-
computational scheme for covariant cochains appears to kation is then to determine the covariant Schwinger term in-
the one by Tsutsuil3], using the anti-Becchi-Rouet-Stora- cluding the sign. We shall perform these calculation i1l
Tyutin (BRST) formalism. Further, a covariant version of the and 3+1 dimensions.
descent equations was derived by Kelnhofer[14]. The From the explicit calculations we find that our quantum
covariant cochains resulting from the calculations by Tsutfield theoretical methods produce the same expressien
sui, on one hand, and by Kelnhofer, on the other hand, are, isign as Kelnhofer's covariant descent equations. This result
fact, different, as was shown [45]. Tsutsui's and Kelnhof- is not obvious since Kelnhofer's approach, as well as Tsut-

0556-2821/2000/620)/10503315)/$15.00 62 105033-1 ©2000 The American Physical Society



C. ADAM, C. EKSTRAND, AND T. SYKORA PHYSICAL REVIEW D 62 105033

sui's, seems to be based only on the requirement of covarand F; the curvature of (+t)a;+ta,, holds for any con-

ance. We shall however show that there is in fact a naturatectionsa, ,a, with curvaturesF; ,F,. Using this in Eq(2)

interpretation of the Kelnhofer formula, as one would expectgives the following expression for the connection of the de-
Our paper is organized as follows. In Sec. Il we briefly terminant line bundle:

describe the geometrical setting for the description of

anomalies and review the derivation of the consistent and 1 i\t .k
covariant chain terms. In the covariant case, both Tsutsui's ~ 2™ (131 | 2 Mw2n+1(A+(dAdA) dx.0).
and Kelnhofer’s versions of the chain terms are given and a (5)

geometrical description of Kelnhofer's construction is pro-

vided. In Sec. Il the consistent and covariant Schwinger The (infinitesima) consistent anomaly is the variation
terms in 11 dimensions are calculated using the methods obf the effective action under gauge transformations. Thus,
[17] and of[18]. Finally, in Sec. IV the Schwinger terms in it s the negative of the restriction of Eq5) to gauge
1+1 as well as in 3-1 dimensions are calculated with the directions, i_e_, the fibre directions of— A/G. A|ong such

help of the method of Weqd.9]. directions, 8 becomes the BRST operator ardf l,) ~*d%
becomes the ghosv. Thus, the consistent anomaly is
II. CONSISTENT AND COVARIANT COCHAINS cnf M®ans1(A+0,0), withc,= —[1/(n+1)!](i/2m)". Since

We shall start with deriving the consistent chiral anomaIth IS 2n-d|mencs)£nal, ';\'f oglyt:]h? t?le. with onet .%hf[).St n
for a non-Abelian gauge theory. Consider therefore Weyt € expansion Ofzn.. R ) that will give a contribution
fermions ¢ coupled to an external gauge fiedde A. A is 0 the anomaly. We leb2“+1—'§(A+U’0) denote the part
the affine space of gauge connections and the gauge @oup®f @zn+ 1('1A+U'0) that containsk number of ghosts.
is assumed to be a compact, semi-simple matrix group. W&Nen Cnwz(A+v,0) is the non-integrated anomaly.
assume that the space-tirkis a smooth, compact, oriented, It 1S \évell—known, and explicitly proven in[25], that
even-dimensional and flat Riemannian spin manifold withou€n/ m®2,-1(A+v,0) is the Schwinger term. In this calkis
boundary. The groug of gauge transformations consists of t0 be interpreted as thke odd-dimensional physical space at a
diffeomorphisms of a principal bundiB®M such that the ~fixed time. The formso;, . ; _(A+v,0) can be computed by
base remains unchanged. It acts.drby pull-back and to use of Eq.(4). In 1+1 and 3+1 dimensions it gives the
make this action free we restrict to gauge transformationdollowing result for the consistent anomaly and Schwinger
that leaves a reference poipg e P fixed. term:

The generating functional is given b
g g given by 02 (A+v,0)=c; tr(vdA)

exp(— W(A))= Lpr( —~ fM%; zpdznx), @D wd(A+v,00=—c, tr(v?A)

where W is the effective action andd, =da(1+ ys)/2 Co05(A+0v,00=c, tr(vd(AdA+ A%/2))
=y*(d,+A,)(1+y5)/2. We shall use conventions such

that y* is Hermitian ar?dA” is an_t|—herm|tean. It ha:_s been Crw3(A+0,0)= — Cp tr((v2A+vAv + Av?)dA+v2A3)/2.
argued that a correct interpretation of the generating func- (6)
tional is as a section of the determinant line bundle

DETida=detkeri 4, @ (det cokeid5)*. It can be viewed If the freedom is used to change the forms
as a functional by comparing with some reference sectionw¥, ., . (A+wv,0) by cohomologically trivial termsi.e., by
Associated with the determinant line bundle is a connectiortoboundaries then these forms can be given by the follow-

with corresponding curvature ing compact expressions that were first derived by Zumino in
1 i n+1 [26]
— H - n+1
F 2 i —(n+1)! 277) fM tr(F"7) 2

w8 i1 (A+0,00~(n+1)

J

1
xf dt(1—t)¥str((dv)¥,A,
0

[22]. F=(d+ S)[A+(dxdp) tdi]+(A+(dida) tdy)? is
a curvature of the principal bundexX A—M X A and § is
the exterior differential ind. The choice ofF is motivated
by gauge invariance of the determinant line bur{@,24.
Recall that X (tdA+t2A2)" k) (7)

tr(Fy Y —trn(F7 ) =(d+ 8 wony1(@s,@)  (3)  when O<k=n and

Kk k-=n-1 n K -
wont1-k(Atv,00~(=1) ) k—n—1 k—n—-1

><Str(v,(vz)kfnfl,(dv)znfkﬂ) (8)

for
1
wonsa(@z @) =(N+1) fo dttr(a—a)FD) @
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TABLE I. Anomalies and Schwinger terms as forms. TABLE lll. Results in 1+1 dimensions.
n=1 Anomaly Schwinger term n=1 Anomaly Schwinger term
Consistent ¢y [y tr((dv)A) c1f m tr(vdv) Consistent —Cytr((9,X)A,)e"” —2¢q tr(Xa,Y)
Covariant  ¢;- 2y tr(v(dA+A?))  —cyfy strv(dv+20A)) Covariant Z, tr(X(d,A, 2c, tr(Xa, Y —[X,Y]A))
+AA,))e?”
w v,

when n+1<k=2n+1. Here str means the symmetrized
trace and~ means equality up to a coboundary. Let us summarize the results so far in the case+fof &nd
Above, we used Eq(3) for a,=A+(did,) 'd5 and 3+1 dimensions in Tables | and I, respectivelye use
a@,;=0. WhenP is a non-trivial bundle it is no longer pos- Egs.(7) and(8) for the consistent formalisimn
sible to leta; be zero. Instead, we let it be some fixed con- We shall now evaluate these forms ¢anti-Hermitiar)
nectionA, on P (which can be identified with a connection infinitesimal gauge transformations,Y e LieG. Let us do
on Px A). By dimensional reasons, this does not changdhis explicitly for the consistent Schwinger term when
EQ. (2). The consistent anomaly and Schwinger term withn=2:
such a background connection can be computed in a similar
way as above, one just useégnﬂ,k(AﬂLv,Ao) instead.
Since the expressions corresponding to &g.and Eq.(8)
are long and not particularly illuminating we shall not
present them hergarts of it can be found ifl5]). The ideas
behind the background connection are completely analogous
with the case without a background. For example, they are
consistent, but not gauge covariant. To obtain covariance, we
choose as a background the field itself. We are then inter-
ested in thelnon-consistentterms coming from the expan-

sion of w1 (A+v,A) in various ghost degrees. With The corresponding evaluation of the other forms fior 1
use of Eq(4), the following expression was obtainedb]:  andn=2 is listed in Tables Il and 1V, respectively.
That the covariant anomaly and Schwinger term can be
n—j n
k—=2j— 1) ( i

csz tr((dv)?A)(X,Y)
=— CZJ tr(div/\dju Ay €¥d3x(X,Y)
M

=-c, J tr((9:Xo;Y — Y9, X) A e d®x.  (11)
M

[(k=1)/2]

n+1
@501 W(A+v,A)= ,—Z‘o =i

computed by expansion @b, ;(A+v,A) was discovered
by Kelnhofer [14]. An alternative computational scheme
leading to covariant cochains differing from the ones of

k\\~ ! ) i1 Kelnhofer was given by Tsutsu[13]. To review his
X j str(v,(v)!,(8A)* <77, approach we reconsider E¢) for a,=A+v and a;=0.
_ We can then vieww,,,,; as a functionw,,, 1(A+v|F) of

X FNmkFIFL) 99  A+v andF=(d+ 8)(A+v)+(A+v)%

where a negative power on a factor means that the corre- _ 1 n
sponding term is absent in the sum. Recall fifat-1)/2] is won+1(At+v|F)=(n+1) 0 dtir((A+v) 7).
(k—1)/2 if kis odd and k—2)/2 if k is even. The terms
F=tF+(t>—t)(A+v). 12
Crwd (A+u,A)=Cy(n+1) tr(vF") ‘ (-D(A+) (12
The covariance is broken by the operafoin the expression
n(n+1) stit, SALF™ 1) for F. Thus, woni1(A+v|F'), with F'=d(A+v)+(A
2 Ui o +v)2, produces covariant terms. This is exactly the same
(100  terms as the ones appearing in Tsutsui's anti-BRST approach
[15,27. In [15] (see[16] for k=2) the following formula
are the non-integrated covariant anomaly and Schwingewas given for the terms with a given ghost degree:
term.

angnfl(A"' v,A)=Cy

TABLE IV. Results in 3+1 dimensions.

TABLE Il. Anomalies and Schwinger terms as forms.

n=2 Anomaly Schwinger term
n=2 Anomaly Schwinger term .
Consistent —c, tr((9,X)(A,d,A,  —Cotr((d;Xd;Y
Consistent  C,fy tr((dv)AdA  Gf y tr((dv)?A) +3AAA,)) e P — Y3, X) A el
+3(dv)A®) Covariant &, tr(X(d,A, 3¢, tr((Xd;Y — Y ;X
Covariant  c,-3[\ tr Cy- (—=3) [y strw(dv+vA +ALA))(,AL —[X,YJA +XAY
(v(dA+A%)?) +Av)(dA+A?)) +AA,)errPr —YAX)(9;Ac+AA)) €
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§ n+1 (here the prime denotes derivative with respect to the argu-
Wzn1-K(A+v|F')= o U@IF=o(A+v)]"), (13 mend. The second possibility is to split with respect to ei-
genvalues of the kinetic momentum operatoerd,i+eA;.
where the index on the right hand side means the part of Again, a corresponding Dirac vacuum and normal ordering
the expression that h&snumber of ghosts. Comparison with (denoted byN) may be introduced. It turns out that the ki-
Eqg. (9) reveals that this formula gives the same covarianthetically normal-ordered current is related to the convention-
anomaly but the covariant Schwinger term differs by a signally normal-ordered current in a simple fashid8,17
The higher terms seem to be unrelated. This brings us to the
question of who is right: Kelnhofer or Tsutsui? The formula ~ e
of Tsutsui seems to be motivated by nothing else than co- NJ(x)=NJ(x) + ﬁAl(X) (15
variance. Kelnhofer’s formula, on the other hand, seems to
et P11 e nreore has the same commutac as 3. It s
. . - . “proven in[17] thatNJ is the consistent current operator and
computation of the Schwinger term from determinant lineZ .
bundles for manifolds with boundary, one extends space to ¥ iS the covariant current operator. o
cylindrical space-timg25]. On one side of the cylinder one ~ Rémark The simple form of Eq(19) for the kinetically
computes the Schwinger term by comparison of a ﬁxed"norma] ordered current on_ly holds for a restrlcted. qlass of
vacuum bundléwith respect to a background connecliam “lsgfﬁuently wegk” gauge fields. For our purposes it is suf-
the other side of the cylinder. In this approach it is certainlyficiént to restrict to this class of gauge fields, because
possible to put the background field equal to the field itself;a” calculatlons leading to the commutator anomalies belov_v
see [24] for details. This clearly defines a covariant &€ perturbative. Nevertheless, we want to comment on this
Schwinger term in a natural way, suggesting that Kelnhofer'doint briefly. The situation is especially transparent on
approach is the correct one. This geometrical approach Compact space, so let us assume for the moment that
would not have been possible with Tsutsui’s result. This ex{h€ space %‘reCt'O” is a circlex 6[00’277]- Further let us
plains the importance of the sign of the covariant SchwingefN00seA(x; ,x*) at an initial timex;’ such that Eq(15)
term. In the forthcoming sections we shall demonstrate thatolds[e.g.x)=—, A;(—o,x)=0]. If at later times the
indeed Kelnhofer’s result for the covariant Schwinger term isdeviation of A; from its initial value is sufficiently small,

reproduced by quantum field theoretic computations. then Eq.(15) will hold for all times. If, on the other hand, we
allow for arbitrary deviations, then the spatial Dirac operator
I1l. CALCULATIONS IN 1 41 DIMENSIONS —iaX1+eA1 may have a zero mode at some tln'fe i.e.,
_ level crossing occurs. At this tim#&, Eq. (15) changes dis-
A. Calculation of Adam continuously and acquires a non-local, gauge-field dependent

In this section we want to briefly review the calculation of contribution. Therefore, we should restrict to gauge fields
the consistent and covariant Schwinger term that was pethich vary sufficiently weakly such that level crossing never
formed in[17] for the Abelian casdthe chiral Schwinger OCcCUrS.
mode). The generalization to the non-Abelian case is Let us finally mention that the difference betwedd and
straightforward and shall be displayed below, as wel[ 1M NJ in Eqg. (15 coincides, of course, with the Bardeen-
the Hamiltonian formulation was usétherefore space-time Zumino polynomial.
is 1+1 dimensional Minkowski spageand the computation Now it is very easy to compute the consistent and covari-
started from the second-quantized chiral fermion field operaant Gauss law commutators. The Gauss law operators are
tor in the interaction picture. For fermionic field operatorsdefined as ¢,1=d,)
the Dirac vacuum has to be introduced and operator products
have to be normal-ordered with respect to the Dirac vacuum. 1) _

For the introduction of the Dirac vacuum the Hilbert space of G(x)= N S5 (X) —iNJ(x) (16)

fermionic states is split into a positive and negative momen- !

tum sub-spacéor chiral fermions in two dimensions energy P

equals momentuin For the negative momentum sub-space G(X)=9 —————iNJI(X). (17

the role of creation and annihilation operators is then ex- e5A1(x)

changed. At this point there are two possibilities to split. ) )

Either one may split with respect to eigenvalues of the fred1€re Ay(x) is tregxted as a function of space only anod the

momentum operator-id,1 and perform normal-ordering t'Te vaorlali)le X lasl a_parameter, i.e.[6/5A(X",

(denoted byN) for this Dirac vacuum. A well-known con- X)) ]A1(X",y?)=48(x"—y7). The consistent Gauss law com-

sequence of this normal-ordering is the fact that the currerf?utator is determined by the current commutato#),

commutators acquire a central extensi@chwinger term i

For a fermion of positive chiralitywhere the current obeys 0.l 0 Iy ' srpul 1

J°=J1=:7), the Schwinger term is [GOEXD, GOy I]= 2n 0 Y ) (18)
0 1 0wl ' a1 whereas for the covariant case the functional derivatives con-

[NJOCXDNICEYD]I= =578/ =yT) - (14 tribute, as well,
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[é(xo,x1),é(xo,y1)]: _ zl_war(xl_yl)_ (19) [Ga(xoyxl)’Gb(Xolyl)]+ fabCGC(Xoaxl) 6(Xl_y1)

- _ I—5ab5’()(l—y1) + I—fabCAC(XO,Xl) 5(X1_yl).

Therefore, the covariant Schwinger term is minus the consis- 2m 2m

tent one, Eq(18). This relative minus sign is precisely as in (27)

Table I. Observe that the covariant current is indeed gauge

invariant,[é(xo,xl),NJ(xo,yl)]:0, as it must be. In fact, As in the Abelian case, the anomalous commutators agree

the relative minus sign between the consistent and covariaiith the ones in Table |, and again this is most easily seen

Schwinger terms is a consequence of this gauge invariander the relative minus sign of the’ (x* —y*) term. This rela-

of NJ, and therefore independent of all possible conventionsiiVe Sign may be related to the fact that the covariant current
A generalization of the above results to the non-Abelian@S tratnsform covariantly under a gauge transformation

case is straightforward. The two versions of normal-orderingi-€- theé’ terms must cancgl

are defined as in the Abelian case, and they lead to the same _ ~ -

relation as in Eq(15), up to an additional color index [GA(x°,x),NIP(x%yh) ] = — F2PNI°(x%,x*h) 5(X1—yl()28)

~ e .
NJZ(x) = NJ?(x)+ ﬂAi(X)' (20 as may be checked easily.

. . . B. Calculation of Hosono and Seo
Further, the current commutator acquires a canonical piece

as well, In this section we shall use the Hosono and Seo approach
[18] for the calculation of the equal-time commutators of the
[NJA(x%,x1),NIP(x0,y1) ] = — i 2PN J6(x0,x1) 8(x:— yY) covariant and consistent Gauss law operator. The calculation

is performed in Minkowski spacey,,=diag(1,-1), ep;
=1, with the gamma matrices obeying the usual Clifford
algebra relationy*y”+ y"y*=2g**, and ys=y°y'. The
anti-Hermitian matricest' are the generators of a non-
Abelian algebrd t?,t?]=f2P%¢, and we denoté\, = A2t?.

The Hamiltonian of the chiral fermion interacting with an
external gauge potential is

_i_ berpyl_\,1
2775a5(x yh) (21

(for the commutatof NJ3(x),NJP(y)], the same expression
is obtained, again wittNJ® on the right-hand sidejot NJC,
as is obvious from Eq.20)). The generator of time-

independent gauge transformations on gauge fields, — 1+
H(A)= —iJ dx w(t,x)le%(aﬁAi‘(t,x)ta)(ﬂ(t,x)}
5 29)
8%(x) =(6%°9; + e FAPA (X)) ——— (22) (
e6A1(X) where we chose the Weyl gaupa®(t,x)=0].
_ _ We expand the Fermion field as
obeys the commutation relation
[52(x%,xY), 8°(x0,yH) = — £3PC5%(x0, x1) S(xt—y). l//(t,X)=§n: an(t) £n(t,X), (30
(23)

where {,(t,x) are eigenfunctions of the full Hamiltonian

The consistent and covariant Gauss law operators are defin? 9) with eigenvaluesE, (t). In the quantized theory the
n . n

as are treated as operators satisfying the canonical anticommu-
. tation relation
G&(x)= 8%(x) —iNJI3(x) (24
{an,ar;}: Snm (31)
and
B 5 and the Dirac vacuum is defined as
G3(x) = 8*(x) —iNJ?(x) (25)

an(1)|0A(1))s=0, E,(1)>0,
respectively. Their anomalous commutators may be easily
computed, ay (1)]0A(1)s=0, E,(t)<O0. (32

[G3(x%,x1),GP(x0,yh) ]+ F2P°GE(x0,x1) 5(x* — y1) Observe that the expansion of the Fermion field operators
] with respect to the eigenfunctions of the full Hamiltonian
I . . . .. .
——— 5205 (x1—yh) (26) (2_9) automatically implies that we use the Sctlirger
2 picture.
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Singular operator products are regularized 18] by an ~ Seo approach is rather lengthy, therefore it is performed in
exponential damping of high frequencies. The regularizedhe Appendixes A—C. Here we just present the final form of

current reads the covariant Schwinger term
(*3(X))reg= > a,T(t)£§(t,X)e‘(*”2)Eﬁ“)7°y" ST=([G3(x),G(Y) ]n.c) = — ([ %00, (V) Inc.)
n,m
i i
= —v).trtathe —v).trt@ b
><1+275e‘(S/Z)EZm(t)gm(t,x)am(t) 27_raxﬁ(x y)-trtdt +2ﬂ_5(x y)-trt?[A(y),t°],
(41)
2
_ )2t —(glz)Eﬁ(t)ta —(e/2)Ep(t)
%1 an (Dfn (tX)e Cm and the consistent one
X Lml(t,X) am(t) (33

i

b_ a b - —v). a b
[wherej°=j! was used in the second line, which holds for STP=([G70).C7(Y)n.c.) a7 O y)- ([ AL,
the chiral current33)]. The current in Eq(33) is regularized (42
covariantly, therefore it will lead to the covariant anomaly
and Schwinger term. The consistent curiéhis obtained by  comparing the result@l1) and(42) with the expressions for

adding the Bardeen-Zumino polynomiaj*, the (1+1)-dimensional Schwinger terms in E() (for the
u » » consistent cageand Table I(for the covariant cagewe find
JH) =] +AJH(X), (34 that these terms agree. Therefore, the method of Hosono and

Seo reproduces the result of Kelnhofé#].

i
Aj#(x)= = -t (LA, (35)
& IV. METHOD OF WESS

These currents lead to the covariant and consistent |n this section we want to review the papers of Schwiebert

anomalies [20] and Kelnhofe{21] who used the method of Wef$9]
for the calculation of the consiste[®0] and covarianf21]

Ao, (X)==(D*(j ,))3(x) Schwinger termgST), respectively. The central idea of this
i method is to infer the current commutators from the time
= e, (t3(J*A"+ A*A"))(X) (3p)  derivatives of a(time-orderedl current two-point function,
2@ by using the general relatiom%TA(x)B(y)= 8(x°—y°)
X[A(X),B(y)]+---. As the anomaly is éovarian} deriva-
and tive of the current VEV(one-point functiol, and further
i current insertions are obtained by functional derivatives with
a (P argy —_ aupv respect to the external gauge potenf4l, the current com-
Acor(X) == (D3,)%x) a7 Swr TEPAT). mutator may be related to a functional derivative of the
(37 anomaly.
_ The authors of20] and[21] used slightly different con-
The covariant G*) and consistentG®) Gauss law opera- ventions. For our purposes it is important to have the same
tors read conventions for both the consistent and covariant cases, be-
cause we want to determine one relative sign. Therefore we
G3(x)=X3(x)+}%(x) (38)  shall repeat the major steps in the calculationg2sf] and
[21] within our specific set of conventions. We choose anti-
G3(x) = X&(x) +J°%(x) (399  Hermitean Lie algebra generatoxg,

where [NaAp]=TFapche (43

+fabeab(x) o (40)  Wheref,,; are the structure constants. Further we choose
SAT(X) SAS(X) Euclidean conventions in this sectiog“’= 6*"), mainly
because the path integral computation of both the consistent
generates time-independent gauge transformations of the el29] and covariant{30] anomaly was done in Euclidean

Xa(X) = L?l

ternal gauge field. space as wellfor our conventions see e.f31]). “Space-
Assuming that the non-canonical parts¢.) of the com-  time” indices (running from 0 to 1 ind=2 and from O to 3
mutator of the covariant and consistent Gauss laws ar#n d=4) are denoted by Greek lettegs,v, ... and pure

c-numbers it is sufficient to consider their vacuum expectaspace indices are denoted by Latin lettérs,m. For the
tion values(VEVs) only. The calculation in the Hosono and Ward operator we choose
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For the divergence of 4, we get, using the definition of the

—_ (D" = _ “ f “
Xa(x) (Dx)ab 5Ag(X) (5abax+ aCbAC(X))5A'g(X) Tproduct,
(44) .
FThy(,y) = a5 (00— y°)(0(Te  x?") 3% (x)
[Xa(X), Xp(Y) 1= fapcXe(X) S(X—y). (45)

X (Te 198 34(y) (Te 1 4)| o)
F(max)o(mby))e

= 5(x°—y0)(0| T[JIY(x), I (y) Je 194 0yeW

The Euclidean vacuum functional is
Z[A]=e WA =(0|T*e /#%(0AM|0)  (46)

whereAf is the external gauge potential aﬂgi is a covari-
antly regularized current operator, which necessarily depends
on A4 for an anomalous gauge theory. Furthir is the
Lorentz covariantized time-ordered product that results from —(0|T
covariant perturbation theory.

+(0|TaIE() IL(y)e M0y

3200, J o LUZR(DAY2)

X Jy(y)e A 0yew (51)
A. Consistent case

For the VEV of the consistent curredf (one-point func- wheredz is with respect to the spacial coordinates only. The

tion) we have[ fIA=[dxI(x)A%(X) ] term containingd; J5(x) does not E)roducé functions and
. may therefore be neglected. Furth&iin the third term may
(0| T*J%(x)e~ /I~ 0)eW be replaced byl without introducingd function like contri-

butions. For the commutator we u§ae our Euclidean con-

A 53 . v - .
o —(o|T* Jg‘(x)+J’ dy b(Y) ANY) ventionsJy, is anti-Hermiteah
SAL(X) OAL(X) 0 .00 0
. S(X =y ) [Ja(x),Ip(Y) 1= Fapd(y) S(x—y) + Cap(y)
x e I 0)eV (47) Koy oK
X O(x=y)+Sap (¥)dxS(X—Y).
and for the two-point function we get (52)
W ~13 Re-inserting this commutator into E€1) and omitting dis-
== (0]T*I4(x) Jp(y)e 1A 0)e J g
SAL(X) AL(Y) connected terms we get
4o+ 22 o riagg g FTEXY) = Co(Y) S(x—Y) + ST(Y) x8(x—y)
OAy(Y) SW
+f c——0(x—y)—f Mx)TAY .
.\ SW SW (48) abchg(y) (X y) achd(X) cb(ny)
SAL(X) SAK(Y) (53
= =T (X Y) + 0L () S(x—y) + - - - This result has to be related to the functional derivative of
(49 the consistent anomaly, where the consistent anomaly itself
. . - . is defined as
where in Eq.(49) we have defined abbreviations for the first
and second term of E@¢48) and indicated the thirddiscon-
“9 « AL(X) =X (X WAL (54

nected term by ellipses. Here it is assumed tli4tdepends
on A% only in a local fashior]20].

Now we should re-express tA& product by the ordinary
T product that is defined vi& functions. For the zero- and
one-point functions we may simply define thé product by =~ 9=2: Aa(X)=C1€*"tr Ngd*A” (55)
the T product, because the latter leads to Lorentz-covariant
expressions. On the other hand, for the two-point function o B
(T*J(x)J(y)) there occurs a differendeeagull termr?) at A= 4 Aa(X)=Coe"P7Ir A" A"IPAT+ SATAPA

Explicitly, we have in 2 and 4 dimension&[(=A{\;)

coinciding space-time points, and this seagull term is propor- (56)
tional to 5(x—y) [32,5]. Denoting the ordinaryl product by
T4 (X,y), we have where c; and c, are some constants. From these explicit
v ) ) expressions we may express the functional derivatives of the
Tap " (X,Y)=Thp(X,y) + Thp (Y) S(X—Y). (500 anomalies as
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0A4(X)
OAL(Y)

=15p(Y) I 8(x=y) (57

=1ap () 35 6(x—y) + (3155 (X)) 6(x—y)

where the last equality follows from properties of #héunc-
tion. Explicitly we have

d

2, 1LE(y)=cie®”tr Nghp (58

C
d=4, 14(y)= 5 €7 tr ((ha,No}

X (20PA%+ APA”) — N APNLAY).
(59

For later convenience we also note that

SANY) _
SAL(X)

—Ipa(Y)x8(x—y) + (9ylpa(y))o(x—y). (60)

On the other hand, we may use the definiti@4) of the
anomaly[and expressioii44) for the Ward operatdrto re-

late the functional derivativés7) to the two-point function

(49). We get
Ma(x):—f S(x—y) + (8200"+ Fag AH(X))
6A;(y) abc! 5AE(X) acPx adc™\d

X (Tl (X,y) = OL(y) S(x—Y))
=C(y) 8(x—y) + Sop(y) K S(x—y)

ab(Y) I S(X—Y) + faq AG(Y) obp () S(X—Y)
(61

where we introduced

Tab(Y)=Tap(Y) ~ O %y (Y). (62

Comparing the coefficients ob(x—y), ﬁ)'fﬁ(x—y), and
#28(x—vy) in Egs.(57) and(61) leads to

CoU(Y) + FagAh(y) ot (y)=0 (63)
Sorky) + aku(y) =150(y) (64)
oY) =124(y). (65)

For a determination o8X% and C% we needot?

[21], but the final result will agree with the result [#0] up

to the difference in conventiopsFor this purpose we com-

pute, analogously to Ed61),

about
which we have no information ydghere we sllghtly deviate
from the calculation of20] and follow the arguments of

PHYSICAL REVIEW D 62 105033

SAY) _ £ rebx—y) + (Bpedst FoacA4(Y))
5AM( ) bac 5A§“(X) bcCy bdcd™d
X(TRE7(X,y) = O5L(y) 8(x—y)) (66)
and use
RTE(X,Y) =+ =—CEy) 8(x—y) — SLK(y) dkd(x—Yy)
v nv _
+ fapAg(Y) Th (X,Y) abcéAg(y)
X 8(X—y) (67)
to arrive at
5Ab(y) S0k
5Ag(x) 1(y) S(x—y) — SE(y) dka(x—y)

+0(X=Y) (Bpcdy+ FracAa(y))oac (y)
— 0o (Y) (X —y). (68)

Comparison of coefficients of Eq&60) and (68) leads to

(y)+z9”fr b(Y) T FoacAd(Y) ohe (V) =yl g5 ()
(69
SK(y) + o (y) = 1EE(y) (70
1(y)=194(y). (79

T((J)gether with Eqs(63)—(65) this may be solved fo82% and
Cab

S (y)=1E2(y) — 125(y) (72)

CR(Y) == FagAE (Y 4(Y). (73)

In addition we find from Eqgs(69) and (73) the consistency
condition

A =12+ ALY (Fagd BE(Y) + Foad oa(¥)) =0
(74)

which holds for both 2 and 4 dimensions, as may be checked
easily. So far we have determined the anomalpifsJ°]
commutator; see Eq$52), (72) and(73). We still need the
commutator 0’021 and the Ward operatof,, . As X, does not
contain fermionic degrees, this commutator is equal to the
action ofX, on J9,

Xp(¥)J2(x) = 8(x°—yO)[ Xp(y),I2AX)]. (75)

This commutator may be inferred from the relation
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B. Covariant case

= (D" “ 3 ~
oY) SAL(x) (Dype—5 SAL(Y) <O|T‘] (x)e”>0)e” The VEV of the covariant curreni? is related to the
consistent one by the Bardeen-Zumino polynormi4l,
= (0] T(Xp(y) J£(x))e 1 0)e" - . .
: . (O T*34(x)e~ 1940y eW=(0| T* 3%(x)e " IA|0)eW+ A %(x).
+(Dy)pe( 0| TI(x)I(y)e T4 0)e. (83
(76)  This leads to the covariant anomali(x),
Here we used the fact that in the one-point functiér) the ~ = — (D™)...(0|T*J~ —[3A 0)eWV
T* product is equal to th& product. It is important to use A0 == (D)0 T* Jp(x)e™ | 0)e
the T product here, because we want to extract (tbarentz = Aa(X) — (D) apAE(X). (84)

non-covariant commutator[Jg,Xb] directly, without some
covariantizing seagulls. Now we assume that the commutatdexplicitly the covariant anomalies are
(75) contains no fermionic degrees of freedom, i.e., it may be _
extracted from the VEV. Using Eq$49) and (50) for the d=2, Ay(X)=2c,€*"tr Ny(d*A"+A*A") (89
two-point function we find
o d=4, A,(X)=3C,e""P7tr A (9*A”’+ A AY)
_ M v 134
B0 =y°)[Xo(y), J4(¥) ]+ (D})pcThE (X,Y) (AT APAT) -
v wv yiag
= (Dyloe(Tact oac(y) 2x=y)) 77 where the constants;, ¢, are thesameas in the consistent
or, for u=0 and using Eq(65), case, see Eqg55 and (56). The two-point functions are
defined analogously to Eq&18)—(50) as

SOX°=yO)[I200), Xu(¥) 1= = (Dy)pcl2(y) S(x—y)). (78) R
(0|T*34(x)e~ 74 0)eW
Actually, for the Gauss operator we only need the Ward SAL(Y)
operator restricted to purely spacial gauge transformations. L ~
In addition it is preferable to get rid of the time coordinate =—(0[T*35(x)Ip(y)e T4 0)e”
altogether. Therefore we define a spacial Ward operator ~
S0
+<O|T* TG_NA|0>GW+ cee
0 k o 5Ab(y)
Xa(X):=— | dx (Dx)abm (79) ~ ~
° = =T y) + 0L () S(x=y)+--- (87
[Xa(), Xo(¥)]1= fapcXc(X) (X~ ) (80) = TR Y) — () S(X—y) + - 89)
whered(x—Yy) is the spacials function. The Gauss operator Where the ellipses denote disconnected terms and all defini-
is tions are analogous to the consistent case. Further, the com-
putation ofaQTab(x,y) is completely analogous to the con-
Ga(x)=Jg(x)+Xa(x). (81 sistent case, see Eq$1)—(53). Parametrizing the covariant

commutator in an analogous way,
Using Eqs(72), (73) and(78) we find for the anomalous part _ 5 5 _
of the commutatofi.e., the Schwinger term S(x° =y [Ix), I5(Y) 1= Fapde(x) S(x—y) + Cap(y)

Gan(X,¥) =[ Ga(X),Gp(Y) ]~ FapGe(X) 8(x—Y) X 8(x=y) + S (Y) Fed(x—Y)

=C(y) S(x—y)+ SEX(y) £(x—y) (89
+[I90), Xp(y) ]+ [Xa(x),3p(y)]
= — (FoaA§(Y) 1 26(Y) + A1 () S(x—y) (82 A TaR(xy)=CRH(y) 8(x—y) + S (y) dk(x—y)

+ Faped(X—y)(O| TIZ(y)e 1940y eV

leads to a result analogous to E§3),

where 1° b are just the restrictions of the distributio(s8)
and(59) in space-time to distributions in spag@ee., the time - fadCAg(x)-”rgg(x,y)_ (90)
variable is treated as a parameter with a fixed valBefore

evaluating this expression explicitly fal=2 andd=4, we  Again, this should be related to the functional derivative of
want to find the analogous result for the covariant casethe (covarianj anomaly. We express this functional deriva-
following [21]. tive as
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SAL(X)

=T (y)dl8(x—y) +BL(Y) S(x—
SALY) b(Y) 35 o(X—y)+Bp(y) 8(x—Y)

(91)

(we do not display the explicit expressions foandB for
d=2 ord=4, because we do not need them in the sequel

On the other hand, using the definition.df , relating its
functional derivative to the two-point functiof88) and in-

serting Eq.(90) for 9“T*! leads to
SALX) _ S0k(y) 5

0r(y) S(x—y)+ S2K(y) ako(x—
ALY Cary) 8(x—y) + S (y) d8(x—)

+TEL(Y) I S(X—Y) + T oA () oha () S(x—Y)

(92
and therefore to the equations

CAY) =BL(Y) — Fag AL TE(Y) (93)

S =ToE(y) — Tsb(y) (94)

Ton(Y) =Tan(y). (95)

Again we miss information omk%(y), which we may infer
from [ 5A,(y)/ 6A%(x)]. We find

5Ab()’)
SAL(X )

~ foacd(x—y)(0| T*T2(y)e | 0)e"

~(D}) (0]T*32(y)e 94 0)eW

o
°C SAL(X)

~ Fpacd(X—y)(0| T*T2(y)e 1A 0)e

Y * —fIA w
(Dy)pe 5A§(y)<O|T JE(x)e”/A0)e
—Fhp(XY) (96)
5A“(X) SAp(Y)
1224 ’ = 9
FaCY = atty) oAk 97

where we used relatio(83) between consistent and covari-
ant current VEV and the commutativity of functional deriva-

tives (see[21)). Computmg&”T"b(x y) as in the consistent
case yields

SAp(y)
SAE(X)

13(y) 8(x—y) —St(y) dka(x—y)

+(Dy)pcF as (X,Y) + 8(x—y)(D})pcrhe(y)

—ThH(y)axs(x—y). (99)

PHYSICAL REVIEW D 62 105033

However, as a consequence of the gauge covariance of the
covariant current it holds that

SAu(y)
SAL(X)

=(Dy)ocFac(xy) (99

as may be checked explicit]21]. Therefore, the coefficients
in Eq. (98) are not directly related to the anomaly and have
to obey

CE(y) = (D})peal(y) (100
Sk (y)=—ahK(y) (101
a#(y)=0 (102
and we find

S (y)=TE(y) (103
CR(y)=B2(y) (104

and the consistency condition
B2(Y)=(D})pel ou(y) (105

which holds indeed, as may be checked by explicit compu-
tation[21]. For the anomalous part of the current commuta-
tor this leads to

SO —=yO)[32(x),32(y) ]~ FapdAy) S(x—y)
=CX(y) 8(x—y) + S0 (y) d(x—y)

SA4(x)
SAN(Y)

(106)

Again, we have to calculate tHe, ,32] commutators as in

the consistent case. However, the result is simply that each
such term in the Gauss operator commutator produces a con-
tribution that is equal to minus the above expressiboo);
see[21]. Therefore we find for the covariant Gauss operator

Ga(x)=JYX) + Xa(x) (107
the Schwinger term
Gan(%,Y) =[Ga(X),Gp(y) ]~ fanGe(X) S(x—Y)
SA(X)
— 0_~ 27
f v SAR(Y) (108

where thedy? integration just serves to get rid of the un-
wantedy® dependence, such that the RHS of E108) is
again a distribution in space onfshis just destroys a(x°
—y9), because there is no time derivative in the above ex-
pression(108)].

Remark It should be mentioned that the use of square
brackets in Eqs(106) and (108 is, in fact, a slight(but
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commonplacgabuse of notation. These expressions are no€omparing with Eq(6) (for the consistent casand Table |
commutators in the algebraic serise., they do not obey the (for the covariant cagewe find that the relative sign df
Jacobi identity. Instead, they are defined by the RHS of andG is in precise agreement.

Egs. (106) and (108), respectively. Therefore, the covariant
Schwinger term doesot obey the Wess-Zumino consistency
condition (which it would if the “commutators” obeyed the
Jacobi identity.

This is in contrast to the consistent case. Theiie fios-

sible to define the current operators such that their commu-

tators obey the Jacobi identitthey may be realized as linear
operators on the fermionic Fock spd&3]). Consequently,

For the casal=4 we find from Eqs(59) and(82)
c
gab(x,y): _ Ez‘soklmtr ([)\a,)\b](ﬂkAlAm—l— Ak(?IAm

+ AKAIA™) + (A AKN = N AN ) 9 A™)

x 83 (x—vy) (1195

the consistent Schwinger term obeys the Wess-Zumino corf€ach derivative acts only on its immediate right hand neigh-

sistency condition.

C. Explicit evaluation

Now we are in a position to explicity compute the
Schwinger terms both fod=2 andd=4. Starting with the
d=2 case, we find from Eq$58) and(82) for the consistent
ST

Gan(X,y) = —C1€% g AGYI N A 8P (x—y)
—c1€%tr N[N, ATV (x—y)

(109

[6M(x—y):=86(x*—y')] and for the covariant ST, using
Egs.(85) and (108

Gan(X,y) = —2¢1€%tr N\ pdl oM (x—y)

+[Np, A]5 B (x—y)) (110

where here and in the following functions always depend on

y when the coordinate argument is not written down explic-
itly. In order to compare with the expressions of Sec. Il, we
omit €% and multiply by (1/2Jy*v4(X)v,,(y), in the indi-
cated order. Herdy* is a one-formp ,(x) is a ghost, and all
these objectsanti-commute e.g., dy v (x)=—v(X)dyX.
We find [A(y) :=A (Y)dy*, v(X) :=va(X)\]

G0x,y) == 2t X))+ 0 (YD )DAY) SV (x-y)
(111)

or, after integrating with respect tfdxdy

G=— c1J tro?A. (112

In the same fashion, we get fGh(,y) (dy:=dy*a¥)

G(x,y)=—cytro(x)(—[dydD(x—y)Jv(y)+ sM(x—y)
X[A(Y)v(y)+uv(y)AY)]) (113

and (where a partial integration has to be performed

§=—C1f trv(dv+Av+vA)=—Clj trvDuv.
(114

bor), or, after omitting €K™

(1/2)dy*dy'dy™ o(X)vp(y)

and multiplying by

g(xy)=— %tr (v(xX)v(y)+o(y)v(x)](dAA+AdA+A3)

+[o(y)Av(x) +o(x)Av(y)]dA) S (x—y) (116
and upon integratiorf [ d3xd3y

C
G _?zf tr @2(dAA+AdA+A%) +vAvdA). (117)

For the covariant ST we find from Eq&86) and (108

Ga(X,y) = = 3™ tr Ny ([N pdy 6 (x—y) + (N pA
— AN 8B (x—y) (9 AT+ AIA™)
+ (' A+ ATAT) [\ 3 (x—y)
+(NpA = AN SB(x—y) ) (118

and

~ 3c, 3
g(xy)=——-tr (—v()I(dy P (x=y) v (y)

—(vA+AD) 5 (x—y))(dA+A?) + (dA+ A?)
X ([dy 8@ (x=y)Ju(y) — (vA+Av) 5¥(x~Y))]

(119
~ 3C2
g=-— TJ tro((dv+Av+vA)(dA+A?)
+(dA+A?)(dv +Av+vA))
3c,
:_TJ tro(DvF+FDv). (120

Again, the relative sign of consistent and covariant ST pre-
cisely agrees with the one in E¢(6) (consistent cageand
Table | (covariant case
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[19%(x),i () ]n.c. (A3)
APPENDIX A: THE SCHWINGER TERMS
OF THE GAUSS LAWS we get, after some manipulationsA (is the covariant
_ ) _ Laplacian
Here we provide the detailed -calculation of the

(1+1)-dimensional Schwinger terms within the Hosono and  ([j%4(x),j%(y)]n.c.)=tre” tP4P_(t,y,x)t3 e~ (¢/24x
Seo approach. We start with the covariant case and we con- C78(x—v)tb— b
sider only the non-canonical part of the commutator: Jox=y)t'=(x,a<>y,b),

[G2(%),G (Y) Jn.c. = [X20) +]%2(x), X°(y) +%°(Y) In.c. o
where P_(t,x,y) denotes the projection operattsee Ap-
=[X2), X°(Y)]nc. H[X2(¥),i®W)]ne. pendix O

+[%00,X°(Y) In.c.
+[%00,1 %W Inec. - (A1)

(A4)

Ft(t,x,y>=E2<0 LX) (%), (A5)

Then Eq.(A4) gives (a:=1/(2m)?)
tre #AyPO)(y, x)t e~ 2%~ 1]8(x—y)t°— (x,a<y,b)

=atrf dEa(—E)e‘sAye‘iE(X‘y)t""f dogle *2x—1]e 19Nt — (x,a<y,b)
=atrf dEdgd(—E)e *Ave Bt e eAx—1]e 1A NtP— (x ay,b)
=atrf dEdgd(—E)e *Ee EC(1—2i s EA(Y)A (1+ 2i eqA(X))e *F — 1]e 19X NP~ (x, 2>y, b)
=af dEdgd(—E)e *Ee IErQx—Y[g-ed’_ 1]~trtatb—(x,aHy,b)—iaf dEdgo(—E)e *ETe*9°—1]
Xe‘i(E+q)(x‘y)28E~trA(y)tatb+(x,aHy,b)+iaJ dEdgd(—E)e *E2eqe 9. tr tPA(X)t°— (x,a<>y,b)
=af dge‘ig(x‘y)fdEG(—E)e‘SEZ[e‘S(g‘E)Z—l]~trtatb—(x,aHy,b)—iaf dge )
><J dEO(—E)2eEe *E e 2" B’ — 1] r A(y)t3+ (x,a<>y,b)
+iaf dge‘if(x‘y)f dEA(—E)2eqe *Ee 2B rtaA(x)tP— (x,a Y, b)
:af dge—iﬂx-y)f dEe *E e s B’ 1][6(—E)— O(E)]- trt3®

-

X f dEO(E)2¢(é—E)e *E'eo(¢-B)?

fdge-iax-y)f dEe(—E)ste—sEz[e‘g@‘E)Z—l]—f dée™ ¥

-trA(y)tatb—(X,aHy,b)]

=— aJ dfe“f(x‘y)J dEe *Ele *E (1— e &2+ 28 E&+--+)— 1]e(E) - trtatP

—iaU dge i€y JdEZsEe’SEZe’S@’E)Z(G(—E)+ 6(E))—J dEO(—E)2sEe °F

—J dEG(E)2s e *Fe o(¢-B)? -trA(y)tatb—(x,aHy,b)]
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[e(E)=6(E)— 6(—E)], where the three terms in the large square brackets above give 0, 1 and 0 in the-uit
respectively. In the limit of smalt we obtain

—aJ dgge—if“—y)f dEe—ZsEzste(E)-trtatb—ia[fdge—“f(X—y)-trA(y)tatb—J dge €Y A(x) P2

e—0 i i
= —af dée L r 2P+ 2 e S(x—y) - tr [ A(y), tP]= — Zl—waxé(x—y)-trtathrzl—W&(x—y)-trta[A(y),tb].
(AB)
Then
(L%, ®(y) Ine) = — Ly S(x—y)-trtatP+ L S(x—y) - trt¥[A(y),t°] (A7)
) n.c. 27 X 2 !

and the covariant Schwinger term of the commutator of the full Gauss law operators has the form

— - - i i
ST=([Gx),G(Y)In.c.) = —([°%X).i®(Y) Inc)= Zﬁxﬁ(x—y)-trtat“r Eé(x—y%trta[Al(y),tb], (A8)
where we used the result for the cross term
i
([X3(x),j%(y)]) = z(ﬂﬁa“r faCAL(X)) S(x—y) - trt°t° (A9)

obtained in Appendix B.
For the commutator of the consistent Gauss laws we get

[G*(x),G(y)]=[G*(x),G°(y)]+[G*(x),A]®°(y)]+[A] (%), G(y)]
= faPG(x) S(x—y)
= 1305GC(x) 8(x—y) — F22°A [ %°(y) S(x—y), (AL0)

where we used the equality
STOH[GA(x),A]%(y)]+[A]%(%),G(y)]1=0 (A11)
which results from

[G20x),A]®(y)1=[X3(x), 4] P°(y) =X () A} ®(y)

= 4i—77801(53°a#+ faeCA“e(x))5AMC(X)tr(tbA1(y))
= 4i—77(53°c9§+ faeALe(x)) S(x—y) - trtPtC, (A12)
Therefore
STP=—f2P°A[%%(y) S(x—y)
= J—Wsovtr(fab%cAy) S(x—y)
= i—5(x—y)~tr([ta,A1]tb). (A13)
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APPENDIX B: THE CROSS TERM

For the VEV of the cross term

[X3(x),j%(y)] (B1)
we get
X3(x ’-Ob - _ 0—,15ac+faecAle X i 0b
([XF0),5(y)1) <( x ( ))5A10(X)J (¥)
— aléac_{_faecAle X i Ob . B2
(0 ())<5A1C(X)J (y)> (B2)
Since
4 (e/2)A o0 (e/2)A (0)
e ¥ IP _(y,2) ~ e ¥y | P (y,z
A () (y,2) AL () (y.2)
1 ) _
e—0 i ) ’
= _EJ dEO(—E)eEEY 2™ (#2P% 5(x —y)t© (B3)
and
i . - i _
- Zf dEO(—E)sEEV -2 (el2E g (o124, _ Ef dEO(—E)sE€EV-De¢E’ (B4)
we obtain
§%(y) ) = lim trt ( é e-(s/zmy) P,(y,z)e‘(s’z)&wr e 2Ap (y 7) é o= (e/2)4,
SAE(x) 2y SAE(x) SA(x)
i 2
=— ;J 0(—E)eEe *EdES(x—y)- trt®tC. (B5)
The integral is
—sE2 1
6(~E)eEe "= dE=— 3 (B6)
and therefore
i
:0b _ ). trtbsc
<5A1C(X)J (y)> = 27Té‘(x y) - trt°te. (B7)
So, we finally get
i
(X001 ()] = 5 - (18 + F22AT00) S(x—y) - r 8, (B8)
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APPENDIX C: THE PROJECTION OPERATOR

For our purposes we expand the projection opergién

de 1
P_(t,x,y)=(x| jgcfﬁ E——H(t)|y>

_<|§; 27 E—Ho— V(t)|>

B é de 1 N 3g dE 1 v 1 N
=(x| = E—H0|y> (x| . 21 E—Hy (t)E_HOM
=POx,y) + POt x,y)+ - -, (CD
whereC _ is a contour surrounding the negative real axis in the comglgiane.
For the calculation of the commutators it is sufficient to consider only the first term ofC&yJ.
PO(x,y)= 2 LX)y (¥) (C2
1 _
=—f dEO(—E)eExY), (C3
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