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Covariant Schwinger terms
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There exist two versions of the covariant Schwinger term in the literature. They only differ by a sign.
However, we shall show that this is an essential difference. We shall carefully~taking all signs into account!
review the existing quantum field theoretical computations for the covariant Schwinger term in order to
determine the correct expression.

PACS number~s!: 11.30.Rd
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I. INTRODUCTION

One essential feature of chiral gauge theories is the
lation of gauge invariance when chiral~Weyl! fermions are
quantized. This loss of gauge invariance results in n
invariance of the vacuum functional in an external gau
field under gauge transformations and in non-conserva
~anomalous divergence! of the corresponding gauge curre
in a Lagrangian~or space-time! formulation ~‘‘anomaly’’
@1–3#!, or in anomalous contributions to the equal-time co
mutators of the generators of time-independent gauge tr
formations in a Hamiltonian formulation~‘‘Schwinger term’’
or ‘‘commutator anomaly,’’ @4–9#!. One regularization
scheme, where all the anomalous terms are related to f
tional derivatives of the vacuum functional, leads to the
called consistent anomalies. These anomalies have to
certain consistency conditions because of their relation
functional derivatives@10#. One way of determining thes
consistent anomalies~up to an overall constant! is provided
by the descent equations of Stora and Zumino@11,12#. They
provide a simple algebraic scheme—based on some
metrical considerations—for the computation of the cons
tent chiral anomaly in the space-time formalism and for
corresponding equal-time commutator anomaly,
Schwinger term~as well as for higher cochain terms!.

On the other hand, it is possible to choose a gau
covariant regularization for the gauge current. This covari
current cannot be related to a functional derivative of
vacuum functional~because of the gauge non-invariance
the latter!. As a consequence, the covariant current anom
does not obey the consistency condition. Nevertheless, t
exists a covariant counterpart for each consistent cocha
the descent equations. The first derivation of an algeb
computational scheme for covariant cochains appears t
the one by Tsutsui@13#, using the anti-Becchi-Rouet-Stora
Tyutin ~BRST! formalism. Further, a covariant version of th
descent equations was derived by Kelnhofer in@14#. The
covariant cochains resulting from the calculations by Ts
sui, on one hand, and by Kelnhofer, on the other hand, ar
fact, different, as was shown in@15#. Tsutsui’s and Kelnhof-
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er’s formulas predict the same anomaly in space-time,
their Schwinger terms differ by a sign. The higher cocha
~with more than 2 ghosts! seem to be unrelated. We sha
give an answer to which of the two formulas is correct, in t
sense that it is reproduced by a full quantum field theore
calculation.

The easiest way to do this calculation would be to co
pute one of the higher covariant anomalies in some quan
field theoretic setting, because these higher covariant ano
lies are given by completely different expressions in@13# and
@14#. However, although it has been claimed that the hig
cochains can have a physical meaning, this is far from
derstood. It is therefore not sound to use these terms to a
which of the two formulas is correct. Instead, we shall u
the sign of the Schwinger term as a referee.

We shall use three methods to determine the correct
pression for the covariant Schwinger term. They all have
be used with care since we are after the sign difference
tween Tsutsui’s and Kelnhofer’s predictions. The first tw
methods are to apply the quantum field theoretical calcu
tion schemes that have been used by Adam@17# and by
Hosono and Seo@18#, respectively.

The third method is the one by Wess@19#, relating the
Schwinger term~consistent or covariant! in any even dimen-
sional space-time with the corresponding space-ti
anomaly. This method was used by Schwiebert@20# for the
consistent case and by Kelnhofer@21# in the covariant case
Thus, by using the expression for the covariant anom
~which everyone agrees on! the covariant Schwinger term
can be determined. Again, care has to be taken. For this
first perform the calculation in the consistent formalism a
set conventions so the result agrees with what is predicte
the descent equations. The corresponding covariant com
tation is then to determine the covariant Schwinger term
cluding the sign. We shall perform these calculation in 111
and 311 dimensions.

From the explicit calculations we find that our quantu
field theoretical methods produce the same expression~i.e.
sign! as Kelnhofer’s covariant descent equations. This re
is not obvious since Kelnhofer’s approach, as well as Ts
©2000 The American Physical Society33-1
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sui’s, seems to be based only on the requirement of cov
ance. We shall however show that there is in fact a nat
interpretation of the Kelnhofer formula, as one would expe

Our paper is organized as follows. In Sec. II we brie
describe the geometrical setting for the description
anomalies and review the derivation of the consistent
covariant chain terms. In the covariant case, both Tsuts
and Kelnhofer’s versions of the chain terms are given an
geometrical description of Kelnhofer’s construction is pr
vided. In Sec. III the consistent and covariant Schwin
terms in 111 dimensions are calculated using the methods
@17# and of @18#. Finally, in Sec. IV the Schwinger terms i
111 as well as in 311 dimensions are calculated with th
help of the method of Wess@19#.

II. CONSISTENT AND COVARIANT COCHAINS

We shall start with deriving the consistent chiral anom
for a non-Abelian gauge theory. Consider therefore W
fermionsc coupled to an external gauge fieldAPA. A is
the affine space of gauge connections and the gauge groG
is assumed to be a compact, semi-simple matrix group.
assume that the space-timeM is a smooth, compact, oriented
even-dimensional and flat Riemannian spin manifold with
boundary. The groupG of gauge transformations consists
diffeomorphisms of a principal bundleP→

G M such that the
base remains unchanged. It acts onA by pull-back and to
make this action free we restrict to gauge transformati
that leaves a reference pointp0PP fixed.

The generating functional is given by

exp„2W~A!…5E
c,c̄

expS 2E
M

c̄]”A
1cd2nxD , ~1!

where W is the effective action and]”A
15]”A(11g5)/2

5gm(]m1Am)(11g5)/2. We shall use conventions suc
that gm is Hermitian andAm is anti-hermitean. It has bee
argued that a correct interpretation of the generating fu
tional is as a section of the determinant line bun
DET i ]”A5det keri ]”A

1
^ (det cokeri ]”A

1)* . It can be viewed
as a functional by comparing with some reference sect
Associated with the determinant line bundle is a connec
with corresponding curvature

F522p i
1

~n11!! S i

2p D n11E
M

tr~F n11! ~2!

@22#. F5(d1d)@A1(dA* dA)21dA* #1(A1(dA* dA)21dA* )2 is
a curvature of the principal bundleP3A→M3A andd is
the exterior differential inA. The choice ofF is motivated
by gauge invariance of the determinant line bundle@23,24#.

Recall that

tr~F 2
n11!2tr~F 1

n11!5~d1d!v2n11~a2 ,a1! ~3!

for

v2n11~a2 ,a1!5~n11!E
0

1

dt tr„~a22a1!F t
n
… ~4!
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and Ft the curvature of (12t)a11ta2, holds for any con-
nectionsa1 ,a2 with curvaturesF1 ,F2. Using this in Eq.~2!
gives the following expression for the connection of the d
terminant line bundle:

22p i
1

~n11!! S i

2p D n11E
M

v2n11„A1~dA* dA!21dA* ,0….

~5!

The ~infinitesimal! consistent anomaly is the variatio
of the effective action under gauge transformations. Th
it is the negative of the restriction of Eq.~5! to gauge
directions, i.e., the fibre directions ofA→A/G. Along such
directions,d becomes the BRST operator and (dA* dA)21dA*
becomes the ghostv. Thus, the consistent anomaly
cn*Mv2n11(A1v,0), with cn52@1/(n11)!#( i /2p)n. Since
M is 2n-dimensional, it is only the term with one ghost
the expansion ofv2n11(A1v,0) that will give a contribution
to the anomaly. We letv2n112k

k (A1v,0) denote the part
of v2n11(A1v,0) that containsk number of ghosts.
Then cnv2n

1 (A1v,0) is the non-integrated anomaly
It is well-known, and explicitly proven in@25#, that
cn*Mv2n21

2 (A1v,0) is the Schwinger term. In this caseM is
to be interpreted as the odd-dimensional physical space
fixed time. The formsv2n112k

k (A1v,0) can be computed by
use of Eq.~4!. In 111 and 311 dimensions it gives the
following result for the consistent anomaly and Schwing
term:

c1v1
2~A1v,0!5c1 tr~vdA!

c1v2
1~A1v,0!52c1 tr~v2A!

c2v1
4~A1v,0!5c2 tr„vd~AdA1A3/2!…

c2v2
3~A1v,0!52c2 tr„~v2A1vAv1Av2!dA1v2A3

…/2.
~6!

If the freedom is used to change the form
v2n112k

k (A1v,0) by cohomologically trivial terms~i.e., by
coboundaries!, then these forms can be given by the follow
ing compact expressions that were first derived by Zumino
@26#:

v2n112k
k ~A1v,0!;~n11!S n

kD
3E

0

1

dt~12t !k str„~dv !k,A,

3~ tdA1t2A2!n2k
… ~7!

when 0<k<n and

v2n112k
k ~A1v,0!;~21!k2n21S n

k2n21D XS k

k2n21D C21

3str„v,~v2!k2n21,~dv !2n2k11
… ~8!
3-2



d

-
n
n
g
ith
il

ot

o
a
, w
te
-
h

rr

g

n

be

e
of

me
ach

COVARIANT SCHWINGER TERMS PHYSICAL REVIEW D62 105033
when n11<k<2n11. Here str means the symmetrize
trace and; means equality up to a coboundary.

Above, we used Eq.~3! for a25A1(dA* dA)21dA* and
a150. WhenP is a non-trivial bundle it is no longer pos
sible to leta1 be zero. Instead, we let it be some fixed co
nectionA0 on P ~which can be identified with a connectio
on P3A). By dimensional reasons, this does not chan
Eq. ~2!. The consistent anomaly and Schwinger term w
such a background connection can be computed in a sim
way as above, one just usesv2n112k

k (A1v,A0) instead.
Since the expressions corresponding to Eq.~7! and Eq.~8!
are long and not particularly illuminating we shall n
present them here~parts of it can be found in@15#!. The ideas
behind the background connection are completely analog
with the case without a background. For example, they
consistent, but not gauge covariant. To obtain covariance
choose as a background the field itself. We are then in
ested in the~non-consistent! terms coming from the expan
sion of v2n112k

k (A1v,A) in various ghost degrees. Wit
use of Eq.~4!, the following expression was obtained in@15#:

v2n112k
k ~A1v,A!5 (

j 50

[(k21)/2]
n11

k2 j S n2 j

k22 j 21D S n

j D
3XS k

j D C21

str„v,~dv ! j ,~dA!k22 j 21,

3Fn2k1 j 11
…, ~9!

where a negative power on a factor means that the co
sponding term is absent in the sum. Recall that@(k21)/2# is
(k21)/2 if k is odd and (k22)/2 if k is even. The terms

cnv2n
1 ~A1v,A!5cn~n11! tr~vFn!

cnv2n21
2 ~A1v,A!5cn

n~n11!

2
str~v,dA,Fn21!

~10!

are the non-integrated covariant anomaly and Schwin
term.

TABLE I. Anomalies and Schwinger terms as forms.

n51 Anomaly Schwinger term

Consistent c1*M tr„(dv)A… c1*M tr(vdv)
Covariant c1•2*M tr„v(dA1A2)… 2c1*M str„v(dv12vA)…

TABLE II. Anomalies and Schwinger terms as forms.

n52 Anomaly Schwinger term

Consistent c2*M tr„(dv)AdA c2*M tr„(dv)2A…

1
1
2 (dv)A3

…

Covariant c2•3*M tr c2•(23)*M str„v(dv1vA
„v(dA1A2)2

… 1Av)(dA1A2)…
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Let us summarize the results so far in the case of 111 and
311 dimensions in Tables I and II, respectively@we use
Eqs.~7! and ~8! for the consistent formalism#.

We shall now evaluate these forms on~anti-Hermitian!
infinitesimal gauge transformationsX,YP LieG. Let us do
this explicitly for the consistent Schwinger term whe
n52:

c2E
M

tr~~dv !2A!~X,Y!

52c2E
M

tr~] iv`] jvAk!e
i jkd3x~X,Y!

52c2E
M

tr„~] iX] jY2] iY] jX!Ak…e
i jkd3x. ~11!

The corresponding evaluation of the other forms forn51
andn52 is listed in Tables III and IV, respectively.

That the covariant anomaly and Schwinger term can
computed by expansion ofv2n11(A1v,A) was discovered
by Kelnhofer @14#. An alternative computational schem
leading to covariant cochains differing from the ones
Kelnhofer was given by Tsutsui@13#. To review his
approach we reconsider Eq.~4! for a25A1v and a150.
We can then viewv2n11 as a functionv2n11(A1vuF) of
A1v andF5(d1d)(A1v)1(A1v)2:

v2n11~A1vuF!5~n11!E
0

1

dt tr„~A1v !F t
n
…,

Ft5tF1~ t22t !~A1v !. ~12!

The covariance is broken by the operatord in the expression
for F. Thus, v2n11(A1vuF8), with F85d(A1v)1(A
1v)2, produces covariant terms. This is exactly the sa
terms as the ones appearing in Tsutsui’s anti-BRST appro
@15,27#. In @15# ~see@16# for k52) the following formula
was given for the terms with a given ghost degree:

TABLE III. Results in 111 dimensions.

n51 Anomaly Schwinger term

Consistent 2c1 tr„(]mX)An…e
mn 22c1 tr(X]xY)

Covariant 2c1 tr„X(]mAn 2c1 tr(X]xY2@X,Y#Ax)
1AmAn)…emn

TABLE IV. Results in 311 dimensions.

n52 Anomaly Schwinger term

Consistent 2c2 tr„(]mX)(An]rAl 2c2 tr„(] iX] jY

1
1
2 AnArAl)…emnrl 2] iY] jX)Ak…e

i jk

Covariant 3c2 tr„X(]mAn 3c2 tr„(X] iY2Y] iX
1AmAn)…(]rAl 2@X,Y#Ai1XAiY
1ArAl)emnrl 2YAiX)(] jAk1AjAk)…e

i jk
3-3
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v2n112k
k ~A1vuF8!5

n11

k
tr„v@F2d~A1v !#n

…k , ~13!

where the indexk on the right hand side means the part
the expression that hask number of ghosts. Comparison wit
Eq. ~9! reveals that this formula gives the same covari
anomaly but the covariant Schwinger term differs by a si
The higher terms seem to be unrelated. This brings us to
question of who is right: Kelnhofer or Tsutsui? The formu
of Tsutsui seems to be motivated by nothing else than
variance. Kelnhofer’s formula, on the other hand, seems
appear in a natural way: it is obtained by putting the ba
ground field equal to the field under consideration. In
computation of the Schwinger term from determinant li
bundles for manifolds with boundary, one extends space
cylindrical space-time@25#. On one side of the cylinder on
computes the Schwinger term by comparison of a fix
vacuum bundle~with respect to a background connection! on
the other side of the cylinder. In this approach it is certai
possible to put the background field equal to the field its
see @24# for details. This clearly defines a covaria
Schwinger term in a natural way, suggesting that Kelnhofe
approach is the correct one. This geometrical appro
would not have been possible with Tsutsui’s result. This
plains the importance of the sign of the covariant Schwin
term. In the forthcoming sections we shall demonstrate
indeed Kelnhofer’s result for the covariant Schwinger term
reproduced by quantum field theoretic computations.

III. CALCULATIONS IN 1 ¿1 DIMENSIONS

A. Calculation of Adam

In this section we want to briefly review the calculation
the consistent and covariant Schwinger term that was
formed in @17# for the Abelian case~the chiral Schwinger
model!. The generalization to the non-Abelian case
straightforward and shall be displayed below, as well. In@17#
the Hamiltonian formulation was used~therefore space-time
is 111 dimensional Minkowski space!, and the computation
started from the second-quantized chiral fermion field ope
tor in the interaction picture. For fermionic field operato
the Dirac vacuum has to be introduced and operator prod
have to be normal-ordered with respect to the Dirac vacu
For the introduction of the Dirac vacuum the Hilbert space
fermionic states is split into a positive and negative mom
tum sub-space~for chiral fermions in two dimensions energ
equals momentum!. For the negative momentum sub-spa
the role of creation and annihilation operators is then
changed. At this point there are two possibilities to sp
Either one may split with respect to eigenvalues of the f
momentum operator2 i ]x1 and perform normal-ordering
~denoted byN) for this Dirac vacuum. A well-known con
sequence of this normal-ordering is the fact that the cur
commutators acquire a central extension~Schwinger term!.
For a fermion of positive chirality~where the current obey
J05J15:J), the Schwinger term is

@NJ~x0,x1!,NJ~x0,y1!#52
i

2p
d8~x12y1! ~14!
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~here the prime denotes derivative with respect to the ar
ment!. The second possibility is to split with respect to e
genvalues of the kinetic momentum operator2 i ]x11eA1.
Again, a corresponding Dirac vacuum and normal order
~denoted byÑ) may be introduced. It turns out that the k
netically normal-ordered current is related to the conventi
ally normal-ordered current in a simple fashion@28,17#

ÑJ~x!5NJ~x!1
e

2p
A1~x! ~15!

thereforeÑJ has the same commutator~14! as NJ. It was
proven in@17# that NJ is the consistent current operator an
ÑJ is the covariant current operator.

Remark. The simple form of Eq.~15! for the kinetically
normal ordered current only holds for a restricted class
‘‘sufficiently weak’’ gauge fields. For our purposes it is su
ficient to restrict to this class of gauge fields, becau
all calculations leading to the commutator anomalies be
are perturbative. Nevertheless, we want to comment on
point briefly. The situation is especially transparent
a compact space, so let us assume for the moment
the space direction is a circle,x1P@0,2p#. Further let us
chooseA1(xi

0 ,x1) at an initial timexi
0 such that Eq.~15!

holds@e.g.,xi
052`, A1(2`,x1)50#. If at later times the

deviation of A1 from its initial value is sufficiently small,
then Eq.~15! will hold for all times. If, on the other hand, we
allow for arbitrary deviations, then the spatial Dirac opera
2 i ]x11eA1 may have a zero mode at some timet* , i.e.,
level crossing occurs. At this timet* , Eq. ~15! changes dis-
continuously and acquires a non-local, gauge-field depen
contribution. Therefore, we should restrict to gauge fie
which vary sufficiently weakly such that level crossing nev
occurs.

Let us finally mention that the difference betweenÑJ and
NJ in Eq. ~15! coincides, of course, with the Bardee
Zumino polynomial.

Now it is very easy to compute the consistent and cov
ant Gauss law commutators. The Gauss law operators
defined as (]x1[]1)

G~x!5]1

d

edA1~x!
2 iNJ~x! ~16!

G̃~x!5]1

d

edA1~x!
2 iÑJ~x!. ~17!

Here A1(x) is treated as a function of space only and t
time variable x0 as a parameter, i.e.,@d/dA1(x0,
x1)#A1(x0,y1)5d(x12y1). The consistent Gauss law com
mutator is determined by the current commutator~14!,

@G~x0,x1!,G~x0,y1!#5
i

2p
d8~x12y1! ~18!

whereas for the covariant case the functional derivatives c
tribute, as well,
3-4
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COVARIANT SCHWINGER TERMS PHYSICAL REVIEW D62 105033
@G̃~x0,x1!,G̃~x0,y1!#52
i

2p
d8~x12y1!. ~19!

Therefore, the covariant Schwinger term is minus the con
tent one, Eq.~18!. This relative minus sign is precisely as
Table I. Observe that the covariant current is indeed ga
invariant, @G̃(x0,x1),ÑJ(x0,y1)#50, as it must be. In fact
the relative minus sign between the consistent and cova
Schwinger terms is a consequence of this gauge invaria
of ÑJ, and therefore independent of all possible conventio

A generalization of the above results to the non-Abel
case is straightforward. The two versions of normal-order
are defined as in the Abelian case, and they lead to the s
relation as in Eq.~15!, up to an additional color index

ÑJa~x!5NJa~x!1
e

2p
A1

a~x!. ~20!

Further, the current commutator acquires a canonical p
as well,

@NJa~x0,x1!,NJb~x0,y1!#52 i f abcNJc~x0,x1!d~x12y1!

2
i

2p
dabd8~x12y1! ~21!

„for the commutator@ÑJa(x),ÑJb(y)#, the same expressio
is obtained, again withNJc on the right-hand side,not ÑJc,
as is obvious from Eq.~20!…. The generator of time-
independent gauge transformations on gauge fields,

da~x!ª„dab]11e facbA1
c~x!…

d

edA1
b~x!

~22!

obeys the commutation relation

@da~x0,x1!,db~x0,y1!#52 f abcdc~x0,x1!d~x12y1!.
~23!

The consistent and covariant Gauss law operators are de
as

Ga~x!5da~x!2 iNJa~x! ~24!

and

G̃a~x!5da~x!2 iÑJa~x! ~25!

respectively. Their anomalous commutators may be ea
computed,

@Ga~x0,x1!,Gb~x0,y1!#1 f abcGc~x0,x1!d~x12y1!

5
i

2p
dabd8~x12y1! ~26!
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@G̃a~x0,x1!,G̃b~x0,y1!#1 f abcG̃c~x0,x1!d~x12y1!

52
i

2p
dabd8~x12y1!1

i

2p
f abcAc~x0,x1!d~x12y1!.

~27!

As in the Abelian case, the anomalous commutators ag
with the ones in Table I, and again this is most easily se
for the relative minus sign of thed8(x12y1) term. This rela-
tive sign may be related to the fact that the covariant curr
has to transform covariantly under a gauge transforma
~i.e., thed8 terms must cancel!

@G̃a~x0,x1!,ÑJb~x0,y1!#52 f abcÑJc~x0,x1!d~x12y1!
~28!

as may be checked easily.

B. Calculation of Hosono and Seo

In this section we shall use the Hosono and Seo appro
@18# for the calculation of the equal-time commutators of t
covariant and consistent Gauss law operator. The calcula
is performed in Minkowski space,gmn5diag (1,21), «01
51, with the gamma matrices obeying the usual Cliffo
algebra relationgmgn1gngm52gmn, and g55g0g1. The
anti-Hermitian matricest i are the generators of a non
Abelian algebra@ ta,tb#5 f abctc, and we denoteAk5Ak

ata.
The Hamiltonian of the chiral fermion interacting with a

external gauge potential is

H~A!52 i E dxF c̄~ t,x!g1
11g5

2
„]11A1

a~ t,x!ta
…c~ t,x!G

~29!

where we chose the Weyl gauge@A0(t,x)50#.
We expand the Fermion field as

c~ t,x!5(
n

an~ t !zn~ t,x!, ~30!

where zn(t,x) are eigenfunctions of the full Hamiltonia
~29! with eigenvaluesEn(t). In the quantized theory thean
are treated as operators satisfying the canonical anticom
tation relation

$an,am
1%5dnm ~31!

and the Dirac vacuum is defined as

an~ t !u0,A~ t !&S50, En~ t !.0,

an
1~ t !u0,A~ t !&S50, En~ t !,0. ~32!

Observe that the expansion of the Fermion field opera
with respect to the eigenfunctions of the full Hamiltonia
~29! automatically implies that we use the Schro¨dinger
picture.
3-5
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Singular operator products are regularized in@18# by an
exponential damping of high frequencies. The regulariz
current reads

„j ma~x!…reg5(
n,m

an
1~ t !zn

1~ t,x!e2(«/2)En
2(t)g0gm

3
11g5

2
e2(«/2)Em

2 (t)zm~ t,x!am~ t !

5(
n,m

an
1~ t !zn

1~ t,x!e2(«/2)En
2(t)tae

m

2(«/2)Em
2 (t)

3zm~ t,x!am~ t ! ~33!

@where j 05 j 1 was used in the second line, which holds f
the chiral current~33!#. The current in Eq.~33! is regularized
covariantly, therefore it will lead to the covariant anoma
and Schwinger term. The consistent currentJm is obtained by
adding the Bardeen-Zumino polynomialD j m,

Jm~x!5 j m~x!1D j m~x!, ~34!

D j m~x!52
i

4p
ta«mn tr~ taAn!. ~35!

These currents lead to the covariant and consis
anomalies

A cov
a ~x!52~Dm^ j m&!a~x!

5
i

2p
«mn tr„ta~]mAn1AmAn!…~x! ~36!

and

A con
a ~x!52~Dm^Jm&!a~x!5

i

4p
«mn tr ta]mAn~x!.

~37!

The covariant (G̃a) and consistent (Ga) Gauss law opera
tors read

G̃a~x!5Xa~x!1 j 0a~x! ~38!

Ga~x!5Xa~x!1J0a~x! ~39!

where

Xa~x!52S ]1

d

dA1
a~x!

1 f abcA1
b~x!

d

dA1
c~x!

D ~40!

generates time-independent gauge transformations of the
ternal gauge field.

Assuming that the non-canonical parts (n.c.) of the com-
mutator of the covariant and consistent Gauss laws
c-numbers it is sufficient to consider their vacuum expec
tion values~VEVs! only. The calculation in the Hosono an
10503
d
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Seo approach is rather lengthy, therefore it is performed
the Appendixes A–C. Here we just present the final form
the covariant Schwinger term

ST̃ab5^@G̃a~x!,G̃b~y!#n.c.&52^@ j 0a~x!, j 0b~y!#n.c.&

5
i

2p
]xd~x2y!•tr tatb1

i

2p
d~x2y!•tr ta@A1~y!,tb#,

~41!

and the consistent one

STab5^@Ga~x!,Gb~y!#n.c.&5
i

4p
d~x2y!•tr~@ ta,A1#tb!.

~42!

Comparing the results~41! and~42! with the expressions for
the ~111!-dimensional Schwinger terms in Eq.~6! ~for the
consistent case! and Table I~for the covariant case!, we find
that these terms agree. Therefore, the method of Hosono
Seo reproduces the result of Kelnhofer@14#.

IV. METHOD OF WESS

In this section we want to review the papers of Schwieb
@20# and Kelnhofer@21# who used the method of Wess@19#
for the calculation of the consistent@20# and covariant@21#
Schwinger terms~ST!, respectively. The central idea of th
method is to infer the current commutators from the tim
derivatives of a~time-ordered! current two-point function,
by using the general relation]x

0TA(x)B(y)5d(x02y0)
3@A(x),B(y)#1¯. As the anomaly is a~covariant! deriva-
tive of the current VEV~one-point function!, and further
current insertions are obtained by functional derivatives w
respect to the external gauge potentialAa

m , the current com-
mutator may be related to a functional derivative of t
anomaly.

The authors of@20# and @21# used slightly different con-
ventions. For our purposes it is important to have the sa
conventions for both the consistent and covariant cases,
cause we want to determine one relative sign. Therefore
shall repeat the major steps in the calculations of@20# and
@21# within our specific set of conventions. We choose an
Hermitean Lie algebra generatorsla ,

@la ,lb#5 f abclc ~43!

where f abc are the structure constants. Further we cho
Euclidean conventions in this section (gmn5dmn), mainly
because the path integral computation of both the consis
@29# and covariant@30# anomaly was done in Euclidea
space as well~for our conventions see e.g.@31#!. ‘‘Space-
time’’ indices ~running from 0 to 1 ind52 and from 0 to 3
in d54) are denoted by Greek lettersm,n, . . . and pure
space indices are denoted by Latin lettersk,l ,m. For the
Ward operator we choose
3-6
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Xa~x!52~Dx
m!ab

d

dAb
m~x!

[2„dab]x
m1 f acbAc

m~x!…
d

dAb
m~x!
~44!

@Xa~x!,Xb~y!#5 f abcXc~x!d~x2y!. ~45!

The Euclidean vacuum functional is

Z@A#5e2W[A]5^0uT* e2*dxĴa
m(x)Aa

m(x)u0& ~46!

whereAa
m is the external gauge potential andĴa

m is a covari-
antly regularized current operator, which necessarily depe
on Aa

m for an anomalous gauge theory. FurtherT* is the
Lorentz covariantized time-ordered product that results fr
covariant perturbation theory.

A. Consistent case

For the VEV of the consistent currentJa
m ~one-point func-

tion! we have@* ĴA[*dxĴa
m(x)Aa

m(x)#

^0uT* Ja
m~x!e2* ĴAu0&eW

ª

dW

dAa
m~x!

5^0uT* S Ĵa
m~x!1E dy

d Ĵb
l~y!

dAa
m~x!

Ab
l~y!D

3e2* ĴAu0&eW ~47!

and for the two-point function we get

d2W

dAa
m~x!dAb

n~y!
52^0uT* Ja

m~x!Jb
n~y!e2* ĴAu0&eW

1^0uT*
dJa

m~x!

dAb
n~y!

e2* ĴAu0&eW

1
dW

dAa
m~x!

dW

dAb
n~y!

~48!

5:2Tab* mn~x,y!1Qab
mn~y!d~x2y!1•••

~49!

where in Eq.~49! we have defined abbreviations for the fir
and second term of Eq.~48! and indicated the third~discon-
nected! term by ellipses. Here it is assumed thatJa

m depends
on Aa

m only in a local fashion@20#.
Now we should re-express theT* product by the ordinary

T product that is defined viau functions. For the zero- and
one-point functions we may simply define theT* product by
the T product, because the latter leads to Lorentz-covar
expressions. On the other hand, for the two-point funct
^T* J(x)J(y)& there occurs a difference~seagull termtab

mn) at
coinciding space-time points, and this seagull term is prop
tional tod(x2y) @32,5#. Denoting the ordinaryT product by
Tab

mn(x,y), we have

Tab* mn~x,y!5Tab
mn~x,y!1tab

mn~y!d~x2y!. ~50!
10503
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For the divergence ofTab
mn we get, using the definition of the

T product,

]x
mTab

mn~x,y!5]x
m
„u~x02y0!^0u~Te2*

x0
`

ĴA!Ja
m~x!

3~Te2*
y0
x0

ĴA!Jb
n~y!~Te2*2`

y0
ĴA!u0&

1@~m,a,x!↔~n,b,y!#…eW

5d~x02y0!^0uT@Ja
0~x!,Jb

n~y!#e2* ĴAu0&eW

1^0uT]x
mJa

m~x!Jb
n~y!e2* ĴAu0&eW

2^0uTFJa
0~x!,E

z05x0
dzĴc

l~z!Ac
l~z!G

3Jb
n~y!e2* ĴAu0&eW ~51!

wheredz is with respect to the spacial coordinates only. T
term containing]x

mJa
m(x) does not produced functions and

may therefore be neglected. Further,Ĵ in the third term may
be replaced byJ without introducingd function like contri-
butions. For the commutator we use~in our Euclidean con-
ventionsJb

n is anti-Hermitean!

d~x02y0!@Ja
0~x!,Jb

n~y!#5 f abcJc
n~y!d~x2y!1Cab

0n~y!

3d~x2y!1Sab
0nk~y!]x

kd~x2y!.

~52!

Re-inserting this commutator into Eq.~51! and omitting dis-
connected terms we get

]x
mTab

mn~x,y!5Cab
0n~y!d~x2y!1Sab

0nk~y!]x
kd~x2y!

1 f abc

dW

dAc
n~y!

d~x2y!2 f adcAd
l~x!Tcb

ln~x,y!.

~53!

This result has to be related to the functional derivative
the consistent anomaly, where the consistent anomaly it
is defined as

Aa~x!ªXa~x!W@A#. ~54!

Explicitly, we have in 2 and 4 dimensions (Am[Aa
mla)

d52: Aa~x!5c1emn tr la]mAn ~55!

d54, Aa~x!5c2emnrs tr la]mS An]rAs1
1

2
AnArAsD

~56!

where c1 and c2 are some constants. From these expli
expressions we may express the functional derivatives of
anomalies as
3-7
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dAa~x!

dAb
n~y!

5I ab
mn~x!]x

md~x2y!1„]x
mI ab

mn~x!…d~x2y!

5I ab
mn~y!]x

md~x2y! ~57!

where the last equality follows from properties of thed func-
tion. Explicitly we have

d52, I ab
mn~y!5c1emn tr lalb ~58!

d54, I ab
mn~y!5

c2

2
emnrs tr „$la ,lb%

3~2]rAs1ArAs!2laArlbAs
….

~59!

For later convenience we also note that

dAb~y!

dAa
m~x!

52I ba
nm~y!]x

nd~x2y!1„]y
nI ba

nm~y!…d~x2y!. ~60!

On the other hand, we may use the definition~54! of the
anomaly@and expression~44! for the Ward operator# to re-
late the functional derivative~57! to the two-point function
~49!. We get

dAa~x!

dAb
n~y!

52 f abcd~x2y!
dW

dAc
n~x!

1„dac]x
m1 f adcAd

m~x!…

3„Tcb*
mn~x,y!2Qcb

mn~y!d~x2y!…

5Cab
0n~y!d~x2y!1Sab

0nk~y!]x
kd~x2y!

1sab
mn~y!]x

md~x2y!1 f adcAd
m~y!scb

mn~y!d~x2y!

~61!

where we introduced

sab
mn~y!ªtab

mn~y!2Qab
mn~y!. ~62!

Comparing the coefficients ofd(x2y), ]x
kd(x2y), and

]x
0d(x2y) in Eqs.~57! and ~61! leads to

Cab
0n~y!1 f adcAd

m~y!scb
mn~y!50 ~63!

Sab
0nk~y!1sab

kn~y!5I ab
kn~y! ~64!

sab
0n~y!5I ab

0n~y!. ~65!

For a determination ofSab
00k and Cab

00 we needsab
k0 about

which we have no information yet~here we slightly deviate
from the calculation of@20# and follow the arguments o
@21#, but the final result will agree with the result of@20# up
to the difference in conventions!. For this purpose we com
pute, analogously to Eq.~61!,
10503
dAb~y!

dAa
m~x!

52 f bacd~x2y!
dW

dAa
m~x!

1„dbc]y
n1 f bdcAd

n~y!…

3„Tac* mn~x,y!2Qac
mn~y!d~x2y!… ~66!

and use

]y
nTab

mn~x,y!5•••52Cab
m0~y!d~x2y!2Sab

m0k~y!]x
kd~x2y!

1 f dbcAd
n~y!Tac

mn~x,y!2 f abc

dW

dAc
m~y!

3d~x2y! ~67!

to arrive at

dAb~y!

dAa
m~x!

52Cab
m0~y!d~x2y!2Sab

m0k~y!]x
kd~x2y!

1d~x2y!„dbc]y
n1 f bdcAd

n~y!…sac
mn~y!

2sab
mn~y!]x

nd~x2y!. ~68!

Comparison of coefficients of Eqs.~60! and ~68! leads to

2Cab
m0~y!1]y

nsab
mn~y!1 f bdcAd

n~y!sac
mn~y!5]y

nI ba
nm~y!

~69!

Sab
m0k~y!1sab

mk~y!5I ba
km~y! ~70!

sab
m0~y!5I ba

0m~y!. ~71!

Together with Eqs.~63!–~65! this may be solved forSab
00k and

Cab
00

Sab
00k~y!5I ab

k0~y!2I ba
0k~y! ~72!

Cab
00~y!52 f adcAd

m~y!I bc
0m~y!. ~73!

In addition we find from Eqs.~69! and ~73! the consistency
condition

]y
n
„I ab

0n~y!2I ba
n0~y!…1Ad

n~y!„f adcI bc
0n~y!1 f bdcI ac

0n~y!…50
~74!

which holds for both 2 and 4 dimensions, as may be chec
easily. So far we have determined the anomalous@J0,J0#
commutator; see Eqs.~52!, ~72! and ~73!. We still need the
commutator ofJa

0 and the Ward operatorXb . As Xb does not
contain fermionic degrees, this commutator is equal to
action ofXb on Ja

0 ,

Xb~y!Ja
0~x![d~x02y0!@Xb~y!,Ja

0~x!#. ~75!

This commutator may be inferred from the relation
3-8
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Xb~y!
dW

dAa
m~x!

52~Dy
n!bc

d

dAc
n~y!

^0uTJa
m~x!e2* ĴAu0&eW

5^0uT„Xb~y!Ja
m~x!…e2* ĴAu0&eW

1~Dy
n!bc^0uTJa

m~x!Jc
n~y!e2* ĴAu0&eW.

~76!

Here we used the fact that in the one-point function~47! the
T* product is equal to theT product. It is important to use
the T product here, because we want to extract the~Lorentz
non-covariant! commutator@Ja

0 ,Xb# directly, without some
covariantizing seagulls. Now we assume that the commut
~75! contains no fermionic degrees of freedom, i.e., it may
extracted from the VEV. Using Eqs.~49! and ~50! for the
two-point function we find

d~x02y0!@Xb~y!,Ja
m~x!#1~Dy

n!bcTac
mn~x,y!

5~Dy
n!bc„Tac

mn1sac
mn~y!d~x2y!… ~77!

or, for m50 and using Eq.~65!,

d~x02y0!@Ja
0~x!,Xb~y!#52~Dy

k!bc„I ac
0k~y!d~x2y!…. ~78!

Actually, for the Gauss operator we only need the Wa
operator restricted to purely spacial gauge transformatio
In addition it is preferable to get rid of the time coordina
altogether. Therefore we define a spacial Ward operator

Xa~x!ª2E dx0~Dx
k!ab

d

dAb
k~x!

~79!

@Xa~x!,Xb~y!#5 f abcXc~x!dW ~x2y! ~80!

wheredW (x2y) is the spaciald function. The Gauss operato
is

Ga~x!5Ja
0~x!1Xa~x!. ~81!

Using Eqs.~72!, ~73! and~78! we find for the anomalous par
of the commutator~i.e., the Schwinger term!

Gab~x,y!ª@Ga~x!,Gb~y!#2 f abcGc~x!d~x2y!

5Cab
00~y!dW ~x2y!1Sab

00k~y!]x
kdW ~x2y!

1@Ja
0~x!,Xb~y!#1@Xa~x!,Jb

0~y!#

52„f bdcAd
k~y!Iac

0k~y!1]y
kIab

0k~y!…dW ~x2y! ~82!

where Iab
0k are just the restrictions of the distributions~58!

and~59! in space-time to distributions in space~i.e., the time
variable is treated as a parameter with a fixed value!. Before
evaluating this expression explicitly ford52 andd54, we
want to find the analogous result for the covariant ca
following @21#.
10503
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B. Covariant case

The VEV of the covariant currentJ̃a
m is related to the

consistent one by the Bardeen-Zumino polynomialLa
m ,

^0uT* J̃a
m~x!e2* ĴAu0&eW5^0uT* Ja

m~x!e2* ĴAu0&eW1La
m~x!.

~83!

This leads to the covariant anomalyÃa(x),

Ãa~x!52~Dx
m!ab^0uT* J̃b

m~x!e2* ĴAu0&eW

5Aa~x!2~Dx
m!abLb

m~x!. ~84!

Explicitly the covariant anomalies are

d52, Ãa~x!52c1emn tr la~]mAn1AmAn! ~85!

d54, Ãa~x!53c2emnrs tr la~]mAn1AmAn!

3~]rAs1ArAs! ~86!

where the constantsc1 , c2 are thesameas in the consisten
case, see Eqs.~55! and ~56!. The two-point functions are
defined analogously to Eqs.~48!–~50! as

d

dAb
n~y!

^0uT* J̃a
m~x!e2*JÂu0&eW

52^0uT* J̃a
m~x!J̃b

n~y!e2*JÂu0&eW

1^0uT*
d J̃a

m~x!

dAb
n~y!

e2*JÂu0&eW1•••

5:2T̃ab* mn~x,y!1Q̃ab
mn~y!d~x2y!1••• ~87!

5:2T̃ab
mn~x,y!2s̃ab

mn~y!d~x2y!1••• ~88!

where the ellipses denote disconnected terms and all de
tions are analogous to the consistent case. Further, the c
putation of]x

mT̃ab
mn(x,y) is completely analogous to the con

sistent case, see Eqs.~51!–~53!. Parametrizing the covarian
commutator in an analogous way,

d~x02y0!@ J̃a
0~x!,J̃b

n~y!#5 f abcJ̃c
n~x!d~x2y!1C̃ab

0n~y!

3d~x2y!1S̃ab
0nk~y!]x

kd~x2y!

~89!

leads to a result analogous to Eq.~53!,

]x
mT̃ab

mn~x,y!5C̃ab
0n~y!d~x2y!1S̃ab

0nk~y!]x
kd~x2y!

1 f abcd~x2y!^0uTJ̃c
n~y!e2* ĴAu0&eW

2 f adcAd
l~x!T̃cb

ln~x,y!. ~90!

Again, this should be related to the functional derivative
the ~covariant! anomaly. We express this functional deriv
tive as
3-9
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dÃa~x!

dAb
n~y!

5 Ĩ ab
mn~y!]x

md~x2y!1B̃ab
n ~y!d~x2y! ~91!

~we do not display the explicit expressions forĨ and B̃ for
d52 or d54, because we do not need them in the sequ!.

On the other hand, using the definition ofÃa , relating its
functional derivative to the two-point function~88! and in-
serting Eq.~90! for ]mT̃ab

mn leads to

dÃa~x!

dAb
n~y!

5C̃ab
0n~y!d~x2y!1Sab

0nk~y!]x
kd~x2y!

1s̃ab
mn~y!]x

md~x2y!1 f adcAd
m~y!s̃cb

mn~y!d~x2y!

~92!

and therefore to the equations

C̃ab
0n~y!5B̃ab

n ~y!2 f adcAd
m~y!s̃cb

mn~y! ~93!

S̃ab
0nk~y!5 Ĩ ab

kn~y!2s̃ab
kn~y! ~94!

s̃ab
0n~y!5 Ĩ ab

0n~y!. ~95!

Again we miss information ons̃ab
k0(y), which we may infer

from @dÃb(y)/dAa
m(x)#. We find

dÃb~y!

dAa
m~x!

52 f bacd~x2y!^0uT* J̃c
m~y!e2* ĴAu0&eW

2~Dy
n!bc

d

dAa
m~x!

^0uT* J̃c
n~y!e2* ĴAu0&eW

52 f bacd~x2y!^0uT* J̃c
m~y!e2* ĴAu0&eW

2~Dy
n!bcS d

dAc
n~y!

^0uT* J̃a
m~x!e2* ĴAu0&eW

2F ab
mn~x,y!D ~96!

F ab
mn~x,y!ª

dLa
m~x!

dAb
n~y!

2
dLb

n~y!

dAa
m~x!

~97!

where we used relation~83! between consistent and covar
ant current VEV and the commutativity of functional deriv
tives ~see@21#!. Computing]y

nT̃ab
mn(x,y) as in the consisten

case yields

dÃb~y!

dAa
m~x!

52C̃ab
m0~y!d~x2y!2S̃ab

m0k~y!]x
kd~x2y!

1~Dy
n!bcF ac

mn~x,y!1d~x2y!~Dy
n!bcs̃ac

mn~y!

2s̃ab
mn~y!]x

nd~x2y!. ~98!
10503
However, as a consequence of the gauge covariance o
covariant current it holds that

dÃb~y!

dAa
m~x!

[~Dy
n!bcF ac

mn~x,y! ~99!

as may be checked explicitly@21#. Therefore, the coefficients
in Eq. ~98! are not directly related to the anomaly and ha
to obey

C̃ab
m0~y!5~Dy

n!bcs̃ac
mn~y! ~100!

S̃ab
m0k~y!52s̃ab

mk~y! ~101!

s̃ab
m0~y!50 ~102!

and we find

S̃ab
00k~y!5 Ĩ ab

k0~y! ~103!

C̃ab
00~y!5B̃ab

0 ~y! ~104!

and the consistency condition

B̃ab
0 ~y!5~Dy

n!bcĨ ac
0n~y! ~105!

which holds indeed, as may be checked by explicit com
tation @21#. For the anomalous part of the current commu
tor this leads to

d~x02y0!@ J̃a
0~x!,J̃b

0~y!#2 f abcJ̃c
0~y!d~x2y!

5C̃ab
00~y!d~x2y!1S̃ab

00k~y!]x
kd~x2y!

[
dÃa~x!

dAb
0~y!

. ~106!

Again, we have to calculate the@Xb ,J̃a
0# commutators as in

the consistent case. However, the result is simply that e
such term in the Gauss operator commutator produces a
tribution that is equal to minus the above expression~106!;
see@21#. Therefore we find for the covariant Gauss opera

G̃a~x!5 J̃a
0~x!1Xa~x! ~107!

the Schwinger term

G̃ab~x,y!ª@G̃a~x!,G̃b~y!#2 f abcG̃c~x!dW ~x2y!

52E dy0
dÃa~x!

dAb
0~y!

~108!

where thedy0 integration just serves to get rid of the un
wantedy0 dependence, such that the RHS of Eq.~108! is
again a distribution in space only@this just destroys ad(x0

2y0), because there is no time derivative in the above
pression~108!#.

Remark. It should be mentioned that the use of squa
brackets in Eqs.~106! and ~108! is, in fact, a slight~but
3-10
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commonplace! abuse of notation. These expressions are
commutators in the algebraic sense~i.e., they do not obey the
Jacobi identity!. Instead, they are defined by the RHS
Eqs. ~106! and ~108!, respectively. Therefore, the covaria
Schwinger term doesnot obey the Wess-Zumino consistenc
condition~which it would if the ‘‘commutators’’ obeyed the
Jacobi identity!.

This is in contrast to the consistent case. There itis pos-
sible to define the current operators such that their com
tators obey the Jacobi identity~they may be realized as linea
operators on the fermionic Fock space@33#!. Consequently,
the consistent Schwinger term obeys the Wess-Zumino c
sistency condition.

C. Explicit evaluation

Now we are in a position to explicitly compute th
Schwinger terms both ford52 andd54. Starting with the
d52 case, we find from Eqs.~58! and~82! for the consistent
ST

Gab~x,y!52c1e0kf bdcAd
k~y!tr lalcd

(1)~x2y!

52c1e0k tr la@lb ,Ak#d (1)~x2y! ~109!

@d (1)(x2y)ªd(x12y1)# and for the covariant ST, usin
Eqs.~85! and ~108!

G̃ab~x,y!522c1e0k tr la„lb]y
kd (1)~x2y!

1@lb ,Ak#d (1)~x2y!… ~110!

where here and in the following functions always depend
y when the coordinate argument is not written down exp
itly. In order to compare with the expressions of Sec. II,
omit e0k and multiply by (1/2)dykva(x)vb(y), in the indi-
cated order. Heredyk is a one-form,va(x) is a ghost, and all
these objectsanti-commute, e.g., dykva(x)52va(x)dyk.
We find @A(y)ªAk(y)dyk, v(x)ªva(x)la#

G~x,y!52
c1

2
tr „v~x!v~y!1v~y!v~x!…A~y!d (1)~x2y!

~111!

or, after integrating with respect to**dxdy

G52c1E tr v2A. ~112!

In the same fashion, we get forG̃ab(x,y)(dyªdyk]y
k)

G̃~x,y!52c1 tr v~x!„2@dyd
(1)~x2y!#v~y!1d (1)~x2y!

3@A~y!v~y!1v~y!A~y!#… ~113!

and ~where a partial integration has to be performed!

G̃52c1E tr v~dv1Av1vA!52c1E tr vDv.

~114!
10503
ot

u-

n-

n
-

Comparing with Eq.~6! ~for the consistent case! and Table I
~for the covariant case!, we find that the relative sign ofG
and G̃ is in precise agreement.

For the cased54 we find from Eqs.~59! and ~82!

Gab~x,y!52
c2

2
e0klm tr „@la,lb#~]kAlAm1Ak] lAm

1AkAlAm!1~lbAkla2laAklb!] lAm
…

3d (3)~x2y! ~115!

~each derivative acts only on its immediate right hand nei
bor!, or, after omitting e0lkm and multiplying by
(1/2)dykdyldymva(x)vb(y)

G~x,y!52
c2

4
tr „@v~x!v~y!1v~y!v~x!#~dAA1AdA1A3!

1@v~y!Av~x!1v~x!Av~y!#dA…d (3)~x2y! ~116!

and upon integration**d3xd3y

G52
c2

2 E tr „v2~dAA1AdA1A3!1vAvdA…. ~117!

For the covariant ST we find from Eqs.~86! and ~108!

G̃ab~x,y!523c2e0klm tr la„@lb]y
kd (3)~x2y!1~lbAk

2Aklb!d (3)~x2y!#~] lAm1AlAm!

1~] lAm1AlAm!@lb]y
kd (3)~x2y!

1~lbAk2Aklb!d (3)~x2y!#… ~118!

and

G̃~x,y!52
3c2

2
tr „2v~x!…†„@dyd

(3)~x2y!#v~y!

2~vA1Av !d (3)~x2y!…~dA1A2!1~dA1A2!

3„@dyd
(3)~x2y!#v~y!2~vA1Av !d (3)~x2y!…‡

~119!

G̃52
3c2

2 E tr v„~dv1Av1vA!~dA1A2!

1~dA1A2!~dv1Av1vA!…

52
3c2

2 E tr v~DvF1FDv !. ~120!

Again, the relative sign of consistent and covariant ST p
cisely agrees with the one in Eq.~6! ~consistent case! and
Table I ~covariant case!.
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APPENDIX A: THE SCHWINGER TERMS
OF THE GAUSS LAWS

Here we provide the detailed calculation of th
(111)-dimensional Schwinger terms within the Hosono a
Seo approach. We start with the covariant case and we
sider only the non-canonical part of the commutator:

@G̃a~x!,G̃b~y!#n.c.5@Xa~x!1 j 0a~x!,Xb~y!1 j 0b~y!#n.c.

5@Xa~x!,Xb~y!#n.c.1@Xa~x!, j 0b~y!#n.c.

1@ j 0a~x!,Xb~y!#n.c.

1@ j 0a~x!, j 0b~y!#n.c. . ~A1!
10503
-
-
t

d
n-

The gauge field is an external field, therefore the commuta

@Xa~x!,Xb~y!#n.c. ~A2!

is zero. For the VEV of the commutator

@ j 0a~x!, j 0b~y!#n.c. ~A3!

we get, after some manipulations (D is the covariant
Laplacian!

^@ j 0a~x!, j 0b~y!#n.c.&5tr e2(«/2)DyP2~ t,y,x!ta@e2(«/2)Dx

21#d~x2y!tb2~x,a↔y,b!,

~A4!

where P2(t,x,y) denotes the projection operator~see Ap-
pendix C!

P2~ t,x,y!5 (
En,0

zn
1~ t,x!zn~ t,x!. ~A5!
Then Eq.~A4! gives (a:51/(2p)2)

tr e2«DyP2
(0)~y,x!ta@e2«Dx21#d~x2y!tb2~x,a↔y,b!

5a tr E dEu~2E!e2«Dye2 iE(x2y)taE dq@e2«Dx21#e2 iq(x2y)tb2~x,a↔y,b!

5a tr E dEdqu~2E!e2«Dye2 iE(x2y)ta@e2«Dx21#e2 iq(x2y)tb2~x,a↔y,b!

5a tr E dEdqu~2E!e2«E2
e2 iE(x2y)

„122i«EA~y!…ta@„112i«qA~x!…e2«q2
21#e2 iq(x2y)tb2~x,a↔y,b!

5aE dEdqu~2E!e2«E2
e2 i (E1q)(x2y)@e2«q2

21#•tr tatb2~x,a↔y,b!2 iaE dEdqu~2E!e2«E2
@e2«q2

21#

3e2 i (E1q)(x2y)2«E•tr A~y!tatb1~x,a↔y,b!1 iaE dEdqu~2E!e2«E2
2«qe2«q2

•tr taA~x!tb2~x,a↔y,b!

5aE dje2 i j(x2y)E dEu~2E!e2«E2
@e2«(j2E)2

21#•tr tatb2~x,a↔y,b!2 iaE dje2 i j(x2y)

3E dEu~2E!2«Ee2«E2
@e2«(j2E)2

21#•tr A~y!tatb1~x,a↔y,b!

1 iaE dje2 i j(x2y)E dEu~2E!2«qe2«E2
e2«(j2E)2

•tr taA~x!tb2~x,a↔y,b!

5aE dje2 i j(x2y)E dEe2«E2
@e2«(j2E)2

21#@u~2E!2u~E!#•tr tatb

2 ia H F E dje2 i j(x2y)E dEu~2E!2«Ee2«E2
@e2«(j2E)2

21#2E dje2 i j(x2y)

3E dEu~E!2«~j2E!e2«E2
e2«(j2E)2G•tr A~y!tatb2~x,a↔y,b!J

52aE dje2 i j(x2y)E dEe2«E2
@e2«E2

~12«j212«Ej1¯ !21#e~E!•tr tatb

2 ia H E dje2 i j(x2y)F E dE2«Ee2«E2
e2«(j2E)2

„u~2E!1u~E!…2E dEu~2E!2«Ee2«E2

2E dEu~E!2«je2«E2
e2«(j2E)2G•tr A~y!tatb2~x,a↔y,b!J
3-12
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@e(E)[u(E)2u(2E)#, where the three terms in the large square brackets above give 0, 1 and 0 in the limit«→0,
respectively. In the limit of small« we obtain

2aE djje2 i j(x2y)E dEe22«E2
2«Ee~E!•tr tatb2 ia H E dje2 i j(x2y)

•tr A~y!tatb2E dje2 i j(x2y)
•tr A~x!tbtaJ

5
«→0

2aE dje2 i j(x2y)j•tr tatb12p iad~x2y!•tr ta@A~y!,tb#52
i

2p
]xd~x2y!•tr tatb1

i

2p
d~x2y!•tr ta@A~y!,tb#.

~A6!

Then

^@ j 0a~x!, j 0b~y!#n.c.&52
i

2p
]xd~x2y!•tr tatb1

i

2p
d~x2y!•tr ta@A~y!,tb# ~A7!

and the covariant Schwinger term of the commutator of the full Gauss law operators has the form

ST̃ab5^@G̃a~x!,G̃b~y!#n.c.&52^@ j 0a~x!, j 0b~y!#n.c.&5
i

2p
]xd~x2y!•tr tatb1

i

2p
d~x2y!•tr ta@A1~y!,tb#, ~A8!

where we used the result for the cross term

^@Xa~x!, j 0b~y!#&5
i

2p
„]1

xdac1 f aecA1
e~x!…d~x2y!•tr tbtc ~A9!

obtained in Appendix B.
For the commutator of the consistent Gauss laws we get

@Ga~x!,Gb~y!#5@G̃a~x!,G̃b~y!#1@G̃a~x!,D j 0b~y!#1@D j 0a~x!,G̃b~y!#

5 f abcG̃c~x!d~x2y!

5 f abcGc~x!d~x2y!2 f abcD j 0c~y!d~x2y!, ~A10!

where we used the equality

ST̃ab1@G̃a~x!,D j 0b~y!#1@D j 0a~x!,G̃b~y!#50 ~A11!

which results from

@G̃a~x!,D j 0b~y!#5@Xa~x!,D j 0b~y!#5Xa~x!D j 0b~y!

5
i

4p
«01

„dac]m1 f aecAme~x!…
d

dAmc~x!
tr„tbA1~y!…

5
i

4p
„dac]x

11 f aecA1e~x!…d~x2y!•tr tbtc. ~A12!

Therefore

STab52 f abcD j 0c~y!d~x2y!

5
i

4p
«0ntr~ f abctcAn!d~x2y!

5
i

4p
d~x2y!•tr~@ ta,A1#tb!. ~A13!
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C. ADAM, C. EKSTRAND, AND T. SÝKORA PHYSICAL REVIEW D 62 105033
APPENDIX B: THE CROSS TERM

For the VEV of the cross term

@Xa~x!, j 0b~y!# ~B1!

we get

^@Xa~x!, j 0b~y!#&52K ~]x
1dac1 f aecA1e~x!!

d

dA1c~x!
j 0b~y!L

52„]x
1dac1 f aecA1e~x!…K d

dA1c~x!
j 0b~y!L . ~B2!

Since

S d

dA1c~x!
e2(«/2)DyD P2~y,z! ;

«→0S d

dA1c~x!
e2(«/2)DyD P2

(0)~y,z!

5
1

2p S d

dA1c~x!
e2(«/2)DyD E dEu~2E!eiE(y2z)

5
«→0

2
i

2pE dEu~2E!«EeiE(y2z)e2(«/2)p2
d~x2y!tc ~B3!

and

2
i

2pE dEu~2E!«EeiE(y2z)e2(«/2)E2
e2(«/2)DQ z52

i

2pE dEu~2E!«EeiE(y2z)e2«E2
, ~B4!

we obtain

K d

dA1c~x!
j 0b~y!L 5 lim

z→y
tr tbF S d

dA1c~x!
e2(«/2)DyD P2~y,z!e2(«/2)DQ z1e2(«/2)DyP2~y,z!S d

dA1c~x!
e2(«/2)DQ zD G

52
i

pE u~2E!«Ee2«E2
dEd~x2y!•tr tbtc. ~B5!

The integral is

E u~2E!«Ee2«E2
dE52

1

2
~B6!

and therefore

K d

dA1c~x!
j 0b~y!L 5

i

2p
d~x2y!•tr tbtc. ~B7!

So, we finally get

^@Xa~x!, j 0b~y!#&5
i

2p
„]1

xdac1 f aecA1
e~x!…d~x2y!•tr tbtc. ~B8!
105033-14
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APPENDIX C: THE PROJECTION OPERATOR

For our purposes we expand the projection operator~A5!

P2~ t,x,y!5^xu R
C2

dE

2p i

1

E2H~ t !
uy&

5^xu R
C2

dE

2p i

1

E2H02V~ t !
uy&

5^xu R
C2

dE

2p i

1

E2H0
uy&1^xu R

C2

dE

2p i

1

E2H0
V~ t !

1

E2H0
uy&1•••

5P2
(0)~x,y!1P2

(1)~ t,x,y!1•••, ~C1!

whereC2 is a contour surrounding the negative real axis in the complexE plane.
For the calculation of the commutators it is sufficient to consider only the first term of Eq.~C1!

P2
(0)~x,y!5 (

En,0
zn~x!zn

1~y! ~C2!

5
1

2pE dEu~2E!eiE(x2y). ~C3!
gy

.

.
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