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Massive spin 3Õ2 electrodynamics
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V. Pascalutsa‡

Department of Physics, Flinders University, Bedford Park, SA 5042, Australia
~Received 3 March 2000; published 26 October 2000!

We study the general non-minimally coupled charged massive spin 3/2 model both for its low energy
phenomenological properties and for its unitarity, causality and degrees of freedom behavior. When the model
is viewed as an effective theory, its parameters~after ensuring the correct excitation count! are related to
physical characteristics, such as the magnetic momentg factor, by means of low energy theorems. We also
provide the corresponding higher spin generalization. Separately, we consider both low and high energy
unitarity, as well as the causality of our models. None~including truncatedN52 supergravity! is free of the
minimal model’s acausality.

PACS number~s!: 11.10.Ef, 04.65.1e, 13.40.Em, 14.80.2j
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I. INTRODUCTION

Gauge interactions of massive~let alone massless! relativ-
istic higher spin fields constitute an ancient and difficult su
ject. Whatever the formal problems these models encoun
effectivehigher spin theories must be constructible since
proximately localized higher spin particles exist. Such mo
els should achieve low energy consistency, and share s
of the physical properties described by their lower spin h
ronic physics counterparts.

In our present study of charged massive higher spins
seek only effective~rather than renormalizable! actions,
which can in general possess dimensionful, non-minim
couplings beyond the minimal prescription, unique in fi
order systems,]m→]m1 ieAm . In particular, the associate
coupling constants will determine 2s11 intrinsic multipole
moments of a spins particle~charge, magnetic dipole, quad
rupole and octupole fors53/2).

The more formal properties, such as unitarity and cau
ity, of higher spin models will in general also depend up
details of the non-minimal couplings. Some of the importa
affected issues include:~i! A gyromagnetic ratiog52 is re-
quired by the optical and low energy theorems, at least
pure electromagnetic interactions@1#, on the other hand
minimal coupling impliesg52/3 @2#. ~ii ! Tree unitarity@3#
requires the non-minimal couplings of~truncated! N52 su-
pergravity @4#. ~iii ! Quantization of the minimal theory i
problematic since the fundamental canonical commutator
comes indefinite beyond a critical value of the magnetic fi
@5#, or equivalently the model exhibits acausal propagat
@6#. However, if the minimal electromagnetic interactions a
extended to include gravity as obtained by dropping only
cosmological constant term ofN52 anti–de Sitter super
gravity @7#, causality is restored@8#. Unfortunately, this for-
mally consistent model is unsuitable for phenomenolog
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applications, since it tunes spin 3/2 and Planck masses.
In this paper, we study the low energy behavior, unitar

and causal consistency of general flat space non-minim
non-derivative, couplings, concentrating on the mass
charged spin 3/2 system, the simplest theory subject to
array of higher spin subtleties. Of the five independent n
minimal terms linear in the field strength, two are eliminat
by a simple degrees of freedom~DOF! consistency require-
ment. One of the three remaining couplings does not cont
ute to photon emission and Compton scattering but is
cluded in our causality analysis. We employ low ener
theorems~LETs! to identify the leading low energy non
minimal coupling as a magnetic moment interaction a
compute the gyromagnetic ratiog in terms of the parameter
in the action. The generalization of this result to higher sp
is given in Appendix A.

The gyromagnetic ratiog in our models is arbitrary and
thus they are perfectly suited for phenomenological appli
tions where neither the pure electromagneticg52 unitarity
requirement nor tree unitarity need apply. Loss of the la
merely signals the scale at which the effective descript
ceases to be valid.

Study of causality yields a negative result; like the min
mal model, ours all permit acausal propagation for critic
electromagnetic fields. This result applies to arbitrary~DOF-
preserving! non-minimal couplings and agrees with an o
result @9# valid for couplings linear in the field strength.~In
@8# causality is preserved by taking gravity and electrom
netism not merely external, but dynamical; curved space
be included elsewhere@10#.! Nevertheless, we will argue tha
for perturbative processes, formulated in terms of fr
asymptotic fields, neither high energy unitarity nor causa
problems spoil the validity of the models as a phenome
logical tool.

In Sec. II we present the non-minimal models under co
sideration and obtain the constraints required by a cor
DOF count. Section III contains the verification of the LET
for the soft photon vertex and Compton scattering, alo
with our gyromagnetic ratio computation. A study of caus
ity is presented in Sec. IV. In Sec. V we summarize a
©2000 The American Physical Society31-1
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discuss our work. The generalization of our soft photon v
tex results and identification of the magnetic moment
higher spins is given in Appendix A and the extension of o
causality analysis to the most general non-minimal coupli
is given in Appendix B.

II. THE MODELS

We begin with the Lagrangian for the complex vecto
spinor Rarita-Schwinger fieldcm ,

L52c̄ mgmnr D ncr2
ie

m
c̄ m F mncn ; ~1!

c̄ m F mncn[ l 1 c̄ mFmncn1 l 2 c̄ m F̂c m

1 l 3 Fmn @c̄ mgn g.c1c̄.g gmcn#

1 l 4 c̄•g F̂g•c

1 i l 5 Fmn @c̄ mgn g•c2c̄•g gmcn#. ~2!

Our conventions are: Metrichmn5diag(2,1,1,1),
(m,n, . . . 50, . . . ,3, i , j , . . . 51,2,3); Dirac matrices:
$gm,gn%52 hmn, gm †5g0gmg0; gm1 . . . mn[g [mn

•••gmn]

@we always ~anti!symmetrize with unit weight#; g55
2 ig0123, gmnrs5 ig5emnrs. Contraction of all indices of a
tensor with Dirac matrices is denoted by a hat, e.g.,F̂
5Fmngmgn. The operator in the minimal term of Eq.~1!,

Dm[Dm1
1

2
m gm , Dmcn5]mcn1 ieAmcn , ~3!

also incorporates the usual mass termm c̄ mgmncn ; it satis-
fies

@Dm ,Dn#5 ieFmn1
1

2
m2 gmn , @Dm ,gn#5mgmn . ~4!

Note that i l 5 Fmn @c̄ mgn g•c2c̄•g gmcn#, being diagonal
in a Majorana basis, is non-vanishing even for an unchar
real field; on-shell~whereg•c50) it does not contribute a
lowest perturbative orders and we therefore drop it until
general causality analysis in Sec. IV.

The set~2! represents the most general non-derivati
Hermitian, parity-even couplings linear in the field streng
Fmn . That they must constitute a five parameter family c
also be seen upon expanding the most general pos
c̄ mGmnrscnFrs in a Fierz basis: There is a single couplin
to gmnrs, three possibilities forgmn and a single scalar1
coupling. Thus the g5F̃mn of supergravity @ F̃mn

[(1/2) emnrsFrs# may be cast in the above basis as
10503
r-
r
r
s

d

e

,

n
le

c̄ mig5F̃mncn5c̄ mFmn cn2
1

2
c̄ mF̂cm

2Fmn @c̄ mgn g•c1c̄•g gmcn#

1
1

2
c̄•g F̂ g•c. ~5!

Two of the five parameters in Eqs.~1!,~2! may be elimi-
nated by requiring that the model describe the correct D
or, equivalently, maintains the constraint count of the fr
theory: The zeroth component of the equation of motionR0

5dL/dc̄0 involves no time derivatives and is therefore
constraint eliminating four of the sixteen~complex! compo-
nents ofcm . Another constraint eliminating four more com
ponents is still required before one can conclude that on-s
half of the remaining components yield 2s1154 physical
DOF. Whenc0 appears linearly in the action, as for th
minimal theory, it is a Lagrange multiplier imposing the co
straint R050. Requiring its preservation under time evol
tion, Ṙ050, yields the necessary additional constraint. If
steadc0 appears quadratically~i.e., as c0

†Mc0 for some
matrix M ) the R050 equation now determinesc0, and re-
quiring Ṙ050 yields an equation of motion forċ0. This
choice describes too few constraints—too many~propagat-
ing! DOF, as compared to the free field.

One non-minimal model respecting the DOF count is
truncation ofN52 supergravity with the cosmological, cu
vature and four-Fermi terms omitted.1 It corresponds by
Eq. ~5! to the choice of parametersl 1522, l 251/2, l 351,
l 4521/2 ~and l 550! reproducingFmn52(Fmn1 ig5F̃mn).
~If however, as in@4#, the further truncation excluding th
gamma-trace components ofcm in the non-minimal sector is
made, the DOF count is violated. This fact would seem
make moot the causality claim there.!

Henceforth, we retain only models linear inc0, which, as
is easily seen, is equivalent to demandingFmn52Fnm .
~Since any timelike vectorjm defines a time direction, we
may rephrase the requirement thatc0 appear only linearly in
Lorentz covariant language asj•F•j50 for all jm timelike.!
The corresponding relations amongst parameters are

l 21 l 450, l 312l 450, ~6!

and the non-minimal interactions reduce to the two com
nations~droppingl 5)

c̄ m F mncn 5 @ l 112l 2# c̄ mFmncn 2 2l 2 c̄ m ig5F̃mncn .

~7!

1This truncation should not be confused with the supersymme
preserving anti–de Sitter-Poincare´ contraction, mapping the mode
of @7# to the originalN52 model@11#. The latter has a flat gravi-
tational background and only non-minimal, uncharged, Maxw
couplings.
1-2
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We now consider the properties of these physical spin
theories. The model withl 1505 l 25 l 35 l 45 l 5 will be re-
ferred to as the minimal one while ‘‘supergravity-inspire
model’’ refers to the just-described truncatedN52 super-
gravity.

III. LOW ENERGY THEOREMS

LETs characterize soft photon scattering amplitudes
terms of the mass, charge and magnetic moment of the ta
@12,13,1#, independent of its internal structure, relying on
on gauge and Lorentz invariance plus low photon frequen
In this sense, LETs are purely kinematical and, irrespec
of any causal pathologies, perturbative scattering amplitu
formulated in terms of free asymptotic fields are guarant
to satisfy them. Therefore LETs provide a simple way
map the QFT parameters to the physical ones.

We first study the vertex for the emission of a single lo
frequency photon, then Compton scattering with small
coming ~and outgoing! photon frequencies. In each case t
relevant LETs are usually stated for stationary targets
Lorentz invariance is not manifest. So we first enunciate
dictionary to our relativistic Feynman tree amplitudes. A s
photon is invariantly defined by the requirement that

va

m
[2

p•ka

m2
!1, ~8!

for photon a’s four-momentumkm
a and targetpm . In the

laboratory framepm5(m,0,0,0), va reduces to the usua
photon frequency.

For each photon polarization«m
a we employ Feynman

gaugeka
•«a50 along with the residual gauge fixing cond

tions p•«a50 so that in the laboratory frame one has«m
a

5(0,eW a) andkWa
•eW a50. We also utilize a covariant notatio

for the target polarizationsum5um(p) and ūm8 5ūm(p8)
where pm8 is the outgoing momentum of the target partic
and the usual asymptotic on-shell conditions hold

p•u5g•u505~ ip”1m!um ,

ū8•p85ū8•g505ūm8 ~ ip” 81m!. ~9!

An explicit representation for the spin 3/2 polarizations
terms of the usual massive spin 1 and spin 1/2 polarizat
«m

l ( l 521,0,1) and us (s521/2,1/2), respectively, is
given by um

63/25«m
61u61/2 and um

61/25(«m
61u71/2

1A2«m
0 u61/2)/A3 @14#. Obviously, insertingur5ur

l and ūr8

5ū r
l8 with l,l8523/2, . . .,3/2 in Eq.~12! below,M l8l

mn

~regarded as a matrix in the labelsl and l8) is a spin 3/2
irreducible representation of the Lorentz algebra.

The total spin matrixSW is the dual of the spatial Lorent
generators,Si5( i /2)e i jkM jk , and the Lorentz generators a
on the relativistic vector-spinor on-shell representation of
spin 3/2 polarizationsur according to
10503
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s5

1

2
gmndr

s12 d [murudn]
s ~10!

so that

dLorentzur5
1

2
lmn Mmn,rsus5lr

sus1
1

4
l̂ ur . ~11!

It is useful to define

M mn[ūr8 Mmn,r
s us 5

1

2
ū8 rgmn ur12 ū8 [m un] ,

S i[
i

2
e i jk ūr8 M jk

r
s us. ~12!

The LET for the photon vertex states that the amplitu
for emission of a soft photon by a stationary massm, spins
target is

Tf i52
im

s
~eW3kW !•SW1O~v2!; ~13!

transparent derivations of Eqs.~13! and~15! may be found in
@1#. The magnetic momentm appearing in Eq.~13! is related
to the charge to mass ratio of a spins particle by the gyro-
magnetic ratiog, defined by

m[
egs

2m
. ~14!

The standard LET for Compton scattering reads

Tf i52
e2

m
eW8•eW ū8•u1

ie v

m S 2m

s
2

e

mD ~eW 83eW !•SW

2
ie m

v s
„eW•kW 8 ~eW 83kW 8!2eW 8•kW ~eW3kW !…•SW

2
i m2

v s2
„~eW 83kW 8!3~eW3kW !…•SW1O~v2!. ~15!

Our task now is to derive the amplitudes~13! and ~15! in a
Lagrangian framework and thereby relate the parameter
Eqs.~1!,~7! to the physical ones which~apart frome andm)
means the single numberg.

A. The soft photon vertex

The amplitude~13! may, using the on-shell conditions fo
the target and soft photon polarizations, be expressed in
manifestly Lorentz invariant form

Tf i5
im

2s
Fmn M mn1O~v2!, Fmn5 i ~kmen2knem!.

~16!

On-shell the interaction Lagrangian, including minimal a
non-minimal couplings, becomes
1-3
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iL intuon-shell5 i T f i5e ūrg•e ur

1
e

m
@ l 1 ū m Fmn un1 l 2 ūr F̂ur#. ~17!

The asymptotic Rarita-Schwinger equation may be used
derive the obvious generalization

ūr8~p8!gmus~p!52
i

2m
~p1p8!mūr8us

1
i

2m
~p82p!n ūr8g

mnus ~18!

of the spin 1/2 Gordon identity. Thus the amplitude deriv
from the non-minimal Lagrangian reads

Tf i52
ie

2m S 2l 1 ū m Fmn un1
1

2
~4l 221! ū r F̂ur D .

~19!

At this juncture, the amplitude seems quite different fro
that of a pures51/2 system for which there is a one param
eter family of (g22) values read off from theF̂ term with,
of course, no counterpart to thel 1 term. If the latter is to
augment theF̂ term to a coupling involving the full Lorentz
generators as in Eq.~12!, the relevant coefficient between th
two terms must be 1/4. There must be, therefore, an iden
relating these two terms for the LET to hold; LETs are jus
statement about parts of amplitudes determined comple
by kinematics and should be reproduced for any choice
parameters.2 The on-shell identity3

ūr8~p8! gmn ur~p!52 ū[m8 ~p8! un]~p!1O~v! ~20!

is easily verified in the framepm5(m,0,0,0). This low en-
ergy equality states that on-shell the spin 1/2 and spin 1 p

2In @7# the Thompson limit for Compton scattering was obtain
in the truncatedN52 supergravity model, a calculation that seem
to hinge on delicate cancellations due to the particular form of
supergravity non-minimal couplings. However, since the Thomp
limit is dictated by the lowest order LET, our generic computati
always guarantees this result.

3It is already possible without using the identity~20!, to directly
satisfy the LET with the choice of parametersl 152g/254l 221:

The Lagrangian becomesL5Lmin1( ie/m) c̄ mFmncn1@ ie(g

2 2) / 4m# Fmnc̄r Mmn,r
scs 1 @ ie(g 2 2) / 4m# (Fmn @c̄ mgn g •c

1c̄•g gmcn#2
1
2 c̄•g F̂g•c). The LET is then satisfied by the

following interesting mechanism: Together, the first two terms oL
produce ag52 coupling since the minimal Lagrangian gives t
spin 1/2 part of the Lorentz generators via the Gordon iden
above and the non-minimal coupling toFmn yields the spin 1 con-
tribution ~exactly the same term required for a spin 1 vector bo
to have g52). The third term is a direct coupling to the tot
Lorentz generators and yields an anomalous magnetic moment
pling ~the remaining ones are required to ensure the correct DO
the gÞ2 case!.
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of the Lorentz generators may be traded against one ano
Hence the low energy result is precisely reproduced byany
of the non-minimal Lagrangians, the gyromagnetic ratio b
ing

g5
2

3
2

4

3
~ l 112l 2!, ~21!

a sum of minimal and non-minimal contributions. For min
mal coupling the well known resultg51/s52/3 emerges@2#.
Observe that the supergravity-inspired model yieldsg52
@4#. Finally, we note, in passing, that in the basis~7! only the
Fmn coupling contributes to the gyromagnetic ratio~21!, in-
dependent of theig5F̃mn term. This is not surprising sinceg5

mixes the ‘‘large’’ and ‘‘small’’ components of the vector
spinorum defined by projection with respect toig0, and is of
higher order in the soft photon expansion. This term w
contribute to higher quadrupole and octupole moments.
extension of our work to such moments is an interesting
separate issue.

B. Compton scattering

A useful check on our vertex result~21! is to compute the
amplitude of Fig. 1 for Compton scattering. In particula
since the gyromagnetic ratio must be preciselyg52 for the
optical theorem to hold@1#, the latter will produce an addi
tional relation between the parametersl 1 and l 2.

The mass shell conditionp8 252m2 implies that the dif-
ferencev82v5k•k8/m is second order in this expansion
Therefore we eliminatev8 ~using this relation! and p8 ~by
momentum conservation!; one can then evaluate the order
any expression simply by counting the number of fou
vectorsk andk8 in it. We now evaluate@15# the relevants
andu channel diagrams in this limit, using the vertices of E
~1! and the free propagator

Smn
F ~p!5

2 i

p21m2 F S hmn1
pmpn

m2 D ~ ip” 2m!1
1

3 S ipm

m
2gmD

3~ ip”1m!S ipn

m
2gnD G . ~22!

To extract the leading and next-to-leading terms in the l
energy expansion of the amplitude, we need the Gor
identity ~18! of the previous section along with the followin
generalization:

e
n

y

n

u-
in

FIG. 1. Compton scattering kinematics.
1-4
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MASSIVE SPIN 3/2 ELECTRODYNAMICS PHYSICAL REVIEW D62 105031
ūl8~p8!gmnruk~p!52
3i

2m
~p1p8! [m ūl8gnr]uk

1
i

2m
ūl8gmnrsuk ~p82p!s . ~23!

Note that in the laboratory frame, the ‘‘Dirac’’ equation~9!
readsg0u5 imu and using the above Gordon identities, e
pressions such asūr8g

mn«mknus are effectively equal to

ūr8g
i j e ikjus at leading order in the low energy expansion.

a simple gauge invariance check, before imposing the
sidual gauge choicep•«505p•«8 and taking the low en-
ergy limit, we verified that our amplitude satisfies transv
sality in each photon line separately.

Once again, applying only the Gordon identities~18! and
~23!, the amplitude satisfies the LET only for the choice
parameters of the Lagrangian of footnote 3. However, o
one applies further the on-shell identity~20! along with the
additional identity@equivalent to Eq.~20! upon contracting
indicesm ands]

ū8 [mgn][ rus]5ū8 [rgs][ mun]1O~v! ~24!

one finds for the amplitude~in an obvious matrix notation fo
vector indices!

Tf i52
e2

m
ū8•u «8•«1

e2

4m3
~g22!2 p•k ~«8•M•«!

2
ie2 g

4m p•k
@ tr ~F8•M! «•k82tr ~F•M! «8•k#

1
e2g2

4m p•k
tr ~F8•M•F !1O~v2! ~25!

where, as in the previous sectiong stands for the combina
tion ~21! of parametersg52/324/3 (l 112l 2). It is not dif-
ficult to verify that in the laboratory frame, the amplitud
~25! precisely reproduces the LET~15!. Although this result
is guaranteed by group theoretical arguments, our sim
derivation is completely within the context of convention
Lorentz invariant quantum field theory. As such, it is
simple example of the model applied as an effective theo

C. Unitarity and gÄ2

We close this section with some comments on unitar
As mentioned, low energy unitarity imposes the valueg52
for any spin@1#. The idea is that,~for a particle interacting
electromagnetically only! the optical theorem constrains th
low energy forward (k5k8) limit of the scattering amplitude
~15!,

Tf i52
e2

m
eW 8•eW ū8•u2

ie2 v

4m2
~g22!2

3~eW 83eW !•SW1O~v2!, ~26!
10503
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to have no contribution linear inv, thus requiringg52.
Clearly, if one wishes to apply this criterion to our mode
one can simply take the choice of parametersl 112l 25
21. Of course, in reality, one may be interested in an eff
tive description of a composite particle participating in t
strong interactions withgÞ2. Here the models with genera
values ofg are suitable.

The quite distinct criterion of tree unitarity@3,16,4# con-
cerns the high energy behavior of the theory. Partial wa
amplitudes are subject to~constant! unitarity bounds which
may, in principle, be violated by tree level amplitudes. F
effective theories these bounds determine the energy sca
which the effective description fails and new physics ent
@e.g., inapplicability of the Fermi weak interaction theo
beyondmW]. The failure of tree unitarity in the minima
model was first observed in@16#. ~Their inference of a con-
nection between this and acausality seems unwarran
however, given that theg52 tree unitary model also fails to
propagate causally.! Let us review the tree level unitarity
argument@16,4# in more detail. Massive higher spin propa
gators, e.g.~22!, contain inverse powers of the mass. In tr
level Green functions, for general kinematical configuratio
where all momenta are large, these terms lead to contr
tions growing with positive powers of the energyE. In addi-
tion to being dangerous for renormalizability when high
order loops are constructed from trees, they eventually v
late partial wave unitarity bounds. There is, however, a qu
general mechanism related to gauge invariance to rem
this undesirable high energy behavior. Namely, if one inv
tigates the worst powers of inverse mass in the propag
~22!

2pmp” pn

3m2~p21m2!
, ~27!

one see that the operatorspm and pn generate a linearized
gauge transformation@in our case a linearized local supe
symmetry transformation#

dcm5]m« ~28!

at the vertices to which the propagator is attached. He
requiring the on-shell vertices to satisfy the appropriate
persymmetric Ward identity will lead to cancellation of 1/m2

contributions. Obviously one can apply this procedure to f
ther constrain the non-minimal couplings. The supergrav
inspired model uniquely satisfies this criterion via the us
supersymmetry Ward identity. From a fundamental vie
point this model may be favored, but amongst phenome
logical effective theories, the most compelling choice of no
minimal coupling is dictated by the data@for example a
measurement of the gyromagnetic ratio#. Any breakdown of
tree unitarity simply indicates the scale at which the effect
description is no longer valid.
1-5



t
a

e
a

d
m
ie

w
th

of
o

ou

c

-

eld

po-

n

in
ls

o

ri
da
e
in

S. DESER, A. WALDRON, AND V. PASCALUTSA PHYSICAL REVIEW D62 105031
IV. CAUSALITY AND QUANTIZATION

As we shall discuss, a study of causality4 amounts to in-
vestigating whether the constraints, required to ensure
correct physical DOF, are consistent. In particular, one m
find that, for some critical value of the external fieldFmn ,
the secondary Lagrangian constraint5 may no longer be in-
verted to solve for the Lagrange multiplier variablec0. From
a canonical viewpoint, this implies that the Dirac brack
governing dynamics on the constraint surface is ill-defined
this point@5# and yields a pathology that, of course, exten
to the corresponding quantum mechanical canonical com
tators. In terms of the field equations, this pathology impl
that the model permits superluminal propagation@6#. A brief
review of the precise relation between causality breakdo
and consistency of constraints is given at the end of
section.

The key point is to find, and study the consistency
eight ~complex! constraints amongst the sixteen field comp
nentscm ; the equations of motion then reduce these to f
physical DOF.

The field equation derived from Eq.~1! is

Rm[dS/dc̄ m5gmnr D ncr1
ie

m
Fmn cn50. ~29!

SinceR0 does not involve time derivatives of any fields,

Q1[g0R05g i j D ic j1
ie

m
g0 F 0ic i50 ~30!

is a primary constraint. As explained in Sec. II, a corre
DOF count requiresF0050 in order that Eq.~30! does not
determine the Lagrange multiplierc0.

Before taking the divergence ofRm to determine the sec
ondary constraint we employ the relation@equivalent to Eq.
~30! on-shell#

g•R52 ~D
/

23m!g•c22 D•c1
ie

m
g•F•c50 ~31!

to rewrite the field equationsRm as

Rm5~D
/

2m!cm2~Dm2gm @D
/

22m# ! g•c

2gm D•c1
ie

m
Fmn cn

5~D
/

2m!cm2~Dm2mgm! g•c1
ie

2m
gngmF nrcr

50. ~32!

4The causality study for various couplings to external fields
@17# did not include non-minimal couplings; none of the mode
considered there was causal either.

5Our terminology is as follows: For a first order system devoid
gauge invariances, the primary~Lagrangian! constraints are simply
any field equations without time derivatives. Requiring that the p
mary constraints are preserved by time evolution leads to secon
constraints and so forth. Precisely the same constraints aris
second class secondary and tertiary constraints, respectively,
canonical Dirac analysis@18#.
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In particular, in temporal gaugeA050, the equations of mo-
tion for the spatial components of the Rarita-Schwinger fi
are

g0Ri5ċ i1g0 S gW •DW 2
1

2
mD c i2Di g0g•c

1
ie

2m
g0 gng iF nrcr50. ~33!

We now obtain a secondary Lagrangian constraint from

Q2[D•R52
3

2
m2 g•c1

ie

2
gmnr Fmncr1

ie

m
D•F•c

52
3

2
m2 g•c1

ie

2
gmnr Fmncr

1
ie

m S D iFin1
1

2
mg0F0nD cn

1
ie

m
~Ḟ 0i c i1F 0i ċ i !50. ~34!

Since ċ i may be eliminated via Eq.~33!, Q2 constitutes a
second independent algebraic relation amongst field com
nents.@Again, observe that Eq.~34! would contain a term

( ie/m) F00 ċ0 for F00Þ0 and become an equation of motio
rather than a constraint.#

Upon substituting Eq.~33! into Eq. ~34!, we concentrate
on the coefficient matrixR of the Lagrange multiplierc0 in
Q2, sincec0 must be determined by this relation:

Q2[g0Rc01•••

R52
3

2
m21

ie

2
g iF

i j g j2
ie

m
g0 @Di ,F0i #

2
e2

2m2
g0F0ig0 g jg i F 0 j . ~35!

In terms of the electric and magnetic fields (Ei5F0i , Bi

5F̃0i),

F 0i5 l 1 Ei1~2l 2 d i j 1 l 5 e i jkg0g5gk! ~Ej2 ig5Bj !.
~36!

Hence the criticalR whose loss of invertibility would leave
c0 ~partly! undetermined, is

f

-
ry
as
a

1-6
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R52
3

2
m22e @122l 2# g0g5gW •BW 22e l5 g0gW •EW

1
e2

2m2
~@ l 112l 2#2 EW 21@2l 2#2 BW 2 !

1
e2

m2
@2l 2~ l 112l 2!12l 5

2# g0 gW •~EW 3BW !

1
2e2

m2
l 1l 5 g5EW •BW 2

ie

m
@ l 112l 2# g0 ¹W •EW

1
ie

m
l 5 g5gW •~¹W 3EW 2 ig5¹W 3BW !. ~37!

Pathologies in quantization and causality of the model t
occur whenever detR50 as a function of the backgroun
fields. To see how this occurs consider first a pure cons
electric background. The determinant obviously develop
zero for a critical value of the electric field~with the choice
l 550)

EW 253 S m2

e@ l 112l 2# D
2

~38!

and the model is acausal. The choice of parametersl 112l 2
50 andl 5 arbitrary, cannot yield a causal model either: T
determinant vanishes in a pure magnetic background for
valuesl i whenever

2
3

2
m21

e2

2m2
@2l 2#2BW 256 e @122l 2# uBW u. ~39!

This equation has a solution whenever the quadratic

P~b![~2l 2 b!262 ~122l 2! b2350, b[ueBW u/m2,

~40!

has a solution forb.0. Clearly, for any non-zero value o
l 2 , P(b) is positive for large enoughb and negative nea
b50 so it always has a zero for some positiveb: All mod-
els, minimal or non-minimal, exhibit pathological behavio6

Note that the supergravity-inspired and minimal coupli
model have critical field valuesBW 253m4/e2 and BW 2

5(3m2/2e)2, respectively~the latter being the well known
result of @5,6#!. These bounds cannot be expressed in te
of the Lorentz invariantsEW 22BW 2 andEW •BW , since the vector
jm normal to the characteristic specifies a preferred time
rection. The bounds themselves may, of course, be rephr
covariantly: For example Eq.~38! is a bound on (Fmnjn)2

which must hold forall timelike vectorsjm .

6Precisely the same analysis for a pure electric field includ
arbitrary l 5 yields the same result. Also even an uncharged~real!
Majorana field, with onlyl 5Þ0, displays acausal propagation.
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It is interesting to speculate whether further non-minim
couplings may restore causality. In particular, the choicel 2

51/2, l 550 at least removes the terms linear inBW andEW in
Eq. ~37! responsible for the original pathology of the min
mal model.@In this respect, we note that this choice alo
with l 1522 is that of supergravity for which the field
dependent terms of Eq.~37! are proportional to the electro
magnetic energy density, Poynting vector and charge den
and for this reason causality is preserved there, upon ta
gravity and the electromagnetic field dynamical.# However,
in Appendix B we generalize Eq.~37! to arbitrary non-
minimal couplings and show that broad classes of coupli
fail to propagate causally.

Finally, as promised, we briefly review the argument lin
ing the appearance of zeroes in detR to acausal propagation
in the field equations. The computation of@6# amounts to
studying the Cauchy problem of Eq.~29! and solving for the
characteristic surfaces that determine the maximal spee
propagation.7 This is simply achieved by recalling that cha
acteristics are determined by discontinuities of the high
order derivative terms appearing in the equations of mot
@19#. If we denote the discontinuity of the first derivative o
the Rarita-Schwinger field across the characteristic by

@]mcn#5jmCn ~41!

where Cn is a non-zero vector-spinor field, then caus
propagation forbids timelikejm . However from the field
equation~29! and its gamma-trace~31! we learn

FRm2
1

2
gmg•RG5gn~jnCm2jmCn! ~42!

@g•R#52~g•jg•C2j•C! ~43!

and in turn

j2Cm5jmj•C. ~44!

Proceeding by contradiction we takejm5(1,0,0,0)~timelike!
without loss of generality since the original~29! is Lorentz
covariant. We now need only study the leading discontin
ties in time derivatives and in particular

@Q̇2#5g0R C050 ~45!

which admits no non-vanishing solution forC0 unless
detR50, the condition studied above.

V. DISCUSSION

We have seen that the most general charged massive
3/2 theory with non-minimal couplings linear in the electr

g

7In more physical terms, this is akin to solving the equations
motion in a high energy eikonal limitcm5Cm exp(itx•j) with
t→`. Clearly, solutions forjm timelike indicate superlumina
propagation@4#.
1-7
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magnetic field strength is described by the two param
family

L52 c̄ mgmnr D ncr1
ie

m
c̄ m Fmncn

1
3ie

4m
~g22! c̄ m Fmncn2

2iel2
m

c̄ m g5F̃mncn ,

~46!

two of the othera priori admissible parameters being e
cluded by DOF consistency; the third, corresponding to
diagonal Majorana coupling, did not affect our low energy
causality results. The physical interpretation of the first th
terms in Eq.~46! was provided by studying LETs. The first
the usual minimally coupled Rarita-Schwinger theory w
intrinsic gyromagnetic ratiog52/3. Minimal coupling for
half integer systems yields only the spin 1/2 contribution
the Lorentz generators, while the second coupling is the s
1 Pauli term required forg52. Althoughg52 is required
for low energy unitarity of amplitudes describing pure ele
tromagnetic interactions, more general phenomenolog
applications deal with the casegÞ2, and one may safely
include the anomalous magnetic moment coupling given
the third term.@Recall that at low energy, a coupling toFmn

is equivalent to a coupling to the full Lorentz generators
to a factor 1/3, by virtue of the identity~20!.#

The fourth term is more subtle, as it does not contribute
low energy until quadrupole order. It will be an exercise
some physical importance to relatel 2, as well as effective
Lagrangians including gradients ofFmn, to multipole mo-
ments along the lines of the method presented here for
magnetic dipole. The valuesg52 andl 251/2, implying tree
unitarity, represent a truncation ofN52 supergravity@along
the lines of@4#, but maintaining the correct DOF#.

Our study of causality showed that no model maintain
the correct DOF avoids sharing the pathology of the minim
one. In fact this result applies to a very broad class of n
minimal couplings@beyond just linear in the field strength#;
the criteria described in Sec. IV determine the causality
any non-minimally coupled model. An interesting issue u
der study@10# is whether including gravity dynamically ca
improve upon this situation; certainly for supergravities@8#
this is the case, although the minimal model in curved sp
is known to still suffer the usual difficulties@20#.

Finally, and perhaps most physically relevant, the mod
we have studied, despite the formal causal pathologies o
interacting fields, provide a useful parametrization for an
fective low energy description of higher spin excitation
They are a field theoretical framework for the generic LE
properties.
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APPENDIX A: HIGHER SPIN SOFT PHOTON VERTICES

The results of Sec. III A are easily generalized to arbitra
higher spin targets. For higher integer spins we employ a
complex symmetric tensor fieldfm1•••ms

. On-shell,fm1•••ms

is asymptotic to a free field satisfying

~h2m2! fm1•••ms
505fm

m
m3•••ms

5]m fm
m2•••ms

.
~A1!

The corresponding half integer spins[n1 1
2 representation

is a complex Dirac symmetric tensor-spinorcm1•••mn
obey-

ing free field equations

~]/ 1m! cm1•••mn
505gmcm

m2•••mn
5cm

m
m3•••mn

5]mcm
m2•••mn

. ~A2!

Here, as for spin 3/2, it is essential to determine appro
ate non-minimal couplings to lower trace and gamma-tr
field components in seeking a correct DOF count in an e
tromagnetic background@10#. In this appendix however, we
ignore these couplings since they are irrelevant to the
photon vertex.

The general Lagrangian is the sum of the minima
coupled massive higher spin action8 of @21# plus the most
general non-minimal couplings~ignoring trace couplings!
denoted byLNM . For integer spins,9

LNM52 ie l1 fm* Fmnfn ~A3!

and for half integer spins@the precise analogue of Eq.~2!#,

LNM52
ie

m
@ l 1 c̄ mFmncn1 l 2 c̄ F̂c # ~A4!

in the terse notation, appropriate for bilinears, that dro
any indices contracted directly between a field and
complex conjugate ~so that, for example, c̄ F̂c

[c̄ r1•••rn
F̂cr1•••rn).

The LET for the emission of a single photon for arbitra
spin target is

Tf i5
im

2s
Fmn M mn1O~v2! ~A5!

8Note that in@21# the action is in terms of traceless and gamm
traceless fields symmetric in vector indices along with auxilia
fields. Using field redefinitions one may work, equivalently, wi
unconstrained symmetric fields and a reduced set of auxiliarie
above.

9Here and throughout, we have ignored derivative couplings,
though they may also contribute to the magnetic moment; thi
illustrated in@22#.
1-8
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where now the Lorentz generators in a higher spin repre
tation are given by

Mmn52ms«8@m* «n] ~A6!

for integer spins, and

Mmn5
1

2
ū8gmnu12s ū[m8 un] ~A7!

for half integer spins. The initial,«m1•••ms
andum1•••mn

, re-
spectively, and final target polarizations~with primes! satisfy
the usual conditions implied by Eqs.~A1! and ~A2!.

We must now compute the on-shell vertices in the s
photon limit and compare the results with the LET~A5!. The
integer spin case is simple and we find a gyromagnetic r

g5
1

s
2

2l 1

s
~A8!

where we have included a contributiong51/s from the mini-
mally coupled Lagrangian.~Of course, unlike the half intege
case, a second order system is well known to be ambigu
due to possible partial integrations before minimal coupli
In fact the minimal model alone can yield any gyromagne
ratio betweeng50 andg51/s, the case quoted above bein
attained by writing the Lagrangian in first order form a
only thereafter coupling minimally@21#.!

The half integer case directly follows Sec. III A; we mu
include the minimal interaction

L min
int 52 ie c̄A” c ~A9!

to which the Gordon identity~18! may be applied unaltered
Once again, there is a special model which requires no
ther low energy identities to fulfill the LET, namely the on
with nl154l 221. The LET is satisfied, of course, for a
parameters (l 1 ,l 2) as follows from the obvious generaliza
tion of the identity~20!, implying

Mmn5s ū8gmnu1O~v!. ~A10!

As a result one finds

g5
1

s
2

2~ l 112l 2!

s
, ~A11!

which clearly reproduces Eq.~21! for s53/2. Note that the
higher spin analogue of Eq.~7! again implies that anig5F̃mn

coupling does not contribute at linear order inv, so that low
energy physics is encapsulated by a single magnetic mom
coupling.
-

o
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APPENDIX B: CAUSALITY OF GENERAL
NON-MINIMAL MODELS

The curious reader may wonder whether there exist ca
non-minimal couplings for more general functionsF mn of
field strengths. The most general antisymmetric~so that
DOFs are maintained! one isF mn5Wmn1 ig5Xmn1 igmnY
1g5gmnZ whereWmn andY are parity even,Xmn andZ are
parity odd, all built fromFmn , F̃mn , (FrsFrs), (FrsF̃rs)
and field-gradient dependent terms.@For brevity we omit the
diagonal, Majorana,l 5 term.# Causality is determined by
substituting this expansion into the matrix~35! and searching
for zeroes in its determinant. If we setZ50 @in any caseZ
must be an odd function of the axial scalar (FrsF̃rs), so
vanishes for pure electric or pure magnetic field configu
tions# then the analysis of this determinant is almost identi
to that performed above: The third termY is a field-
dependent mass term so replacing the operatorDm→Dm

1 1
2 m* gm where m* 5m1Y, calling F i05E

*
i 1 ig5B

*
i

(E
*
i 5Wi0,B

*
i 5Xi0) and derivatives ofm* no longer van-

ish. The matrixR then reads

R52
3

2
m

*
2 1

e2

2m2
~EW

*
2 1BW

*
2 !1e g0g5gW •S BW 1

m*
m

BW * D
1

ie

m
g0 ~¹W •EW * 2 ig5¹W •BW * !

1gW •¹W m* 2
e2

m2
g0 gW •~EW * 3BW * !. ~B1!

For the~simplest! caseFmn constant, detR vanishes when-
ever

F2
3

2
m

*
2 1

e2

2m2
~EW

*
2 1BW

*
2 !G 2

2FeS BW 1
m*
m

BW * D6
e2

m2
EW * 3BW * G 2

50. ~B2!

Observe that forY505Z, i.e., m* 5m, and with F mn

growing unboundedly for largeF mn, the model is not causal
For F mn50 the expression~B2! is positive but the first term
in square brackets must have a zero for large enoughEW * or
BW * at which point the second term is necessarily negat
and solutions to Eq.~B2! will exist. While this shows that
broad classes of generalized couplings remain acausal
above completely general criterion can applied to a syst
atic search for causal models.
n
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