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We study the general non-minimally coupled charged massive spin 3/2 model both for its low energy
phenomenological properties and for its unitarity, causality and degrees of freedom behavior. When the model
is viewed as an effective theory, its paramet@fer ensuring the correct excitation couare related to
physical characteristics, such as the magnetic momgédattor, by means of low energy theorems. We also
provide the corresponding higher spin generalization. Separately, we consider both low and high energy
unitarity, as well as the causality of our models. N@meluding truncatedN=2 supergravity is free of the
minimal model’s acausality.

PACS numbegps): 11.10.Ef, 04.65t+e, 13.40.Em, 14.86;]

[. INTRODUCTION applications, since it tunes spin 3/2 and Planck masses.
In this paper, we study the low energy behavior, unitarity
Gauge interactions of massiflet alone masslegselativ-  and causal consistency of general flat space non-minimal,
istic higher spin fields constitute an ancient and difficult sub-non-derivative, couplings, concentrating on the massive
ject. Whatever the formal problems these models encountetharged spin 3/2 system, the simplest theory subject to the
effectivehigher spin theories must be constructible since aparray of higher spin subtleties. Of the five independent non-
proximately localized higher spin particles exist. Such mod-minimal terms linear in the field strength, two are eliminated
els should achieve low energy consistency, and share sontg a simple degrees of freedof@OF) consistency require-
of the physical properties described by their lower spin hadment. One of the three remaining couplings does not contrib-
ronic physics counterparts. ute to photon emission and Compton scattering but is in-
In our present study of charged massive higher spins weluded in our causality analysis. We employ low energy
seek only effective(rather than renormalizableactions, theorems(LETs) to identify the leading low energy non-
which can in general possess dimensionful, non-minimalminimal coupling as a magnetic moment interaction and
couplings beyond the minimal prescription, unique in firstcompute the gyromagnetic ratipin terms of the parameters
order systemsg,—d,+ieA, . In particular, the associated in the action. The generalization of this result to higher spins
coupling constants will determinesz 1 intrinsic multipole  is given in Appendix A.
moments of a spiss particle (charge, magnetic dipole, quad- ~ The gyromagnetic ratig in our models is arbitrary and
rupole and octupole fos=3/2). thus they are perfectly suited for phenomenological applica-
The more formal properties, such as unitarity and causakions where neither the pure electromagnetie2 unitarity
ity, of higher spin models will in general also depend uponrequirement nor tree unitarity need apply. Loss of the latter
details of the non-minimal couplings. Some of the importantmerely signals the scale at which the effective description
affected issues includéi) A gyromagnetic ratig=2 is re-  ceases to be valid.
quired by the optical and low energy theorems, at least for Study of causality yields a negative result; like the mini-
pure electromagnetic interactiof4], on the other hand, mal model, ours all permit acausal propagation for critical
minimal coupling impliesg=2/3 [2]. (ii) Tree unitarity[3]  electromagnetic fields. This result applies to arbitrd@PF-
requires the non-minimal couplings @funcatedd N=2 su-  preserving non-minimal couplings and agrees with an old
pergravity [4]. (iii) Quantization of the minimal theory is result[9] valid for couplings linear in the field strengttin
problematic since the fundamental canonical commutator be8] causality is preserved by taking gravity and electromag-
comes indefinite beyond a critical value of the magnetic fielcdhetism not merely external, but dynamical; curved space will
[5], or equivalently the model exhibits acausal propagatiorbe included elsewhefd0].) Nevertheless, we will argue that
[6]. However, if the minimal electromagnetic interactions arefor perturbative processes, formulated in terms of free
extended to include gravity as obtained by dropping only theasymptotic fields, neither high energy unitarity nor causality
cosmological constant term di=2 anti—de Sitter super- problems spoil the validity of the models as a phenomeno-
gravity [7], causality is restorefB]. Unfortunately, this for- logical tool.
mally consistent model is unsuitable for phenomenological In Sec. Il we present the non-minimal models under con-
sideration and obtain the constraints required by a correct
DOF count. Section Il contains the verification of the LETs

*Email address: deser@brandeis.edu for the soft photon vertex and Compton scattering, along
"Email address: wally@brandeis.edu with our gyromagnetic ratio computation. A study of causal-
*Email address: phvvp@flinders.edu.au ity is presented in Sec. IV. In Sec. V we summarize and
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discuss our work. The generalization of our soft photon ver-
tex results and identification of the magnetic moment for
higher spins is given in Appendix A and the extension of our
causality analysis to the most general non-minimal couplings
is given in Appendix B.
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Il. THE MODELS

We begin with the Lagrangian for the complex vector-
spinor Rarita-Schwinger fielg,, ,

Two of the five parameters in Eggl),(2) may be elimi-
nated by requiring that the model describe the correct DOF
or, equivalently, maintains the constraint count of the free
theory: The zeroth component of the equation of mogyn

— ie— _

Cz—z,b“yﬂ,,pD”(/fp—E b FrY,, (1) =6£/6¢_p° inyo!ve; no time derivqtives and is therefore a
constraint eliminating four of the sixtednomplex compo-
nents ofy, . Another constraint eliminating four more com-

U FEvy =|. G EA 1.7 Bk ponents is still required before one can conclude that on-shell
VuF =l B A o g B half of the remaining components yields2 1=4 physical
v m DOF. When s, appears linearly in the action, as for the
+15F* RUERVA = 0 = oS .
ISP Ly vt ey vt minimal theory, it is a Lagrange multiplier imposing the con-
+|4E. yﬁy. W straiqt Ro=0. Requiring its preservation under time evolu-
_ _ _ tion, Ry=0, yields the necessary additional constraint. If in-
+ils F* [y, v = yyuh]. (2)  steady, appears quadraticallji.e., as )My, for some

matrix M) the Ry,=0 equation now determineg,, and re-
quiring Ry=0 yields an equation of motion fog,. This

Our conventions are: Metricy,,=diag(—,+,+,+), k g )
(w,v,...=0,...,3, i,j,...=1,2,3); Dirac matrices: choice describes too few constraints—too mdpsopagat-
{y’,‘ ;f”}=2 1;,’“’ 7yf;T=, ybyﬂyo- , f;/l‘lt cn=glHn. . k] ing) DOF, as compared to the free field.

One non-minimal model respecting the DOF count is the
truncation ofN=2 supergravity with the cosmological, cur-
vature and four-Fermi terms omittédlt corresponds by
Eq. (5) to the choice of parametets=—2, 1,=1/2, |3=1,
l,=—1/2 (and 15=0) reproducing®,,=—(F,,+iv°F,,).

(If however, as in[4], the further truncation excluding the
gamma-trace components f, in the non-minimal sector is
made, the DOF count is violated. This fact would seem to
make moot the causality claim there.

Henceforth, we retain only models linear g, which, as
is easily seen, is equivalent to demandifg,=—7,,.
(Since any timelike vectog, defines a time direction, we
may rephrase the requirement thjgtappear only linearly in
Lorentz covariant language gs7- =0 for all ¢, timelike,)
The corresponding relations amongst parameters are

[we always (ant)symmetrize with unit weighf »°=
—iy0128 yurpr=j~Servr  Contraction of all indices of a

tensor with Dirac matrices is denoted by a hat, efy.,
=F,,y"y". The operator in the minimal term of E({),

1 .
D,=D,+ Em Yur Du,=d,,tieA,, (3

also incorporates the usual mass tQTT'EM‘y'U“Vl//V; it satis-
fies

[D,.D,]=ieF,,+

5 (D, ]=my,,. (4)

2
m Yuvs

|2+|4:O, |3+2|4:O, (6)

Note thatils F*"[ ¢ ,v, y-¢—¢- vy v,¢,], being diagonal o ) ) )
in a Majorana basis, is non-vanishing even for an uncharge@d the non-minimal interactions reduce to the two combi-
real field; on-shellwherey- =0) it does not contribute at Nations(droppingls)

lowest perturbative orders and we therefore drop it until the
general causality analysis in Sec. IV.

The set(2) represents the most general non-derivative,
Hermitian, parity-even couplings linear in the field strength
F ... That they must constitute a five parameter family can———
also be seen upon expanding the most general possible

ZMFWPW;VFPU in a Fierz basis: There is a single coupling or

E,u. fMV¢V = [l 1t 2'2] JMFW%/ - 2'2@;}, [ ,y5ﬁMV¢.V .
0

This truncation should not be confused with the supersymmetry-
eserving anti—de Sitter-Poincacentraction, mapping the model

to y#*'*?, three possibilities fory*” and a single scalat
coupling. Thus the y°F~#” of supergravity [F*”
=(1/2) €""*F ,,] may be cast in the above basis as

of [7] to the originalN=2 model[11]. The latter has a flat gravi-
tational background and only non-minimal, uncharged, Maxwell
couplings.
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We now consider the properties of these physical spin 3/2 1

theories. The model with,=0=1,=15=1,=1¢ will be re- M#r P, =yt 8+ 2 skl s, (10
ferred to as the minimal one while “supergravity-inspired

model” refers to the just-described truncatie=2 super- gq that

gravity.

1 1.
—_ 2N — o _
Ill. LOW ENERGY THEOREMS Storentaly =5 My MP,p U =0y gt g Ly (1)
LETs characterize soft photon scattering amplitudes int is useful to define

terms of the mass, charge and magnetic moment of the target
[12,13,1, independent of its internal structure, relying only
on gauge and Lorentz invariance plus low photon frequency.
In this sense, LETs are purely kinematical and, irrespective
of any causal pathologies, perturbative scattering amplitudes

M #‘VEU;) MA»P U = %U' SY uP+2y’ [» u”l,

N I
formulated in terms of free asymptotic fields are guaranteed S'= Ee”k u, Mji”,u”, (12)
to satisfy them. Therefore LETs provide a simple way to
map the QFT parameters to the physical ones. The LET for the photon vertex states that the amplitude

We first study the vertex for the emission of a single 1oWsq, emission of a soft photon by a stationary massspins
frequency photon, then Compton scattering with small i”'target is

coming (and outgoing photon frequencies. In each case the

relevant LETs are usually stated for stationary targets and [ .

Lorentz invariance is not manifest. So we first enunciate the Tri=— 5 (exk)- S+ O(?); (13
dictionary to our relativistic Feynman tree amplitudes. A soft

photon is invariantly defined by the requirement that transparent derivations of Eq4.3) and(15) may be found in

[1]. The magnetic moment appearing in Eq(13) is related

»? p-k? to the charge to mass ratio of a sg@mparticle by the gyro-
= 7 <L (8)  magnetic ratiog, defined by
m
egs
for photon a's four-momentunk® and targetp,,. In the *=5m: (14)

y2a
laboratory framep,=(m,0,0,0), »® reduces to the usual

photon frequency. The standard LET for Compton scattering reads
For each photon polarizatioai we employ Feynman

gaugek?®- £2=0 along with the residual gauge fixing condi- e’ . . — iew(2u e

tions p-£2=0 so that in the laboratory frame one ha Ti=—75 €-eu-u W(?_E (e'Xe)-S

=(0,e?) andk®- €2=0. We also utilize a covariant notation o

for the target polarizationsi,=u,(p) and u,=u,(p") —_M(E.IZ’ (e'XK')—€'-K(exKk))-S

where p/’L is the outgoing momentum of the target particle @S

and the usual asymptotic on-shell conditions hold w2 L o
—E((e’><k’)><(e><k))-8+(9(w2). (15)

p-u=y-u=0=(ip+mju,,

o - - Our task now is to derive the amplitudés3) and (15) in a
u-p'=u’- 7=0=U,'L(i¢'+m)- 9) Lagrangian framework and thereby relate the parameters of
Egs.(1),(7) to the physical ones whictapart frome andm)

An explicit representation for the spin 3/2 polarizations in means the single numbegr

terms of the usual massive spin 1 and spin 1/2 polarizations

el, (1=-1,0,1) andu® (s=-1/2,1/2), respectively, is A. The soft photon vertex
given by u,*=e,u*¥? and u,Y=(e,u"? The amplitudg13) may, using the on-shell conditions for

+2 83 u=%?)/,3 [14]. Obviously, insertingjp:uz andU;) the target and soft photon polarizations, be expressed in the
:Uz, with N\ =—312, .. .,3/2 in Eq.(12) below, M“" manifestly Lorentz invariant form

(regarded as a matrix in the labelsand\’) is a spin 3/2 i ) _
irreducible representation of the Lorentz algebra. Tfi:2_S FuoM#7+0(0%), F,=i(k,e,—K,e,).
The total spin matrixS is the dual of the spatial Lorentz (16)

generatorsS = (i/2)e’*M ., and the Lorentz generators act
on the relativistic vector-spinor on-shell representation of theOn-shell the interaction Lagrangian, including minimal and
spin 3/2 polarizationsl, according to non-minimal couplings, becomes
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iﬁim|0n_she”:i Tfi :eUp’}/' eu’ p,;'l_l" k’,E' plﬁﬁ' k,76’
e — , —
+E[ lyu, F*”u,+l,u,Fuf].  (17)
The asymptotic Rarita-Schwinger equation may be used tc 7=p+ 7=r
derive the obvious generalization
W), ()= — o= (p+ VL0
p Py UsP 2m p+p d b,u k’,&" D,u k,S

i _ FIG. 1. Compton scattering kinematics.
+ 5 (p' =P, U YU, (18)
m of the Lorentz generators may be traded against one another.

. . . . . Hence the low energy result is precisely reproducedivy
of the spin 1/2 Gordon identity. Thus the amplitude derived, o 'non minimal Lagrangians, the gyromagnetic ratio be-
from the non-minimal Lagrangian reads .

ing

ie — v 1 — & 2 4
Tfi:_ﬁ 2|1UMF uV+E(4|2_1)UPFu . g:§_§(|1+2|2)1 (21)
19

. ) . ) a sum of minimal and non-minimal contributions. For mini-
At this juncture, the amplitude seems qun_e different from | coupling the well known result= 1/s=2/3 emerge§2].
that of a pures=1/2 system for which there IS @ one param- opserve that the supergravity-inspired model yietpis 2
eter family of (@—2) values read off from th& term with,  [4]. Finally, we note, in passing, that in the bagfsonly the
of course, no counterpart to the term. If the latter is to F ., coupling contributes to the gyromagnetic ratg), in-
augment thé= term to a coupling involving the full Lorentz dependent of they5’|iw term. This is not surprising sincg’
generators as in E¢12), the relevant coefficient between the mixes the “large” and “small” components of the vector-
two terms must be 1/4. There must be, therefore, an identitgpinoruM defined by projection with respect t9®, and is of
relating these two terms for the LET to hold; LETs are just ahigher order in the soft photon expansion. This term will
statement about parts of amplitudes determined completelyontribute to higher quadrupole and octupole moments. The

by kinematics and should be reproduced for any choice ogxtension of our work to such moments is an interesting but
parameteré. The on-shell identity separate issue.

U;(p’) Yur U"(D)ZZU[',L(D') u,(p)+O0(w) (20 B. Compton scattering

is easily verified in the fram@,=(m.,0,0,0). This low en- A useful check on our vertex resyRl) is to compute the

: ) : : plitude of Fig. 1 for Compton scattering. In particular,
ergy equality states that on-shell the spin 1/2 and spin 1 par%':(:e the gyromagnetic ratio must be precisgly2 for the
optical theorem to hold1], the latter will produce an addi-
tional relation between the parametérsandl,.
ZIn [7] the Thompson limit for Compton scattering was obtained  The mass shell conditiop’ = —m? implies that the dif-
in the truncatedd =2 supergravity model, a calculation that seemedfarencew’ — w=Kk-k’/m is second order in this expansion.
to hinge on delicate cancellations due to the particular form of thel'herefore we eliminate»’ (using this relationand p’ (by
supergravity non-minimal couplings. However, since the Thompsor?nomentum conservatignone can then evaluate the order of
limit is dictated by thg lowest order LET, our generic computationany expression simply by counting the number of four-
always guarantees this result. vectorsk andk’ in it. We now evaluaté¢15] the relevants

3It is already possible without using the identit30), to directly . - L . .
satisfy the LET with the choice of parametégs- — g/2—4l —1: andu channel diagrams in this limit, using the vertices of Eq.
(1) and the free propagator

The Lagrangian becomes/;:/;mm+(ie/m)ZMF’”zpﬁ[ie(g

— 2) 1AM F 0, M#*2 g7 + ie(g = 2) 14m] (F* [, v - ¥ i PP, 1/ip,,
+¢-yy,,)—3 ¢ yFy ¢). The LET is then satisfied by the S,.(p)= 5| | Puvt = | (P —m)+§ W_y“)
following interesting mechanism: Together, the first two termg of pe+m m

produce ag=2 coupling since the minimal Lagrangian gives the .

spin 1/2 part of the Lorentz generators via the Gordon identity X(ipH—m)(lp—V—y,,) ' (22)
above and the non-minimal coupling E&*” yields the spin 1 con- m

tribution (exactly the same term required for a spin 1 vector boson ) ) )
to haveg=2). The third term is a direct coupling to the total TO extract the leading and next-to-leading terms in the low

Lorentz generators and yields an anomalous magnetic moment cognergy expansion of the amplitude, we need the Gordon
pling (the remaining ones are required to ensure the correct DOF ifdentity (18) of the previous section along with the following
theg#2 case. generalization:
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— 3i —, to have no contribution linear im, thus requiringg=2.
un(P)y*"Pu(p)=— 5 (p+ pH ulylu, Clearly, if one wishes to apply this criterion to our model,
| one can simply take the choice of parametérs 2l,=
+ Z—Ub””p”ux (p’'—p),. 23y ~ —1. Ofcourse, in reality, one may be interested in an effec-
m tive description of a composite particle participating in the

strong interactions witly# 2. Here the models with general
Note that in the laboratory frame, the “Dirac” equatié®  values ofg are suitable.
readsy’u=imu and using the above Gordon identities, ex-  The quite distinct criterion of tree unitarifi, 16,4 con-
pressions such as)y*’e, k,u, are effectively equal to cerns the high energy behavior of the theory. Partial wave
u;),yijei ku, at leading order in the low energy expansion. Asamplitudes are subject t@onstank unitarity bounds which

a simple gauge invariance check, before imposing the re?@y: in principle, be violated by tree level amplitudes. For
sidual gauge choicg-s=0=p-¢’ and taking the low en- effective theories these bounds determine the energy scale at

ergy limit, we verified that our amplitude satisfies transver-Which the effective description fails and new physics enters
sality in each photon line separately. [e.g., inapplicability of the Fermi weak interaction theory
Once again, applying only the Gordon identiti@8) and beyondmy]. The failure of tree unitarity in the minimal
(23), the amplitude satisfies the LET only for the choice of M0del was first observed ir16]. (Their inference of a con-
parameters of the Lagrangian of footnote 3. However, onc@€ction between this and acausality seems unwarranted,
one applies further the on-shell identit90) along with the however, given that thg=2 tree unitary model also fails to

additional identity[equivalent to Eq(20) upon contracting Propagate caus_aID,/.Let us review the tree level unitarity
indices. and o] argument16,4] in more detail. Massive higher spin propa-

gators, e.g(22), contain inverse powers of the mass. In tree
— — level Green functions, for general kinematical configurations
U [ YapUa1 = [p Yo ulsy T O(w) (249 where all momenta are large, these terms lead to contribu-
tions growing with positive powers of the enerByIn addi-
one finds for the amplitudén an obvious matrix notation for tion to being dangerous for renormalizability when higher

vector indicey order loops are constructed from trees, they eventually vio-
late partial wave unitarity bounds. There is, however, a quite
e? e? general mechanism related to gauge invariance to remove
Tii=——= u'-ue'-e+ —3(g—2)2 p-k(e"-M-g) this undesirable high energy behavior. Namely, if one inves-
m 4m tigates the worst powers of inverse mass in the propagator
ie2g (22
~am p~k[tr(F M)e-K'—tr(F-M)e' k]
e’g’ 2p,pp,
+ tr(F'- M-F)+O(w? 25 — 2
4am p-k (F"- M-F)+0(w7) @9 3m2(p?+m?) @

where, as in the previous sectignstands for the combina-

tion (21) of parameterg=2/3—4/3(1;+2l,). It is not dif-  one see that the operatapg and p, generate a linearized
ficult to verify that in the laboratory frame, the amplitude gauge transformatiofin our case a linearized local super-
(25) precisely reproduces the LETL5). Although this result symmetry transformatidn

is guaranteed by group theoretical arguments, our simple

derivation is completely within the context of conventional

Lorentz invariant quantum field theory. As such, it is a oY, =d,e (28
simple example of the model applied as an effective theory.

C. Unitarity and g=2 at the vertices to which the propagator is attached. Hence
requiring the on-shell vertices to satisfy the appropriate su-

We close this section with some comments on unitarity nersymmetric Ward identity will lead to cancellation ofri/
As mentioned, low energy unitarity imposes the vaiie2  contributions. Obviously one can apply this procedure to fur-

for any spin[1]. The idea is that(for a particle interacting  ther constrain the non-minimal couplings. The supergravity-
electromagnetically onlythe optical theorem constrains the jhgpired model uniquely satisfies this criterion via the usual

low energy forward k=k') limit of the scattering amplitude gypersymmetry Ward identity. From a fundamental view-

(19, point this model may be favored, but amongst phenomeno-
5 . logical effective theories, the most compelling choice of non-
_ & s E0 2 minimal coupling is dictated by the dafdor example a
Tsi= €e'-eu’-u (g—2) ) _
m Am? measurement of the gyromagnetic ratidny breakdown of

o tree unitarity simply indicates the scale at which the effective
X(€'Xe€) - S+O(w?), (26)  description is no longer valid.
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IV. CAUSALITY AND QUANTIZATION In particular, in temporal gaugk,=0, the equations of mo-

As we shall discuss, a study of causdligmounts to in- tion for the spatial components of the Rarita-Schwinger field

vestigating whether the constraints, required to ensure th@d'®
correct physical DOF, are consistent. In particular, one may
find that, for some critical value of the external fietd,, ,

the secondary Lagrangian constraintay no longer be in- R = U+ *-D*—E ) D .

verted to solve for the Lagrange multiplier varialgtg. From YoR=Yityo| v DmamdimDivey- ¥

a canonical viewpoint, this implies that the Dirac bracket ,

governing dynamics on the constraint surface is ill-defined at + e Yo Yoy F P =0. (33)
this point[5] and yields a pathology that, of course, extends 2m v P

to the corresponding quantum mechanical canonical commu-
tators. In terms of the field equations, this pathology implies
that the model permits superluminal propagafi6h A brief ~ We now obtain a secondary Lagrangian constraint from
review of the precise relation between causality breakdown
and consistency of constraints is given at the end of this
section. 3 ie ie
The key point is to find, and study the consistency of, ®>,=D-R=-— Emz YUt S Y P =D T
eight(complex constraints amongst the sixteen field compo-
nentsy,, ; the equations of motion then reduce these to four 3, ie ,
physical DOF. =T o MI Yt S Y BT
The field equation derived from E@) is
ie ) 1
- L, e § +—|D'F,+ Emy‘)]-'OV v
R,=056y"=1y,,, D"’ + Ej:“”l’b =0. (29 m

ie - -
SinceR, does not involve time derivatives of any fields, + a(}'o' i+ FO yy)=0. (34)

. e .
®1570R0:7ijDIW"‘E?’O}-O"M:O (30) _
Since ; may be eliminated via E(q33), ®, constitutes a

is a primary constraint. As explained in Sec. Il, a correctsecond independent algebraic relation amongst field compo-
DOF count requiresfoo=0 in order that Eq(30) does not nents.[Again, observe that Eq34) would contain a term

determine the Lagrange multipligl,. _ (ie/m) Footho for Fog# 0 and become an equation of motion
Before taking the divergence &, to determine the sec- | aiher than a constraift.

ondary constraint we employ the relatipequivalent to Eq. Upon substituting Eq(33) into Eq. (34), we concentrate

(30) on-shell ie on the coefficient matriR of the Lagrange multipliegy, in
y-R=2(P-3m)y- ¢y—2D- )+ Ey-]—'- =0 (31 0,, sincey, must be determined by this relation:

to rewrite the field equation®,, as

0,=yRep+
VL S R=— S mi+ = yFly,— — yo[D; 7]
Y 'I/H_m]:’“’l// 2 2 J'm
ie
—(P— —(D.— gt —y,y, FP 2 . ,
(P=m) = (D=my,) v 9t 5= v, 7, F ", —e—270f0'707j7if o 39
-0. (32 2m

. _ _ _ _ _In terms of the electric and magnetic fields'€F%, B!
The causality study for various couplings to external fields in

_F0i
[17] did not include non-minimal couplings; none of the models =F7),
considered there was causal either.
SOur terminology is as follows: For a first order system devoid of oi : . ik 5 -
gauge invariances, the primaflyagrangian constraints are simply Fr=11E'+ (21, 8" +15 €™ voy°vi) (Ej —ly Bj)-
any field equations without time derivatives. Requiring that the pri- (36)

mary constraints are preserved by time evolution leads to secondary

constraints and so forth. Precisely the same constraints arise as

second class secondary and tertiary constraints, respectively, intdence the criticaR whose loss of invertibility would leave
canonical Dirac analysigl8]. o (partly) undetermined, is
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3 Lo . It is interesting to speculate whether further non-minimal
R=— §m2—6[1—2|z] Y0y’ y-B—2els yyy-E couplings may restore causality. In particular, the choice
=1/2,15=0 at least removes the terms linearBrandE in
e? N . Eq. (37) responsible for the original pathology of the mini-
+ ﬁ([lﬁ 21,°E%+[21,]°B?) mal model.[In this respect, we note that this choice along
with 1,=—2 is that of supergravity for which the field-
e? o dependent terms of E¢37) are proportional to the electro-
+— 2111+ 21,)+212] yo y-(EXB) magnetic energy density, Poynting vector and charge density
m and for this reason causality is preserved there, upon taking
22 io gravity and_ the electromagnetic field dynamiﬂ;&lowever,
+_2|1|575|§.|§__[|1+2|2] 70@_@ m_Appendlx B we generalize Eq37) to arbitrary non-
m m minimal couplings and show that broad classes of couplings

fail to propagate causally.
Finally, as promised, we briefly review the argument link-
(37 in ; .
g the appearance of zeroes in Reib acausal propagation
in the field equations. The computation [@&| amounts to
Pathologies in quantization and causality of the model thustudying the Cauchy problem of E@9) and solving for the
occur whenever d®®=0 as a function of the background characteristic surfaces that determine the maximal speed of
fields. To see how this occurs consider first a pure constariropagatior!. This is simply achieved by recalling that char-
electric background. The determinant obviously develops acteristics are determined by discontinuities of the highest
zero for a critical value of the electric fielgvith the choice  order derivative terms appearing in the equations of motion
[5=0) [19]. If we denote the discontinuity of the first derivative of
the Rarita-Schwinger field across the characteristic by

I S
+E|5'yy-(V><E—I'yV><B).

2 2
E2=3 m )

e[l,+21,]

(38) [0,4,]1=¢,Y, (41)

dth del i | The choi ¢ SterS| where ¥, is a non-zero vector-spinor field, then causal
and the model is acausal. The choice of parameierl, propagation forbids timelik&, . However from the field
=0 andl; arbitrary, cannot yield a causal model either: Theequation(zg) and its gamma-t‘rfacésl) we learn

determinant vanishes in a pure magnetic background for any

valuesl; whenever 1
RM_E’YM’)/R Zyv(fv\lf#—gﬂ\lfv) (42)
— Em2+ e—2[2|2]ZE§2= +e[1-21,]|B]. (39
2 2m? [y-RI=2(y-§y-¥—-¢-W) (43
This equation has a solution whenever the quadratic and in turn
2 = .
P(B)=(2l,8)2+2(1-2l,) B—3=0, B=|eBl/m?, EWu=eue “4

(40 Proceeding by contradiction we takg=(1,0,0,0)(timelike)
without loss of generality since the origin@9) is Lorentz
covariant. We now need only study the leading discontinui-
ties in time derivatives and in particular

has a solution fop3>0. Clearly, for any non-zero value of
I,, P(B) is positive for large enougl® and negative near
B=0 so it always has a zero for some posit@eAll mod-
els, minimal or non-minimal, exhibit pathological behaWor.
Note that the supergravity-inspired and minimal coupling

model have critical field values3?=3m®/e® and B2 which admits no non-vanishing solution fo¥, unless
= (3m?/2e)?, respectively(the latter being the well known detR=0, the condition studied above.

result of[5,6]). These bounds cannot be expressed in terms
of the Lorentz invariant&€2— B2 andE - B, since the vector

&, normal to the characteristic specifies a preferred time di-
rection. The bounds themselves may, of course, be rephrased We have seen that the most general charged massive spin
covariantly: For example Eq38) is a bound on F#*£,)?  3/2 theory with non-minimal couplings linear in the electro-
which must hold forall timelike vectorsé, .

[0,]=7°RW,=0 (45)

V. DISCUSSION

In more physical terms, this is akin to solving the equations of
SPrecisely the same analysis for a pure electric field includingmotion in a high energy eikonal limigy, =W, exp(tx- &) with
arbitrary | 5 yields the same result. Also even an unchar@ea) t—. Clearly, solutions for§, timelike indicate superluminal
Majorana field, with onlyls# 0, displays acausal propagation. propagatior4].
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— , ie— . APPENDIX A: HIGHER SPIN SOFT PHOTON VERTICES
'C:_ wﬂyuvpp (/lp+ml//p|:“ '7[/11 ) ) .
The results of Sec. Il A are easily generalized to arbitrary
el, — higher spin targets. For higher integer sginve employ a
o, Y EAY complex symmetric tensor fiel¢l#1. g On-shell,(bﬂl. g

is asymptotic to a free field satisfying

(O-m?) Gy n 0=y T D g
two of the othera priori admissible parameters being ex- (A1)
cluded by DOF consistency; the third, corresponding to a
diagonal Majorana coupling, did not affect our low energy orThe corresponding half integer spé=n-+ 3 representation
causality results. The physical interpretation of the first threés a complex Dirac symmetric tensor-spimbpl,_. . obey-
terms in Eq(46) was provided by studying LETs. The firstis jng free field equations
the usual minimally coupled Rarita-Schwinger theory with

3ie NG ER 2
+m(g— VRV ol

(46)

intrinsic gyromagnetic ratiaqy=2/3. Minimal coupling for (O+m) i, =0=y, " =
half integer systems vyields only the spin 1/2 contribution to v 2o s
the Lorentz generators, while the second coupling is the spin =0, 0"y (A2)

1 Pauli term required fog=2. Althoughg=2 is required
for low energy unitarity of amplitudes describing pure elec-  Here, as for spin 3/2, it is essential to determine appropri-
tromagnetic interactions, more general phenomenologicaite non-minimal couplings to lower trace and gamma-trace
applications deal with the cagp#2, and one may safely field components in seeking a correct DOF count in an elec-
include the anomalous magnetic moment coupling given inromagnetic backgrounfdl0]. In this appendix however, we
the third term[Recall that at low energy, a coupling E&'”  ignore these couplings since they are irrelevant to the soft
is equivalent to a coupling to the full Lorentz generators upphoton vertex.
to a factor 1/3, by virtue of the identit{20).] The general Lagrangian is the sum of the minimally
The fourth term is more subtle, as it does not contribute atoupled massive higher spin actfoof [21] plus the most
low energy until quadrupole order. It will be an exercise of general non-minimal couplinggignoring trace couplings
some physical importance to reldtg as well as effective denoted byCy,, . For integer spins,
Lagrangians including gradients &*”, to multipole mo-
ments along the lines of the method presented here for the Lyw=—iely ¢uF "¢, (A3)
magnetic dipole. The valugs=2 andl,=1/2, implying tree
unitarity, represent a truncation bf=2 supergravitfalong  and for half integer spingthe precise analogue of E®)],
the lines of{4], but maintaining the correct DQF
Our study of causality showed that no model maintaining e — _ —
the correct DOF avoids sharing the pathology of the minimal Lym=— ﬁ[ L Bt g Ry ] (A4)
one. In fact this result applies to a very broad class of non-
minimal couplings{beyond just linear in the field strendth in the terse notation, appropriate for bilinears, that drops
the criteria described in Sec. IV determine the causality obny indices contracted directly between a field and its

any non-minimally coupled model. An interesting issue un-.;mnlex coniugate (so that for example. & F
der study[10] is whether including gravity dynamically can mp g ( ' ple. v Fy

improve upon this situation; certainly for supergravitj@$ =¥y p, FapPrbn). o _ _
this is the case, although the minimal model in curved space The LET for the emission of a single photon for arbitrary
is known to still suffer the usual difficultig20]. spin target Is
Finally, and perhaps most physically relevant, the models )
we have studied, despite the formal causal pathologies of the e v 2
interacting fields, provide a useful parametrization for an ef- T ZsF’”M +O(w) (AS)

fective low energy description of higher spin excitations:
They are a field theoretical framework for the generic LET

properties. 8Note that in[21] the action is in terms of traceless and gamma-

traceless fields symmetric in vector indices along with auxiliary
ACKNOWLEDGMENTS fields. Using field redefinitions one may work, equivalently, with
unconstrained symmetric fields and a reduced set of auxiliaries as
We are indebted to H. Schnitzer and S. Weinberg forapove.
reminding us of the Wigner-Eckart theorem’s universality °Here and throughout, we have ignored derivative couplings, al-
and thank also M. Porrati and P. van Nieuwenhuizen fotthough they may also contribute to the magnetic moment; this is
discussions. This work was supported by the National Scitlustrated in[22].
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where now the Lorentz generators in a higher spin represen-

tation are given by

MM,,IZmSS'Fﬂs,,] (AB)

for integer spins, and
MM=§U’ YUt ZSU[’M Uy (A7)
for half integer spins. The initialng,,,MS and Uy, 1"

spectively, and final target polarizatiotwith primes satisfy
the usual conditions implied by Eq8A1) and (A2).

We must now compute the on-shell vertices in the sof

photon limit and compare the results with the LEA5). The

PHYSICAL REVIEW D362 105031

APPENDIX B: CAUSALITY OF GENERAL
NON-MINIMAL MODELS

The curious reader may wonder whether there exist causal
non-minimal couplings for more general functioff8*” of
field strengths. The most general antisymmeifso that
DOFs are maintaingdone is F*"=WH"+iy XAV +iy*rY
+ y2y#*Z whereW*” andY are parity evenX*” andZ are
parity odd, all built fromF ,,, F,,,, (F,.F*?), (F,.F"")
and field-gradient dependent terriSor brevity we omit the
diagonal, Majoranals term] Causality is determined by
substituting this expansion into the mat(B5) and searching
for zeroes in its determinant. If we sé&0 [in any caseZ

tmust be an odd function of the axial scala?p(,T:P”), so

vanishes for pure electric or pure magnetic field configura-

integer spin case is simple and we find a gyromagnetic ratig,ng then the analysis of this determinant is almost identical

121

g PR —

s s (A8)

where we have included a contributigs 1/s from the mini-
mally coupled LagrangiatOf course, unlike the half integer

case, a second order system is well known to be ambiguous
due to possible partial integrations before minimal coupling.
In fact the minimal model alone can yield any gyromagnetic
ratio betweerg=0 andg=1/s, the case quoted above being
attained by writing the Lagrangian in first order form and

only thereafter coupling minimallj21].)

The half integer case directly follows Sec. Il A; we must

include the minimal interaction

int _
min

c —ie YAy (A9)

to which the Gordon identity18) may be applied unaltered.

Once again, there is a special model which requires no fur-
ther low energy identities to fulfill the LET, namely the one

with nl;=4l,—1. The LET is satisfied, of course, for all
parameterslg,l,) as follows from the obvious generaliza-
tion of the identity(20), implying

M,,=s Uy, u+O(w). (A10)
As a result one finds
1 2(1,+2l,)
9=~ — 5 (A11)

which clearly reproduces E@21) for s=3/2. Note that the
higher spin analogue of E7) again implies that a'nySIEW
coupling does not contribute at linear ordersin so that low

to that performed above: The third ter is a field-
dependent mass term so replacing the oper@grD,,
+3m, y, where m,=m+Y, calling F'°=E, +iy°B}
(E, =W'9 B, =X% and derivatives ofm, no longer van-
ish. The matrixR then reads

3 2 ez =2 52 57
——gmﬁﬁ(EﬁB* )+e vy y-

IO | | R
B+F*B*)

ie e
+— 0 (V-E,~i¥°VB,)
eZ

+;'ﬁm*_?70;'(é*xg*)- (B1)

For the(simples} caseF,, constant, deR vanishes when-
ever

2 2

3 e ., -
—Emi—Fﬁ(Ei'FBi)

(B2)

Observe that fory=0=2, i.e.,, my=m, and with F*”
growing unboundedly for larg&*”, the model is not causal:
For F#"=0 the expressiofB2) is positive but the first term

in square brackets must have a zero for large en<ﬁ4g|mr

B, at which point the second term is necessarily negative,
and solutions to Eq(B2) will exist. While this shows that
broad classes of generalized couplings remain acausal, the

energy physics is encapsulated by a single magnetic momeabove completely general criterion can applied to a system-

coupling.

atic search for causal models.
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