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Collision-induced decay of metastable baby Skyrmions
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Many extensions of the standard model predict heavy metastable particles which may be modeled as solitons
~Skyrmions of the Higgs field!, relating their particle number to a winding number. Previous work has shown
that the electroweak interactions admit processes in which these solitons decay, violating the standard model
baryon number. We motivate the hypothesis that baryon-number-violating decay is ageneric outcome of
collisions between these heavy particles. We do so by exploring a (211)-dimensional theory which also
possesses metastable Skyrmions. We use relaxation techniques to determine the size, shape, and energy of
static solitons in their ground state. These solitons could decay by quantum-mechanical tunneling. Classically,
they are metastable: only a finite excitation energy is required to induce their decay. We attempt to induce
soliton decay in a classical simulation by colliding pairs of solitons. We analyze the collision of solitons with
varying inherent stabilities and varying incident velocities and orientations. Our results suggest that winding-
number violating decay is a generic outcome of collisions. All that is required is sufficient~not necessarily very
large! incident velocity; no fine-tuning of initial conditions is required.

PACS number~s!: 11.27.1d, 11.15.Kc, 12.39.Dc, 12.60.Fr
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I. INTRODUCTION

A. Motivation

Many extensions of the standard model which invo
strong dynamics at the electroweak scale include new he
particles which have been modeled as solitons. The simp
model within which such particles can be analyzed is
standard electroweak theory with the Higgs boson massmH

taken to infinity and with a Skyrme term@1# added to the
Higgs sector. With these modifications, the Higgs sector s
ports a classically stable soliton whose mass is of the o
of the weak scale, typically a few TeV@2#.

To understand how solitons arise, note that, in the abse
of the weak gauge interactions, the Higgs sector of the s
dard model is a four-component scalar field theory in wh
a globalO(4) symmetry is spontaneously broken toO(3),
with vacuum manifoldS3. In themH→` limit, the dynamics
is that of anO(4) nonlinear sigma model. Field configura
tions are maps from three-dimensional space ontoS3, and the
solitons ~Skyrmions! are configurations which carry the a
sociated winding number. The winding number is topolo
cal and the soliton number is conserved.

Gauging the weak interactions changes the picture qu
tatively because the winding number of the Higgs field is
invariant under large gauge transformations. This means
a soliton can either be described as a Skyrmion of the Hi
field with gauge fieldAm50 or, equivalently, as a topologi
cally trivial Higgs field configuration with a suitably chose
nonvanishingAm . The latter description makes manifest t
fact that there are sequences of gauge and Higgs field
figurations, beginning with a soliton and ending with
vacuum configuration, such that all configurations in the
quence have finite energy. This means that the soliton is o
metastable: it is separated from the vacuum only by a fi
0556-2821/2000/62~10!/105028~11!/$15.00 62 1050
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energy barrier and can decay quantum mechanically by
neling @3–6#. Or, the soliton can be kicked over the barrier
it is supplied with energy. The process in which an ele
troweak soliton is hit with a classical gauge field pulse~a
coherent state ofW bosons! and caused to decay has be
analyzed numerically@7#. It is even possible to find a limit-
ing case of the theory in which the quantum-mechani
cross section for a process in which a soliton is struck b
singleW boson and induced to decay can be calculated a
lytically @7#. In any process in which a soliton is destroye
one net baryon and one net lepton from each standard m
generation is anomalously produced@7#.

Electroweak solitons have also been studied in the e
troweak theory with finite Higgs mass, in which the Higg
sector is a linear sigma model@8#. If a Skyrme term is added
to the theory, metastable electroweak solitons exist ifmH is
sufficiently large. In the linear sigma model, the Higgs fie
can vanish at a point in space with only finite cost in ener
The Higgs winding number is therefore not topological ev
in the absence of gauge interactions. This means that
world with gauge interactions and a finite Higgs boson ma
there are two ways for solitons to decay: either via nontriv
gauge field dynamics, as sketched in the previous paragr
or via the Higgs field itself simply unwinding@9#.

The metastable electroweak soliton is an intriguing obj
to study. And yet, it is not found in the standard electrowe
theory where the Higgs sector is a linear sigma model w
no higher derivative terms. The Higgs sector of the stand
model is best thought of as an effective field theory desc
ing the low-energy~weak scale! dynamics of the light de-
grees of freedom in some higher energy theory. The simp
examples of higher energy theories which feature partic
which can be described as electroweak solitons in the l
energy theory are technicolor theories, in which the tech
©2000 The American Physical Society28-1
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baryons play this role. Regardless of whether the underly
theory is specifically a technicolor model, it will introduc
all higher derivative terms allowed by symmetries, includi
the Skyrme term, into the Lagrangian of the low-energy
fective theory. If the Higgs boson is discovered to be lig
~say, with massmH&v5250 GeV), the correct low-energ
effective field theory will almost certainly not support so
tons, regardless of the physics of the higher derivative ter
If the Higgs boson is discovered to be heavy, there will
some class of appropriate high-energy theories whose
energy effective field theories, although more complica
than that obtained simply by adding a Skyrme term to
standard model, feature metastable electroweak solit
Discovery of the corresponding TeV scale particles wo
confirm that nature chooses such a theory.

Processes in which two metastable electroweak solit
collide have to date not been studied. Our purpose in
paper is to use the analysis of a two-dimensional toy mo
which shares some~but not all! of the features outlined
above to motivate the hypothesis that the generic outcom
such collisions may be the destruction of one or both s
tons. This suggests~but certainly does not demonstrate! that
baryon number violation is the generic outcome of collisio
between two of the TeV scale particles which can be m
eled as solitons.

As a sideline, we note that our numerical methods w
equally well for describing soliton-soliton and soliton
antisoliton collisions. Our focus is on soliton decay
soliton-soliton collisions; we note, however, that the nume
cal simulation of soliton-antisoliton annihilation in th
Skyrme model is well known as a difficult numerical pro
lem, plagued with instabilities.1 We are able to follow
soliton-antisoliton annihilation without difficulty~with en-
ergy conserved at the part in 104 level!. This suggests tha
our numerical methods — in particular the use of the lin
sigma model — may be of broad utility when generalized
311 dimensions.

B. Metastable baby Skyrmions

Let us now introduce the (211)-dimensional mode
whose metastable solitons we analyze. The Lagrangian
sity, which describes the dynamics of a three-component
lar field fW 5(f1,f2,f3), is

L5FF1

2
]afW •]afW 2

k2

4
~]afW 3]bfW !•~]afW 3]bfW !

2m2~v2nW •fW !2l~fW •fW 2v2!2G . ~1.1!

1See Ref.@10# for classical simulations of Skyrmion-Skyrmio
scattering in the (311)-dimensional Skyrme model which repo
instabilities in the simulation of Skyrmion–anti-Skyrmion annihil
tion; see Ref.@11# for a discussion of the origin of the instabilitie
and Refs.@11,12# for efforts to overcome them.
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Here,nW is a unit vector which we choose to be (0,0,1).
To understand the features of this Lagrangian, it is wo

beginning by settingm250 and taking the limitl→`.
When m250, the theory has anO(3) symmetry. Forl
→`, one removes the fourth term from Eq.~1.1! and instead

imposes the constraint thatfW •fW 5v2 at all points in space

and time. Because the fieldfW is constrained to take values o
a two-sphere of radiusv, field configurations with fixed
boundary conditions at infinity can be classified by th
winding number

Q5
1

8pv3E eabfW •~]afW 3]bfW !d2x

5
1

4pv3E fW •~]xfW 3]yfW !dx dy, ~1.2!

which is integer-valued and topological: configurations w
different winding number cannot be continuously deform
into one another. This suggests the possibility of soliton
lutions to the classical equations of motion. Solitons in
11)-dimensionalO(3) sigma models were first discussed
Ref. @13#, and their quantum field-theoretic properties we
analyzed in Refs.@14,15#. Such solitons are often called bab
Skyrmions @15# because of their similarity to
(311)-dimensional Skyrmions. Although our motivation
the analogy to (311)-dimensional electroweak solitons, w
note that baby Skyrmions themselves do arise in certain
11)-dimensional electron systems which exhibit the qu
tum Hall effect@16#, although the Lagrangian used in the
description differs from that in Eq.~1.1!.

The four-derivative term in the Lagrangian~1.1! is the
analog of the Skyrme term. It stabilizes putative solito
against shrinking to an arbitrarily small size. If we we
working in three spatial dimensions, the two-derivative te
would stabilize putative solitons against growing to
arbitrarily large size. In two spatial dimensions, however,
two-derivative term cannot play this role because its con
bution to the energy of a configuration is scale invaria
We must, therefore, introduce a zero-derivative term in or
to stabilize solitons against growing without bound. Such
term must explicitly break theO(3) symmetry, and therefore
has no analog in (311)-dimensional electroweak physic
in which no explicitO(4) symmetry-breaking terms are a
lowed. The particular form of them2 term in Eq. ~1.1!
therefore has no electroweak motivation; it is analogo
to a pion mass term in the (311)-dimensional Skyrme
model, but this is not relevant to us. This model~with m2

nonzero andl→`) was considered in Ref.@17#, and
its solitons have been analyzed in detail in Refs.@18,19#.
Similar models, differing only in the choice of th
explicit symmetry-breaking term in the Lagrangian, ha
also been analyzed@20#.
8-2
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The soliton mass and size in the theory with Lagrang
~1.1! with l5` are given by@19#

M sol519.47FFa1A km

0.316
1a2G , Rsol;~324!kA0.316

km
,

~1.3!

with a1 anda2 dimensionless constants~independent ofkm)
satisfying a11a251. The parametric dependence of the
results can be understood by noting that the energy o
configuration of sizeR receives contributions of orde
FR0, Fk2R22, andFm2R2 from the first three terms in the
Lagrangian~1.1! and that, as described above, a soliton
stabilized by the balance between the four-derivativek2 term
and the zero-derivativem2 term.

If we stopped here, withl infinite, our solitons would be
absolutely stable, rather than metastable. Soliton-soliton
lisions have been simulated in this theory, but of course
solitons never decay@19#. Once l is finite, the fields are
allowed to deviate fromfW •fW 5v2, and the soliton configu-
ration with fW •fW 5v2 found previously in thel→` theory
may unwind and decay. Indeed, we will see that soliton
lutions do not exist forl less than somelc . If l.lc ,
metastable solitons exist: these solitons are classically st
if left unperturbed, but can be induced to decay if suppl
with sufficient energy. Our goal is to determine whether
means by which the energy is delivered is important
whether soliton decay is the result of generic soliton-soli
collisions, without finely tuned initial conditions.

For our purposes,l is the most important parameter in th
theory because by choosing its value, we control the ene
required to make the soliton decay and indeed con
whether solitons exist in the first place. We are not interes
in the dependence on the other parameters, and indeed
of them can be scaled away. We first setv51 by rescaling
f. Next, the constantF has units of energy and we henc
forth measure energy in units such thatF51. Next, k has
units of length and we henceforth measure length in u
such thatk51. Note that this means that\Þ1 in our units,
but this will not concern us as we only discuss the class
physics of this model. We have set the speed of lightc51
throughout. The parametersm21 and l21/2 are also length
scales in the Lagrangian, and the theory is therefore f
specified by the two dimensionless parameterslk25l and
mk5m. Although results do depend onm, we are not inter-
ested in this dependence, and we choose to follow Ref.@19#
and setm250.1 throughout. Once we have chosen units w
F5k51 and have chosen to setm250.1, then M sol
519.47 andRsol;(324) in the theory withl5`.

In Sec. II, we find metastable soliton configurations
finite values ofl with l.lc;7.6. We see that for all value
of l for which solitons exist, the soliton mass and si
change little from their values atl→`. Although we do not
explore their dependence onm, we expect it would be similar
to that in Eq.~1.3!. In Sec. III, we present our results o
soliton-soliton collisions. We find that soliton decay occu
for incident velocities greater than some critical valuevc .
We explore how this critical velocity depends onl and on
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the initial impact parameter and relative orientation of t
two solitons. We find thatvc is less than or of the order o
half the speed of light regardless of the relative orientation
long asl&2lc andb is less than or of order the soliton siz
Thus, inducing soliton decay does not require specially c
sen initial conditions; it is a generic outcome of solito
soliton collisions. We make concluding remarks in Sec.
@21#.

It perhaps goes without saying that our model is at be
crude toy model for the electroweak physics which motiva
our analysis. First, we work in 211 dimensions. Second, in
order for the theory to have soliton solutions we are forced
include a zero-derivative explicit symmetry-breaking te
not present in the electroweak theory. Third, we do not
troduce a gauge field. Hence, our solitons can only decay
unwinding the scalar field; in the electroweak theory, gau
field dynamics introduces a second decay mechanism w
has no analog in our theory. Related to this, our solitons
absolutely stable forl5`, whereas electroweak solitons a
metastable even formH5`. This is perhaps the bigges
qualitative difference between our model and electrowe
physics. Fourth, one may worry that even if an analy
along the lines of ours were done in the (311)-dimensional
electroweak theory itself, the momenta required would ma
it impossible to analyze soliton decay within the effecti
theory. This concern may be evaded for solitons which
almost unstable: in this circumstance, for example,W-soliton
collisions can result in soliton destruction even if th
W-boson momentum is small enough that the calculation
controlled@7#. Soliton-soliton scattering in our model is fa
from being a complete analog of the scattering of TeV sc
particles which can be modeled as metastable electrow
solitons; we nevertheless hope that our central result, nam
that metastable baby Skyrmions in 211 dimensions are de
stroyed in collisions with generic initial conditions, mot
vates future work on baryon number violating scattering
this sector.

II. FINDING STATIC SOLITONS

Before we can study soliton-soliton collisions, we mu
find the metastable soliton configurations for different valu
of l. We do this by looking for configurations which min
mize the static HamiltonianHstatic at a givenl. The static
Hamiltonian is given by

Hstatic52E d2x Lstatic, ~2.1!

whereLstatic is the Lagrangian density of Eq.~1.1! with all
terms containing time derivatives set to zero.

We discretizeHstatic on a square lattice of 1253125
points, with the spatial separation between points given
Dx50.2 ~in our units in whichk51). We discretize the two
derivative term in the standard fashion, writing it as a su
over terms such as
8-3
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Ff i~x,y!2f i~x2Dx,y!

Dx G2

. ~2.2!

The Skyrme term is trickier to handle, because it involv
terms such as
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]xf
1]yf

1]xf
2]yf

2. ~2.3!

We discretize this contribution to the Hamiltonian as a s
over terms such as
S f1~x1Dx,y!2f1~x2Dx,y!

2Dx D S f1~x,y1Dx!2f1~x,y2Dx!

2Dx D
3S f2~x1Dx,y!2f2~x2Dx,y!

2Dx D S f2~x,y1Dx!2f2~x,y2Dx!

2Dx D . ~2.4!
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In this way, we ensure that within each term in the sum o
lattice sites, all spatial derivatives are centered at the s
point in space. Discretizing the Hamiltonian in this fashi
ensures that discretization errors are of order (Dx)2.

In order to find a soliton, we begin with a guess~which
we describe momentarily! for the configurationfW (x,y) and
perform a numerical minimization of the static Hamiltonia
using the conjugate gradient method of Ref.@22#. ~It is im-
portant to use a method such as this one, which minimiz
function of N variables using computer memory of orderN
rather than of orderN2 since we have anN5331253125
dimensional configuration space.! In order to minimize the
energy, the conjugate gradient routine needs expression
the gradient of the energy at any point in ourN dimensional
configuration space, with respect to each direction in t
configuration space. We obtain these expressions by var
the discretizedHstatic with respect to thef i at each lattice
site. ~These expressions will of course also appear as
terms with no time derivatives in the dynamical equations
motion of Sec. III.!

For l→`, soliton solutions can be written in the form
@17,18#

fW ~r ,u!5S sin f ~r !cosu

sin f ~r !sinu

cosf ~r !

D , ~2.5!

where f (r ) satisfies the following conditions:

f ~0!5p, ~2.6!

lim
r→`

f ~r !50. ~2.7!

~We define polar coordinates such that the soliton is cente
at r 50, u50 is the positivey axis, andu increases in a
clockwise direction.! Note that because of them2 term in the
Lagrangian which breaks theO(3) symmetry,fW must point
in thef3 direction at larger. TheO(2) symmetry associate
with rotations in the (f1,f2) plane is not broken in the
Lagrangian; in the solution, these rotations are mapped o
r
e

a

for

is
ng

e
f

ed

to

rotation in the (x,y) plane about the soliton center. Th
configuration is thus a two-dimensional analog of what
three dimensions is called a hedgehog configuration.

In our search for solitons at finitel, we therefore begin
by choosing a reasonably largel, namelyl515, and mak-
ing an initial guess of the form~2.5! with f (r )
5p exp(2r/2). We then run the conjugate gradient rela
ation algorithm repeatedly, until the change in the ene
between successive relaxation steps is smaller than one
in 1010.2 The soliton configuration we find is a hedgeho
configuration, as atl→`. However, whenl is finite, fW •fW
Þ1. The soliton we find can be written in the form

fW ~r ,u!5s~r !S sin f ~r !cosu

sin f ~r !sinu

cosf ~r !

D ~2.8!

with f (r ) satisfying the same boundary conditions as abov3

We depict the soliton configuration in Fig. 1. The energy
this soliton is 19.18. To assess the discretization errors in
duced by the lattice spacingDx, we reducedDx from 0.2 to
0.1, and found a soliton energy of 19.28.

2As a check, we then used this configuration as an initial condit
for the full time-dependent dynamical equations of motion d
scribed in the next section. The total kinetic energy during the ti
evolution was never more than one part in 107 of the soliton energy.
This confirms that the relaxation algorithm has indeed converge
a static solution to the full equations of motion.

3Note that we could have rewritten the static Hamiltonian in ter
of s(r ) and f (r ), discretized that Hamiltonian inr, and then used a
conjugate gradient algorithm to find these two functions ofr. This
would have been less computationally intensive than find
f i(x,y) as we did. However, the expressions we obtain by vary
our static Hamiltonian relative to the fieldsf i at each lattice site,
and indeed the results we obtain forf i at each lattice site in a
soliton configuration, are precisely what we need in the next sec
when we analyze soliton-soliton collisions, which are of course
circularly symmetric and so cannot be written in terms ofs(r ) and
f (r ).
8-4
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FIG. 1. f (r ), s(r ) and the
energy density for the solitons
with l515 ~solid curves! and l
57.7 ~dashed curves!.
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After obtaining a baby Skyrmion atl515, we used the
resulting configuration as the initial condition for relaxatio
at l514, and so found the soliton configuration at thisl.
We repeated this process step-by-step inl, finding solitons
for values ofl down tol58. At l57, energy minimization
led to a configuration with zero energy, instead of to a s
ton. We then used thel58 soliton as an initial configuration
for relaxation atl57.9, and so on down tol57.6 where
again no soliton was found. We, therefore, know that a sta
soliton exists atl57.7. It is a logical possibility that there i
a stable soliton atl57.6 even though our relaxation algo
rithm did not find one. We think this is unlikely, because t
soliton configurations which we have found atl57.7 and
l57.8 are very similar, and we therefore believe that
l57.7 soliton is a very good starting configuration fro
which to find thel57.6 soliton if it existed. We therefore
conclude that classically stable solitons exist only forl
.lc , with 7.6,lc,7.7.

In Table I, we give the energies of the solitons which w
have found for various values ofl. In Fig. 1, we depict the
field configuration and energy density for the solitons
have obtained forl515 and l57.7. We note that even
thoughl57.7 is only just abovelc , the soliton configura-
tion does not look very different from that at much larg
values ofl, and the soliton energy is also little change
Note that the deviation froms(r )51 is only at most 20%
for a soliton withl57.7 which is on the edge of instability
The central energy density does increase by almost a fa
of 2 asl is reduced from 15 to 7.7. Note, however, that t
total energy is almost unchanged, and actually decre
slightly. The soliton radius decreases asl is reduced towards
lc , but does not decrease dramatically. The definition ofRsol
is of course somewhat arbitrary; if we take it to be the rad
10502
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inside which 90% of the total energy of the soliton is foun
we find Rsol53.31 forl515 andRsol52.83 forl57.7.

Although the energy density andAfW •fW 5s are circularly
symmetric, the fieldsf1 and f2 in a soliton configuration
are not circularly symmetric. If we only observed a sing
static soliton, this would be of no consequence: in a hed
hog configuration, the different possible choices forf1 and
f2 are related simply by rotations in space. However, wh
we describe a configuration of two well-separated solitons
the next section, the relative anglea between their orienta-
tions does matter. That is, specifying such a configurat
requires giving the relative position and velocity of the ce

TABLE I. Energy of static solitons at various values ofl, found
using a lattice spacingDx50.2. ForDx50.1, the energies of the
solitons in the theories withl515 andl57.7 are 19.28 and 18.85
respectively.

l Energy

15 19.18
14 19.15
13 19.12
12 19.08
11 19.03
10 18.96
9 18.88
8 18.76

7.9 18.75
7.8 18.73
7.7 18.71
7.6 no soliton
8-5
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FIG. 2. Sequence of snapsho
of the energy density during a col
lision between two solitons which
results in the destruction of both
The gray scale indicates energ
density. In this simulation,l510,
the initial velocity of each soliton
is v50.5, the impact parameter i
b50, and the solitons have a rela
tive orientation anglea50 in the
initial configuration. The images
are at timest50,4,8,12,16,20. In
this and in all subsequent figure
showing soliton-soliton collisions,
each panel shows a 25325 square
~in our units in whichk51) and
the initial separation between sol
tons is 10. The lattice spacing i
Dx50.2.
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ters of the two solitons and the anglea. The first soliton in
such a configuration can be mapped onto the second
translation followed by a rotation by an anglea about the
soliton center.

III. COLLIDING SOLITONS

With solitons in hand, we are ready to study what happ
when they collide. For this purpose, we need discreti
equations of motion and a numerical algorithm to evolve
initial configuration, now specified byf i and ḟ i at each
lattice site, forward in time. We begin by writing a dis
cretized Lagrangian which is a function off i andḟ i at each
of the lattice sites, at a single timet. We discretize the time-
independent terms as described in the previous sec
There are no spatial derivatives ofḟ i in the Lagrangian, so
discretizing terms involvingḟ i is trivial. We then use the
Euler-Lagrange procedure on this Lagrangian written
terms of 331253125 f ’s and 331253125 ḟ ’s, and ob-
tain equations of motion which specify the 33125
3125 f̈ ’s. These equations of motion take the form of thr
coupled linear equations forf̈1, f̈2, andf̈3 at a given lat-
tice site, which are easily solved. We now have an exp
sion forf̈ i(t,x,y) written in terms of the values off i andḟ i

at lattice sites within two spatial links of the site of intere
all at the same timet.4 We are now ready to take a ste
forward in time.

We evolve the system forward in time using the Rung
Kutta-Feldberg algorithm and the adaptive algorithm of R

4Note that because of the way we discretize spatial derivative
the Lagrangian, expressions in the equations of motion with mi

time-space derivatives such as] t]xf
i end up discretized as@ḟ i(x

1Dx,y)2ḟ i(x2Dx,y)#/2Dx.
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@22# for choosing the size of the time stepDt. That is, we
first use the fifth-order Runge-Kutta-Feldberg algorithm
obtain f i and ḟ i at time t1Dt. This fifth-order method is
special because a rearrangement of the fifth-order func
evaluation terms results in a fourth-order Runge-Ku
expression.5 We then have two different estimates~fourth
order and fifth order! for f i at t1Dt at each lattice site, and
can evaluate the discrepancy between the two estimate
each of the 331253125 f ’s andḟ ’s. If the largest discrep-
ancy is larger than a specified tolerance, we reject the
and begin anew with a smallerDt. We use the largest dis
crepancy to estimate how muchDt should be reduced. If al
discrepancies are smaller than the specified tolerance,
accept the result of the fifth-order calculation forf i and ḟ i

at time t1Dt. After a successful step forward in time, w
use the largest discrepancy~which must have been less tha
the tolerance since the step forward was accepted! to esti-
mate by how much we can safely increaseDt when we take
our next step forward in time. In the simulations of collisio
which we describe below, the tolerance is such that
timestep selected by the adaptive algorithm is approxima
0.01&Dt&0.05. Note that we donot use conservation o
energy as our criterion for acceptance or rejection of a s
forward in time. This makes it fair to use a check of th
conservation of energy as an independent measure of
accuracy of our evolution algorithm. We do this at vario
points below.

We choose fixed boundary conditions, withfW fixed to its
vacuum value (0,0,svac) at the boundaries of our 1253125
grid, wheresvac solves (svac

2 21)svac5m2/4l and is svac

.11m2/8l for large l. Since the solitons have radii o

in
d 5This hidden fourth-order expression is referred to as anembed-
dedRunge-Kutta formula due to the fact that it can be obtained w
no additional function evaluations.
8-6
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FIG. 3. Left panel: Kinetic, potential, and total energies during the soliton-soliton collision shown in Fig. 2 withl510 andv50.5. The
topmost curve~constant to better than two parts in 105) is the total energy. Of the other two curves, the one that begins low is the ki
energy, the one that begins high is the potential energy, including spatial gradient energy. Right panel: Same, during the time

evolution. We reverse the sign of allḟ i ’s in the final configuration of Fig. 2, and then watch the evolution algorithm recreate the i
configuration of Fig. 2.
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orderRsol.3, we choose initial conditions with two soliton
whose centers are a distance 10 apart. We initializefW by
adding these two soliton configurations.@That is, we take
fW vacuum1 (fW first soliton2fW vacuum) 1 (fW second soliton2fW vacuum).#
The resulting configuration is not precisely a minimum of t
static Hamiltonian, but the two solitons are far enough ap
that this is not a big concern. To obtain a soliton movi
with an initial speedv in the positivex direction, we simply
initialize

ḟ i~x,y!52v@f i~x,y!2f i~x2Dx,y!#/Dx ~3.1!

at time zero. For simplicity, we are using a Galilean boo
This is appropriate forv!1. When we use this prescriptio
with a velocity at which relativistic corrections are becomi
important, the initial condition we have specified is not t
correct Lorentz-boosted, Lorentz-contracted soliton. In t
circumstance, as the system is evolved forward in time,
soliton radiates some energy and quickly settles down
become a~correct! relativistic soliton moving with a velocity
somewhat less thanv. For example, when we setv50.8 in
our Galilean boost prescription for the initial condition, w
in fact end up with a soliton moving at a speed of 0.61.

We begin by analyzing collisions between two solitons
the theory withl510. We choose initial conditions in whic
both solitons are moving~towards each other! with velocity
v50.25, with zero impact parameter. We choose an ini
relative orientation anglea50, meaning that one soliton i
obtained from the other by translation without rotation. P
vious work shows that two static solitons with this relati
orientation repel each other@19#. This is consistent with wha
we find: for low velocities, as for example forv50.25, the
two solitons bounce off each other and return whence t
came. We now increasev to 0.5. This time, the outcome
depicted in Fig. 2, is that the solitons are destroyed in
collision. The final state is a cloud of debris, namely sm
amplitude oscillations of thefW field spreading outwards
from the scene of the collision. In Fig. 3, we show the kine
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energy, potential energy and total energy for the collis
shown in Fig. 2.~By ‘‘potential energy’’ we mean the con
tribution to the energy from all those terms in the Ham
tonian with no time derivatives. Most of this energy is due
spatial gradients of the fields.! First, we see that the tota
energy is conserved, in fact to better than two parts in 15.
The kinetic energy is not zero initially, because the solito
are moving. As the solitons approach each other, the kin
energy decreases. This confirms that the interaction is re
sive: the solitons slow down and deform as they approa
As the solitons approach each other more closely, at so
point their deformation becomes sufficient that they are
longer stable, and they fall apart. The resulting outgo
waves have approximately equal kinetic and potential
ergy, as expected for traveling waves. It is quite clear fr
Fig. 3, if it was not already clear from Fig. 2, that the solito
have been destroyed.

FIG. 4. Outcome of soliton-soliton collisions with different in
tial velocities and different values of the parameterl. All collisions
have impact parameterb50 and relative orientation anglea50.
Note thatv is the velocity parameter in Eq.~3.1!. If v is large
enough that relativistic effects are significant, the actual velocity
the soliton is somewhat less thanv. For example,v50.8 yields a
soliton with velocity 0.61.
8-7
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FIG. 5. Snapshots of energ
density during a collision between
two solitons with impact param-
eter b52.0 in the theory withl
510. The relative orientation
angle isa50. The initial velocity
v50.5 is large enough that the
solitons are destroyed. The tim
between images is 4.0.
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As a stringent check of the accuracy of our time evolut
algorithm, we take the final configuration from our simul

tion, reverse the sign ofḟ i , and evolve it for the same perio
of time as we did initially. The second panel of Fig. 3 sho
the behavior of the energies during this ‘‘backwards-
time’’ evolution. It is clear that the debris reconstitutes its
into two solitons. The sequence of snapshots of the ene
density looks almost exactly like those in Fig. 2, but in t
opposite order in time. The discrepancies between the en
density in the initial configuration and that in the configur
tion obtained after soliton collision and destruction follow
by time-reversed evolution and soliton recreation differ by
most 1/40 of the energy density at the center of the solit
The total energy is conserved to better than one part in4.

As a further check of the stability of our algorithm, w
have also simulated soliton-antisoliton annihilation. We o
tain an antisoliton configuration from a soliton configurati
by making the transformationf2→2f2, equivalent to tak-
ing u→2u in Eqs. ~2.5! or ~2.8!. This turns a hedgehog
configuration into an anti-hedgehog configuration, and he
yields an antisoliton. We find that analyzing solito
antisoliton collisions using our evolution algorithm is n
more difficult than analyzing soliton-soliton collisions. W
were able to follow the annihilation process with energy co
served to better than one part in 104. Now, with confidence
in the accuracy and stability of our evolution algorithm, w
proceed to analyze the outcome of soliton-soliton collisio
with a variety of initial conditions.

We first explore how the outcome of a collision d
pends on l and v, keeping the impact paramete
b50 and the relative orientation anglea50 as above. The
results of many simulations are summarized in Fig.
We discover that for anyl, there is a critical velocityvc

below which the solitons rebound without decayin
and above which one or both~usually both! solitons
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are destroyed.6 This critical velocity goes to zero asl
→lc . As l is increased,vc increases, reaching about half th
speed of light forl about twicelc .

We now return tol510, v50.5, still keepinga50 and
ask how the outcome of a collision depends on the imp
parameterb. Forb52.0, both solitons decayed into travelin
waves, as we found forb50 above. We show the outcom
of this collision in Fig. 5. Note thatb52.0 is a substantia
impact parameter, comparable to the soliton radiusRsol.3.
We find that the solitons still decay ifb53.2. An impact
parameterb54.0, however, yields a collision which is su
ficiently peripheral that the solitons emerge intact, deflec
from their initial directions of motion by about 45°. We ca
describe our results by saying that the critical velocityvc

above which soliton decay is the outcome of the collisi
increases with increasing impact parameter. Forb50, Fig. 4
shows that 0.27,vc,0.3. We now see thatvc50.5 for a
nonzero impact parameter in the range 3.2,b,4.0. We have
also done several more simulations withb52.0 and various
initial velocities, and find that forb52.0, the critical velocity
is 0.3,vc,0.4. We conclude that soliton decay does n
require collisions with small or finely tuned impact param
eters. Although increasingb from zero increases the critica
velocity vc required to destroy the solitons somewhat, it r
mains easy to destroy solitons as long as the impact par
eter is less than or comparable to the soliton radius.

6Note that if we chosea5180°, one soliton in the initial configu-
ration would be the mirror image of the other. Witha50, however,
the initial configuration of two solitons is not mirror symmetric an
hence the time evolution is not mirror symmetric either. This
manifest in all the simulations whose outcomes are summarize
Fig. 4, and is illustrated most dramatically in the fact that for so
initial velocities, typically not far abovevc , one soliton is de-
stroyed in the collision while the other survives.
8-8
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FIG. 6. Snapshots of energy density during
collision between solitons with relative orienta
tion a5180°, impact parameterb50, and initial
velocity v50.25 in the theory withl510. The
solitons are not destroyed and~eventually! form a
classically stable bound state. The time interv
between images varies: the images are at tim
t50,4,8,12,16,20,24,28,34,42,50.
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All the collisions we have described to this point have h
the same relative orientation. Fora50, low velocity colli-
sions yield a rebound, in which each soliton reverses dir
tion, while higher velocity collisions lead to soliton destru
tion. We now consider a collision~with l510, v50.25,
and b50) between two solitons with a relative orientatio
anglea5180°. That is, the second soliton in the initial co
figuration is obtainable from the first by a translation and
180° rotation.7 The interaction between static solitons wi
this orientation is known to be attractive@19#. We show the
outcome of a low velocity collision in Fig. 6. The work o

7With a5180°, one soliton in the initial configuration is the mi
ror image of the other. In order to have completely mirro
symmetric initial conditions, we must be careful to use Eq.~3.1! to

initialize ḟ i of the left-hand soliton while using the mirror reflectio
of Eq. ~3.1! — which involves@f i(x1Dx,y)2f i(x,y)# — to ini-

tialize ḟ i of the right-hand soliton. We have verified that if w
choose mirror-symmetric initial conditions in this way, the tim
evolution algorithm preserves mirror symmetry to better than
part in 106 even during solition collision and decay.
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Ref. @18# reveals that in thel→` theory, there is a stable
ring-shaped, soliton with winding number 2. It appears t
the final state of the collision in Fig. 6 will be a soliton o
this form, although it will differ in its details from that o
Ref. @18# sincel is finite. What we observe in Fig. 6 is tha
the incident solitons at first scatter by 90°, but then do
escape to infinity. They fall back upon one another, and r
catter by 90°. There are small outgoing ripples at late tim
but they have too little energy density to be visible in Fig.
We expect that were we to run the simulation for a long tim
in a big enough box that outgoing ripples never return,
would see repeated 90° scatterings, with the solitons es
ing less and less far away each time, all the while radiat
small outgoing ripples, and eventually settling down to b
come the static, ring-shaped configuration.

As we increase the incident velocity, we find that forv
.vc with 0.43,vc,0.48, the outcome of the collision i
soliton destruction rather than 90° degree scattering follow
by the formation of a bound state. We show an example
collision-induced decay in a collision with relative orient
tion a5180° in Fig. 7. Note that the critical velocity abov
which soliton destruction is the outcome is somewhat lar

e
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FIG. 7. Snapshots of energ
density during a collision between
two solitons with relative orienta-
tion a5180° in the theory with
l510. The impact parameter i
b50. The initial velocity is large
enough (v50.5) that the two soli-
tons decay. The time betwee
each image is 4.0.
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than, but still comparable to, that we found previously
a50. We have not mapped outvc vs l for the a5180°
orientation as we did in Fig. 4, but we expect that the fig
would be qualitatively similar. One new feature, thoug
would be that at largel there would be two different out
comes possible for collisions withv,vc : bound state for-
mation ~for low enoughv! and 90° scattering followed by
the escape of the two intact solitons to infinity~for largerv
which is still less thanvc). At l510, we do not find any
velocities for which 90° scattering followed by escape o
curs. It must occur at largerl, since it certainly occurs a
large enough velocities forl→`, whenvc→1.

The collision shown in Fig. 7 is an example of a simu
tion in which the initial velocity (v50.5 in this case! is only
just above the critical velocity (0.43,vc,0.48 in this case!.
In this circumstance, what we generically observe is that
solitons scatter, separate a little, but are sufficiently disto
as a result of the scattering that after separating a little t
fall apart. We observe this phenomenon also ata50, except
in this case the solitons scatter by bouncing back in the
rection whence they came, then separate a little, and then
apart. At velocities which are somewhat larger thanvc , as
for example in the collision shown in Fig. 2, we find th
soliton destruction occurs more promptly, during the init
collision.

We now consider collisions between solitons with a re
tive orientation anglea590°, still with l510 andb50. For
this relative orientation, there is no force between static s
tons@19#. We find the same possible outcomes as we did
a5180°. As a function of increasing velocity, the outcom
of a collision is either capture to form the ring-shaped bou
state, or soliton destruction.~Again, scattering by an angle o
90° followed by the escape of two intact solitons would b
possibility at largerl.! The critical velocity above which
soliton decay occurs is 0.25,vc,0.3.
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IV. CONCLUDING REMARKS

We have analyzed soliton-soliton collisions in
(211)-dimensional theory with metastable baby Skyrmi
solutions. We find classically stable soliton solutions for v
ues of the parameterl which are larger thanlc;7.6. These
solitons are prevented from decaying by a finite energy b
rier and so can decay if supplied with sufficient energy,
example in a collision with a second soliton. We ha
mapped out the space of initial conditions under which
outcome of a soliton-soliton collision is the destruction
one or both solitons. We find that soliton decay results wh
ever two solitons collide with an incident velocity great
than somevc . This critical velocity depends on the param
eters in the problem. It goes to zero asl→0 and the solitons
cease to be classically stable. It goes to the speed of ligh
l→` and the barrier to decay becomes infinite. Howev
vc does not rise particularly rapidly withl: with other pa-
rameters chosen as in Fig. 4,vc is only half the speed of light
for l;2lc . Thus, soliton destruction doesnot require that
the theory have a value ofl lying in some narrow range jus
abovelc . The impact parameterb need not be finely tuned
either. Not surprisingly,vc is lowest for collisions withb
50. However,vc increases by less than a factor of 2 forb of
order the soliton radius.vc also depends on the relative or
entation anglea between the two solitons in the initial stat
Here too, the dependence is weak. In the example we
plored in detail, we found that asa changes from 0° to
180°, vc varies between 0.25,vc,0.3 and 0.43,vc
,0.48. Thus, althoughvc does depend onl and on the
parameters other than the velocity needed to fully specif
choice of initial conditions, the variation ofvc is not dra-
matic. Soliton decay is not restricted to specially chosen
locities, impact parameters, orientations, or values ofl. Soli-
ton decay is a generic outcome of soliton-soliton collision

Our findings motivate future investigation of collision
8-10
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between metastable solitons in the (311)-dimensional elec-
troweak theory. Previous work on two-particle collisions i
volving these electroweak solitons has focused on collisi
between aW boson and a soliton@7#. In such collisions, the
probability for soliton decay falls exponentially as th
~rough! analog ofl is increased above the~rough! analog of
lc . This was traced to two facts: First, causing one of th
solitons to decay requires delivering sufficient energy to o
particular mode of oscillation of the soliton. Second, a g
neric incidentW-boson couples very weakly to the mod
which must be energized if decay is to be induced. We fi
no analog of this difficulty in our analysis of soliton-solito
collisions in 211 dimensions. If there is a particular mod
which must be excited, then soliton-soliton collisions se
to generically deliver energy to this mode. And, we certai
see no evidence of soliton decay being restricted to theo
with ul2lcu!lc . This suggests that collisions between tw
TeV scale particles which can be modeled as electrow
solitons ~rather than between oneW boson and one suc
particle! may be an arena in which two-particle collision
generically lead to baryon number violation. As we stres
tt

.

de
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in the Introduction, however, the metastable baby Skyrmi
we analyze differ in several important qualitative respe
from metastable electroweak solitons. Furthermore,
analysis has been purely classical whereas the analys
W-soliton collisions in Ref.@7# is quantum mechanical. Al-
though our results motivate an analysis of collisions betw
electroweak solitons, they should not be taken to prov
even qualitative guidance as to the outcome of such a st
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