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Many extensions of the standard model predict heavy metastable particles which may be modeled as solitons
(Skyrmions of the Higgs field relating their particle number to a winding number. Previous work has shown
that the electroweak interactions admit processes in which these solitons decay, violating the standard model
baryon number. We motivate the hypothesis that baryon-number-violating decagegreaic outcome of
collisions between these heavy particles. We do so by exploring+alj2dimensional theory which also
possesses metastable Skyrmions. We use relaxation techniques to determine the size, shape, and energy of
static solitons in their ground state. These solitons could decay by quantum-mechanical tunneling. Classically,
they are metastable: only a finite excitation energy is required to induce their decay. We attempt to induce
soliton decay in a classical simulation by colliding pairs of solitons. We analyze the collision of solitons with
varying inherent stabilities and varying incident velocities and orientations. Our results suggest that winding-
number violating decay is a generic outcome of collisions. All that is required is sufficienbhecessarily very
large incident velocity; no fine-tuning of initial conditions is required.

PACS numbdps): 11.27+d, 11.15.Kc, 12.39.Dc, 12.60.Fr

[. INTRODUCTION energy barrier and can decay quantum mechanically by tun-
neling[3-6]. Or, the soliton can be kicked over the barrier if
_ o it is supplied with energy. The process in which an elec-

Many extensions of the standard model which involvetroweak soliton is hit with a classical gauge field pulse
strong dynamics at the electroweak scale include new heawypherent state 0V bosong and caused to decay has been
particles which have been modeled as solitons. The simpleg,tnaerd numerically7]. It is even possible to find a limit-
model within which such particles can be analyzed is théng case of the theory in which the quantum-mechanical
standard electroweak theory with the Higgs boson nmass  cross section for a process in which a soliton is struck by a
taken to infinity and with a Skyrme terifii] added to the singleW boson and induced to decay can be calculated ana-
Higgs sector. With these modifications, the Higgs sector supiytically [7]. In any process in which a soliton is destroyed,
ports a classically stable soliton whose mass is of the ordasne net baryon and one net lepton from each standard model
of the weak scale, typically a few Tep2]. generation is anomalously produced.

To understand how solitons arise, note that, in the absence Electroweak solitons have also been studied in the elec-
of the weak gauge interactions, the Higgs sector of the startroweak theory with finite Higgs mass, in which the Higgs
dard model is a four-component scalar field theory in whichsector is a linear sigma modd)]. If a Skyrme term is added
a globalO(4) symmetry is spontaneously broken@®{3), to the theory, metastable electroweak solitons existjfis
with vacuum manifoldS®. In themy,— o limit, the dynamics  sufficiently large. In the linear sigma model, the Higgs field
is that of anO(4) nonlinear sigma model. Field configura- can vanish at a point in space with only finite cost in energy.
tions are maps from three-dimensional space &t@and the  The Higgs winding number is therefore not topological even
solitons (Skyrmiong are configurations which carry the as- in the absence of gauge interactions. This means that in a
sociated winding number. The winding number is topologi-world with gauge interactions and a finite Higgs boson mass,
cal and the soliton number is conserved. there are two ways for solitons to decay: either via nontrivial

Gauging the weak interactions changes the picture qualigauge field dynamics, as sketched in the previous paragraph,
tatively because the winding number of the Higgs field is notor via the Higgs field itself simply unwindingp].
invariant under large gauge transformations. This means that The metastable electroweak soliton is an intriguing object
a soliton can either be described as a Skyrmion of the Higgs study. And yet, it is not found in the standard electroweak
field with gauge fieldA,=0 or, equivalently, as a topologi- theory where the Higgs sector is a linear sigma model with
cally trivial Higgs field configuration with a suitably chosen no higher derivative terms. The Higgs sector of the standard
nonvanishingA , . The latter description makes manifest the model is best thought of as an effective field theory describ-
fact that there are sequences of gauge and Higgs field comg the low-energy(weak scalg dynamics of the light de-
figurations, beginning with a soliton and ending with agrees of freedom in some higher energy theory. The simplest
vacuum configuration, such that all configurations in the seexamples of higher energy theories which feature particles
guence have finite energy. This means that the soliton is onlwhich can be described as electroweak solitons in the low-
metastable: it is separated from the vacuum only by a finiteenergy theory are technicolor theories, in which the techni-

A. Motivation
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baryons play this role. Regardless of whether the underlying4ere n is a unit vector which we choose to be (0,0,1).
theory is specifically a technicolor model, it will introduce 1o ynderstand the features of this Lagrangian, it is worth
all higher derivative terms allowed by symmetries, includingpeginning by settingu2=0 and taking the limith —oe.
the .Skyrme term, into t'he Lagrang!an pf the Iow-energy ef\when u?=0, the theory has ai®(3) symmetry. For\
fective theory. If the Higgs boson is discovered to be Ilght_m, one removes the fourth term from Hd.1) and instead

(say, with massny<v =250 GeV), the correct low-energy . ) L, s )
effective field theory will almost certainly not support soii- IMPoses the constraint that- == at all points in space

tons, regardless of the physics of the higher derivative terms&ind time. Because the fieltlis constrained to take values on
If the Higgs boson is discovered to be heavy, there will bea two-sphere of radiug, field configurations with fixed
some class of appropriate high-energy theories whose lowsoundary conditions at infinity can be classified by their
energy effective field theories, although more complicatedvinding number

than that obtained simply by adding a Skyrme term to the

standard model, feature metastable electroweak solitons.

Discovery of the corresponding TeV scale particles would

confirm that nature chooses such a theory. B = - =
Processes in which two metastable electroweak solitons Q= Smaf €ap® (dadX dph)d’X
collide have to date not been studied. Our purpose in this
paper is to use the analysis of a two-dimensional toy model 1
which shares somébut not al) of the features outlined = f b (9, bx dyd)dx dy, (1.2
above to motivate the hypothesis that the generic outcome of 473

such collisions may be the destruction of one or both soli-
tons. This suggestbut certainly does not demonstrataat
baryon number violation is the generic outcome of collisionswhich is integer-valued and topological: configurations with
between two of the TeV scale particles which can be moddifferent winding number cannot be continuously deformed
eled as solitons. into one another. This suggests the possibility of soliton so-
As a sideline, we note that our numerical methods worKutions to the classical equations of motion. Solitons in (2
equally well for describing soliton-soliton and soliton- +1)-dimensionalD(3) sigma models were first discussed in
antisoliton collisions. Our focus is on soliton decay in Ref.[13], and their quantum field-theoretic properties were
soliton-soliton collisions; we note, however, that the numeri'analyzed in Refd.14,15. Such solitons are often called baby
cal simulation _of soliton-antisolitor_w _annihilatior_l in the Skyrmions [15] because of their similarity to
Skyrme model is well known as a difficult numerical prob- 34 1y_gimensional Skyrmions. Although our motivation is
lem, plagued with instabilities.We are able to_follow the analogy to (3-1)-dimensional electroweak solitons, we

z?lltog(_;ztfrsg?gﬁﬂzlh":rtt'c;r? Alwcgcg; t 'I('jr:fifslcgg)(wggtsepr;at note that baby Skyrmions themselves do arise in certain (2
9y P . 99 +1)-dimensional electron systems which exhibit the quan-

o e Mol paricuy e s of e I8um al e 16], athoua he Lagrangian used n ter
3+1 dimensions. description dlffe_rs f_rom that in Eql1.1). _ _

The four-derivative term in the Lagrangidh.l) is the
analog of the Skyrme term. It stabilizes putative solitons
against shrinking to an arbitrarily small size. If we were

Let us now introduce the (21)-dimensional model working in three spatial dimensions, the two-derivative term
whose metastable solitons we analyze. The Lagrangian defyould stabilize putative solitons against growing to an
sity, which describes the dynamics of a three-component sCypitrarily large size. In two spatial dimensions, however, the

B. Metastable baby Skyrmions

lar field ¢= (4%, 2, ¢%), is two-derivative term cannot play this role because its contri-
bution to the energy of a configuration is scale invariant.

1 k2 We must, therefore, introduce a zero-derivative term in order

L=F E&ad»a“(b— Z(ﬁafﬁx dgd)- (9" pX P d) to stabilize solitons against growing without bound. Such a

term must explicitly break th®(3) symmetry, and therefore
has no analog in (3 1)-dimensional electroweak physics,
—u2(v—n-d)— N p—0v?)2|. (1.1  in which no explicitO(4) symmetry-breaking terms are al-
lowed. The particular form of the.? term in Eq. (1.1)
therefore has no electroweak motivation; it is analogous
to a pion mass term in the @31)-dimensional Skyrme
model, but this is not relevant to us. This modwelith 1.°

1See Ref[10] for classical simulations of Skyrmion-Skyrmion Nonzero and\—) was considered in Ref[17], and
scattering in the (3 1)-dimensional Skyrme model which report its solitons have been analyzed in detail in R¢f3,19.
instabilities in the simulation of Skyrmion—anti-Skyrmion annihila- Similar models, differing only in the choice of the
tion; see Ref[11] for a discussion of the origin of the instabilities €xplicit symmetry-breaking term in the Lagrangian, have
and Refs[11,12 for efforts to overcome them. also been analyz€@0].
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The soliton mass and size in the theory with Lagrangiarthe initial impact parameter and relative orientation of the
(1.1) with A= are given by[19] two solitons. We find that . is less than or of the order of

half the speed of light regardless of the relative orientation as
K 0.316 long ash <2\ andbis less than or of order the soliton size.
a; er az|, Rso~(3—4)k _M Thus, inducing soliton decay does not require specially cho-

sen initial conditions; it is a generic outcome of soliton-
soliton collisions. We make concluding remarks in Sec. IV
[21].

Moo= 19.4F

(1.3

with a; anda, dimensionless constantsidependent ok u)

L _ : It perhaps goes without saying that our model is at best a
satisfyinga, +a,=1. The parametric dependence of these . ) X
resulft)é c?anl bezunderstoog by noting thpat the energy of 5rude toy model for the electroweak physics which motivates

configuration of sizeR receives contributions of order our analysis. First, we work |n_21 dlme_nsmns. Second, in
FR?, Fx?R~2, andF u2R? from the first three terms in the order for the theory to have soliton solutions we are forced to

Lagrangian(L.1) and that, as described above, a soliton isinclude a zero-derivative explicit symmetry-breaking term

stabilized by the balance between the four-derivaii¥éerm not present in thg electroweak theory. Third, we do not in.—
and the zero-derivative? term troduce a gauge field. Hence, our solitons can only decay via

If we stopped here, with infinite, our solitons would be unwinding the scalar field; in the electroweak theory, gauge-

absolutely stable, rather than metastable. Soliton-soliton cogeld dynamics introduces a second decay mechanism which

. . R as no analog in our theory. Related to this, our solitons are
lisions have been simulated in this theory, but of course the _ .

) S ! absolutely stable fox =0, whereas electroweak solitons are
solitons never decaj19]. Once \ is finite, the fields are

) A ) : metastable even fomy,=«. This is perhaps the biggest
allowed to deviate fromp- ¢=v*, and the soliton configu-  qyajitative difference between our model and electroweak
ration with ¢- ¢=0v? found previously in the\— theory  physics. Fourth, one may worry that even if an analysis
may unwind and decay. Indeed, we will see that soliton soalong the lines of ours were done in the3)-dimensional
lutions do not exist for\ less than some... If N>\, electroweak theory itself, the momenta required would make
metastable solitons exist: these solitons are classically stabjeimpossible to analyze soliton decay within the effective
if left unperturbed, but can be induced to decay if suppliedtheory. This concern may be evaded for solitons which are
with sufficient energy. Our goal is to determine whether thealmost unstable: in this circumstance, for examp¥esoliton
means by which the energy is delivered is important orcollisions can result in soliton destruction even if the
whether soliton decay is the result of generic soliton-solitonw-boson momentum is small enough that the calculation is
collisions, without finely tuned initial conditions. controlled[7]. Soliton-soliton scattering in our model is far
For our purposes, is the most important parameter in the from being a complete analog of the scattering of TeV scale
theory because by choosing its value, we control the energyarticles which can be modeled as metastable electroweak
required to make the soliton decay and indeed controkolitons; we nevertheless hope that our central result, namely
whether solitons exist in the first place. We are not interesteghat metastable baby Skyrmions i+ dimensions are de-
in the dependence on the other parameters, and indeed m@stoyed in collisions with generic initial conditions, moti-
of them can be scaled away. We first set1 by rescaling vates future work on baryon number violating scattering in
¢. Next, the constanE has units of energy and we hence- this sector.
forth measure energy in units such ti&at 1. Next, « has
units of length and we henceforth measure length in units

such t.hatK.Zl. Note that this means '[h&tq.ﬁ 1 in our units, . II. FINDING STATIC SOLITONS
but this will not concern us as we only discuss the classical ) ) o
physics of this model. We have set the speed of lightl Before we can study soliton-soliton collisions, we must

throughout. The parametegs ! and A "Y2 are also length find the metastable soliton configurations for different values

scales in the Lagrangian, and the theory is therefore fullyf A. We do this by looking for configurations which mini-
specified by the two dimensionless parametesé=\ and ~ Mize the static Hamiltoniai s,4c at a given. The static
wk= . Although results do depend qn, we are not inter- Hamiltonian is given by
ested in this dependence, and we choose to follow [R&f.
and setu?=0.1 throughout. Once we have chosen units with
F=«k=1 and have chosen to sei?=0.1, then M, oo = _f 4 Lo 2.1
=19.47 andR¢,~ (3—4) in the theory with\ =0, static static: '

In Sec. Il, we find metastable soliton configurations for
finite values ofn with A>\.~7.6. We see that for all values
of N for which solitons exist, the soliton mass and sizewhere Lq.;ic IS the Lagrangian density of E¢l.1) with all
change little from their values at—oo. Although we do not terms containing time derivatives set to zero.
explore their dependence @n we expect it would be similar We discretizeHg,gc On a square lattice of 126125
to that in Eqg.(1.9). In Sec. Ill, we present our results on points, with the spatial separation between points given by
soliton-soliton collisions. We find that soliton decay occursAx=0.2 (in our units in whichx=1). We discretize the two
for incident velocities greater than some critical valye derivative term in the standard fashion, writing it as a sum
We explore how this critical velocity depends anand on  over terms such as
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¢i(xiy) - ¢i(X_AX1y)
AX

2
. (2.2
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Iy dyptaxp®ayd?. 2.3

The Skyrme term is trickier to handle, because it involvesWe discretize this contribution to the Hamiltonian as a sum

terms such as

over terms such as

( P (x+AX,y) = $H(x— AX,Y)) (

2AX

dH(%Y+AX) — pH(X,y— AX))
2AX

d%(X,y+AX) = pA(X,y — AX)

.

2AX

PP (X+AX,Y) — ¢2(X—Ax,y))(

. (2.9

2AX

In this way, we ensure that within each term in the sum overotation in the §,y) plane about the soliton center. This
lattice sites, all spatial derivatives are centered at the sameonfiguration is thus a two-dimensional analog of what in
point in space. Discretizing the Hamiltonian in this fashionthree dimensions is called a hedgehog configuration.

ensures that discretization errors are of ordex)¢.
In order to find a soliton, we begin with a guesghich

we describe momentarilyfor the configurationg(x,y) and

In our search for solitons at finite, we therefore begin
by choosing a reasonably large namely\ =15, and mak-
ing an initial guess of the form(2.5 with f(r)

perform a numerical minimization of the static Hamiltonian = 7 e€xp(=r/2). We then run the conjugate gradient relax-

using the conjugate gradient method of R@R]. (It is im-

ation algorithm repeatedly, until the change in the energy

portant to use a method such as this one, which minimizes Between successive relaxation steps is smaller than one part

function of N variables using computer memory of ordér
rather than of ordeN? since we have alN=3X125x 125
dimensional configuration spagdn order to minimize the

in 10'°2 The soliton configuration we find is a hedgehog

configuration, as at—o. However, when\ is finite, ¢- ¢
# 1. The soliton we find can be written in the form

energy, the conjugate gradient routine needs expressions for

the gradient of the energy at any point in dlidimensional

configuration space, with respect to each direction in this
configuration space. We obtain these expressions by varying

the discretizedH .4 With respect to thep' at each lattice

site. (These expressions will of course also appear as the
terms with no time derivatives in the dynamical equations of

motion of Sec. Ill)

For A —, soliton solutions can be written in the form

[17,19

sinf(r)cosé

é(r,0)=| sinf(r)sine (2.5
cosf(r)
wheref(r) satisfies the following conditions:
f(0)=, (2.6)
limf(r)=0. (2.7

r—o

(We define polar coordinates such that the soliton is centere

atr=0, #=0 is the positivey axis, and@ increases in a
clockwise directior. Note that because of the? term in the
Lagrangian which breaks the(3) symmetry,cz must point

in the ¢° direction at large. TheO(2) symmetry associated

with rotations in the ¢! ¢?) plane is not broken in the

sinf(r)cosé

-

¢(r,0)=o(r)

sinf(r)sinéd (2.8

cosf(r)

with f(r) satisfying the same boundary conditions as above.
We depict the soliton configuration in Fig. 1. The energy of
this soliton is 19.18. To assess the discretization errors intro-
duced by the lattice spaciniyx, we reduced\x from 0.2 to

0.1, and found a soliton energy of 19.28.

2As a check, we then used this configuration as an initial condition
for the full time-dependent dynamical equations of motion de-
scribed in the next section. The total kinetic energy during the time
evolution was never more than one part if d®the soliton energy.
This confirms that the relaxation algorithm has indeed converged to
a static solution to the full equations of motion.

3Note that we could have rewritten the static Hamiltonian in terms
of o(r) andf(r), discretized that Hamiltonian in and then used a
conjugate gradient algorithm to find these two functions.ofhis
ould have been less computationally intensive than finding
i(x,y) as we did. However, the expressions we obtain by varying
our static Hamiltonian relative to the fieldﬁ at each lattice site,
and indeed the results we obtain fgf at each lattice site in a
soliton configuration, are precisely what we need in the next section
when we analyze soliton-soliton collisions, which are of course not
circularly symmetric and so cannot be written in termsr¢f) and

Lagrangian; in the solution, these rotations are mapped ontf(r).
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Energy Density

After obtaining a baby Skyrmion at=15, we used the

10

12
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FIG. 1. f(r), o(r) and the
energy density for the solitons
with A=15 (solid curve$ and \
=7.7 (dashed curves

inside which 90% of the total energy of the soliton is found,

resulting configuration as the initial condition for relaxation we find Rg,=3.31 forA =15 andRy,=2.83 forA=7.7.

at \=14, and so found the soliton configuration at this
We repeated this process step-by-step jrfinding solitons

Although the energy density andé- = are circularly
symmetric, the fieldsp® and ¢? in a soliton configuration

for values ofk down tox=8. AtA=7, energy minimization are not circularly symmetric. If we only observed a single

led to a configuration with zero energy, instead of to a solistatic soliton, this would be of no consequence: in a hedge-
for relaxation atn=7.9, and so on down ta=7.6 where 42 are related simply by rotations in space. However, when
again no soliton was found. We, therefore, know that a stablge describe a configuration of two well-separated solitons in
soliton exists ah =7.7. It is a logical possibility that there is  the next section, the relative angiebetween their orienta-

a stabl_e solitqn ah=7.6 even tho_ug_h our relaxation algo- tions does matter. That is, specifying such a configuration
rithm did not find one. We think this is unlikely, because therequires giving the relative position and velocity of the cen-

soliton configurations which we have found Xt 7.7 and

)\i7'8 arell very similar, and &Ne the_refore ?e"e"? th‘? the TABLE I. Energy of static solitons at various valuesxffound
)‘__7'7 so_lton IS a very 990 _startln_g configuration irom using a lattice spacindx=0.2. ForAx=0.1, the energies of the
which to find theh=7.6 soliton if it existed. We therefore  gyjitons in the theories with=15 and\ = 7.7 are 19.28 and 18.85,
conclude that classically stable solitons exist only for regpectively.

>\e, With 7.6<\.<7.7.

In Table I, we give the energies of the solitons which we N Energy
have found for various values af. In Fig. 1, we depict the
field configuration and energy density for the solitons we 15 19.18
have obtained fon=15 andA=7.7. We note that even 14 19.15
though\=7.7 is only just above\, the soliton configura- 13 19.12
tion does not look very different from that at much larger 12 19.08
values of\, and the soliton energy is also little changed. 11 19.03
Note that the deviation frona-(r)=1 is only at most 20% 10 18.96
for a soliton withA =7.7 which is on the edge of instability. 9 18.88
The central energy density does increase by almost a factor 8 18.76
of 2 as\ is reduced from 15 to 7.7. Note, however, that the 7.9 18.75
total energy is almost unchanged, and actually decreases 7.8 18.73
slightly. The soliton radius decreases\ais reduced towards 7.7 18.71
\¢, but does not decrease dramatically. The definitioRgf 7.6 no soliton

is of course somewhat arbitrary; if we take it to be the radius
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FIG. 2. Sequence of snapshots
: of the energy density during a col-
- lision between two solitons which
-. . . 4. “ results in the destruction of both.
- The gray scale indicates energy
| density. In this simulatiory = 10,
the initial velocity of each soliton
! is v=0.5, the impact parameter is
— b o - b=0, and the solitons have a rela-
tive orientation anglexr=0 in the
initial configuration. The images
are at timest=0,4,8,12,16,20. In
this and in all subsequent figures
showing soliton-soliton collisions,

! M |7 each panel shows a 225 square
* m { f-,;#,‘ (in our units in whichk=1) and

| the initial separation between soli-
tons is 10. The lattice spacing is

Ax=0.2.

ters of the two solitons and the angie The first soliton in  [22] for choosing the size of the time stéyt. That is, we
such a configuration can be mapped onto the second by fast use the fifth-order Runge-Kutta-Feldberg algorithm to
translation followed by a rotation by an angieabout the  obtain ¢' and ¢' at time t+ At. This fifth-order method is
soliton center. special because a rearrangement of the fifth-order function
evaluation terms results in a fourth-order Runge-Kutta
IIl. COLLIDING SOLITONS EXpI'ESSiOF?. We then have two different estimaté®urth
order and fifth orderfor ¢' att+ At at each lattice site, and
With solitons in hand, we are ready to study what happengan evaluate the discrepancy between the two estimates for
When.they coII|d'e. For this purpose, we 'need dlscreuze%ach of the X 125x 125 ¢'s and¢'s. If the largest discrep-
equations of motion and a numerical algorithm to evolve anyncy js |arger than a specified tolerance, we reject the step
initial configuration, now specified by' and ¢' at each  and begin anew with a smalléxt. We use the largest dis-
lattice site, forward in time. We begin by writing a dis- crepancy to estimate how muett should be reduced. If all
cretized Lagrangian which is a function ¢f and¢' at each  discrepancies are smaller than the specified tolerance, we
of the lattice sites, at a single timeWe discretize the time- accept the result of the fifth-order calculation ot and ¢'
independent terms as described in the previous sectiort timet+ At. After a successful step forward in time, we
There are no spatial derivatives @f in the Lagrangian, so use the largest discrepantyhich must have been less than
discretizing terms involvingp' is trivial. We then use the the tolerance since the step forward was acceptedesti-
Euler-Lagrange procedure on this Lagrangian written inmate by how much we can safely increasewhen we take

terms of 3x 125x 125 ¢'s and 3<125x 125 &'s, and ob- O next step forward in time. In the simulations of collisions
tain equations of motion which specify t’he %325 Which we describe below, the tolerance is such that the

- . . timestep selected by the adaptive algorithm is approximatel
X125 ¢’s. These equations of motion take the form of three0 01= AFt)sO 05 Noi/e that wg dmotguse conserpvgtion of y

coupled linear equations fas', ¢* and® at a given lat-  energy as our criterion for acceptance or rejection of a step
tice site, which are easily solved. We now have an expresforward in time. This makes it fair to use a check of the
sion for ¢'(t,x,y) written in terms of the values @f' and ¢' conservation of energy as an independent measure of the
at lattice sites within two spatial links of the site of interest, accuracy of our evolution algorithm. We do this at various
all at the same time.* We are now ready to take a step points below.
forward in time. We choose fixed boundary conditions, wifhfixed to its

We evolve the system forward in time using the Runge~acuum value (0,0;,,J) at the boundaries of our 125125
Kutta-Feldberg algorithm and the adaptive algorithm of Ref-grid, where o . solves (Tsac_ 1)0yac= w24\ and is oy

=1+ u?/8\ for large \. Since the solitons have radii of

“Note that because of the way we discretize spatial derivatives in
the Lagrangian, expressions in the equations of motion with mixed 5This hidden fourth-order expression is referred to asabed-
time-space derivatives such ag,¢' end up discretized gs$'(x  dedRunge-Kutta formula due to the fact that it can be obtained with
+AX,y)— ¢'(x—AX,y)]12AX. no additional function evaluations.
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FIG. 3. Left panel: Kinetic, potential, and total energies during the soliton-soliton collision shown in Fig. 2 witb andv=0.5. The
topmost curveconstant to better than two parts in®10s the total energy. Of the other two curves, the one that begins low is the kinetic
energy, the one that begins high is the potential energy, including spatial gradient energy. Right panel: Same, during the time-reversed

evolution. We reverse the sign of ali”’s in the final configuration of Fig. 2, and then watch the evolution algorithm recreate the initial
configuration of Fig. 2.

orderR.,=3, we choose initial conditions with two solitons €energy, potential energy and total energy for the collision

whose centers are a distance 10 apart. We initiafizey ~ Shown in Fig. 2.(By “potential energy” we mean the con-

adding these two soliton configuratiorfi@hat is, we take (ribution to the energy from all those terms in the Hamil-
- - N - - tonian with no time derivatives. Most of this energy is due to
¢vacuum+ (¢first soliton ¢vacuun) + (¢second soliton ¢vacuun) ]

\ ¢ vacuu ( e ial i f the fieldsFi hat th I
The resulting configuration is not precisely a minimum of theSpatIa gradients of the fielgsFirst, we see that the tota

static Hamiltonian, but the two solitons are far enough a anefnergy Is conserved, in fact to better than two parts i 10
o . ; NOUgh apary o Linetic energy is not zero initially, because the solitons
that this is not a big concern. To obtain a soliton moving

ith an initial speed in the positivex direction. we simpl are moving. As the solitons approach each other, the kinetic
mitializel tual sp : positivex direction, we simply energy decreases. This confirms that the interaction is repul-

sive: the solitons slow down and deform as they approach.
As the solitons approach each other more closely, at some
point their deformation becomes sufficient that they are no
longer stable, and they fall apart. The resulting outgoing
waves have approximately equal kinetic and potential en-
at time zero. For simplicity, we are using a Galilean boostergy, as expected for traveling waves. It is quite clear from

This is appropriate foo<1. When we use this prescription Fig. 3, if it was not already clear from Fig. 2, that the solitons
with a velocity at which relativistic corrections are becoming have been destroyed.

important, the initial condition we have specified is not the
correct Lorentz-boosted, Lorentz-contracted soliton. In this
circumstance, as the system is evolved forward in time, the 16¢

#(x,y)=—v['(x,y)— ¢ (x—Ax,y)/AXx  (3.1)

soliton radiates some energy and quickly settles down to ° ore x
become dcorrec) relativistic soliton moving with a velocity 14; o o+x
somewhat less tham. For example, when we set=0.8 in o ox

our Galilean boost prescription for the initial condition, we 12r oo+

in fact end up with a soliton moving at a speed of 0.61.

00+ x

We begin by analyzing collisions between two solitons in 10 oox
the theory withx =10. We choose initial conditions in which 0 - Skyrmions collide with no decay.
both solitons are movin¢towards each othgmwith velocity 8p +~ Skymions collide and one decays.
v=0.25, with zero impact parameter. We choose an initial X~ Skyrmions calide and both decay.

. . . o . . . 6 = A No stable solitons at this A.
relative orientation anglee=0, meaning that one soliton is . . . ‘
obtained from the other by translation without rotation. Pre- 0 0.2 0.4 0.6 0.8 1
vious work shows that two static solitons with this relative v

orientation repel each othgt9]. This is consistent with what
we find: for low velocities, as for example for=0.25, the
two solitons bounce off each other and return whence the
came. We now increase to 0.5. This time, the outcome,

depicted in Fig. 2, is that the solitons are destroyed in thg

collision. The final state is a cloud of debris, namely small

FIG. 4. Outcome of soliton-soliton collisions with different ini-

Yial velocities and different values of the parameteAll collisions
have impact parametdr=0 and relative orientation angle=0.
ote thatv is the velocity parameter in Ed3.1). If v is large
enough that relativistic effects are significant, the actual velocity of

amplitude oscillations of tha;7> field spreading outwards the soliton is somewhat less than For examplep =0.8 yields a
from the scene of the collision. In Fig. 3, we show the kineticsoliton with velocity 0.61.
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FIG. 5. Snapshots of energy
density during a collision between
two solitons with impact param-
eterb=2.0 in the theory with\
=10. The relative orientation
angle ise=0. The initial velocity
v=0.5 is large enough that the
solitons are destroyed. The time
between images is 4.0.

4 pLS

As a stringent check of the accuracy of our time evolutionare destroyefl. This critical velocity goes to zero as
algorithm, we take the final configuration from our simula- —\.. As\ is increasedy . increases, reaching about half the

tion, reverse the sign a$', and evolve it for the same period Speed of light folx about twice\. .
of time as we did initially. The second panel of Fig. 3 shows We now return to\ =10, v=0.5, still keepinga=0 and
the behavior of the energies during this “backwards-in-ask how the outcome of a collision depends on the impact
time” evolution. It is clear that the debris reconstitutes itself parameteb. Forb=2.0, both solitons decayed into traveling
into two solitons. The sequence of snapshots of the energyaves, as we found fds=0 above. We show the outcome
density looks almost exactly like those in Fig. 2, but in theof this collision in Fig. 5. Note thab=2.0 is a substantial
opposite order in time. The discrepancies between the energjnpact parameter, comparable to the soliton radiys=3.
density in the initial configuration and that in the configura-We find that the solitons still decay =3.2. An impact
tion obtained after soliton collision and destruction followed parameteth=4.0, however, yields a collision which is suf-
by time-reversed evolution and soliton recreation differ by atficiently peripheral that the solitons emerge intact, deflected
most 1/40 of the energy density at the center of the solitonfrom their initial directions of motion by about 45°. We can
The total energy is conserved to better than one part fn 10 describe our results by saying that the critical veloaity

As a further check of the stability of our algorithm, we above which soliton decay is the outcome of the collision
have also simulated soliton-antisoliton annihilation. We ob-increases with increasing impact parameter. =0, Fig. 4
tain an antisoliton configuration from a soliton configurationshows that 0.2%v.<0.3. We now see that.=0.5 for a
by making the transformatiosh’®— — &2, equivalent to tak- nonzero impact parameter in the range<312<4.0. We have
ing 6— — 6 in Egs. (2.5 or (2.8). This turns a hedgehog also done several more simulations Witk 2.0 and various
configuration into an anti-hedgehog configuration, and henc:g]itial velocities, and find that fop= 2.0, t_he critical velocity
yields an antisoliton. We find that analyzing soliton- 1S 0-3<v.<0.4. We conclude that soliton decay does not
antisoliton collisions using our evolution algorithm is no "€auire collisions with small or finely tuned impact param-
more difficult than analyzing soliton-soliton collisions. We eters._ Although_lncreasmg from zero increases the crltllcal
were able to follow the annihilation process with energy con-\/‘EIC.’CIty v required to des_troy the solitons somewhat, It re-
served to better than one part in*10ow, with confidence mains easy to destroy solitons as long as the |mpact param-
in the accuracy and stability of our evolution algorithm, we eter is less than or comparable to the soliton radius.
proceed to analyze the outcome of soliton-soliton collisions___
with a variety of initial conditions.

We first explore how the outcome of a collision de- 6l_\lo‘[e that if we cho§a=_180°, one soliton in the initial configu-
pends on X and v, keeping the impact parameter '2tion would be the mirrorimage of the other. With-0, however,
b=0 and the relative orientation angle=0 as above. The the initial configuration of two solitons is not mirror symmetric and

It f imulati ed in Fi 4hence the time evolution is not mirror symmetric either. This is
resu 5 of many simuiations are- summgnze |n- 9. “manifest in all the simulations whose outcomes are summarized in
We discover that for anw, there is a critical velocity

) : . _ Fig. 4, and is illustrated most dramatically in the fact that for some
below which the solitons rebound without decaying,initial velocities, typically not far abover., one soliton is de-

and above which one or botlusually both solitons  stroyed in the collision while the other survives.
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FIG. 6. Snapshots of energy density during a
collision between solitons with relative orienta-
tion @=180°, impact parametdr=0, and initial
velocity v =0.25 in the theory witth=10. The
solitons are not destroyed afeventually form a
classically stable bound state. The time interval
between images varies: the images are at times
t=0,4,8,12,16,20,24,28,34,42,50.

O .

All the collisions we have described to this point have hadRef. [18] reveals that in the.— theory, there is a stable,
the same relative orientation. Far=0, low velocity colli-  ring-shaped, soliton with winding number 2. It appears that
sions yield a rebound, in which each soliton reverses directhe final state of the collision in Fig. 6 will be a soliton of
tion, while higher velocity collisions lead to soliton destruc- this form, although it will differ in its details from that of
tion. We now consider a collisiowith A\=10, v=0.25,  Ref.[18] since\ is finite. What we observe in Fig. 6 is that
andb=0) between two solitons with a relative orientation the incident solitons at first scatter by 90°, but then do not
anglea=180°. That is, the second soliton in the initial con- escape to infinity. They fall back upon one another, and res-

figuration is obtainable from the first by a translation and acatter by 90°. There are small outgoing ripples at late time,
180° rotation” The interaction between static solitons with p¢ they have too little energy density to be visible in Fig. 6.

this orientation is known to be attractiy29]. We show the e expect that were we to run the simulation for a long time,
outcome of a low velocity collision in Fig. 6. The work of iy 3 pig enough box that outgoing ripples never return, we
would see repeated 90° scatterings, with the solitons escap-
ing less and less far away each time, all the while radiating
"With a=180°, one soliton in the initial configuration is the mir- Small outgoing ripples, and eventually settling down to be-
ror image of the other. In order to have completely mirror- come the static, ring-shaped configuration.

symmetric initial conditions, we must be careful to use 8ql) to As we increase the incident velocity, we find that for
initialize ¢' of the left-hand soliton while using the mirror reflection >v¢ With 0.43<v.<0.48, the outcome of the collision is
of Eq. (3.1) — which involves[ ¢'(x+ Ax,y) — ¢'(x,y)] — to ini-  soliton destruction rather than 90° degree scattering followed

tialize ¢' of the right-hand soliton. We have verified that if we by the formation of a bound state. We show an example of
choose mirror-symmetric initial conditions in this way, the time collision-induced decay in a collision with relative orienta-
evolution algorithm preserves mirror symmetry to better than ondion «=180° in Fig. 7. Note that the critical velocity above
part in 1¢ even during solition collision and decay. which soliton destruction is the outcome is somewhat larger
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FIG. 7. Snapshots of energy
density during a collision between
two solitons with relative orienta-

tion «=180° in the theory with
N=10. The impact parameter is
b=0. The initial velocity is large

.
-

enough ¢ =0.5) that the two soli-
tons decay. The time between
each image is 4.0.

.
%

than, but still comparable to, that we found previously for
a=0. We have not mapped out, vs N for the =180°
orientation as we did in Fig. 4, but we expect that the figur
would be qualitatively similar. One new feature, though,
would be that at large. there would be two different out-
comes possible for collisions with<v.: bound state for-
mation (for low enoughv) and 90° scattering followed by
the escape of the two intact solitons to infin{fgr largerv
which is still less tharv.). At A=10, we do not find any
velocities for which 90° scattering followed by escape oc-
curs. It must occur at largex, since it certainly occurs at
large enough velocities fox—oo, whenv.— 1.

The collision shown in Fig. 7 is an example of a simula-
tion in which the initial velocity ¢ =0.5 in this casgis only
just above the critical velocity (0.43v.<0.48 in this case
In this circumstance, what we generically observe is that th
solitons scatter, separate a little, but are sufficiently distorte
as a result of the scattering that after separating a little the
fall apart. We observe this phenomenon alse &t0, except
in this case the solitons scatter by bouncing back in the d

rection whence they came, then separate a little, and then fal

apart. At velocities which are somewhat larger than as
for example in the collision shown in Fig. 2, we find that
soliton destruction occurs more promptly, during the initial
collision.

We now consider collisions between solitons with a rela-

tive orientation anglex=90°, still with A =10 andb=0. For

(S

IV. CONCLUDING REMARKS

We have analyzed soliton-soliton collisions in a
(2+1)-dimensional theory with metastable baby Skyrmion
solutions. We find classically stable soliton solutions for val-
ues of the parameter which are larger than .~ 7.6. These
solitons are prevented from decaying by a finite energy bar-
rier and so can decay if supplied with sufficient energy, for
example in a collision with a second soliton. We have
mapped out the space of initial conditions under which the
outcome of a soliton-soliton collision is the destruction of
one or both solitons. We find that soliton decay results when-
ever two solitons collide with an incident velocity greater
than somev.. This critical velocity depends on the param-
eters in the problem. It goes to zeroas>0 and the solitons
cease to be classically stable. It goes to the speed of light as

zﬂoo and the barrier to decay becomes infinite. However,

U. does not rise particularly rapidly with: with other pa-
Yameters chosen as in Fig.i4, is only half the speed of light
for \~2\.. Thus, soliton destruction doemt require that
fhwe theory have a value af lying in some narrow range just
above\ .. The impact parametdr need not be finely tuned
either. Not surprisinglyp . is lowest for collisions withb
=0. Howeverp increases by less than a factor of 2 oof
order the soliton radius: also depends on the relative ori-
entation angler between the two solitons in the initial state.
Here too, the dependence is weak. In the example we ex-
plored in detail, we found that as changes from 0° to

this relative orientation, there is no force between static solijgge ve varies between 0.250.<0.3 and 0.43v,
tons[19]. We find the same possible outcomes as we did for- 48. Thus, although. does depend on and on the

a=180°. As a function of increasing velocity, the outcome parameters other than the velocity needed to fully specify a
of a collision is either capture to form the ring-shaped bouncchoice of initial conditions, the variation af, is not dra-

state, or soliton destructiofAgain, scattering by an angle of

matic. Soliton decay is not restricted to specially chosen ve-

90° followed by the escape of two intact solitons would be alocities, impact parameters, orientations, or values.doli-

possibility at larger\.) The critical velocity above which
soliton decay occurs is 0.2%.<0.3.

ton decay is a generic outcome of soliton-soliton collisions.
Our findings motivate future investigation of collisions
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between metastable solitons in thet{3)-dimensional elec- in the Introduction, however, the metastable baby Skyrmions
troweak theory. Previous work on two-particle collisions in-we analyze differ in several important qualitative respects
volving these electroweak solitons has focused on collisionfrom metastable electroweak solitons. Furthermore, our
between aV boson and a solitofi]. In such collisions, the analysis has been purely classical whereas the analysis of
probability for soliton decay falls exponentially as the w.soliton collisions in Ref[7] is quantum mechanical. Al-
(rough analog of\ is increased above theough analog of  though our results motivate an analysis of collisions between
A¢. This was traced to two facts: First, causing one of thes@|ectroweak solitons, they should not be taken to provide

solitons to decay requires delivering sufficient energy to on@ven qualitative guidance as to the outcome of such a study.
particular mode of oscillation of the soliton. Second, a ge-

neric incidentW-boson couples very weakly to the mode

which must be _ene_rg_lzed n_c decay is to _be |ndu<_:ed. We_z find ACKNOWLEDGMENTS
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