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Study on the nonperturbative existence of Yang-Mills theories with large extra dimensions
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Pure latticeSU(2) Yang-Mills theory in five dimensions is considered, where an extra dimension is com-
pactified on a circle. Monte Carlo simulations indicate that the theory possesses a continuum limit with a
nonvanishing string tension if the compactification radius is smaller than a certain valueRM which isO(1/10)
of the inverse of the square root of the string tension. We verify nonperturbatively the power-law running of
the gauge coupling constant. Our method can be applied to the investigation of continuum limits in other
higher-dimensional gauge theories.

PACS number~s!: 11.10.Hi, 11.10.Kk, 11.15.Ha, 11.25.Mj
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I. INTRODUCTION

The idea of unifying fundamental forces by introducin
extra dimensions has attracted attention for many deca
and the theory realizing this idea is called Kaluza-Kle
theory@1#. Recently, it has been observed by Arkani-Ham
Dimopoulos, and Dvali@2# that the existence of extra dimen
sions may play an important role in understanding the h
archical scales that exist between the weak and Pla
scales. From a simple setting that only the graviton c
propagate in the bulk corresponding to the extra dimens
while all the other fields of the standard model~SM! are
located on a four-dimensional wall, they have concluded@2#
that the length scale of the extra dimensions can be ra
large *1022 cm. ~A similar observation was previousl
made in Ref.@3# in connection to supersymmetry breaking
string theory.! This should be in contrasted to the situation
previously suggested Kaluza-Klein theories in which the s
of extra dimensions was of the order of the~four-
dimensional! Planck length 10233 cm or 1/MGUT'10230 cm,
where MGUT is the unification scale in four-dimension
grand unified theories~GUTs!. Their idea has been then fo
lowed and extended by several authors@4,5# to obtain more
satisfying solutions of the hierarchy problem. Moreover,
above phenomenological proposal to confine fields on
lower-dimensional subspace fits well@7–10# the D-branes
@6# ~extended objects attached by the end points of o
strings! in string theories.

If part of the SM fields can propagate in the bulk, and t
size of the extra dimensions are large, the existence of s
extra dimensions may be experimentally verified. There w
be a number of phenomenological questions~see Ref.@11#,
for instance! such as ‘‘ what are the experimental bounds
the size of the extra dimensions@12#?’’ However, our con-
cern in this paper is of a theoretical nature: Is the existenc
a large extra dimension consistent with quantum theory?
answer to this question will be ‘‘yes,’’ provided that th
compactification radiusR is smaller than a certain value, th
maximal radiusRM . It should be emphasized that the prev
ous investigations@13–15# on non-Abelian gauge theories i
0556-2821/2000/62~10!/105025~15!/$15.00 62 1050
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five dimensions on a lattice~which indicated that the theory
have no continuum limit! were performed in the uncompac
tified case. These works@14,15# were motivated to investi-
gate whether or not the nontrivial ultraviolet fixed poi
found in thee expansion@16# is real.

To be more specific, we consider pureSU(2) Yang-Mills
theory in five dimensions where an extra dimension is co
pactified on a circleSwith the radius ofR. ~It would be more
‘‘realistic’’ to compactly the fifth dimension on the orbifold
S/Z2 so that the zero modes contain only four-dimensio
gauge fields and no scalar fields. We leave the case ofS/Z2

to future work.! One may expect that the theory will carr
the basic property of a four-dimensional gauge theory if
radiusR is sufficiently small, while in the opposite limit ofR
the theory becomes more five dimensional. So there may
the maximal radiusRM below which the theory can possess
continuum limit with a nonvanishing string tension and c
exist nonperturbatively. We will indeed find that our nume
cal simulations based on a compactified lattice gauge the
are supporting the correctness of this heuristic picture.

The string tension is one of the most familiar physic
quantities, which can give a physical scale to the lattice sp
ing. However, at a deconfining phase transition of first ord
the string tension vanishes discontinuously, and we can
use it for that purpose in this case. One of the crucial obs
vations in this paper is that, if the fifth dimension is compa
tified, the first order phase transition changes its nature
certain compactification radius. We will see this on anis
tropic lattices by performing Monte Carlo simulations wi
various compactification radii and by investigating the pha
structure. The simulations also indicate that it could be p
sible to give a physical scale to the lattice spacing even in
deconfining phase if the theory is compactified, and this p
sibility will be studied more in detail.

We will assume that the phase transition due to the co
pactification occurs at a certain value ofR, the critical com-
pactification radiusRC , and that the compactification radiu
is kept fixed atRC along the critical line of the phase trans
tion due to the compactification. That is, the critical compa
tification radiusRC is assumed to be a physical quantit
©2000 The American Physical Society25-1
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This assumption enables us to compute the latticeb function
for a givenR as a function of the lattice spacinga4 of the
four-dimensional direction. In doing so, we can verify no
perturbatively the power-law running of the gauge coupl
constantg, and find that the observed power-law behav
fits well to the one-loop form suggested in Refs.@9,16–23#.
The results for the latticeb function obtained from our
Monte Carlo simulations indicate the self-consistency of
assumption above.

The results obtained for the latticeb function can also be
used to make a further assumption on the physical scal
the deconfining phase and to investigate various sca
properties of the longitudinal Creutz ratio@defined in Eq.
~4.1!#, making a discussion on the existence of continu
limits of the theory possible. We will be led to the interpr
tation that the theory may possess a continuum limit wit
nonvanishing longitudinal string tension if the compactific
tion radiusR is smaller thanRM'RC/3, and that the non-
trivial ultraviolet fixed point found in thee expansion in the
continuum theory may no longer be spurious.

After we define our lattice action in Sec. II, we start
present the details of our calculations. In Sec. III we cal
late the ratio of the lattice spacingsj5a4 /a5 in terms of the
parameters of the simulationsb andg, and then we discus
the phase structure in Sec. IV. In Sec. V we compute
latticeb function and then study on continuum limits in Se
VI, and the last section is devoted to conclusions.

II. THE ACTION

In order to investigate the effects of a compactification
the five-dimensionalSU(2) gauge theory, it is crucial to
employ an anisotropic lattice which has different latti
spacingsa4 anda5 in the four-dimensional directions and i
the fifth direction, and is often used in the case of latt
gauge theories at finite temperature. We find that the eff
of the compactification on an isotropic lattice can app
only for a small lattice size of the fifth direction (<2) so that
it is practically impossible to study the theory with differe
sizes of this direction. Another advantage is that, since
can varya4 anda5 independently, we can investigate thea4
dependence of physical quantities while keepinga5 fixed.
This enables us to study scaling properties in the compa
fied theory for a given compactification radiusR.

We denote the five-dimensional lattice coordinates byzM
(M51, . . . ,5), the four-dimensional ones byxm(m
51, . . . ,4), and the fifth one byy. The link variable takes the
form

UM~x,y!5$Um~x,y!5U~x,y;x1a4m̂,y!,

U5~x,y!5U~x,y;x,y1a5!%, ~2.1!

where U(z1 ;z2)PSU(NC) is the parallel transporter. Th
plaquette variables are
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UP4
5Umn~x,y!

5Um~x,y!Un~x1a4m̂,y!

3Um
† ~x1a4n̂,y!Un

†~x,y!,

UP5
5Um5~x,y!

5Um~x,y!U5~x1a4m̂,y!

3Um
† ~x,y1a5!U5

†~x,y!. ~2.2!

The Wilson action for pureSU(NC) Yang-Mills theory in
five dimensions is given by

S5b4(
P4

F12
1

NC
Re TrUP4G1b5(

P5
F12

1

NC
Re TrUP5G ,

~2.3!

where (P4
5(z1<m,n<4 and (P5

5(z1<m<4. Periodic
boundary conditions are imposed in all directions.1 The
coupling- and correlation-anisotropy parameters are defi
as

g5Ab5

b4
, j5

a4

a5
, ~2.4!

whereg5j is satisfied in the tree level. In the naive contin
limit a4 ,a5→0 with the length of the fifth dimension fixed a
2pR, the action~2.3! becomes

S52(
x,y

F S b4a4
4

2NC
D 1

2
Tr Fmn

2 1S b5a4
2a5

2

2NC
DTr F5n

2 G1O~a5!,

~2.5!

which goes to

E d4xE
0

2pR

dy
21

2g5
2

Tr FMN
2 , ~2.6!

if b452NCa5 /g5
2 and b552NCa4

2/g5
2a5, where AM

5g5AM
a Ta, FMN5]MAN2]NAM2 i @AM , AN], and we have

used

Um~x,y!5eig5a4Am(x,y), U5~x,y!5eig5a5A5(x,y).
~2.7!

On a lattice a compactification means if

N4a4

N5a5
5

a4N4

2pR
5

N4

N5
j.1 ~2.8!

is satisfied. Note that the gauge coupling constantg5 has the
dimension ofAa4, and can be expressed as

1Another interesting case, i.e., orbifold boundary conditions wh
kill the scalar zero mode, can be archived by imposingU(x,y;x,y
1a5)5U†(x,2y2a5 ;x,2y).
5-2
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g5
225

b

2NCa4
, b5Ab4b5. ~2.9!

Later on we will use a dimensionless coupling constantg,

g225~2pR!g5
225

N5b

2NCj
, ~2.10!

which is normalized for the four-dimensional Yang-Mil
theory with the tower of the Kaluza-Klein excitations. At th
point, Eq.~2.10! is only a tree-level definition.

III. j-g RELATION

The parameters of the simulations areb andg for a given
size of lattice, and the lattice spacingsa4 and a5 are func-
tions of these parameters. The introduction of an anisotr
into a lattice means that the regularization breaksO(5) in-
variance of the continuum theory. To recover this symme
we have to fine tune the anisotropy parametersg andj that
are defined in Eq.~2.4!. At the tree level, it isj5g as we
have seen in the previous section. In higher orders the t
level relation suffers from quantum corrections so that it c
depend onb andg, i.e., j5j(g,b). The basic idea to find
the corrected relation, which has been intensively used in
study of QCD at finite temperature, is to use that symme
There are variants of the method, and we have decided to
a slightly modified method that is based on the matching
the Wilson loop ratio@24–26#. Let us briefly explain the
method below.

We consider two kinds of Wilson loopsW(zM ,zN), the
oneW(xm ,xn) within the four-dimensional subspace and t
other oneW(xm ,y) that is extended into the fifth dimension
and calculate the ratios

R~xm ,xn!5
W~xm1a4m̂,xm!

W~xm ,xn!

and

R~xm ,y!5
W~xm1a4m̂,y!

W~xm ,y!
. ~3.1!

Since the Wilson loop is related to the static quark poten
as

W~zM ,zN!;exp$2zMV~zN!% for zM→`, ~3.2!

we find that the rations~3.1! for largex andy become

R~xm ,xn!;exp$2a4V~xn!%, R~xm ,y!;exp$2a4V~y!%.

~3.3!

The O(5) symmetry of the continuum theory requires th
that

R~xm ,xn!5kR~xm ,y! for xn5nna45y5n5a5 ,
~3.4!
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where we have allowed the presence of the factork. We
measure the ratios for a given set of the lattice sizeb andg,
and assume that they take the form

R~xm ,a4nn!;k1exp$2s4n4%

and

R~xm ,a5n5!;k2exp$2s5n5%, ~3.5!

and that they should become identical with each other,
symmetry, whennna45n5a5. From this consideration we
obtain j5a4 /a55s4 /s5. Note that the ansatz~3.5! has a
meaning only in the confining region of the parameters,
course.

In the practice, we fit the ansatz~3.5! for the data, and
then scalen5 by z ~i.e., n5→zn4) in such a way that
R(xm ,za5n4) becomes closest toR(xm ,a4n4), where we as-
sume thatk51 on the right-hand side of Eq.~3.4!.2 In the
ideal case we would havez5s1 /s25j.

To restore theO(5) symmetry in an efficient way, simu
lations are performed using the heat bath algorithm on
lattice of N4

43N5, whereN5;gN4 is satisfied as shown in
Table I. We generate 5000 configurations, and Wilson lo
are measured every 5 configurations. Figure 1 showsj ver-
susb for various values ofg, and we see thatj is almost
independent ofb. The data points for largerb are not plotted
because they correspond to the deconfining region so tha
ansatz~3.5! has no meaning. The same data are plotted
Fig. 2 which shows theg dependence ofj. The data are
summarized in Table I. The central value ofj in the table is
the average of the data points in Fig. 1 for a fixedg.

IV. PHASE STRUCTURE

In this section we would like to investigate the pha
structure of the five-dimensional theory defined by the act

2On a lattice where one can obtain more data points, it is m
convenient to use the method developed in Ref.@26# for QCD, in
which k is different from 1. In our case, due to the size of o
lattice, we cannot obtain enough number of data points. In suc
casek51 is a reasonable assumption, as has been discussed in
@25#.

TABLE I. j-g relation.

g2 j b-range lattice size

1.50 1.438~57! 1.51868–1.66565 84316
2.00 1.784~50! 1.55563–1.69706 84316
3.00 2.340~40! 1.59349–1.73205 84316
4.00 2.779~34! 1.60000–1.75000 84316
5.00 3.161~39! 1.65469–1.74413 84316
6.00 3.490~33! 1.61666–1.76363 84320
8.00 4.062~39! 1.62635–1.76777 84324
10.00 4.617~35! 1.50208–1.73925 84324
16.00 5.923~51! 1.50000–1.70000 84332
5-3
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SHINJI EJIRI, JISUKE KUBO, AND MICHIKA MURATA PHYSICAL REVIEW D 62 105025
~2.3!. It is known from the mean field analysis that highe
dimensional lattice gauge theories in more than four dim
sions have a first order phase transition.3 The studies of
Monte Carlo simulations@13,14# also indicate that in the
case ofSU(2) gauge theory the first order transition occu
starting atD55. Our task is to extend these analyses to
compactified theory. To this end, we will be intensively u
ing anisotropic lattices to take into account the compac
cation of the fifth dimension.

A. Longitudinal Creutz ratio

The string tension between two quarks that are separ
in space is a typical physical quantity for the theory. Wh
we know from experiments is that the string tensionsphys
between two quarks that are separated in the fo
dimensional subspace should be nonvanishing so that
potential between them is linearly increasing with the d
tancer. The string tension is a good physical quantity f
defining a physical scale for other quantities obtained in
tice gauge theories. If the underlying gauge theory is form
lated in five dimensions, however, the feature of the linea
increasing potential is not automatically present, and in f
the first order deconfining transition is found in Re
@13,14#.

We measure the Creutz ratiox( i , j ) defined as

x~ i , j !52 lnH W~ i , j !W~ i 21,j 21!

W~ i , j 21!W~ i 21,j ! J , ~4.1!

whereW( i , j ) is a rectangular Wilson loop with lengths ofi
and j. The Creutz ratio with largei and j becomes the lattice
string tensions lat in the case of the linearly increasing p
tential between two quarks. So, if a Creutz ratio with largi
and j takes a nonzero value, the corresponding Wilson lo
shows the area law which we regard as ‘‘confinement.’’ W
consider the Wilson loops longitudinal to the fou

3See for instance Ref.@27#, and references therein.

FIG. 1. b dependence of the anisotropy parameterj.
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dimensional subspaces, because we are interested in the
finement property in this subspace. We would like to de
onstrate that the Creutz ratio behaves differently for differ
types of lattice. The results obtained from Monte Carlo sim
lations on an isotropic lattice of size 85 (g251.0) and on an
anisotropic lattice of the same size (g252.0 andg254.0)
are shown in Fig. 3, where the vertical axis stands for
Creutz ratio, and the horizontal axis stands forb5Ab4b5.
We have generated 2500 configurations for each simula
point after thermalization, and Wilson loops are measu
every 5 configurations for the calculation of the Creutz rat

We see from Fig. 3 that the phase transition between
confining and deconfining phase exists aroundb51.64 in
the case of the isotropic lattice (g251.0) as it was found in
Refs. @13,14# and aroundb'1.73 and 1.77 in the cases o
g252.0 and 4.0, respectively. We have performed the sim
lations starting with an ordered configuration withUM51

FIG. 2. Relation betweenj andg.

FIG. 3. Creutz ratios as a function ofb for g251.0, 2.0, and 4.0
on an 85 lattice. Open symbols are the results of the ordered s
and filled symbols are those of the disordered start.
5-4
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STUDY ON THE NONPERTURBATIVE EXISTENCE OF . . . PHYSICAL REVIEW D 62 105025
@defined in Eq.~2.1!# and with a disordered configuration
thereby obtaining clear hysteresis curves. The open sym
are the results of the ordered start and the filled symbols
those of the disordered start. Our results indicate that
transitions are of first order, in accord with the finding
Refs.@13,14# for g251.0.

B. Transverse Polyakov loop

In the uncompactified case, the Polyakov loop plays
rôle for an indicator of confinement. Here we consider loo
which are transverse to the four-dimensional subspace
define the transverse Polyakov loop as

L5z
1

N4
4 (

x

1

NC
Tr )

y
U5~x,y!, ~4.2!

wherez is a Z(NC) phase factor (zNC51) such that arg(L)
P(2p/NC ,p/NC). In contrast to the longitudinal Creut
ratio ~4.1! which we have discussed in the previous subs
tion, the transverse Polyakov loop~4.2! has no direct physi-
cal meaning in four dimensions, because we do not iden
the fifth direction with the temporal direction. We may s
however that the quark currents running into the fifth dire
tion are confined if the transverse Polyakov loop^L& van-
ishes.

Figure 4 shows the results of the transverse Polyakov l
on the 85 and 84312 lattices for various values ofg, while,
for comparison, the average of the plaquettes (131 Wilson
loop! for the same lattices is shown in Fig. 5. 2500 config
rations have been used to measure the Polyakov loop an
plaquette for each point. As in the previous subsection,
open symbols are the results of the ordered start and
filled symbols are those of the disordered start. As expec
we obtain clear hysteresis curves, and so the transv
Polyakov loop and the average of the plaquettes also indi
that the phase transition is of first order.

FIG. 4. Expectation values of the transverse Polyakov loop
an 85 lattice for g251.0, 2.0, 3.0, and 4.0, and those on an4

312 lattice forg256.0.
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C. Compactification effects

It may be worth pointing out that the compactified (D
11)-dimensionalSU(NC) lattice gauge theory belongs t
the same universality class as theD-dimensionalZ(NC) spin
model. The case of QCD at finite temperatureT is a well-
known example, where the temporal direction is compa
fied with the lengthT21. We expect the existence of a sim
lar phase transition due to the compactification in our ca
which is of second order, because the phase transition in
four-dimensionalZ(2) spin model~Ising model! is of second
order. So, we repeat the measurements of the transv
Polyakov loop ~4.2! and the average of plaquette for th
compactified case.

In order to take into account the compactification of t
fifth dimension, we use anisotropic lattices of size 8434 and
8436. The results for the transverse Polyakov loop w
different g are shown in Figs. 6 and 7.~In Fig. 6 we have
included the result on a 12434 lattice which shows tha
there are practically no finite size effects.! Noticing that the
compactification radiusR(5N5a5/2p) becomes smaller for
a givenN5 asg becomes larger~see Fig. 2 and Table I!, we
observe that the nature of the phase transition changes d
the compactification. Namely, the interval ofb in which two
phases coexist becomes narrower asg increases, and ther
are no intervals forg2*2 for the 8434 case and forg2

*4 for the 8436 case, respectively. These phase transiti
seem to be of second order. Observe also that the trans
interval of b for g251.0 does not depend onN5, while, in
contrast to this, the transition pointbC for the second order
transition for a giveng depends onN5. From these results
we conclude that the second order phase transition is ca
by the compactification, and that the first order transition
not related to the compactification. In Figs. 8 and 9, we p
the average of the plaquettes for the 8434 and 8436 lat-
tices. The results show that the transition becomes w
~similar to a cross over transition! starting atg at which the
first order transition of the transverse Polyakov loop turns

n FIG. 5. Expectation values of the plaquette on an 85 lattice for
g251.0, 2.0, 3.0, and 4.0, and those on an 84312 lattice forg2

56.0.
5-5
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be of second order.~In Fig. 8 we have included the result o
a 12434 lattice to make it sure that finite size effects a
negligible.!

In Fig. 10 we show the qualitative nature of the pha
structure in theb4-b5 plane, which we have obtained from
the result of this section. The ‘‘confining’’ and ‘‘deconfin
ing’’ phases are separated by the critical lines of the first
second order phase transitions. The position of the crit
line ~bold line! of the first order phase transition does n
depend on the lattice size, while that of the second order
~solid line! depends crucially onN5. Below the critical line
in the b4-b5 plane, the transverse Polyakov loop vanish
and it is different from zero above the line. Note that th
does not necessarily mean that the longitudinal Creutz r
~4.1! vanishes in the deconfining phase. The longitudi
Creutz ratio~4.1! corresponds to the ‘‘spatial string tension

FIG. 6. Expectation values of the transverse Polyakov loop
an 8434 lattice. The star symbols are the results on a 12434 lat-
tice.

FIG. 7. Expectation values of the transverse Polyakov loop
an 8436 lattice.
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in QCD at finite temperature, which is defined by the spa
Wilson loop, and indeed is nonvanishing even in the dec
fining phase@28#. Figure 11 shows the longitudinal Creu
ratio versusb for the anisotropic lattice of size 8434 with
g2 fixed at 4.0. The figure shows that the longitudinal Cre
ratio varies smoothly asb enters into the deconfining phas
of the transverse Polyakov loop, indicating that it could
possible to give a physical scale to the lattice spacing eve
that phase. Since indeed the spatial string tension is know
obey a scaling law at high temperature@28#, we may wonder
whether some continuum limit in the present might also
ist. The following sections are devoted to investigate t
possibility from another point of view.

In the case of QCD at finite temperature, the critical te
peratureTC is a physical quantity. As in that case, it is we
possible that the critical compactification radiusRC is a
physical quantity, and that the lattice system on the differ

n

n

FIG. 8. Expectation values of the plaquette on an 8434 lattice.
The star symbols are the results on a 12434 lattice.

FIG. 9. Expectation values of the plaquette on an 8436 lat-
tice.
5-6
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STUDY ON THE NONPERTURBATIVE EXISTENCE OF . . . PHYSICAL REVIEW D 62 105025
critical lines in theb-g plane for differentN5 corresponds to
the same physical system. As a first check, we estim
roughly the critical radiusRC for two critical lines of the
second order phase transition at the end point. As mentio
~see also Fig. 16!, at g'A2.0 for N554 and atg'2.0 for
N556, the second order transition line merges in the fi
order transition line. The value ofj at the merging points
respectively, is 1.78 forg5A2.0 and 2.78 forg52.0, where
we have used the data in Table I. From the data on
Creutz ratio for the 85 lattice ~Fig. 3!, we find that the value
of the longitudinal Creutz ratio at the transition points
approximately constant independent ofg, i.e.,

s lat5sphysa4
2'0.7, ~4.3!

where we identify the longitudinal Creutz ratiox( i , j ) with
large i and j as the lattice string tensions lat . Using this, we
find

RC5
N5a5c

2p
'

N5

2pjc
F 0.7

sphys
G1/2

'H 0.30/Asphys,

0.29/Asphys,
for H N554,

N556,
~4.4!

FIG. 10. Illustrations of the phase structure for the noncomp
tified case~left! and the compactified case~right!, wheres is the
longitudinal Creutz ratio andL is the transverse Polyakov loop.

FIG. 11. Creutz ratios on an 8434 lattice atg254.0.
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wherejc5a4 /a5c . These values are consistent with the a
sumption that the lattice system on the different critical lin
corresponds to the same physical system. Equation~4.3! also
means that the value ofa4 at which the first order phas
transition appears is approximately independent ofg, indi-
cating that this value might have a sensible meaning. In
next section, we will do another check by using the latticeb
function.

V. THE LATTICE b FUNCTION

We are interested in physics in the four-dimensional s
space with a certain compactification radius. The anisotro
lattice we have used in the previous section is convenient
computations with differenta4 while keeping the compacti
fication radius constant. In this section we would like
compute the latticeb-function in the four-dimensional sub
space with the compactification radiusR fixed at a certain
value

b lat52a4

dg2

da4
, ~5.1!

whereg5g5 /A2pR is the four-dimensional, dimensionles
gauge coupling. We will calculate in Sec. V B theb function
at the critical compactification radiusRC using two lattices
with different N5, whereN5 also corresponds to the numb
of Kaluza-Klein excitations. So, if the theory we investiga
should be regarded as a four-dimensional theory with on
few number of Kaluza-Klein excitations, theb-function
should depend explicitly onN5. On the other hand, if we
obtain the same latticeb-function for differentN5, we are
indeed dealing with a five-dimensional theory, and finiteN5
or equivalently finitea5 effects may be regarded as neglig
bly small. First we would like to check this point. Anothe
motivation is that we would like to examine non
perturbatively the celebrated power behavior of the runn
of the gauge couplings in higher dimensions, which we w
use in the next section to give a physical scale in the dec
fining phase of the transverse Polyakov loop and then
discuss the scaling behavior of the longitudinal Creutz ra
~4.1!.

Since the gauge couplingg and the latticeb-functionb lat
are dimensionless, we may assume that the lattice spac
a4 anda5 enter only in the combinationj5a4 /a5. Further-
more, the perturbative analyses and also the discussion
follows below suggest that the correct variable is

s[
2pN5

j
5

2pN5a5

a4
5

~2p!2R

a4
. ~5.2!

This choice of the parameter has a nontrivial meaning:
may conclude that, ifg really depends only ons, the con-
tinuum limit a5→0 with the compactification radiusR fixed
can be taken, andR can be regarded as a physical quantity
this sense.

In the case of QCD at finite temperature, the critical te
peratureTC is a universal quantity. The analogy for our ca
would be that the critical radiusRC is a universal quantity of

-
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the theory. So, the compactification radius would rem
constant along the critical line in theb-g plane. However,
there is a crucial difference compared with the case of Q
at finite temperature, because the critical lines in the pre
case merge into the region of the first order phase trans
which is not related to the compactification. Therefore, t
assumption is not reliable in the region in which the tran
tion is of the first order.

Keeping these circumstances in mind and defining
gauge coupling as

g2252pRCg5
225

N5

4

bC

j
~5.3!

on the critical line of the second order phase transition,4 we
can rewrite Eq.~5.1! as

b lat5b̄ latS 12
d ln RC

d ln a4
D

with

b̄ lat5
4

N5
s

d

dsF j

bC
~s!G52

4j

N5bC
F12

j

bC

dbC

dg

dg

dj G ,
~5.4!

where use have been made of Eqs.~2.4!, ~2.9!, and ~2.10!.
Here, we denoteb̄ lat for the b function with the assumption
that theRC is constant along the transition line. If there is n
a4 dependence ofRC , this assumption is correct so th
b lat5b̄ lat .

Note that the critical lines in theb-g plane are different
for differentN5. In Eq. ~5.3! we are implicitly assuming tha
g does not depend on which critical line we use to calcul
it. If we obtain the same gauge coupling from the differe
lines, it is a sign that the critical lattice systems for differe
N5 describe the same physical system. This will be chec
in Sec. V B.

A. Precise determination of the critical lines

To compute the latticeb function b̄ lat using Eq.~5.4!, we
need to know precisely the location of the critical points a
its derivative with respect tog in the b-g plane. Let us
therefore determine the critical lines in theb-g space next.
To this end, we identify the transition point with the positio
of the peak of the susceptibility

xL5N4
4~^L2&2^L&2!, ~5.5!

whereL is the transverse Polyakov loop defined in Eq.~4.2!.
We apply the histogram method@29# extended to an aniso
tropic lattice to evaluate the continuous parameter dep
dence ofxL , as it was done in Ref.@30#. To measure the
Polyakov loop susceptibility, we take 100 000 configu

4This definition of the gauge coupling has the same form as
tree-level one~2.10!.
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tions. The results are plotted in Fig. 12 forN554 and in Fig.
13 for N556. The large peak height atg252.0 for the 84

34 lattice and atg253.6 and 3.8 for the 8436 lattice ~see
Fig. 14! signals the first order transition which we have se
in the previous subsection. In Fig. 15, we see flip-flop in t
history of the plaquette values, which is another sign for
first order phase transition. The transition pointbC and its
derivative dbC /dg for a giveng are given in Table II. Here,
the derivative of a transition point is calculated by fitting t
continuousg dependence ofbC with the polynomial

bC~g!5 (
n50

nmax

f n~g2g0!n, ~5.6!

e

FIG. 12. b dependence of the Polyakov loop susceptibility o
tained by the histogram method on an 8434 lattice withg2>2.1.
The circles denote the simulation point.

FIG. 13. b dependence of the Polyakov loop susceptibility o
tained by the histogram method on an 8436 lattice withg2>4.0.
The circles denote the simulation point.
5-8
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STUDY ON THE NONPERTURBATIVE EXISTENCE OF . . . PHYSICAL REVIEW D 62 105025
where f n’s are fitting parameters, and dbC /dg5 f 1 at g
5g0. The range ofg and nmax are chosen such that th
results of the dbC /dg are independent of the fitting rang
and the fitting function. We adopt60.005 from the simula-
tion point as the fitting range ofg and thenmax53 for the
final results, respectively. The bin size of the jackknife er
analysis is 1000.

The transition points in theb-g plane are shown in Fig
16, where the circles are the results forN554 and the dia-
monds are those forN556, respectively. The short lines o
these symbols denote the upper and lower bound of the s
of the transition curve. Two solid lines show the boundar
of the region in which two kind of phases coexist. Note th
these boundary lines in Fig. 16 are obtained in the unco
pactified theory.~Figure 10 is an illustration of Fig. 16 trans
formed into theb42b5 plane.! The interpolation curves ar

FIG. 14. Large peaks of the Polyakov loop susceptibility o
tained by the histogram method atg252.0 on an 8434 lattice, and
g253.6 and 3.8 on an 8436 lattice, respectively.

FIG. 15. Flip-flop in the history of the plaquette value atg2

54.0 on an 8434 lattice.
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the dashed curves in Fig. 16, which are determined from
positions ofbC(g) and its slopes. As we see from the figur
the critical lines bend strongly atb'1.71 andg'1.42 for
the 8434 lattice, andb'1.75 andg'2.0 for the 8436
lattice. The bending points are the merging points of t
transition lines, the one for the phase transition character
by the second order transition of the transverse Polya
loop ~4.2! and the other one by the first order transition th
is insensitive toN5.

B. Calculation of b̄ lat

Using the data given in Tables I and II, we can expre
the b function in terms ofs, wheres is given in Eq.~5.2!.

-

TABLE II. Results for bC and dbC /dg by the histogram
method. The simulations are performed at (b4 ,b5).

lattice g2 (b4 ,b5) bC dbC /dg

8434 2.0 ~1.21250, 2.42500! 1.71472~6! 20.0087~58!

2.1 ~1.18350, 2.48535! 1.71342~25! 20.067~16!

2.5 ~1.07080, 2.67700! 1.69060~36! 20.2219~82!

3.0 ~0.95000, 2.85000! 1.64702~31! 20.3337~67!

4.0 ~0.77000, 3.08000! 1.54018~48! 20.4049~79!

6.0 ~0.55100, 3.30600! 1.34560~59! 20.426~17!

8.0 ~0.42500, 3.40000! 1.19790~47! 20.368~11!

16.0 ~0.21875, 3.50000! 0.87265~37! 20.2070~36!

8436 3.6 ~0.92750, 3.33900! 1.75943~8! 0.0059~12!

3.8 ~0.90150, 3.42570! 1.75654~19! 20.0536~71!

4.0 ~0.87750, 3.51000! 1.75339~44! 20.088~36!

5.0 ~0.76900, 3.84500! 1.72102~26! 20.1723~61!

6.0 ~0.68500, 4.11000! 1.67534~51! 20.2505~89!

8.0 ~0.55550, 4.44400! 1.57140~61! 20.3080~82!

10.0 ~0.46400, 4.64000! 1.46861~61! 20.3194~99!

16.0 ~0.30625, 4.90000! 1.229223~65! 20.2533~96!

FIG. 16. Phase transition points forN554 (s) andN556 (L)
in the b-g plane. Two solid lines denote the boundaries of t
region in which two kind of phases coexist. Compare the fig
with Fig. 10.
5-9
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SHINJI EJIRI, JISUKE KUBO, AND MICHIKA MURATA PHYSICAL REVIEW D 62 105025
Then it is straightforward to computeb̄ lat from Eq.~5.4!. The
results are shown in Fig. 17, where the circles are obtai
on the critical line withN554 and the squares are those w
N556. As we see from Fig. 17, we obtain the sameb func-
tion for two differentN5 ~or a5c). This implies that the lat-
tice system on two different critical lines describes the sa
physical system, and finiteN5 or equivalently finitea5 ef-
fects may be regarded as negligibly small. In Fig. 18
showg22 defined in Eq.~5.3! obtained from the data. Thi
data indicate thatg22 depends only on the variables, sup-
porting our assumption that the critical compactification
dius RC is a physical quantity. Moreover, Fig. 18 sugge
that g22(s) is almost a liner function. Its theoretical inte
pretation will be given in the next subsection. Note that
result above obtained forb̄ lat does not verify the assumptio
that the compactification radiusR is kept fixed at the critical

FIG. 17. b̄ lat as a function ofs determined on the transition line
of N554 (s) and N556 (h). The figures show the physica
equivalence between the critical lattice systems.

FIG. 18. The power-law behavior ofg22 as a function ofs
determined on the transition lines ofN554 (s) and N556 (h),
where the straight line is the one-loop line~5.15!.
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value RC along the line of the phase transition due to t
compactification. To verify this assumption we need an a
lytical consideration as we will do in the next subsection.

At this point we should emphasize that, in the region w
small g2, the transition is of first order and is not related
the compactification. It implies that there is no reason
assume that the compactification radius isRC near the first
order phase transition. In Fig. 18, the order of the transit
turns to be of first order aroundg2250.95 for both cases o
N554 and 6. Therefore, the reliable region in which t
compactification can be assumed to beRC , is g22,0.95.
We, however, will assume in the next section, that the line
R5RC exists, departing from the transition line aroun
g2250.95 and entering into the deconfinement phase. H
this line extends into the deconfinement phase canno
found out within the framework of the Monte Carlo simul
tions; we need analytical considerations as we will do in
next subsection. There we will discuss the theoretical in
pretation of our data, and extrapolate the line ofR5RC into
the region of a smallerg2.

C. The e expansion, the power-law behavior and the
ultraviolet fixed pont

The power-law behavior of the gauge coupling is inde
suggested by its canonical dimension, dim@g#5(42D)/2,
whereD is the number of the space-time dimensions. In
various explicit computations in perturbation theo
@9,16,23#, this behavior has been directly seen. However,
explicit computations have been carried out basically wit
the frame work of perturbation theory, and so the result m
not be trustful because the theory is perturbativ
nonrenormalizable.5

The simplest way to see the power law behavior in p
turbation theory may be in the dimensional regularizat
scheme, as we do it briefly. LetgD be the dimensionless
gauge coupling in the pureSU(NC) Yang-Mills theory in
D541e dimensions. Theb function is given by@16,14#

bD5L
dgD

2

dL
5egD

2 1
2b

16p2
gD

4 1O~e2! with b52
11

3
NC .

~5.7!

Now to mimic the dimensionless gauge coupling defined
the compactified theory@see Eq.~5.3!#, we introduce

g̃25
gD

2

~2pRL!D24
, ~5.8!

whoseb function becomes

5The result of Refs.@19,23# goes slightly beyond the perturbatio
theory because, though a number of nontrivial truncations to de
an approximation scheme should be introduced, it is based on
exact Wilson renormalization group approach@31#.
5-10
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b̃5L
dg̃2

dL
5

2b

16p2
~2pRL!D24g̃41••• ~5.9!

52
11

12p2
~2pRL!g̃41••• for NC52, D55.

~5.10!

Equation ~5.7! suggests that there could exist a nontriv
ultraviolet fixed point forgD , and as we have mentioned
the Introduction, this possibility in the uncompactified theo
was ruled out by the numerical studies of Refs.@13–15#.
Note that if the fixed point is real, then it means that t
redefined couplingg̃ behaves as an asymptotically free co
pling, because

g̃22→2
2b

16p2

~2pRL!D24

~D24!
→` as L→`.

~5.11!

Translated intogD , we obtain

gD
225

g̃22

~2pRL!D24
→2

2b

~D24!16p2
as L→`,

~5.12!

which is consistent with the fixed point value obtained fro
Eq. ~5.7!.

The form of the latticeb function in perturbation theory
may be derived from theb function ~5.10!, if we know the
relation betweenL anda4. Since all the~four-dimensional!
momenta in a lattice theory are restricted to the first Brillou
zone @2(p/a4),pm<(p/a4)#, the momentum cutoff is
up/a4u. That is, L25(m51

4 (p/a4)25(2p/a4)2, which im-
plies that

L5
2p

a4
. ~5.13!

So, the suggested one-loop latticeb function is

b lat
(0)52

11

12p2
sg4, ~5.14!

where6 we have useds52pN5 /j, R5N5a5/2p and j
5a4 /a5.

D. The power law from the data

Now we would like to proceed with our numerical anal
sis. Since the data in Fig. 18 suggest thatg22 can be ap-
proximated by a linear function in the region we investiga

6So far there exists no perturbative computation ofb lat in litera-
ture. Note also that the one-loop coefficient ofb lat

(0) depends not
only on the regularization employed, but also on the definition
the gauge coupling. Our definition is given in Eq.~5.3!.
10502
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the one-loop form of theb function ~5.14! is approximately
correct. So we fit the function ofs with the form

gp
225C11

C2

12p2
s ~5.15!

for the data ofg22 at the second order transition. We fin
that the best values forN554 areC1520.208(8) andC2
59.84(17) withx2/d f51.4, and those forN556 areC15
20.263(15) andC2510.71(21) withx2/d f50.4, respec-
tively. In Fig. 18 we compare the data forg22 with gp

22 for
N556. As we can see from Fig. 18, the one-loop ans
~5.15! fits well to the data, and moreover, the coefficient
front of s on the right-hand side of Eq.~5.15! is close to the
one suggested in Eq.~5.14!. Since the data withN554 and 6
seem to lie on the same line, we also fit these data simu
neously. We obtainC1520.224(6) andC2510.16(11)
with x2/d f51.7, which is a reasonable value, implying th
the fittedgp

22’s for different N5 agree with each other. Th
fact that our data have a one-loop interpretation indicate
the assumption that the compactification radiusR is kept
fixed atRC along the line of the phase transition due to t
compactification may be correct.

Next, to discriminate the logarithmic behavior we wou
like to try to fit for the data ong22 a function of the form

gl
225B11

B2

16p2
ln s, ~5.16!

and find thatB1520.836(14) andB25100.9(1.1) using the
data forN554 and 6. This fit is not a good one because
obtainx2/d f533. Moreover, the coefficientB2 for the loga-
rithmic function~5.16! cannot be explained within the fram
work of perturbation theory. Namely, if the compactifie
theory on a lattice is simply a four-dimensional theory w
Kaluza-Klein excitations of a finite numbern, then the coef-
ficient B2 should be equal to (40/3)n. Sincen could vary
between 1 andN556, perturbation theory for this assump
tion would predict

13&B2&80, ~5.17!

which clearly disagrees with the value ofB2 obtained from
fitting for the data. Since we have found that the one-lo
form of the power law behavior describes the data well,
higher order contributions, especially those coming fro
nonrenormalizable operators~remember the naive continuum
theory is not renormalizable by power counting! must be
suppressed, at least in the parameter region in our nume
simulations.

It is the subject of the next section to investigate th
possibility, where we will assume that the theoretical fun
tion ~5.15! can be used to draw the lines ofR5RC even in
the deconfining phase of the transverse Polyakov loop~4.2!.

VI. TOWARD A CONTINUUM LIMIT

In the weak coupling regime, which is the most importa
regime to investigate a continuum limit, the way to use t

f
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transverse string tension as a physical quantity to giv
physical scale is not available, because the phase trans
due to the compactification in that regime disappears. On
the central assumption in discussing the continuum limit
this paper is that the one-loop function~5.15! can be ex-
tended into the weak coupling regime. Equivalently, we
sume that theb-function for a given compactification radiu
R is given by

b lat52a4

dg2

da4
52

C2

3

R

a4
g4, ~6.1!

whereC2 is given in Eq.~5.15!. The assumption implies tha
we can draw lines ofR5 const in the weak coupling regime
On these lines the simulation parameterb becomes a func-
tion of g, which can be obtained from Table I and Eqs.~5.3!
and ~5.15!. So, given the latticeb function ~6.1! we now
know how to approach continuum limits. The object who
scaling property should be investigated is the longitudi
lattice string tensions lat which we replace by the Creut
ratio ~4.1!. As we have seen in Sec. IV, the longitudin
Creutz ratio can be nonvanishing even in the deconfin
phase of the transverse Polyakov loop. In the following s
sections we will investigate the scaling law of the longitu
nal string tension

s lat5sphysa4
25sphysa5

2j2, ~6.2!

where we have assumed thatsphysshould remain finite in the
continuum limit.

A. a5\0 limit

We apply the scaling hypothesis~6.2! to thea5→0 limit
with j fixed at a certain value. As we have stated, we assu
that the one-loop function~5.15! can be extended into th
weak coupling regime. If we move along the line ofj
5const, we change the compactification radiusR. To express
this more precisely, we first derive the scaling law for th
case. To this end, let us consider the lines ofR5const for
variousN5 in the parameter space (b,j), where it is implic-
itly assumed that the constantsC1 andC2 in Eq. ~5.15! are
independent ofN5 ~the consistency of this assumption
checked forN554 and 6 in Sec. V!:

b52
D1

N5
j1D2 , D1524C1 , D25

2C2

3p
. ~6.3!

Sincea55RC /(2pN5) andRC is assumed to be a physic
quantity, we obtain from Eq.~6.3!

a5}~N5!21}~b2D2!. ~6.4!

Inserting Eq.~6.4! into Eq. ~6.2!, we find that

lns lat52lnub2D2u1const. ~6.5!

Here, we use the value ofD2 obtained by fitting the data
for N554 and 6 simultaneously. The result of this scali
behavior is shown in Fig. 19, where we have used the4

34 lattice with g52.0 as for Fig. 11. The bold line corre
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sponds to the theoretical line~6.5!. We see from Fig. 19 tha
the scaling law~6.5! is well satisfied for 1.6&b&1.8. Below
;1.5 we enter into the region of the strong coupling, an
above;1.9, finite size effects due to smallN4a4 presumably
start to become visible. So we may conclude that the data
consistent with the scaling law~6.5!. This is an important
result, and is indeed the only result which supports the c
rectness of the assumption that the lattice spacing ha
physical scale even in the deconfining phase of the transv
Polyakov loop and of our way how to extend the lines
R5const into that phase; an evidence for the existence of
fixed point suggested in thee expansion.

B. a4 ÕR\0 limit

Next, we would like to investigate the scaling behavior
the longitudinal lattice string tension in thea4 /R→0 limit
with R kept fixed. Since 2pR5N5a5, the lattice spacinga5
is kept fixed in this limit for a givenN5. Then, the string
tension should obey the scaling law

s lat}j2 or lns lat52lnj1const. ~6.6!

We compute on 843N5 lattices withN552, 3, 4, 5, 6
and 8 the longitudinal Creutz ratiox( i , j ) along the theoret-
ical line of R5const on whichN556 is critical. To deter-
mine this line, we used theC1 andC2 in Eq. ~5.15! obtained
from the data ofN556. Note that for a givenN5 the com-
pactification radiusR is N5a5 /(2p)5(N5/6)RC . In Fig. 20,
we plot lnx(i,j) as a function of lnj. If the slope of the
ln x(i,j) is equal to 2, the scaling relation of Eq.~6.6! is
realized. In theN558 case, the results of the ordered st
and disordered start are split, and the longitudinal Cre
ratio x( i , j ) with large i and j of the ordered start fall dras
tically when we move from a largej to a smallj. This is in
accord with our expectation, because the lattice system
responds to the uncompactified. In theN556 case~the com-
pactification radiusR is equal toRC) the longitudinal Creutz

FIG. 19. Scaling behavior of the Creutz ratio along theg2

54.0 line on an 8434 lattice. The solid line is ln(x)52 lnub2D2u
11.2 @see Eq.~6.5!#, whereD252.156(23).
5-12
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FIG. 20. Scaling behavior of the Creutz ratio forN552, 3, 4, 5, 6, and 8 measured on the line expected from the one-loopb function
~5.15!. The open symbols are the results of the ordered start and the filled symbols are those of the disordered start.
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ratios also start to fall down around lnj'1.1. Therefore, the
lattice system above does not correspond to any fo
dimensional theory, rather it describes a full fiv
dimensional theory. Keeping this in mind, we continue
consider theN555, 4, 3, and 2 cases.
105025
-
The results are also shown in Fig. 20. As we see fro

these figures, the longitudinal Creutz ratios no longer f
drastically. Comparing the slope of these longitudinal Creu
ratios with the straight lines of the slope 2, we find that th
longitudinal Creutz ratios forN5*3 decrease faster thanj2
-13
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SHINJI EJIRI, JISUKE KUBO, AND MICHIKA MURATA PHYSICAL REVIEW D 62 105025
asj decreases. If this continues to smallerj, i.e., smallera4,
we may conclude that forN5*3 the string tensionsphys
decreases asa4 decreases so thatsphys vanishes in the
a4 /R→0 limit.

As we have observed, the slope of the Creutz ratios
comes milder asR decreases. This tendency of the milde
becoming slope with decreasingR is a real effect and not an
effect of a finite N5, at least N5>4 or equivalently R
>(2/3)RC , which we may conclude from the fact that o
data show that the critical lattice systems withN556 and 4
describe the same physical system. Some finite size eff
may be present in the case ofN553 and 2 in Fig. 20. Nev-
ertheless, the tendency can be seen for these cases, too
this tendency of the milder-becoming slope that suggests
existence of a continuum theory with a nonvanishing str
tension. If we assume that in the present case of setting
longitudinal Creutz ratio starts to scale according to the s
ing law ~6.6! from N552 on, we obtain the maximal com
pactification radius

RM'
RC

3
'

1

10Asphys

, ~6.7!

below which the compactified theory with a nonvanishi
string tension could exist nonperturbatively.

We would like to notice that, though the qualitative natu
of the milder-becoming slope is real, the scaling behavio
the longitudinal Creutz ratio itself is sensitive to the cho
of the extrapolation function~5.15! that describes the lines o
R5const. It is therefore clear that for a more definite co
clusion more refined analyses with a lager size of lattice
indispensable.

C. ‘‘Simulated’’ N5\` limit

To consider theN5→` limit with R5const, we have to
enlarge the size of our lattice. Instead of enlarging the s
however, we can simulate the limit with the data that
have already at hand. We would like to argue below that
second limiting process,a4 /R→0 with a5 fixed at ana5c
~see Fig. 19! can be interpreted as ana4 ,a5→0 limiting
process withR fixed. (a5→0 with R fixed is the same as
N5→` with R fixed.!

We have been assuming that the theoretical func
given in Eq.~6.3! describes a set of the lines ofR5const in
the b-j plane for differentN5. All lines so obtained are
assumed to be physically equivalent: To each point on a l
there exists an equivalent point on each line. It follows th
that all the points on a line described by Eq.~6.3! for a given
N5 can be transformed into a line that is parallel to theb axis
in the b-j plane. The mapping can be easily found, beca
the values of the gauge couplingg on the physically equiva-
lent points should be the same. Sinceb does not change i
the ratioj/N5 is fixed @see Eq.~6.3!#, the value ofg does not
change if we move along a line parallel to thej axis ~see Eq.
~5.3!#. That is, to find a set of physically equivalent poin
we just have to move parallel to thej axis. Therefore, mov-
ing along a line described by Eq.~6.3! for a givenN5 can be
assumed to be physically equivalent to moving along a
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with j5const while changingb and N5: We can simulate
enlargingN5 without changingN5. Since the compactifica
tion radiusR is assumed to be a physical quantity, it rema
unchanged during the transformation.

Consequently, the scaling behavior of the Creutz rat
studied in Fig. 20 can be reinterpreted as the scaling beha
along a line withj andR kept fixed, where the scaling law
appropriate for this limiting process is given in Eq.~6.5!:
The vertical axis lnj in Fig. 20 should be replaced b
lnub2D2u1lnuN5 /D1u and the straight line should be unde
stood as lnx52 lnub2D2u1const, where we have used E
~6.3!. We arrive at the same conclusion as in thea4 /R→0
case, which we do not repeat here again. But as we h
stated there, the tendency of the milder-becoming slope w
decreasingR is a real effect, at least forR>(2/3)RC . This is
so here, too, because our data show that the critical la
systems withN554 and 6 describe the same physical syst
so that the above mentioned transformation at least betw
theN554 and 6 lines is trustful. The simulatedN5→` limit
we have considered here should be regarded as a predi
of the real limit, at least forR>(2/3)RC .

VII. SUMMARY AND CONCLUSION

Our motivation in this paper has been to see, within
framework of the lattice gauge theory, whether or not t
nontrivial fixed point found in thee-expansion in the con-
tinuum theory of the pureSU(2) Yang-Mills theory in five
dimensions is spurious in the case that the fifth dimensio
compactified. We have used intensively anisotropic latti
to take into account the compactification. We have fou
that the compactification changes the nature of the ph
transition: A second order phase transition, which does
exist in the uncompactified case, begins to occur, and tu
to be of first order at a certain point.

Under the assumption that the compactification radiuR
remains constant fixed at the critical valueRC along the criti-
cal lines of the phase transition due to the compactificati
we have computed the latticeb function b̄ lat , and found that
b̄ lat as a function ofs, obtained from the critical line ofN5
54 and 6, is the same~see Fig. 17!. We have also found tha
the gauge coupling on these critical lines is the same~see
Fig. 18!. From these observations we have concluded that
critical lattice system withN554 and 6 describes the sam
physical system, and we are led to the assumption that th
the case for allN5.

As we can see from Fig. 18, the power-law running of t
gauge coupling~the solid line! is consistent with the data
which has a simple one-loop interpretation. This is the f
that supports the correctness of the assumption, at leas
N554 and 6, that the compactification radiusR remains con-
stant fixed at the critical valueRC along the critical lines of
the phase transition due to the compactification.

At this point it is the natural thing to extend our finding
into the deconfining phase of the transverse Polyakov lo
We have assumed that the lattice spacing has a physical
even in the deconfining phase and the one-loop ansatz~5.15!
can be used to draw the lines ofR5const in that regime. The
5-14
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investigation of the scaling law~6.5! for the longitudinal
Creutz ratio~4.1! shown in Fig. 19 supports the correctne
of this assumption. At this stage, the existence of the n
trivial fixed point suggested in thee expansion might be
evident.

We have investigated the scaling behavior of the long
dinal Creutz ratio in thea4 /R→0 limit with R kept fixed,
and found that the slope with which the Creutz ratios fall
the a4 /R→0 limit becomes milder asR decreases~see Fig.
20!. In the case ofN553 and 2 in Fig. 20, there are may b
some finite size effects, but the tendency of the mild
becoming slope of the Creutz ratio should be real in th
cases, too. It is this tendency that suggests the existence
continuum theory with a nonvanishing string tension. Fro
this behavior of the Creutz ratio, we are led to the interp
tation that the compactified theory having a nonvanish
ath

B

y

li,

s,
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string tension could exist nonperturbatively if the compac
fication radiusR is smaller than the maximal compactifica
tion radiusRM . Our estimate isRM'RC/3'0.1/Asphys.

It is clear that to make our interpretation more solid, w
need not only refined and detailed numerical analyses
also analytical investigations. We hope that further stud
will clarify the problems on the quantum realization of th
old Kaluza-Klein idea.
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