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We study some of the novel effects that arise when the QCD axion is placed in the “bulk” of large extra
spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale
associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be
adjusted independently of its couplings to ordinary matter, a feature which is not possible in four dimensions
and which may contribute to axion invisibility. Second, we discuss the new phenomenon of laboratory axion
oscillations(analogous to neutrino oscillationsand show that these oscillations cause laboratory axions to
“decohere” extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contribut-
ing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes
and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we
show that under certain circumstances the presence of an infinite tower of Kaluza-Klein axion modes can
significantly accelerate the dissipation of the energy associated with cosmological relic axion oscillations,
thereby enabling the Peccei-Quinn symmetry-breaking scale to exceed the usual four-dimensional relic oscil-
lation bounds. Together, these ideas therefore provide new ways of obtaining an “invisible” axion within the
context of higher-dimensional theories with large-radius compactifications.

PACS numbgs): 11.10.Kk, 11.25.Mj, 14.80.Mz

I. INTRODUCTION ©=0 +argdetM. 2

One of the pressing theoretical issues that confronts thfiere @ s the strong-interactio®-angle reflecting the non-
standard model of particle physics is to understand the Ofigiyial nature of the QCD vacuum, and argdiét(with M
gins of CP violation. While the weak interaction is well genoting the CKM matrixis the contribution arising from
understood to lead t@P violation through complex phases \eak interactions. However, measurements of the neutron
in the Cabibbo-Kobayashi-Maskaw&KM) fermion mass  ejectric dipole moment place the stringent experimental
matrix, CP violation may also independently arise from the poynd

physics of the strong interaction. Ordinarily, one might have
assumed the strong interaction to conse@/@. However, 0=10"° 3)
theU(1) problem[1] [namely, the inability to interpret the

particle as the Nambu-Goldstone boson of a spontaneous . =
brokenU(1) flavor symmetry turns out to require a non- E’xplalmng the small size o is the strongCP problem[3].

trivial QCD vacuum structur¢2] which in turn naturally The mo§t elggant explanatpn of th_e str@@grgblem 'S
leads toCP violation. Specifically, one finds that the effec- the Peccei-QuiniiPQ mechanisni4], in which © is set to
tive Lagrangian describing the strong interaction should b&€ro dynamically as the result of a global, spontaneously

augmented by an additionglP-violating contribution br_oken_U(l) Peccei-_Quinn symmetry. However, associated
with this symmetry is a new Nambu-Goldstone boson, the
R 5 axion [5,6], which essentially replaces thH@ parameter in
L eff= Locpt ®WF§”F pva (1) the effe(_:tive Lagrangian. This then results in an effective
Lagrangian of the fornj3]
— . . . 2
where the® parameter receives two contributions: a g ~
P EEﬁZEQCD—I—%ﬁﬂaﬁMa‘l‘f—gSTngVFﬂva (4)
PQ T
*Email address: dienes@physics.arizona.edu where fpq is the axion decay constant, associated with the
"Email address: emilian.dudas@th.u-psud.fr scale of PQ symmetry breaking. Herg is a model-
*Email address: tony.gherghetta@cern.ch dependent parameter describing the PQ transformation prop-
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erties of the ordinary fermions, and we have not exhibitedhe neutrino seesaw scale and obtain neutrino oscillations
further Lagrangian terms which describe axion-fermion couwith light (or even vanishind14]) neutrino masses.
plings. The mass of the axion is then expected to be of the At first sight, it may seem that Kaluza-Klein modes for
order the axion cannot possibly have a significant effect on axion
phenomenology. After all, we do not generally expect
Aéco Kaluza-Klein modes to play a significant role unless their
- ©) masses are of the same order as the mass of the usual four-
dimensional state. However, because extra spacetime dimen-

where A gcp~250 MeV; likewise, the couplings of axions siong off the brane can p_otentially be asllarge as a millimeter,
to fermions are suppressed by a factor ofpd/ Thus, the lightest corresponding Kaluza-Klein modes can have

74 . . .
heavier scales for PQ symmetry breaking generally implyNasses-O(10 " eV). Note, in particular, that this bound
lighter axions which couple more weakly to ordinary matter.d0€S not rely on choosing any particular mass scale for our
Ordinarily, one might have liked to associate the séalg underlying higher-dimensional theory, and likewise makes
with the scale of electroweak symmetry breaking, implyingn© @ssumption concerning tit@n-isotropy of the compacti-
an axion mass near the electron mass~O(10?) keV. fication. Instead, this bound comes directly from the current
However, experimental searches for such axions have so f atus of gravitational Cavendish experiments. Remarkably,

been unsuccessfil’], and indeed only a narrow allowed NOWever, this Kaluza-Klein bound falls directly within the
window currently exi:c,ts: allowed rangg(7) for the mass of the four-dimensional ax-

ion. It is precisely for this reason that it is important to study
10t GeVsfpgs 1012 GeV. (6) the effects that Kaluza-Klein axions can have on axion phe-
nomenology.

Given this, we shall find that placing the axion in the bulk
can have a number of surprising consequences for axion

1075 ev=m,<102 eV, (7) ph_ysics_, gll_of which provide new ways of rendering the

axion “invisible.”

and whose couplings to ordinary matter are exceedingly sup- First, in Sec. Il, we shall show that the mass of the axion
pressed. These bounds generally result from various combfan bedecoupledrom the PQ symmetry-breaking scale, and
nations of laboratory, astrophysical, and cosmological conynder certain circumstances is essentially set by the r&lius
straints. In all cases, however, the crucial ingredient is th@f the bulk:
correlation between thmassof the axion and the strength of
its couplingsto matter, since both are essentially determined m,=O(R™1). (8)
by the single parametdipg.

In this paper, we point out that this situation may be dras-Thus, remarkably, the allowed ran¢@ for the axion mass
tically altered in theories with large extra spacetime dimen-s consistent with radii in the millimeter or sub-millimeter
sions. Since their original proposg8], such theories have range. More importantly, however, this result implies that it
recently received considerable attention because of theis possible to adjust the PQ symmetry breaking scale inde-
prospects for lowering the fundamental grand unified theorypendently of the axion mass in order to control the strength
(GUT) scale[9], the fundamental Planck scdl#0], and the  of the couplingsof this axion to ordinary matter. This feature
fundamental string scalgl1]. As a result of these develop- does not arise in four dimensions, and might be useful in
ments, it is now understood that all three of these scales mayrder to provide an alternative explanation for an “invis-
be adjusted to arbitrary values, perhaps even values in thble” axion. A detailed numerical discussion of this possibil-
TeV range, without violating experimental constraints. Ofity will be presented in Sec. V.
course, if one lowers these fundamental scales below the PQ Second, in Sec. Ill, we shall show that the presence of an
symmetry-breaking scale in E¢6), then it might seem dif- infinite tower of Kaluza-Klein axion modes can induce the
ficult to preserve the axion solution to the stro@@ prob-  novel phenomenon ofaboratory axion oscillations These
lem. In fact, this observation has been uft?] to argue that oscillations are completely analogous to laboratory neutrino
the fundamental scales of physics should be taken at sonscillations, but we shall find that under certain circum-
intermediate scale near the PQ scale. However, this argumestances they lead to a complete and rapid decoherence of the
assumes that the PQ mechanism itself remains untouched layion field. This implies that an axion, once produced in the
the presence of the extra large dimensions. laboratory, will “decohere” extremely rapidly. This is there-

In this paper, we shall generalize the PQ mechanism tdore a second higher-dimensional phenomenon that can con-
higher dimensions. More specifically, we shall consider theribute to the “invisibility” of the axion under certain cir-
consequences of placing the PQ axion in the “bulli’e.,  cumstances.
perpendicular to thep-brane that contains the standard Third, in Sec. lll, we shall also discuss the role played by
mode) so that the axion accrues an infinite tower of Kaluza-the excited axion Kaluza-Klein states in axion-mediated pro-
Klein excitations. Placing the QCD axion in the bulk has alsocesses and decays, and propose several experimental meth-
been discussed previously in Rdf$0,13], and is completely ods of detecting their existence. These would therefore pro-
analogous to recent ideas concerning the placement of thede direct experimental tests of the higher-dimensional
right-handedneutrinoin the bulk[14,15 in order to lower nature of the axion field.

m
a fpo

This then implies an axion which is exceedingly light,
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Finally, in Sec. IV, we shall show that under certain cir- . & g? -
cumstances, the presence of the infinite tower of Kaluza- Scoupling:j d™xdy;— WaFZVFWa(S(Y) (13
Klein axion modes can actualbcceleratethe dissipation of PQ

the energy associated with cosmological relic axion OSCi”awhereFWa is the (four-dimensional QCD field strength de-
tions. This implies a weakening of the usual four- scribing the QCD gauge fields which are confined to a four-
dimensional cosmological relic oscillation bounds on the PQ4imensional subspade.g., a D-branelocated aty=0, and
symmetry-breaking scale, which in turn may permit axion-ywhere ¢ is a model-dependent quantity parametrizing the

matter couplings to be suppressed even more strongly than Byrength of the axion couplings to matter. Thus, our total
the usual four-dimensional case. This is therefore a thirgiffective five-dimensional axion action takes the form

higher-dimensional feature leading to an “invisible” axion.

Together, these results suggest that “invisible” axions 1 2 ~
can emerge quite naturally within the context of higher- Seff:f d*x dY{ngﬁMaﬁManf—327723F§VFWa5(y) :
dimensional theories with large-radius compactifications, PQ
and have significantly different phenomenologies than they (14
do in four dimensions. Moreover, many of our results apply While we have assumed that the spontaneously broken
to bulk fields in general, and transcend the specific case dfi(1)pq is parametrized bypq, one still has to address the
the axion. This is illustrated in Sec. VI, where we considerfact that gravitational effects can also break thel )pq Sym-
the consequences of extra dimensions for another hypothetiretry. In other words, gravitational interactions do not re-

cal particle, the so-called standard-model dilaton. spect global symmetries. Ultimately, this can lead to a gravi-
tational contribution to the axion mass which is not

Il. A HIGHER-DIMENSIONAL PECCEI-QUINN necessarily suppressed. In this paper, however, we will as-

MECHANISM sume that the gravitational contributions to the axion mass

) . i are indeed suppressed, and thfl)po remains a valid sym-
In order to generalize the Peccei-QuiQ mechanism  metry even in the presence of gravitational effects. For ex-
to higher dimensions, we will assume that there exists a comympje, such suppression might arise due to the suppression
plex scalar fieldg in higher dimensions which transforms of gravitational interactions across a large bulk, discrete

under a global(1)pq symmetry: symmetries of the sort that might come from Scherk-
ait ) Schwarz compactifications, or other large-radius effects.
p—e’e. Likewise, we point out that if our underlying higher-

This symmetry is assumed to be spontaneously broken by tHimensional theory is a string theory, then such a global PQ
bulk dynamics so tha¢¢)=prl\/§, wherefpq is the en- symmetry can emerge only as an effective symmetry of the

ergy scale associated with the breaking of the PQ symmetr Igvy-energy effective string Lagra_mg|an. This is becaqse
We thus write our complex scalar field in the form string theory does not provide continuous global symmetries.
In order to obtain an effective four-dimensional theory,

f our next step is to compactify the fifth dimension. For sim-
b~ _PQgialfpg (10) plicity, we shall assume that this dimension is compactified
2 on aZ, orbifold of radiusR where the orbifold action is

. _ ) identified asy— —y. This implies that the axion field will
wherea is the Nambu-Goldstone bosadaxion field. If we  pave a Kaluza-Klein decomposition of the form
concentrate on the case of five dimensions for concreteness,
then the kinetic-energy term for the scalar field takes the * n
form a(xy)= EO an(x“)cos(— (15)

i

1
Skg= f d*x dyMgdy ¢* M p= f d*x dyM, = dyadVa wherea,(x*) € R are the Kaluza-Klein modes and where we
(11) have demanded that the axion field be symmetric under the
7, action (in order to have a light zero mode that we can

whereM is a fundamental mass scdleg., a type | string identify_wit_h the usual four-dimensional axipn o
scald, and where we have neglected the contributions from [N Principle, we should also allow for the possibility that
the radial mode. Here* are the coordinates of the four the axion fieldwindsnon-trivially around the extra compac-
uncompactified spacetime dimensiogss the coordinate of {ified dimension, with winding numbew. This possibility of
the fifth dimension, and thel spacetime index runs over all Winding arises becauseis really only an angular variable,

five dimensionsxM=(x*,y). Note that there is no mass &S evident from Eq(10), and would imply that we should

term for the axion, as this would not be invariant under thentreduce an extra terw fpqy/R into the mode expansion
U(1)pq transformation (15). Note, in particular, that such windings cannot be re-

moved by global Peccei-Quinn transformations of the form
a—a+fpoA. (12) (12). However, such a winding term would not be invariant

under the orbifold symmetry— —y, and thus only the un-

Furthermore, as a result of the chiral anomaly, we will alsowound configuratiorw=0 survives the orbifold projection.
assume a bulk-boundary coupling of the form Even if we were to compactify the axion field on a circle
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rather than an orbifold, such a term would contribute only an Two comments are important at this stage. First, in toroi-
overall additive constant to the resulting effective potentialdally compactified higher-dimensional theories with reduced
for the axion field, and would not change any of the subsePlanck scales, the higher-dimensional Planck st&leand
quent physics. It is therefore sufficient to restrict our attenthe usual four-dimensional Planck scMe,,cxare related to

tion to the unwound configuration witlv=0. each other vid10]
It is also interesting to note that with respect to the four- o
dimensional Kaluza-Klein axion modea,, the Peccei- Mpianci= (27R M, )™M (20)

Quinn transformatiori12) takes the form ) . ) ) .
wheren is the total number of extra spacetime dimensions in

ap—ap+ fpoh the bulk. IdentifyingM, ~Mg, we therefore see that the
(16y  n-dimensional volume factor @RMy)"? must already be
a,—ay forall k>0. adjusted in order to account for the difference betwbkn

_ ~O(TeV) andM pne- O(10'° GeV). If we were to take
Thus, we see that onlg, serves as the true axion transform- 5=n for the current axion case, this would imply either that
ing under the PQ transformation, while the excited Kaluza-]szN,vIPIanck (which would presumably overclose the uni-

Kleén tr)nqde;ak rEemiin i_nvariémt. 14 and i . verseg, or that Mg<O(TeV) (which would clearly violate
H l;_fs;uttét_mg 919 mtoh g. ( b) an '”tegf;a“f_‘g 0\]{er current experimental boundsTherefore, if we assume an
the Tiith dimension, we then obtain an efiective four-;qqopic compactification with all radii taken equal, we see

dimensional Lagrangian density that an intermediate scaquQ can be generated via EQL9)
1 2 2 only if we haves<n. In other words, under these assump-
Leg= £QCD+§ > (aﬂan)z—z > @aﬁ tions, the axion must be restricted tosabspaceof the full
n=0 n=1 higher-dimensional bulk. This has already been pointed out
in Ref.[13], and is analogous to similar restrictions that arise
+ = ¢ ¢ (2 r.a )F”“”F (17) in the case of higher-dimensional neutrindst,15. Note
o 32 " that such “partial-bulk” fields generically arise in type |
string theory; a discussion of some of their phenomenologi-
where cal effects and collider signatures can be found in RE3].
1 fn=0 Our second comment concerns the relevance of the mass
fn={ I n=> (18) scalepr that is generated by this volume factor. Of course,
V2 ifn>0. it is apparent from Eq(17) thatfpq (rather tharf po) sets the
scale for couplings between gauge fields and individual ax-
ion modesa, . However, we have also seen in Ed7) that
the gauge fields couple not to an individual axion mage
but rather to the linear superposition

Note that in order to obtain Eq17), we must individually
rescale each of the Kaluza-Klein modgsin order to ensure
that they have canonically normalized kinetic-energy terms
It is this that produces the relative rescaling coefficiepts

Eq. (18). We have also definetho=(VMg)**fpq, whereV Nm
is the volume of our compactified space. Bbextra dimen- a'= \/—_ 2 rhan= \/_
sions, this definition generalizes fag=(VM2) % pq. For -

example, assuming &-dimensional toroidal compactifica- \yhere

tion impliesV=(27R)?, resulting in the relation

Nmax

ap+ 2 2 an) (21)

R N=1+2na- (22
fpo= (2R Mg) ¥ p. (19
Heren,,.xis a cutoff, determined according to the underlying
Note that whilefpq sets the overall mass scale for the mass scal®¢ (which sets the limit of validity of our higher-
breaking of the Peccei-Quinn symmetry, it is the volume-dimensional effective field theoty Taking nm.ceRMs
renormalized quantltpr that parametrizes the coupling be- >1, we then find that the axion-gluon coupling in Ed7)
tween the axion and the gluons. In general, sindg takes the form
>R 1, we find thatpr>pr. Therefore, as pointed out in N
Ref. [10], this volume-renormalization of the brane-bulk _Na,F,w"lf -~ 1
coupling can be used to obtain sufficiently suppressed foo  ° pra NCA
axion—gauge-field couplings evenfif, itself is taken to be
relatively small. In other words, even if we demand tﬁaé Thus it is actuallyf po, rather tharf o, that sets the scale for
be in the approximate range S.LGGeVSprS 102 GeV, the axion couplings involving the entire Kaluza-Klein linear su-
fundamental Peccei-Quinn symmetry-breaking séalgcan
be substantially reduced, potentially all the way to the TeV
range. This volume suppression is thus one higher- INote that the heavy modes with masses of orher can be

dimensional way 10] of avoiding the need for a high funda- treated within field theory along the lines discussed in RET],
mental Peccei-Quinn scafgq. and within string theory along the lines discussed in [RES).

a'FLF L a (23)
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perpositiona’. In other words, the effects of the volume the Lagrangian(17), we observe thad'~=,_.r,a, serves
factor in Eq.(19) are cancel led by the normalization of the as the overall quantity that parametrizes the siz€ Bfsym-
Kaluza-Klein linear superpositioa’. Of course, this is ex- metry breaking. Applying the one-instanton dilute-gas ap-
pected from the perspective of the higher-dimensional theorproximation, it is straightforward to show that
in which fpq is the only fundamental mass scale, and indeed

this cancellation of the volume factor persists for any number ¢

of extra spacetime dimensions. Because we exdget <F§Vﬁuva>:_AgCDSin(A_ > M+ 0
<fpqin scenarios with large extra spacetime dimensions, we pQ =0

see that axion couplings involving the linear superposition

a’ are relatively strong, and pose a serious threat to the infhis gives rise to an effective potential for the axion modes
visibility of the higher-dimensional axion. We shall discussin the QCD vacuum

how this problem may be overcome in subsequent sections.

Similar observations also apply for axion couplings to 12 n2
standard-model fermions. The invariance under W& )pq V(ay) == E 7aﬁ
transformationa—a+fpoA implies that axions can be at 2i=1R
most derivatively coupled to fermions carrying a PQ charge.
If we assume that these fermions are also restricted to the
D-brane aty=0 (as would be the case for all standard-model
fermiong, then this axion-fermion coupling is restricted to
take the form

. (26

2

g9 4
+ 3o,2 M aco

X . (27

1—cos(Ai E rnan+6)

fPQ n=0

In order to exhibit the Peccei-Quinn mechanism, we now
minimize the axion effective potential,

1 _
Sa | A= (3,0 Gy 0. @4 )
£=@an+rnf— WAQCDSII’I f_ Z r,a,+o =0,
Here a|y:0 is the full five-dimensional bulk axion field n PQ pQ =0 28)
evaluated ay=0, and the bulk-brane coupling strengﬁkb
is defined in Eq.(19). Note thatpr is the same volume- . | . . .
rescaled axion decay constant that parametrizes the coX'—mdlng the unique solution
plings to the gauge fields, with the volume factor emerging R
just as for the axion-gauge couplings. Using the Kaluza- fpg —
Klein decomposition(15), the action then becomes <aO>:?(_®+|W)' le2Z
1 < —
Sap e S 11 J A (0,80) (B ) (a)=0 forall k>0. (29
fPQ n=0
1 o Note that while any valuke Z provides an extremum of the
~5 d*x(a,a") (py* v ), (25  potential, only the valuelss 27 provide the desirechinimum

PQ of the potential. Thus, this higher-dimensional Peccei-Quinn

and we see that once again the entire Kaluza-Klein IinearrnQCh"’mlsm continues to solve the strad@ problem: we

e . .. see thaf, is the usual Peccei-Quinn axion which solves the
superpositiona’ couples to the charged fermions. This is ) ] —
completely analogous to the situation in Ed7) for the  Strong CP problem by itself by cancelling th® angle,
gauge fields. It is important to stress that this need not hav@hile all of the excited Kaluza-Klein axiona, for k>0
been the result from a purely four-dimensional perspectivelave vanishing VEVs. This makes sense, since aglys a
Indeed, given the Peccei-Quinn transformation propertie§Ue€ massless Nambu-Goldstone field from the four-
(16), we see that it is only the zero-modg which requires ~ dimensional perspective of Eql17). This is also evident
a derivative coupling to fermions; the other axion modes from the Peccei-Quinn transformation properti&s).
area priori free to have non-derivative couplings. It is there- However, as we shall now show, these excited Kaluza-
fore only the higher-dimensional structure of the axion fieldKI€in axion states nevertheless have a drastic effect on the
that forces all of the axion modes to have identical derivative?Xion mass matrix. In order to derive the mass matrix, we
couplings to charged fermions. Moreover, we see from EqponS|der the.Io'caI curvature of the effective axion potential
(25) that while the mass scale for the couplings of individualaround its minimum:

Kaluza-Klein axion fermions to fermions is set lf)yQ, the

mass scale for the coupling of the full linear superposition 5 PV

to fermions is set by pq. M
Let us now proceed to verify that this higher-dimensional

Peccei-Quinn mechanism still cancels ti@P-violating

phase, and use this to calculate thassof the axion. Given  From this we obtain

(30

dagdan |
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2 2 A4 In terms of dimensionful quantities, this transcendental equa-
2 1 2 9 Caco tion takes the equivalent fofm
Mnn,=ﬁb‘nn,+g WfTr”r”’ ion takes the equivalent fo
PQ
o )\2

= R\ cot( mRN) = ——. 38

xwﬁ(i > rnan+®) L@ mRA COUmRV = 2 39
frq =0 (@)

For each eigenvalug, the corresponding normalized mass

and in the vicinity of the minimung29) this becomes eigenstated, is exactly given by

2 N’ , & Adep >
M _Eénn, té 327? fTPanrnl ' (32) a = kZO U@k (39
Let us now define wherea, are the Kaluza-Klein axion modes given in E5)
and whereU,, is the unitary matrix that diagonalize®t 2.
2 A4 . L .
2 _ . 9 QCD This matrix is given by
Mpo=¢ 3272 72
PQ ~5
. rk)\
1 ka=(X2_—k2y2 A\ (40
y= : (33
MpR
where
Thus mpq is the expected mass that the axion would ordi-
narily have taken in four dimensiongepending onT‘pQ A E‘/_E(XerlJrWz/yz)fl/zl (41)
rather thanfpq itself), andy is the ratio of the scale of the N

extra dimension tanpg. Our mass matrix then takes the
form Note that the unitarity of the matrixXJ implies that
>,|Uyo/2=1, which in turn implies

MP=mBT ol o +Y?N28000), (39

2_

or equivalently ; Av=1. (42)
1 \/E \/E \/E s For future reference, we also record another useful identity
J2 2+y2 2 2 which will be proven in Sec. IV:
2

M2=m2, V2 2 2+4y 2 ' —

V2 2 2 2+9y? ... ; MA=L 43

Finally, combining Eqs(36) and(40), it is straightforward to
(35 show that

Note that the usual Peccei-Quinn case corresponds to the——
. ; ; 2
upper-left X1 matrix, leading to the expected resui 2Interestingly, this eigenvalue equation is identical to that which

2 e
=Mpg- Thus, th? additional rows and c_olumns re_flect theemerges[14] when the right-handed neutriney is placed in the
extra Kaluzg—KIem states, a_nd the!r physical effect is to pu"bulk, with the mass scalmgg in the axion case corresponding to
the lowest eigenvalue of this matrix away frang,. the Dirac couplingmin the neutrino case. This implies that there is
Deriving the condition for the eigenvalues of this matrix a formal relation between the Kaluza-Klein axion modes and the
is straightforward. Let us denote the eigenvalues of this makaluza-Klein neutrino modes. Remarkably, this correspondence ex-
trix as \? rather than\ because this is @nas$® matrix. We ists even though the axion and right-handed neutrino have different
then find that the eigenvalues are given as the solutions to thepins, and even though the mechanisms for mass generation are
transcendental equation completely different in the two cases. Moreover, in Sec. VI, we
shall demonstrate that the same mass matrix and eigenvalue equa-
N ) tion also emerge when the standard-madikdton is placed in the
—COE( ) =\? (36) bulk of extra spacetime dimensions. This suggests that many of the
y higher-dimensional phenomena to be discussed in this gapeh
. . . . as laboratory and cosmological relic axion oscillatiomgy have a
where we have defined the dimensionless eigenvalue correspondingly general phenomenology that is equally applicable
~ to neutrinos, dilatons, as well as other bulk fields that transform as
A=NMpq. (37 singlets under the standard-model gauge group.

y
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0.6 LA I N B I N L N B L B B B

=]
!

> rUnw=N?A, . (44) -
upper bound

!
K=0 |
i’ i
]

Note that all three of these identities hold for all values of ‘
yE(mpd?)*l. This in turn allows us to rewrite Eq21) in 04

the form

AR
T

1 - -
N ; NA,a, . (45 i ’/ axion mass i

a'=
N
0.2 —f

We can check that E438) makes sense in the limR—0.
In this limit, the Kaluza-Klein states become infinitely heavy |
and decouple; thus we should be left with the lightest eigen-
value A =mpq. And this is indeed what happens: Bs-0, i
we seemR\ cot(mR\)—1, whereupon we obtain =mp, ol b b b
with all other eigenvalues infinitely heavy. AR becomes 0 1 2 3 4
larger, the effect of the extra large dimension is felt through MpoR
a reduction of this lowest eigenvalue. Thus,Rafcreases,
the mass of the lightest axion decreases. . . o a2 i
One important consequence of E898) is that the lightest ?A[)nue;; '?r:lssrzp%%duﬁ?‘fﬁe zxp’ecvt\/:(frfe?&i rﬁfg%{;‘%‘ n'::lQ

axion mass eigenvalua, is strictly bounded by the radius <R"* (corresponding to the diagonal dashed R=mpgR), we
see that the axion mass is strictly bounded by the inverse radius in

1p-1
ma<3R"" (46) higher dimensions, with the precise valuengf, essentially decou-
. pling for mPQR%R’l. This implies that in higher dimensions, the

_Thls_ result_(46) h(_)ldsregardlessof the valuelofrPfQ. ThL_JS’ Peccei-Quinn scaléxg can be adjusted arbitrarily within this pa-

in higher dimensions, we see that whepo=3R"", the size  rameter range without affecting the axion mass.

of the axion mass is set by the radi&sand not by the

Peccei-Quinn scalépq. In Fig. 1 we show the value of the b bl he fund | S

axion masamn, as a function ofy 1= mpgR. Of course, for e possible to tungt e fundamental Peccei-Quinn symr_netry

mpgR—0 (corresponding to eitheR—0 or mpg—0), we brealqng scalefpg in such a way as to Weaken. the axion
couplings to matter to whatever values are required to make

see that we indeed have the expected rasytt mpq. This . e  Whid : s
is indicated by the diagonal dashed line in Fig. 1. Howeverthe axion sufficiently invisible, all without affecting the ax-

asmpcR increases, we see that the axion mass departs froff mass. This may therefore provide a new method of ob-
this expected linear behavior, and instead is bounded by thH@ining an invisible axion. As we shall see, however, this
inverse radius of the extra spacetime dimension. In fact, fronpossibility is subject to several important numerical con-

Fig. 1, we see that we can approximate the mass of the axiogiraints. We shall therefore defer a detailed discussion of this
possibility to Sec. V.

FIG. 1. The mass of the axion zero mode as a function of the

as

ma~min(3R~%,meg). (47)
I1l. LABORATORY AXION OSCILLATIONS

Thus the mass of the axion is determined solely by the radius ) ] ) o

of the extra spacetime dimension whR 1< mpo. In this section we discuss the novel possibilitylathora-

ior for the axion mass, we see that whemo=3R"1, the ~cosmologicalrelic axion ossillations(wtlich' will be dis-

Peccei-Quinn ScaléPQ essentia”)ﬂ]ecoupbjrom the axion cussed in Sec. I\ but rather Iaboratory axion oscillations

mass. Indeed, as long asPQZ%Rfl, we see thatm, that now arise in higher dimensions because the physical
Peccei-Quinn axiom, is no longer a mass eigenstate. These

< 1R ! regardlessof the specific sizes ainpg or Agep.
This observation has a number of interesting implicationslaboratory axion oscillations are therefore completely analo-

First, given Eq.(46), we see that an axion mass in the al- gous to laboratory neutrino oscillations, which similarly arise
lowed rangg7) is already achieved fdR in the submillime-  because the neutrino gauge eigenstates differ from the neu-
ter range, independently afpg. This therefore provides fur-  trino mass eigenstates. In the present axion case, such oscil-
ther motivation for such submillimeter extra dimensions.  lations are possible because of the non-diagonal nature of the
Second, and even more importantly, this result impliesaxion mass matrix35). Therefore, as it propagates, it is

that the usual relation between the mass of the axion and ifsossible for the four-dimensional axion zero-maggto os-
couplings to ordinary matter no longer holds in higher di-cillate into any of the higher-frequency axion modes in its
mensions. Indeed, we have the surprising resultfthgtan  Kaluza-Klein tower. Indeed, as we shall see, these oscilla-
still be lowered or raised arbitrarily without affecting the tions can provide yet another mechanism that may contribute

axion mass, providemPQR%R‘l. This suggests that it may to the “invisibility” of the axion.

105023-7
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T 1
y=0.4 )

FIG. 2. Higher-dimensional axion oscilla-
tions, as discussed in the tefd) The probability
Po_o(t) that the axion zero mode is preserved as
a function of time, taking a reference valye
E(mPQR)‘1=O.4. (b) The period-averaged pres-
ervation probability Py_(t)) as a function ofy.
The limit y>1 corresponds to the usual four-
dimensional case, while the opposite£1 limit
corresponds to an extremely large extra dimen-
sion with very light Kaluza-Klein states.

(Poolt))

04— 1]

0 20 40 60
(mZy/2p) t y = (mpR)™?
A. Laboratory oscillations of the axion zero modea, for the lowest Kaluza-Klein eigenvalues and sufficiently

It is straightforward to calculate these oscillation prob-Small times, the produck',t is typically extremely small.
abilities in terms of the mass mixing matri85) and the This is in accordance with our expectation that the usual
U-matrix (40) that diagonalizes it. From a four-dimensional four-dimensional axion 1S extremely stable. For example,
perspective, we see from E(L6) that only the zero moda, tak'ngg‘OQmPQ'_“ 1077 eV, we see thal'ot<1 for all times
serves as honafideaxion transforming under the PQ trans- t=10% sec. This upper limit exceeds the age of the universe
formation. Therefore, let us first calculate the probability that?y 20 orders of magnitude. Therefore, particularly for the
this four-dimensional axioa, oscillates into any of its cor- lOWest Kaluza-Klein eigenvalues, it is safe to neglect these
responding Kaluza-Klein excitations as it propagates, or condecay widths entirely, a”‘i concentrate solely on the oscilla-
versely the probability that the four-dimensional aximpis ~ ions. For example, sinc, decreases rapidly as a function
preserved as a function of time. Assuming that the axion i©f X, only the |0W9$t eigenvalues dommatg the sum in Eq.
given an initial highly relativistic momentump, we find that ~ (49). We therefore find that we can approximate
the probability thata, is preserved is given by

=|S A2e T2 in*t) |2 <PO*0(t)>%; A 50
Po_o(t)= - Asje ex %

which is independent of time. We stress, however, that the

:2 A;\le_rxt+2 z AiAi,e—(Fmet/z decay widthsl', grow rapicjly as a function of the mass of

A A<\ the Kaluza-Klein eigenstat®, . We have therefore included

[\2— ()2t these decay widths in Eq&48) and (49) for completeness,
5<—) (48) and will discuss the effects that they induce more carefully at

2p the end of this section.

. ' . . . In Fig. 2(a), we have plotted the behavior Bf_ o(t) as a
HereA, is defined in Eq(41), andI’, is the decay width of function of time, taking a reference value=(mpcR) *

the corresponding Kaluza-Klein axion. Thus, even though_ 0.4. Note that the jaggedness of the probability curve re-

gggr%;sleztgt]elaigtrlatlirtr;rgga:n%’ m‘tsi'nig?e};aéstz;ﬁa?(;zbgf)o":}z d flects th.e multi-.cor.nponent nature of_the o_scilllation. in which
period-averaged value r%any different individual Kaluza-Klein oscillations interfere

with incommensurate phases. Although this oscillation

clearly leads to both axion deficits and axion regenerations,

(Po_o(t))= 2 A‘A‘e*FAt (490  we see that while the axion regenerations are nearly total, the

A axion deficits are not total. This is in marked contrast to the

S o . o results from a simple two-state oscillation. We also observe
which itself diminishes exponentially with time. Note that that these oscillations are approximately periodic, with a

the calculations leading to these results are similar to th@vavelength set by the lowest-lying eigenvalue difference
higher-dimensional neutrino oscillation calculations in Ref.-l-hiS is because it is the lowest-lying Kaluza-Klein axions.

[14]. hat play the dominant role in producing this oscillation. As a

t
It is important at this stage to separate two effects Whicr} It of thi . :
: : i o o is fact, w haP,_, is effectivel n-
influence the axion preservation probability. The first is the, esult of this fact, we see th§Po_(1)) is effectively co

T ' ) . _“stant as a function of time, in accordance with E§0).
oscillation itself, which arises due to the non-trivial axion

tri d which reflects th it f th it dIndeed, the interpretation of this oscillation is completely
mass matrix and which reflects the mixing or the excite analogous to that given in Ref14] for higher-dimensional
Kaluza-Klein axion states. It is this oscillation which is our

A . . - neutrino oscillations. We shall discuss the possibilities for
focus in this section. By contrast, the second effect is axio P

Lxperimentally detecting such oscillations at the end of this
decayas reflected in the decay widths . In general, these sef:)tion y g

decay widths result from the dominant decay maae In Fig. 2(b), we have plotted the time-averaged probabil-
— vy, and therefore scale :Ps,\%)\:*/féQ. This implies that ity (Pg_o(t)) given in Eqg. (50) as a function ofy

105023-8



INVISIBLE AXIONS AND LARGE-RADIUS . .. PHYSICAL REVIEW D 62 105023

E(mpd?)*l. For y>1 (corresponding to the usual four- 1

dimensional limif, we see that{P,_,4(t))—1, as expected, Parar()=—
reflecting the fact that our single axion field cannot oscillate N

because its Kaluza-Klein states are infinitely heavy and es-

; 'XSA;\le*F}\t

sentially decouple. More interestingly, however, we see that +2 > X4(X’)4A)2\Ai,e7(r)\+r)\’)t/2
in they<1 limit (corresponding to extremely large radii or A<\
equivalently a quasi-continuous spectrum of light Kaluza- [N2— ()2t
Klein modes, the oscillation probability50) approaches a 0{—) , (54)
fixed value 2p
implying a period-averaged probability
2
lim (Pg_o(t))= lim >, A;‘=§. (51) 1
y—0 y—0 A (Py_ar(t))= W; ABAte I, (55

Thus, for extremely large radii, we expect to see on average Just as withP,_q(t), we will find it convenient to distin-
only 2/3 of the axion flux that would have appeared in theguish between two different effects: the overall “damping”

four-dimensional case. that arises due to axion decagsncoded within the decay
widths I"y), and the oscillations that arise due to the non-
trivial mixings of the excited Kaluza-Klein states. In order to

B. Laboratory oscillations of the axion superpositiona’ concentrate on the latter effect, we shall thereforeIset

For many practical purposes, there exists a different prob=0 for simplicity. Moreover, as we shall see, this assump-
ability that may be more relevant as a measure of laborator{}on will not change our phenomenological resuttgardless
axion oscillations. As we have seen in Sec. I, standardof the time intervat in Eq. (57). Thus, taking", =0, we see
model gauge bosons and fermions generically couple not téat Eq.(54) reduces to
ag, but rather to the linear superpositi@i given in Eq.
(21). Thus, in any laboratory process that produces axions or
is mediated by axions, a more crucial oscillation probability
is the probabilityP,: _ ,/(t) that this particular linear com-
binationa’ is preserved as a function of time. Indeed, we [A2—(N")2]t
have already seen in Sec. Il that while the standard-model XCOS{T '

couplings to individual axion modes scale a%pyand hence

are already somewhat “invisible,” the couplings &6 scale  jmplying a time-averaged probability

as lfpg and hence are significantly larger. Such couplings

therefore pose the largest immediate threat to axion invisibil- 1 ~

ity. (Parar ()= 1o N°AL. (57)
The calculation of the probabilit,, _,,/(t) proceeds in »

an analogous manner. In general, the amplitude for an axion

transitiona,—a; is given by

1 N T4% 2
Par—ar ()= };, NeAT+2 D XA )AAZAZ,

A<

(56)

It is straightforward to evaluate this time-averaged prob-
ability for different values ofy. Remarkably, however, we
o, find that
Ari() =2 Uy Uie Matzeminize (52)

> lim (P _ 4 (t))=0! (58)

Nmax—*

whereU, are the(rea) unitary matrix elements defined in \ye therefore have virtually no probability for detecting the
Eg. (40 and where we have omitted an overall jinear combinatiora’ at any later time after it is produced.
(k,I)-lndependenfc pha_lse. The probgblllty thatis preserved Indeed, at the initial timé=0, the axion probability starts at
as a function of time is therefore given by 1. This is guaranteed by the unitarity of thlematrix in Eq.
(40), and may be verified directly from E@56). However,
2 for t>0, the multi-component Kaluza-Klein oscillations
(53) drive the net probability rapidly to zero. Indeed, as we shall
see, this holds for ali>0, and does not rely on taking the
t—oo limit. At no later time does a macroscopic axion regen-
eration appear. It is for this reason that it is justified to set
where the normalization factdX is given in Eq.(22). In  I'y=0 in Eqgs.(54) and (55).

Pa'aa'(t):m > nnA()
K=o

evaluating Eq(53), it is convenient to use the identity@4) Of course, these conclusions rely on taking thg,—
in order to perform the Kaluza-Klein summations. We thuslimit in Eq.(58). However, even if we truncate,, at a finite
find value~O(Mg;indR) (reflecting the expected limit of validity
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for our effective field-theoretic treatmentve find 1 L A R B
(Par—ar(1)=(MgindR) ™. (59 - i
For Mgying~10 TeV andR~1 millimeter, this implies . i
(Par 2 (1))=0O(107%7). (60) _ 06 ]

Such an axion-mediated process therefore continues to be Q; I

truly invisible in the sense that the¢’ state literally “disap- 0.4
pears” over a very short time interval, with only a vanish-

ingly small probability for detection of tha’ state at any -
later time. This behavior is illustrated in Fig. 3. As we have 02T
noted, this is important because tla¢ state couples to

,»4“ )
st bl

standard-model fields with an unsuppressed couplifigol/ LA uiﬁllin

. LA O JUTN" T

rather than with a volume-suppressed couplinigd/ 0 0.001 0.002 0003 0.004
Note that asy— (reproducing the four-dimensional (mz,/2p) t

limit), the time needed for the probability to drop to zero

increases without bound. Thus, in the four-dimensional limit  FIG. 3. The axion preservation probabili® .,/ (t) as a func-
y—oo, the probability begins and remains at 1, as expectedion of the numben,,,, of Kaluza-Klein states which are included
However, for all finite values ofy, the axion probability in the system. For this plot we have set 15, and takena) Ny
P. 4 (t) drops to zero in finite time, and remains théas ~ =1; (b) Npax=2; (©) Npax=3; (d) Npa=5; and(e) Npa,=30. As
shown in Fig. 3. Indeed, forn,,1, we see that the time Nmaxincreases, the axion probability rapidly falls to zero as a result

7o for the axion probability to drop to a predetermined frac-©f the destructive interference of the Kaluza-Klein states, and re-
tion of its initial value scales as mains suppressed without significant axion regeneration at any later

times. Note, in particular, that the “spikes” in this plot are also
suppressed as 1/n,,,, and vanish for large,,. Thus, for sig-
nificantly large n., the destructive interference of the excited
®Note that the derivations of these scaling results can often b&aluza-Klein states causes the axion to “decohere,” implying that
quite subtle. In order to derive E¢62), we first observe that,  there is negligible probability for subsequently detecting the origi-
~1,/N?, whereN is the normalization factor in Eq22) and where  nal axion state at any future time.
to is a time scale that is independentmf,,. This scaling behavior
holds independently of whenn,,,&1, as can be verified numeri-
cally. Given this, it is straightforward to investigate the behavior of

t, as a function ofy, leading to the resuli;~y 2. We thus obtain y2
7o~ (Nmay) 2. The final step is to realize that there is a hidden 0™ _n2 . (62
y-dependence buried in the meaning of the cumgff,, and that in max

order to compare cutoffs for different valuesyfwe must choose
a uniform y-independent convention for the Kaluza-Klein trunca-
tion. Specifically, for each value gf we must choose an appropri- Thus, agy—, we see that,— o, while for finite values of
ate y-dependent normalization of the cutoff,,, such that the Y this “decoherence time” is extremely short. This results in
rescaled cutofin/,, has a fixed,y-independent net effect in an an essentially immediate suppression of the axion probabil-
eigenvalue sum such as B§6). It turns out that such a renormal- ity. Moreover, as we shall verify later in this section, this
ization compels US to ChOOSE,,,~Y*Nna. We therefore findro  decoherence time is substantially smaller than the lifetime of
~Yy?(Npa)?. To provide some explicit numbers, let us defineas  the heaviest Kaluza-Klein mode contained witisih This
the time needed fqr th(_e aX|0n_ probability to faI_I tp 10% of its initial decoherence mechanism therefore renders the axion superpo-
value, and .'et us likewise defing to be Fhe minimum number. of sition a’ virtually invisible with respect to subsequent axion
Kaluza-Klein eigenvalues that must be included in the sum in Eq. . . Lo

interactions involvinga'.

(56) order to produce an initial axion probability of 0.99n this . > . )
connection, note that it is only in the formayj,,— o limit that the ) It_ !S Stra'ghtforward to understz_ind this §uppreS§|0n atan
initial probability truly approaches XL.We then find thatt,  intuitive Ie_vel. Unlike the case Wlth t.h.e smple axion zero
~9.665k2 andn;~981k2. This latter relation enables us to nor- mode ay, in the present case our initial axion state is the

malize our values ofn,, in relation to ng; by definingn/,,  infinite linear superpositiora’ given in Eq.(21). Let us

= Npmax/ Nerit= Y Nmay/ 981, leading to the final result therefore consider the behavior of the individual terms in the
mf:Q » y2 probability sum(56) asn,,,, gets large. For this purpose we
2p 7o~10 (2’ (61)  may drop all factors of two and focus only on the behavior of
ma:

The value of the rescaled cutatf,, is then arbitrary, and may be Pa'HaLaS a funct|~on gfnma"' For fixedy and I(jirge elgerll-
chosen according to considerations beyond those of our effectivé@lues\, we have\*A{~2. Therefore, as we introduce in-
field-theory approacksuch as truncating according to the underly- creasingly heavy eigenvalues into the probability s(&®),
ing string scalg we find the effective behavior
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interaction with the standard-model brane involves a cou-

pling between standard-model fields and a “brane shadow”

1 A= (N2t
Parar()~ —— ; (D+2 2 (1)COS(¢)

max ISESY 2p Kaluza-Klein superposition
(63)
where each\ sum contain,,,, terms. Fort=20, this result d,(yzo)zz Cri (66)
factorizes to take the simple leading form K

_ _ 2 with non-zero coefficients, .. Just as in the axion case con-
Par—ar(0) n2 AE}\ (14 1)~ = Nipax (64) sidered above, the non-trivial time-evolution of the Kaluza-
max max Klein modes will cause the initial superpositigi(y=0) to

In other words, the presence of two independensums “decohere” extrgmely rapidly. This will necessarily produce
2 a severe damping of any standard-model process on the

provides an effective factor ofy,,, which cancels the factor b hat invol f h h
of n,-2 that resulted from the normalization af. This ini- rane that involves couplings to the coherent staly .
=0). For example, this might therefore provide a partial

tial coherent contribution of the independent thosums solution to the notorious dilaton problem in string theory: it
enables the initial probability to start at 1 regardless of the . ton p S 9 y:
ay simply be that the string-theoretic dilaton is “invis-

size of the volume of the compactified space. Indeed, thI le,” in much the same way as the axion is invisible. Simi-

initial statea’ is a highly coherent state. However, at later lar considerations mav also anplv to Kaluza-Klein aravitons
timest>0, the cosine terms in Eq463) no longer add co- Y apply 9
as well as other bulk moduli fields.

herently to the sum, and their destructive interference effec-
tively causes the sum to scale onlyras,,, corresponding to
a single diagonak sum: C. Laboratory oscillations inducing a,—a’

Finally, let us consider a third relevant oscillation prob-
P ()~ 1 3 (1)~in . (65  ability. As we discussed above, fields on the standard-model
a—a 2 X 2 M N max brane can couple only to the linear combinat®n This is
why the probabilityP,: .,/ (t) is the appropriate probability
This phenomenon is completely analogous to the fact that &1 processes involving both standard-model production and
random walk traverses only the square root of the distancéétection of axions. However, for axions that are produced
traversed by a coherent, directed walk. It is for this reasohrough mechanisms involving bulk fields/hich are non-
that the net axion preservation probabi"ﬂé,*}a,(t) iS so |Ocalized rather than brane f|8|({Wh|Ch are IOcalize}j it is
strikingly suppressed. Essentially, the initial axion state Possible to envisage situations in which a single Kaluza-
has “decohered” as a result of the incoherent Kaluza-KleinKlein modeay (e.g., the zero modey) is produced. How-
oscillations induced by the non-diagonal axion mass matrix€ver, detection of such an axion mode on our standard-model

We thus conclude that in h|gher dimensions, all axion-brane continues to involve Couplings 310, and therefore in
mediated processes which rely on the production and subsg&lich cases a relevant probability for detection is given by
guent detection of tha’ mode are strongly suppressed by a
rapid “decoherence” which renders them virtually “invis-
ible.” This decoherence arises as a result of the destructive
interference of the infinite-component laboratory axion oscil-
lations. We see, then, that this provides an entirely new _i
higher-dimensional mechanism which can contribute to the N
invisibility of a’-mediated processes.

It is important to stress that this decoherence mechanism
is relevant only for those processes which are sensitive to the
time evolution of the axion. As we have indicated, this in-
cludes all axion-mediated proce@sg., axion-exchange pro- [N2—(N")2]t
cessel as well as processes in which the axion is directly XCOS( T) -
detected in the laboratory. Moreover, measurements of the
axion flux from the Sun or from supernovae also fall into this
category. However, this doestinclude processes which are However, just as in the previous case, this probability van-
insensitive to axion time evolution. These include, for ex-ishes in the limitn,,—%, even if we again set’,=0.
ample, axion-production processes in which the axion apSpecifically, the probability to produce the specific coherent
pears only as missing energy. Nevertheless, invisibility carstatea’ on the standard-model brane vanishesigg— .

be achieved for such processes by adjusting the Va|&ed)f Moreover, the same is true for all probab|I|t|E§k_>a,(t) for

via the mechanisms discussed in Secs. Il and IV. all k and for ally. Of course, we cannot interpret this result
Finally, we remark that our higher-dimensional decoher-as a decoherence, since even the initial probability=ad

ence mechanism is completely general, and applies not onlanishes a®,,,,— due to the negligible overlap between

to axions, but also to any bulk field whose “shadow” a, anda’. Nevertheless, this demonstrates that even if the

©

> nAg(D)

=0

2

1
Pa0—>a'(t) :N

~4pd T
; MAte It

+2 E XZ(X/)ZAiA)Z\’e—(F)\+F)\r)t/2
N <\

(67)
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axion is produced by bulk fields not restricted to the This distinction between “long” and “short” time scales

standard-model brane, the probability for its subsequent deherefore depends on the axion lifetime. Ordinarily, in four

tection in the laboratory is vanishingly small. dimensions, the axion is relatively long-lived because it is so
light and so weakly coupled to ordinary matter. Indeed, the
dominant axion decay mode is to two photons, yielding the

D. Axion detection and decay lifetime
Finally, we shall conclude this section by discussing a 5/ 32
number of additional effects that arise due to the existence of _ (a—yy)= 1 ~ 4w ﬂ ~10% sec
an infinite tower of excited Kaluza-Klein axion states. Our 2% YY" T . a=yy) | a I '
comments in this subsection will primarily be focused on the (69)
possibility of axion detection and in particular on the role of
axion decays. In this expression, we are writirfg:Q~ 10'2 GeV to denote

First, as already mentioned above, we must distinguishhe usual four-dimensional Peccei-Quinn symmetry-breaking
between processes in which the time-evolution of the axiorscale, and takingnpo~ 10°5 eV to denote the usual four-
plays a role and processes which are insensitive to the timetimensional axion mas§We choose these symbols in order
evolution of the axion. For example, the latter include axion-to facilitate the comparison between the four-dimensional
production processes in which the axion is emitted into theand higher-dimensional situation§Ve are also disregarding
bulk and therefore is manifested on the standard-model brangumerous model-dependefX(1) coefficients which do not
only as missing energy. A simple example of this is theaffect the overall scale of the result. Thus, in four dimen-

axion-emission process sions, the axion is extraordinarily stable.
- In higher dimensions, this situation changes dramatically.
FF—a’'—bulk (68 Of course, the coherent axion modé is not a mass eigen-

state, and thus, strictly speaking, it does not have a well-
_ o defined “lifetime.” Nevertheless, we can determine an ef-
where the axion, once produced, flies into the bulk. As Werective lifetime fora’ by estimating the shortest lifetime of

have seen in Sec. Il this process scales &soliather than 5,y o the mass eigenstats of which it is comprised. This
1/fpq. This already leads to the severe constraih,  then yields the time scale over which the coherent state
=0O(TeV), and is completely analogous to the possibilitiesnaturally decays as a result of its couplings to ordinary mat-
for detecting graviton emission in upcoming TeV-scale col-ter, In general, it is the heaviest Kaluza-Klein mass eigen-
lider experiments. We shall discuss one such missing-energtates which have the shortest lifetimes, with the decay mode
signature in more detail in Sec. V. into two photons continuing to be dominant. As a function of

By contrast, processes which involve an actiledection  the cutoffn,,,, the “lifetime” of the coherent stata’ can
of the axion on the standard-model brane are necessaritherefore be estimated to be

time-dependenbecause they involve a non-zero time inter-
val between axion production and axion detection. However,

even within this category of time-dependent processes, there o=s(@d = yY)E

are further subdivisions that can be made. One important Lan(ay, .~ 7v7)

distinction is the length of the time interval between axion 5/ 32

production and axion detection. Certain axion-mediated pro- %(4_77 fro

cesses, such as those taking place entirely within accelerator a Mgmng

experiments, take place on time scales that are very short

compared to the axion lifetime. By contrast, othé&sch as [ Mpg 3

those involving fluxes of axions which are produced in the " | Mg Tap(@a—77)

Sun or in supernovae and which are subsequently detected

on Earth involve much longer time scales. ~103 sec. (70)

In this expression we have tak@n,,~RMgying, iMmplying

4 o N max™Msging- We have also choséM gi,y=1 TeV for sim-

The rough boundp= O(TeV) quoted above is primarily a col-  pjicity. Thus, we see that the coherent state can be expected
lider bound, but it is natural to wonder whether supernova or redyq decay to two photons much more rapidly than the usual
giant constraints might be more severe. However, the TeV'Scal?our-dimensionaI axion. Of course, in this calculation we
axion scenario envisioned here is safe with respect to these astrf-\ o taken the cutoff ....~M «ins,» Which represents the
physical constraints for the same reason that the TeV-scale gravitaR, J - «2con scanario. Tﬁxanysa[gigo,n—related process of total

scenarios are safe: the number of Kaluza-Klein modes that ar - : .
available to carry energy into the bulk depends crucially on thegnergy E<Masuing, the production of Kaluza-Klein axion

temperature of the relevant astrophysical object, and these temperdlodesa, with A=E will be kinematically disfavored. We
tures are typically far smaller than the TeV-sized fundamental enwould then takeh ,,,~E, which can increase the lifetime
ergy scale of the theory. A detailed discussion of this point in theconsiderably.

gravitational context can be found in R¢fL0], and will not be A priori, this significant reduction in the axion lifetime
discussed further in this paper. relative to the four-dimensional case means that our “deco-
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herence” phenomenon fa' is irrelevant unless the deco- decoheres, and all subsequent interactions and decays will
herence timer, is even smaller. However, it is straightfor- have amplitudes scaling ana;(g-

ward to verify that this is indeed the case. Consulting EQ. |n sharp contrast are processes which largely take place
(61), we see that outsideour detectors. In such cases, we do not expect to be
able to detect the decay products that result from axion de-
cays at intermediate times. For example, in the case of an
% 10" 33 sec (72) axi(_)n be_am_travelling from _the Sun to the Earth, the ph_oto_ns
emitted in flight through axion decays are presumably indis-
tinguishable from the general background radiation. In such
situations, therefore, axion decays lead not to a loss of invis-

where we have takeny,,~RMgying. For all phenomeno- ipjlity, but rather to arenhancemerdf it. For example, let us

logically interesting values op and Mgying, We thus con-  consider the probability that the initial stzaé will be found

clude thatro<7p-,. We see, therefore, that the coherentj, 5 particular mass eigenstadg as function of time. Fol-

axion modea’ indeed decoheres sufficiently rapidly to jus- lowing the same procedure as above and using(&s}, we
tify the I, =0 approximation that was used in deriving it. find the probability

Given that the coherent stagéé has an intrinsic lifetime
T2~10"% sec, we can therefore use this as a benchmark for 1
separating “long” and “short” processes. For laboratory os- Pa_a ()= N*AZe I, (72)
cillations over time scales shorter than this, it is legitimate to » N
neglect the axion decay widths in calculations of these oscil-
lations. By contrast, calculations of oscillations over longerNote that this is an exact result valid for all times, with axion
time scales require the inclusion of the decay widths, andlecays producing an exponential suppression for the prob-
will therefore start to feel the effects of axion decays. ability. Moreover, as we shall now demonstrate, this fact can
It is therefore important to understand the effects of sucte used to provide a direct experimental test of the higher-
axion decays, particularly as they relate to axion “invisibil- dimensional nature of the axion. Using EJ2), we may
ity.” For this purpose, we may draw another distinction, this define
time between processes that take place entirely within a

single detectofsuch as an axion-mediated proc€ds—a’

—FF), and those which take place largely outside our de-
tector(such as an axion beam travelling from the Sun to the

Earth. For processes taking place entirely within a singlegq 4 “collective” amplitude that the axion mo@e survives

detector, axion decay represents a breakdown of invisibilit,q 5 function of time. This interpretation is justified because
because we can in principle detect the emitted decay pquDtot(t) is nothing but the time-dependent norm of the origi-
ucts. For example, even though we have found tha}, 57 superposition:

P._a(t) is suppressed for all timesexceeding the deco-
herence timery, the decohered state will nevertheless con-
tinue to propagate until the individual Kaluza-Klein axion
modes that comprise this decohered state themselves decz(ig/_. ] ] ) ]
This will be discussed in more detail below. Given this ob-Given this norm, the collective decay widthe., the instan-
servation, one might initially doubt the phenomenologicaltaneous decay probability per unit tiine given as
importance of thea’ decoherence phenomenon. However,

4 p Mstring
T~y
1 TeV/\1 TeV

1 ~
Po()=2 Pz =y 2 MAe™ ™ (73

Pui(t)=(a’(t)[a’(1)). (74)

the important point is that it is only theoherentstatea’ S 1 X4AZe Tt

which couples to standard-model fields with the potentially 1 dP(t) & °° \€

dangerous unsuppressed couplinfpd/ whereas individual (I')=- P at , (79
tot

Kaluza-Klein axion modes instead experience the safer sup-

pressed coupling i,éQ. The decoherence phenomenon
therefore indicates that there is only a vanishingly small time _ _ S
interval during which a process of the forfiF—a’—FF in complete analogy with the formalism for radioactive de-

can possibly occur with a dangerously large amplitude scaI(—:"f"‘i’(S'I Howzvgr, tietcaus_;a.of. the %r.e?elnce of an nf'n'te. tower
ing as 1f,23Q. After this initial time interval, thea’ state O hauza-fiein states, it 1S immediately apparen {'.ﬁ} 1S
itself a function of time. For example, at very early times we

have (I)~T _ ~M3und Too, Where \pa=Maying is the
heaviest mass eigenvalue included in the linear superposi-

> NAZe It
A

5 .
In comparing Egs(70) and (71), we must actually account for . .
the relative rescaling of the cutofif,,,— N/.« @s discussed above tion. By contrast, at extremely late times, we hajle)

Eq. (61). This introduces an additional multiplicative factor _>F>‘o where, is thelightestmass eigenvalue. Sin¢€) is

(y4/981)? into Eq. (70), thereby shorteningp- 4, by an additional ~ the instantaneous decay probability per unit tifwdich can
factor ~107° for y=~((1). However, we see from Eq71) that be measured in our Earth-bound detegtarttime-variation in

this still does not affect our main conclusion that< 7o~ 4. (I'y from different axion sources at different distances would
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serve as a direct experimental test of the higher-dimensionalhose couplings to matter are even more suppressed than in
nature of the axiofi. four dimensions. This can therefore provide another higher-
Finally, let us briefly comment on the possibility of mea- dimensional way of achieving an “invisible” axion.
suring the laboratory axion oscillations discussed previously. Let us first recall the situation in four dimensions. One of
Although we have shown that individual probabilities suchthe most important constraints on the scale of Peccei-Quinn
as Pak_,al(t) experience sinusoidal oscillations as functionssymmetry breaking, and hence on the mass of the axion and
of time, at a physical level these calculations presuppose th&#€ strength of its couplings to ordinary matter, comes from
we are capable of experimentally detecting individualcosmological relic axion oscillations. Unlike the laboratory
Kaluza-Klein modesa,. In other words, these calculations ©scillations discussed in the previous section, these cosmo-
presuppose that we are able to distinguish the final axio#Pgical relic oscillations arise due to the fact that as the uni-
states according to their Kaluza-Klein quantum numbers. IY€rse cools and passes through the QCD phase transition at
situations where such detections can be made, our previods~Aqcp. instanton effects suddenly establish a non-zero
results continue to apply. However, in the most straightfor-2xion potential where none previously existed. In the usual
ward scenarios, all Kaluza-Klein states will have identicalfour-dimensional situation, the axion can therefore find itself
decay modes(e_g', into two photor)s |eaving us with no diSplaced relative to the neWIy'eStainShed minimum of the
experimental “handle” through which to detect the presencgPotential, and begin to oscillate around it according to the
of an individual oscillation. Thus, the prospects for detectingdifferential equation
individual laboratory axion oscillations depend crucially on

the ability to perform laboratory axion measurements which 2 da
are sensitive to particular Kaluza-Klein quantum numbers. — +3H(t) =+ m2a=0, t=tocp- (76)
Of course, this is completely analogous to the case of neu- dt dt

trino oscillations, where the existence of neutrino decay
modes that distinguish between different neutrino quantu

m .
numbergsuch asSU(2) gauge charge or flavbpermits the Here H(t)=1/(2t) is the Hubble constant, where we are

detection of neutrino oscillations. While it is not hard to Zifilrjgllmi?] f:rr;'jr?a%l:fr%éngzs dtm?\;g;lsoém\'/?/g taarléezlglja;i_
imagine scenarios in which Kaluza-Klein selection rules ely : g ' .
suming that the axion mass, is independent of time for

might be exploited in order to make such individual mea->t and vanishes for times<t We are also nealect
surements in the axion case, the details of such scenarios are QP vani ! QCD: 9

expected to be highly model-dependent since they necessdpl—% tge dfet(;]qy Wid.t"h tc_)f thet axio_n. Int %erliral.’ .tthel initigl am-
ily depend on the specific geometry of the compactificationP'"'Ud€ Of this oscillation algep IS SEt by the initial random
gular displacement of the axion field. This scales s

We shall therefore not consider this issue further. Regardles.%n ; _ :

of this issue, however, the most important experimental sig\-Nh_erefPQ IS tlhe axnl)nglecay go dnstar;;[. Althouglh thesleHost,)(;:-

nature of these oscillations is the net decoherence that thé tions are ultimately damped due the cosmological Hubble

induce for the linear superpositiai. As we have seen, this Xpansion term, a relic of these axion oscillations should still

decoherence is striking and renders the axion invisible wittE XISt today. Imposing the requirement that the energy stored

respect to subsequent laboratory interactions in the relic oscillation today be less than the critical energy
‘ density (so as not to overclose the univergben sets an

upper bound pg= 10" GeV which is consistent with bounds
obtained through other means. This is therefore a bound on

In this section, we shall discuss a third higher-the “invisibility” of the axion. o
dimensional effect that can contribute to the “invisibility” At first glance, it might seem that this issue should no
of axions: the rate at which the energy trapped in cosmologilonger play a role in our higher-dimensional scenario in
cal relic axion oscillations is dissipated. As we shall see, thavhich the fundamental scale of Peccei-Quinn symmetry
presence of an infinite tower of Kaluza-Klein axion statesPreaking is substantially loweregerhaps even to the TeV-
can, under certain circumstances, actuatipancehe rate at  'ange as a result of the volume factor in E@.9). Indeed, it
which this oscillation energy is dissipated. In such cases, this the (low) fundamental mass scalfq rather than the

effective Peccei-Quinn scafg can therefore be raised be- (high) effective mass scalépq which sets the size of the
yond its usual relic-oscillation bounds, leading to an axionvacuum expectation valu¢/EV) of the axion fielda in the
five-dimensional Lagrangiafil4), and which similarly sets
the overall scale of the initial random angular displacement
of the axion field. However, in passing from E3d4) to the
o the oh logical f sol I I four-dimensional Lagrangian17), there is an implicit
cerning the pfenﬁme.no ogica an.segu%nlcef orso ?r KZUZ;"K ®olume-dependent rescaling of the axion field, as discussed
ﬁx'ons were further investigated in ¢l It was found that —pooy Eq.(18). Thus, even though initial displacement of the
eavy Kaluza-Klein modes can be measured experimentally with a . - . L .
feasible terrestrial detector without significant background inten‘er-unrescalecj axion field scales W'ﬂaQ’ theA initial displace-
ence. It was also shown that the decays of solar Kaluza-Klein axment of the rescaled axion field scales witly. The danger
ions do not produce unacceptable amounts of x-ray luminosity. Thi®f an excessive oscillation energy density today is therefore
is therefore an interesting experimental possibility for detecting sojust as relevant for our higher-dimensional scenario as it is
lar Kaluza-Klein axions. for the usual four-dimensional case.

IV. COSMOLOGICAL RELIC AXION OSCILLATIONS

SAfter this paper originally appeared, some of these ideas con
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In fact, this danger may actually be greater in the higher- I L L
dimensional case. This is because the Kaluza-Klein reduc-
tion yields not only the usual zero-mode axiag, but also
an infinite tower of excited Kaluza-Klein axiong, (k
>0). The above differential equation for the axion oscilla-
tions then generalizes to

d?ay day )
W-FSH('[)W*-MHEM:O, t=tocp (77

where M2 is the non-diagonal mass matrix given in Eq.
(35. (Note that we shall continue to neglect axion decay
widths in these equations; this assumption will be justified at
the end of this sectionOf course, due to their Kaluza-Klein
masses, these excited Kaluza-Klein axions feel a non-zero L ]
potential even prior to the QCD phase transiti@e., even N A A
prior to the “turn-on” of mpe), and it is therefore reasonable 1 2 3 4 5 6
to assume that they are already sitting at their minima at the time -
time of the QCD phase transition. However, due to the non- g 4. A plot of the coupled Kaluza-Klein cosmological relic
diagonal mass mixing matrix in Eq77), the initial displace-  axjon oscillations. For this plot, we have normalized the initial dis-
ment of only the zero-mode axiaa, is sufficient to trigger  placement of the axion zero mode to 1, and taken0.5, mpq
the excited Kaluza-Klein modes into oscillation. This situa-=2, andtocp=1 (in dimensionless uniis We have also consid-
tion is illustrated in Fig. 4. ered the effects of only the first three excited Kaluza-Klein modes.
Given this observation, there aeepriori three possible Although the excited Kaluza-Klein modes have vanishing initial
effects that these excited Kaluza-Klein states can have on thdisplacements, they are triggered into oscillation as a result of the
system. First, it is possible that these excited Kaluza-Kleirinitial displacement of the zero mode. This in turn changes the
states will “capture” oscillation energy from the zero-mode subsequent time evolution of the zero mode. By contrast, the super-
oscillation, and essentially store it. Thus, in this case, thémposed dashed line shows the behavior of the usual four-
total energy density of the System would dissipate mor@imensional axion zero mode in the—mo limit (i.e., the usual
slowly, thereby resulting in a greater relic energy densityfour-dimensional case when no Kaluza-Klein modes are present
today. This would seriously strengthen the five-dimensional
axion bounds relative to the usual four-dimensional boundgialuza-Klein axion modes to have small displacements as
and provide the most serious threat to the viability of thesavell, for simplicity we shall ignore this possibility in what
higher-dimensional scenarios. The second possibility is thallows. Note that this assumption also enables us to start
a|th0ugh the excited Kaluza-Klein states steal energy frorﬂ\llth identical initial relic oscillation energy densities in both
the zero-mode oscillation, they may be able to dissipate ithe four- and five-dimensional situations, and thereby en-
more effectively. This would then lead to @nhancedelic ~ ables us to make a direct comparison of the effects of the
energy loss rate, implying a weakened bound on the highefaluza-Klein modes on the cosmological time-evolution of
dimensional scenarios. Finally, the third possibility is thatthe system. Finally, in substituting the mat(i5) into Eq.
the two effects cancel exactly, with the excited Kaluza-Klein(77), we shall assume thahp(t) is given exactly by the
states oscillating in such a way that even though they capturgtep function
some energy from the zero mode, they also alter the time-

development of the zero mode in an exactly compensatory Mp(t) =Mpg® (t—tocp)- (78)
manner. Thus the traditional four-dimensional bounds would
remain unchanged. The constancy ofmp(t) for t>tqcp is often referred to as

In order to determine which of these possibilities is real-the “adiabatic” approximation. We caution, however, that
ized, we must solve the coupled differential equationid.  for large values ofmpq this step-function approximation can
In so doing, we shall make the following assumptions. Firstdiffer quite substantially from the results of a more careful
we shall assume that prior to the QCD phase transition ainalysis of the time—temperature dependence of the axion
tocp, the axion zero-mode experiences no potential andgnass due to instanton effedts9].
therefore has an initial displacement set ta(ih units of Given these assumptions, it turns out to be possible to

pr)- We shall likewise assume thada,/dt=0 at t solve the differential equation@7) analyticallyfor all times
=tocp. By contrast, for the excited Kaluza-Klein modes t=tqcp and for an arbitrary number of Kaluza-Klein modgs.
a, (k>0), we shall begin with the initial conditiona, ~ We therefore do not need to make any further approxima-
=da,/dt=0 attgcp. These conditions reflect the fact that tions(such as the traditional separation into so-called “over-
these excited modes have non-zero Kaluza-Klein massémped,” “underdamped,” and “critically damped" oscil-
even prior to the “turn-on” of mpq at tocp, and hence lation phases The first step in our analytical solution is to
should have essentially settled into their minima prior to thedecouple the differential equatiorig7) by passing to the
QCD phase transition. Although it is possible for the lightermass-eigenstate baseg defined in Eq.(39). In order to
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work with dimensionless quantities, we shall defiag

=a, /fpo. Each of our uncoupled differential equations then

takes the form

d%, 3 da,
- 25
52 T2t dr +)%a,=0. (79)

For simplicity we can recast this equation into the form

d%a, .\ 3 da, 3o
dr2 27 dr A=
where we have defined=\t. The most general solution to
this equation is then given by

(80

a(r)=7""c dy1)+c I y47)] (81)

wherelJ, (1) are the Bessel functions of first kind. We there-

fore wish to solve for the unknown constant coefficients

andc_ . To do this, we impose our initial conditions. In the

PHYSICAL REVIEW D62 105023

V2

TTo

(87

Jyad —sat I 1ad514=

Substitutingc.. from Eg. (86) into the solution given in Eq.
(81), we thus obtain our final closed-form solution to the
axion differential equation:

A= %Awé"‘r‘ Y (79;7) (89)
where we have defined
J(70;7)=J_514(70)Jya(7) + I514(T0)I_14(7).  (89)

This implies that the first time derivative is given by

™

original Kaluza-Klein basis, these conditions are given bywhere we have likewise defined

ay(7o)= préko andday(7o)/d7=0 where 7o=7¢p is the

initial time at which we begin the time evolution of our axion

fields (representing the “turn-on” time fompg). In the di-
mensionlessmass-eigenstatdasis, these initial conditions
therefore take the form:
~ da,
a(m0)=Ay, ar =0

=10

(82

whereA, is defined in Eq(41). The assumptions underlying

@ e ) (90
1" (10, 7)=J_5/(70) I51a( 7) = I5ya( 7o) I—514( 7). (9D)

Note thatj'(7;7)—0 ast— 1y, as expected, since the ini-
tial velocities vanish for each of the axion modes.

Now, the energy contribution from a single mode is
given by

(92

these initial conditions were discussed above. Thus, in the

mass-eigenstate basis, we see tathof the Kaluza-Klein
modes begins with an initial displacement. Solving ¢oris

then straightforward. The first initial conditiqthe displace-
ment condition trivially gives the constraint

¢ dyatc I 1u=Avrg* (83)

whereX is the dimensionless eigenvalue defined in &)
and wherg=p/(maqf o) is a dimensionless energy density.
Substituting in the above results, we therefore find

2
~ T ~ . .
(1) = ANZRPr Y (m0; )2+ (70:7)%]. (93

where for notational convenience any Bessel function written

without an argument is understood to be evaluatedjat
Using the Bessel-function identity

d + +
Gl D=2 (),

dr (84)

we see that the initial velocity constraint takes the form

da,

dr (89

=7 W e, dg ) +c I _gu( D],

implying ¢, Js,=c_J_5;,. Together with EQq.(83), this
leads to the solutions

2

where we have used the further identity

C.= AT 5514 (86)

While this expression is exact for all times it is also
useful to have an approximation valid for extremely late
times satisfying7>1 (such as the present cosmological
time). Using the Bessel-function asymptotic expansion

2 TV T
J,,(T)* ;_CO 7_7_2

it is straightforward to show that

(99

as 7—®,

2
i(10;7)24]  (m9;7)%=~ ;_{[35/4(7'0)]24‘[375/4( 70) 12

+235i(10)I_sil( o)} (95)

Given the exact resu(®3), we can convert fromr back to
our original time variable to obtain the final closed-form
solution
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—3/2

Y w? e 1T
p(D)=— AN Y[ (Xto;XD) %+ (XTo:X1)?] p(t)~—(— , (102

4
(96)

where we have defined the dimensionless tifrempgt. ~ WHICh is consistent with the initial energy densip(t,)
Thus, adding together the contributions from all the mass= 1/2. However, for practical purposes, we shall focus on the

eigenstate modes, we obtain the final energy density: expression$99) and(100) in whicht is taken large but, is
kept arbitrary. This is becausey can occasionally be rela-
(D)= E (1) tively small (particularly for the lightest eigenvaluesven if
A 1, itself is relatively large. Finally, in the four-dimensional
2 y—oo limit, we find thatX\,—ky for k=1, while X\o—1.
= A SF-VZSY AZRA (VT ND)2 4] (VDo NT)2 Ch ; .
=7 tot 2 AN [JONtg; Ao+ ] (N tg; A )], Thus, in this limit, the excited Kaluza-Klein modes decouple

and we obtain the four-dimensional result
(97)

Xao(to) =[Isa(to) 12+ [I_s5a(to) 12+ V235u(to) I _su(to).
Note that this is theexactresult for the relic oscillation en- an(to) =i to) I+ [J-suto)] \/— 514 to)J sl Lo)

ergy density as a function of time. (103
It is easy to verify thaip(t) has the correct limit a§  As expected, this approaches the value given in(Eef) for
—T1,. Indeed, ag —1,, we find using the identity87) that  to>1.
p(t)—po, Where We see from Eq(99) that although theate of energy loss
remains fixed at asymptotic times, the presence of the
~ 1 ~on2 Kaluza-Klein states can nevertheless change the overall
Po=75 ; NAY- 98 value of the energy. This is because the oscillating excited
Kaluza-Klein states can change the rate of energy loss at
This is indeed the correct value of the initial energy in theintermediatetimes, possibly leading to an enhanced or di-

mass-eigenstate basis, since each mass eigenmode starts viitfiished energy at late times. The cumulative effect of these
zero velocity and with initial displacemen, . However, in ~ Kaluza-Klein states at late times is encoded within the ex-

our original Kaluza-Klein basis, our initial conditions & PressionX(to). Therefore, in order to understand the effect
consist of having only the zero mode displaced by 1. Thigf the Kaluza-Klein states on the energy dissipation rate, we

implies thafp=1/2. Comparing this result with E¢98) then  need to understand the behaviont,) as a function of the
yields the identity quoted in E@43). In particular, this iden- radius variableyz(meR)‘1 for a fixed initial timet.

tity holds for ally, as can be verified directly by substituting  The results are rather surprising. Of course,tfgr 1, we
the values o\ andA, and evaluating the eigenvalue sum. are in the “double-asymptotic” regim§5,~t)>l for which

For late times\t>1, the exact result97) for the energy  Egs.(101) and(102) are expected to apply. We therefore find
density simplifies to take the form that in such cases the presence of the Kaluza-Klein modes

doesnot alter the energy density relative to the energy den-

(1) = ZX(TO)"E S/ -312 (99)  sity that would have been obtained in four dimensions. In

2 other words, even though we have an infinite set of Kaluza-

o o - Klein axion modes which are induced into oscillation as a

where thetime-independentoefficientX(to) is given by result of the initial displacement of the axion zero mode,
these oscillations nevertheless change the time-development
X(To)=2> AZX3{[Ieu(NTo) 12+ [I_su(N1o)]? of the zero mode in a compensatory manner so that the total

A oscillation energy density as a function of time is exactly

—_— _— preserved. This indicates that in such situations, the higher-
+1235(X10) - 514X o)} (100 dimensional axion scenarios are no less viable than the usual

. . four-dimensional scenarios.
This demonstrates that asymptotically, the total energy den- Even more surprising, however, is the situation that arises

sity falls asp(t)~1"** regardiessof the presence of the for smallert,. In such cases, we cannot use the “double-

excited axion Kaluza-Klein modes. Moreover, in the oo ; ’

“doubl fotic” i which 50 hakd.>1 asymptotic” expressiolf101), and we must resort to the full
ouble-asymplotic™ cases in which We aiso hak&o expression in Eq(100). We then find thai(t,) is smaller

for all , we can further approximate than the four-dimensional value given in Ed.03), which
implies that
X(to)~ L > 7\2A2=i (101
mtg X M, p(1)<pap(t). (104

where we have used the ident{#Q) in the last equality. We In other words, even though the excited Kaluza-Klein states
then find are triggered into oscillation by the initial displacement of
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1.2

L L T Mpo=10"* eV, we findto=mpdto~10C°. (By contrast, the
(a) current cosmological time is given Ay~ 10%°, correspond-
ing to t=10'"® seconds. This implies that in practice, we
should not expect to see a sizable decrease in the cosmologi-
cal relic oscillation energy density unless< (10 ©).
However, this assumes that a particular valueng§, which

in turn assumes a particular fixed valuef% via Eq. (33).

Changingpr can therefore change this result substantially.
We shall discuss this possibility in Sec. V.

Finally, let us briefly discuss the issue of axion lifetimes
as they relate to these cosmological relic oscillations. Ordi-
narily, relic axion oscillations are important precisely be-
cause the usual four-dimensional axion is so long-lived.
However, in higher dimensions, we have seen in Sec. Ill that
the heavy Kaluza-Klein axion modes become more and more
unstable, and hence cannot be expected to survive over the
long cosmological time scales we have been assuming. It is
therefore natural to wonder whether this places our conclu-
U~ ~ . — -1 . ~ sions about enhanced energy dissipation rates in jeopardy. In
:X(FO)/XiD(_tO)_ as a funft'fn Oy =(medR) %, assuming(@ to o words, it is no priori g)t;viouspthat we are ju:Jstifilgd iny
e o 5 oy e it e neglecing the exied Kalizz-lein decay widis in Eq

’ I&W) However, we have seen that relic axion oscillations in

states decoupling. However, as the size of the extra dimensio igher dimensions are primarily sensitive not to the heaviest
grows andy decreases from infinity, we see that the net effect of the 9 P y

Kaluza-Klein states is to dissipate the relic oscillation energy denax('jOn ?]]OdeT EUt to thed“gh:]eSt modes. Forhsu;:flmentlyl Iarg?
sity morerapidly, leading to smaller relic oscillation energy densi- radil, these lightest modes have masses which are relatively

. ) . . : ~ . close to the mass of the axion zero mode, and we have al-
ties at final times. The size of this effect depends tgn with A o .

I | 5 ding to sizable effects at | | ready seen in Fig. 1 that this in turn is bounded from above
Smaller vajues ot corresponding 1o sizable etiects at 1arge Valuesy,, e ysual four-dimensional axion masgq. Thus, the
of y, while for larger values of, this effect is delayed until corre- |jghtest axion Kaluza-Klein modes continue to be extremely
spondingly smaller values of In general, this effect becomes sub- |54 _lived, and will therefore survive to induce the enhance-

stantial foryto=O(1). Notethat all curves tend to zero in the  ment of the oscillation energy dissipation rate that we have
—0 limit, implying an infinitely rapid dissipation of the relic oscil-  jhgaryed.

lation energy density in the full five-dimensional limit.

|

0.8 (b)

0.6
(c)

p(t)/pap(t)

0.4

0.2

0.5 1 1.5
y= (ranR)_1

(@]

[w]
fav]

FIG. 5. The energy-dissipation ratio factop(t)/psp(t)

the zero mode, these Kaluza-Klein states dissipate the oscil- V. SOME NUMBERS, BOUNDS, AND CONSTRAINTS
lation energymore efficientlyand result in a netlecreasen

the oscillation energy as a function of time relative to the.
four-dimensional case. This situation is shown in Fig. 5,

where we plotp(t)/pap(t) =X (t)/Xap(t,) as a function of

Let us now combine our different results from the preced-
ing sections. Our goal will be to determine the extent to
'which a self-consistent picture of axion energy scales
emerges from the previous results.

y=(mpgR) ~* for three different values of,. Note that in We begin with the three fundamental equations given in
the y—0, t,—0 limit, the ratio p(t)/psp(t) decreases Eqs (19) and(33). For simplicity, in Eq.(33) we shall take
as\y. g?=g3,r=1/2, and in Eq(19) we shall takes=1. We can

We thus conclude that in such situations, the presence Qherefore combine these three equations in order to exgress
coupled relic Kaluza-Klein axion oscillations can actually in terms of the fixed quanuueﬁQCD, M string (the fundamen-
weakenthe usual four-dimensional upper bounds tmg tal underlying mass scale in the theprand the effective
This implies that it may be possible to consider higher valuegxion decay constarﬁpQ (our measure of “invisibility™).
of pr than are usually allowed in four dimensions, therebyFor simplicity we shall also takBq= M gying, Since we want
further diminishing the axion couplings to matter and provid-to have only one fundamental mass scale in the problem.
ing yet another higher-dimensional method of achieving arThis then yields the result
“invisible” axion. We hasten to point out, however, that the
size of this effect depends crucially on the valugyafs well 2 M3
as on the initial timé, at which the axion potential is estab- ~ 1677 ___sting (105)

X . ~ z 2
lished. In general, for a given value btf, we can expect to § frAGep
see a sizable deviation from the four-dimensional asymptotic

result only when\t,<O(1) for the lightest eigenvalues. We know thatM gying cannot be lower thar- O(1 TeV),
This impliesyty=<©(1). Taking to=10"° seconds(corre-  and Aqcp is absolutely fixed £250 MeV). We therefore
sponding to the QCD phase transitiand a reference value find that in generaly is bounded from below:
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25x102 GeV which implies that we can obtai.;~O(1) simply by tak-
Y=Y min™~ % - (1060  ing é&~0O(1) and
éfpg
Thus, assuming~ (1), we seghatfpy~10"2GeV is con- fpg~3.8x10" GeV=Mgyr. (110

sistent with havingy=~O(1). Remarkably, this is precisely
the region where we expect to find the axion mass becominﬂ1 other words. if we tak&pQ~ Mgyr, then we have a self-

independent of oo, as shown in Fig. 1. o consistent solution withymin~O(1), Yeir=O(1), and

picted in Fig. 1, a natural question arises as to whether it i%ient Ofpr, and the Kaluza-Klein modes begin to induce a

possible to tolerate larger values Wfsying. Indeed, slightly significant reduction in the final relic oscillation energy den-

larger values oMgying[€.9., in theO(10 TeV) rangg may . : . P : :
- . ; . sity which can in principle compensate for the increase in
be preferred on the basis of detailed comparisons with ex- y princip P

perimental data. Ordinarily, it might seem to be impossiblef_PQ' Remarkably, this analysis suggests tfaj, the effec-

to increase the value il g any further, because we see tive Peccei-Quinn symmetry-breaking scale, may be related

. . L " to Mgur, the effective four-dimensional GUT symmetry-
from Eq. (105 that increasingVl gying requires increasingpq eut y y

) T breaking scale.
in order to maintain thé)(1) values oy (as preferred on the Of course, there is still one constraint that we have not

basis of Fig. 1, and increasindpq generally runs into diffi-  jmposed in the above analysis: we have not restricted the
culties with cosmological relic oscillation energy densitiessjze of the radiusR of the extra spacetime dimension. In
overclosing the universe. However, we have seen in Sec. Irinciple, this is not a problem because the standard-model
that the Kaluza-Klein axion modes may be capable of dissifields are restricted to a D-brane, and thus there are no
pating this excess energy density more rapidly so as to evadgunds on the sizes of such transverse extra dimensions that
these bounds. The question then arises: to what extent c@an arise from standard-model processes. However, gravity
we increaséd pq, thereby making the axion increasingly “in- is generally free to propagate into whatever extra dimensions
visible,” without disturbing the relic energy density bounds? exist, leading to the additional constraiRs O(millimeter).

Note that increasin@PQ has a number of effects. First, as It is the.rEfO-re- important to Unders‘fand how this additional
fPQ increases, we find from Eq106) thaty,;, decreases. constraint limits the above scenarios. We stress, however,

This means thay can be chosen even smaller. However, Wethat imposing this additional constraint relies on the assump-

also find from Eq.(33) that mpq decreases, which in turn tion that gravity is 'ndeEd free to propflgatg in the extra d,','
o ~ . . i mensions. Recent ideas concerning “gravity localization
implies thatto=medl, (the dimensionless time of the QCD 5] haye shown that this need not always be the case.
phase transitionalso Qecreases. Defininyg,;; to be th'e c_r|_t|— If we do assume this to be the case, however, then the
cal value ofy at which we start to observe a significant

q in th i ilati densi h Iabove scenarios are significantly restricted. Requifid
ecrease in the relic oscillation energy density, we have al=. 1 5-4 oy implied that

ready seen in Sec. IV that~1, . Thus, ast, decreases,
we see thay,;; increases, implying that it becomes easier to

N —13
compensate for the effect of having increagggin the first Mpo= w. (111
place. Indeed, this suggests that there might be an alterna- y
tive, self-consistent, significantly higher value ﬁfQ than
previously thought. Moreover, using Eq(107), we find that this implies that
In order to determine this self-consistent valud g, we
first note from Eq.(33) that -
a(33 Fog= (2.5} 10 GeV)éy. (112
(2.5x10 2 GeV®)¢
PQ "Note that imposing this constraint is actually somewhat subtle,

and depends on a choice of which variables to hold fixed. In the

analysis in this section, we have been takfmg, andy as inputs,

and treatingM ging, R, andmpg as derived quantities. Thus, with
(108) this conventionpr is considered to be independentRyfwhile fpq

(identified withM gi,¢) is considered to be aR-dependent quantity.

Note that this procedure exactly mimics the situati¢p@gslQ] in
where we have takety~10"° sec (corresponding to the Which the GUT and Planck scales are lowered by extra spacetime
QCD phase transitionWe thus have dimensions: it is always the “measured,” large, four-dimensional
scale that is held fixed, while the reduced higher-dimensional scale
is viewed as a function dR. We therefore continue this convention

f .
L, (109 in the present case even though neithgg nor fpg has been ex-
3.8x10% GeVv perimentally measured.

This in turn implies that

(3.8x10' GeV)¢

To=mpdto~ ?
PQ

EYerit™
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This therefore sets ampper bouncn ’fPQ as a function O;’- already mentioned in Sec. lll, such a TeV-scale axion sce-
Combining this upper bound with E¢LO5), we thereby ob- nario is safe with respect to supernova or red-giant bounds

tain the constraint for the same reasons that the TeV-scale gra\{iton scenarios
are safg 10], namely that supernova and red-giant tempera-

M sging | &2 tures are much smaller than the fundamental ener le of

string gy scCale o

gy=1 1 TeV 113 our theory. Of course, we reiterate that a much more detailed

analysis of these and other processes is necessary in order to
Thus, the lower limit fory depends crucially on the model- sharpen these bounds and constraints.
dependent parametérand the value we choose M ging- Finally, it may also happen that an axion process in higher
Sinceé reflects the PQ charges of the ordinary fermions, it isdimensions exactly reproduces the four-dimensional result.
not unreasonable to assume tamay be somewhat larger As an example of this, let us consider ah-exchange pro-
than 1. TakingMying~1 TeV therefore still enables us to cess at zero momentum transferg., FF—a’ —FF). The
havey~O(1). However, despite this fact, we can combine amplitude for such a process is given by
Eq. (109 with Eg. (112 to show that
. 1 1 <

Verir=(6.6X10"7)y. (114 A= f7<a’a’)~f7 m; ) Fmfn(@aman) (117
Thus the value o in this case is always significantly larger A "
than the critical value that would be required in order towhere(BA) denotes the propagator from stateo stateB.
reduce the relic oscillation energy density below its usuaPassing to the mass-eigenstate bé§iyia Eqg. (39 and us-

four-dimensional value. _ _ ing the zero-momentum propagata, a, )= 6., /\?, we
Of course, this does not disturb the self-consistency ofing that this amplitude then takes the form

this scenario. As a result of EqL12), pr may still be in the

©

range that satisfies the usual four-dimensional bounds, and 1 1 1
we have seen in Sec. IV that the presence of the Kaluza- = f—z 2 & ﬁ m;:O rmrnU)\mU)\n:—'f\Z >
Klein axion states does not increase the final relic oscillation PdTPQ ' PQTP

Q
energy density relative to the four-dimensional case. More- (118

over, these axions continue to be virtually “invisible” Note that we have used E@i4) followed by Eq.(43) in the
against direct detection and/or subsequent interactions asfigal equality. However, we see that the final result is nothing

result of the decoherence effect discussed in Sec. Ill. Thugut the amplitude that we would have obtained in four di-
this picture continues to be self-consistent, and continues tmensions for an axion that couples with the usual four-

lead to an invisible axion. Furthermore, although we haveyimensional couplingpoand has the usual four-dimensional
restricted our analysis to the case of a single extra d'mens'o'?nassmpq Thus. in this case. we obtain no new bounds

the %prreslpondlngk] cor;stralnts in higher dlrﬂensmnsdmayl b oming from sucha’-mediated processes. This stands in
significantly weaker. In any case, a much more detaileq . contrast to the analogous case of graviton-mediated
analysis is necessary in order to make the above numenc)E

bound ; dtod ) hether furth ocesses, from which one can generally derive stringent
ounds more precise, and to determine whether further ex;,,n4s on the radii of the extra spacetime dimensions. Of
perimental constraints may be imposed.

. , course, we stress that this result holds only for zero momen-
There are also other phenomenological constraints th

. . . . o Fhim transfer, and is likely to be different when sizable mo-
may be imposed, particularly constraints that are insensitive, o nia are carried by the intermediate axion state

to axion time-evolution. Good examples of this would be
axion missing-energy signatures, such as might arise from

) ) . VI. THE STANDARD-MODEL DILATON
the decayk “—r*a’. In four dimensions, this process has a S © ©

branching ratio which scales a?gé, leading to a bound The a_lbovg considerations about plaping a standard-model
fPQ?v 10 GeV. In five dimensions, by contrast, this branch- singlet field in th_e bulk are actually quite ge_:neral, a_nd tran-
ing ratio scales as sc_end _the speC|f|c_exampIe _of the QCD axion. To |Ilustr_ate
this point, let us briefly consider the case of another conjec-
1 ™ Rme me | 1 tured particle, the standard-model dilaton. This particle is
BR(K+—>w*a’)~7 2 1~— ~< )T introduced into the standard model in order to restore the
fpqn=0 fro Mstring fpq classical scale invariance broken by mass terms. The scale-

(115 invariant extension of the scalar sector of standard model is

For m=500 MeV, this then implies the constraint given by[22]

\/TK £=3(3,D)?+(D,¢)(D*$)'=Vo(¢,0) (119
=
fro= Mstring104 Gev. (116 where ¢ is the Higgs field and where the standard-model

dilaton fieldD, like the axion fielda, is written in terms of a

Taking fpg=Mgying then leads to the bounMgying  decay constantp via a relation of the form
=370 GeV, which is consistent with the idea of lowering

the string scale to the TeV-range. Moreover, as we have D=fpexpo/fp). (120
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By suitably choosing the parameters in the tree-level Higgs n2 4A
potential Vo(¢,0), we can arrangéo)=0. Consequently (MD)ﬁn,Eﬁénn,—;rnrn,. (127
(D)=fp represents the mass scale at which dilation invari- fo

ance is spontaneously broken. After quantum corrections are
included, the scalar potential can be written in the f¢28]  Remarkably, this mass matrix has exactly the same structure
as in the axion cas€82), and consequently the physical im-
In—» plications will be identical to those for the axion. Of course,
fp this result is expected since the dilaton and axion are both
(121) Nambu-Goldstone bosons of a spontaneously broken sym-

1) . o . metry, and consequently have similar couplings to the
HereV'™(¢,0) is the one-loop contribution to the effective gnomalous divergences of their respective currents.
potential andA(¢,0) is the divergence of the dilation cur-

rent. The presence af(¢,0) in this expression breaks the

4
V= ?—412 where V=|V(¢,0)+V®)($,0)—A(,0)
D

scale invariance, and gives rise to a dilaton mass VIl. CONCLUSIONS
4(A) In this paper, we have studied some of the novel effects
mﬁ,: -2 (122 that arise when the QCD axion is free to propagate in the
D bulk of large extra spacetime dimensions. First, we found

that under certain circumstances, the mass of the axion can
that in the standard model, the heavy top-quark mass leads Ec?come independent O.f thE.’ energy scale ass_omated with the
' reaking of the Peccei-Quinn symmetry. This feature does

(A)>0. Thus, in order to change the sign @), one re- * arise in four di ; B i le d
quires additional heavy Higgs-boson contributions for thel1Ot AMISE IN four dimensions. Because this energy scale de-
stability of the dilaton potential. termines the couplings between the axion and ordinary mat-

Let us now consider what happens when the dilaton fielder: this suggests that in higher dimensions, one has the free-

propagates in a five-dimensional bulk and therefore has g_om to adjust th_e strength Of the axion couplmgs_ without
Kaluza-Klein decomposition of the form isturbing the axion mass. This can therefore provide a new

mechanism for achieving an invisible axion.
o ny Second, we pointed out that in such higher-dimensional
D(x*y)= E Dn(x”)cos( E) (123 scenarios, the axion will typically experient@oratory ax-
n=0 ion oscillationswhich are completely analogous to neutrino
The five-dimensional action for the dilaton then takes theoscnlat_lons. This is therefore anew and unexp_ect_ed phenom-
f enological feature for axions that does not exist in the usual
orm - ;
four-dimensional case. Moreover, we found that these labo-
ratory oscillations can cause axions to “decohere” ex-
SZJ d*x dyM[ 3(duD)*—=V(X) 8(y)] (124 tremely rapidly. This is therefore a second higher-
dimensional phenomenon that may contribute to an invisible
whereV is given in Eq.(121). Substituting Eq(123) into axion. Moreover, this phenomenon arises for all non-zero

Eq. (124 and integrating over the fifth dimension then givesradii.
rise to the effective four-dimensional Lagrangian Third, we discussed the role that excited Kaluza-Klein

axion states may play in axion-mediated processes and axion
1> , 1 “ n? , 1 ” 4 decays. This enabled us to propose several direct experimen-
ﬁeﬁzinZO (0,005 nZl ?Dn—f—‘l nZO rDn tal tests of the proposed higher-dimensional nature of the
- N DA axion.
o Finally, we found that under certain circumstances, the
> r.D, presence of these Kaluza-Klein axion modes can signifi-
n=0 cantly accelerate the dissipation of the energy associated
(125 with cosmological relic axion oscillations. Moreover, even
when these circumstances are not met, we found that the

normalized the dilaton kinetic terms. The minimum of the four-dimensional bounds. This demonstrates that such

where(V)=A/4 at the minimum of the potenti&l21). Note

—h)l [

X[ Vo(¢,0)+ V(4,0 — A(d),O)ln(
D

their four-dimensional counterparts, and indeed may even be
(De)="%p preferred on the basis of their remarkable “invisibility” de-
coherence properties.
(D,)=0 forall n=1. (126) Of course, there are many aspects of higher-dimensional

axion phenomenology which we hawet examined in this
We can derive the dilaton mass matrix by considering thgaper. These include the role that axions play in stellar evo-
local curvature of the effective dilaton potential near itslution, the thermal production of axions, axionic string de-
minimum. This is completely analogous to the axion casecay, and isocurvature axion fluctuations. While some of
(30), and gives rise to these topics have been discussed in RE3], it will be in-
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teresting to further explore the role that extra spacetime dieited Kaluza-Klein modes on cosmological evolution is
mensions can play in these areas. likely to parallel the analysis in Sec. IV. Moreover, both of
Although we have focused primarily on the case of QCDthese effects are likely to play an important role in the all-
axions, we stress that much of our analysis is completelymportant questions of dilaton and radion stabilization. We

general and may apply for other bulk fields as well. This washerefore leave these issues for future investigation.
explicitly illustrated in Sec. VI, where we considered the

case of the standard-model dilaton. Similarly, we expect that
our analysis will also apply to other bulk fields such as
Kaluza-Klein gravitons, string-theoretic dilatons, and other
bulk moduli. Indeed, the twin properties of laboratory oscil- We wish to thank K. Orginos, |. Sarcevic, and especially
lations and decoherence leading to “invisibility” are likely J. Mourad for useful discussions. K.R.D. and T.G. also wish
to play an important role in experimental searches for suctio acknowledge the hospitality of the Aspen Center for Phys-
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