
PHYSICAL REVIEW D, VOLUME 62, 105023
Invisible axions and large-radius compactifications
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We study some of the novel effects that arise when the QCD axion is placed in the ‘‘bulk’’ of large extra
spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale
associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be
adjusted independently of its couplings to ordinary matter, a feature which is not possible in four dimensions
and which may contribute to axion invisibility. Second, we discuss the new phenomenon of laboratory axion
oscillations~analogous to neutrino oscillations!, and show that these oscillations cause laboratory axions to
‘‘decohere’’ extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contribut-
ing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes
and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we
show that under certain circumstances the presence of an infinite tower of Kaluza-Klein axion modes can
significantly accelerate the dissipation of the energy associated with cosmological relic axion oscillations,
thereby enabling the Peccei-Quinn symmetry-breaking scale to exceed the usual four-dimensional relic oscil-
lation bounds. Together, these ideas therefore provide new ways of obtaining an ‘‘invisible’’ axion within the
context of higher-dimensional theories with large-radius compactifications.

PACS number~s!: 11.10.Kk, 11.25.Mj, 14.80.Mz
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I. INTRODUCTION

One of the pressing theoretical issues that confronts
standard model of particle physics is to understand the
gins of CP violation. While the weak interaction is we
understood to lead toCP violation through complex phase
in the Cabibbo-Kobayashi-Maskawa~CKM! fermion mass
matrix, CP violation may also independently arise from th
physics of the strong interaction. Ordinarily, one might ha
assumed the strong interaction to conserveCP. However,
theU(1) problem@1# @namely, the inability to interpret theh
particle as the Nambu-Goldstone boson of a spontaneo
broken U(1) flavor symmetry# turns out to require a non
trivial QCD vacuum structure@2# which in turn naturally
leads toCP violation. Specifically, one finds that the effe
tive Lagrangian describing the strong interaction should
augmented by an additionalCP-violating contribution

L eff5LQCD1Q̄
g2

32p2 Fa
mnF̃mna ~1!

where theQ̄ parameter receives two contributions:
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Q̄[Q1argdetM . ~2!

HereQ is the strong-interactionQ-angle reflecting the non
trivial nature of the QCD vacuum, and argdetM ~with M
denoting the CKM matrix! is the contribution arising from
weak interactions. However, measurements of the neu
electric dipole moment place the stringent experimen
bound

Q̄&1029. ~3!

Explaining the small size ofQ̄ is the strongCP problem@3#.
The most elegant explanation of the strongCP problem is

the Peccei-Quinn~PQ! mechanism@4#, in which Q̄ is set to
zero dynamically as the result of a global, spontaneou
brokenU(1) Peccei-Quinn symmetry. However, associa
with this symmetry is a new Nambu-Goldstone boson,

axion @5,6#, which essentially replaces theQ̄ parameter in
the effective Lagrangian. This then results in an effect
Lagrangian of the form@3#

L eff5LQCD1 1
2 ]ma]ma1

a

f PQ
j

g2

32p2 Fa
mnF̃mna ~4!

where f PQ is the axion decay constant, associated with
scale of PQ symmetry breaking. Herej is a model-
dependent parameter describing the PQ transformation p
©2000 The American Physical Society23-1



te
ou
th

s

pl
er

ng

o
d

u

on
th
f
e

as
en

he
or

-
m

t
O
P

om
e

d

th

rd
a

ls

t

ions

or
ion
ct
eir
four-
en-

ter,
ve

d
our
es

ent
bly,
e
-

dy
he-

lk
xion
e

ion
d
s

r
t it
de-
gth
e
l in
s-
il-

f an
he

ino
-

f the
the
-
con-

by
ro-

eth-
ro-

nal

KEITH R. DIENES, EMILIAN DUDAS, AND TONY GHERGHETTA PHYSICAL REVIEW D62 105023
erties of the ordinary fermions, and we have not exhibi
further Lagrangian terms which describe axion-fermion c
plings. The mass of the axion is then expected to be of
order

ma;
LQCD

2

f PQ
~5!

whereLQCD'250 MeV; likewise, the couplings of axion
to fermions are suppressed by a factor of 1/f PQ. Thus,
heavier scales for PQ symmetry breaking generally im
lighter axions which couple more weakly to ordinary matt

Ordinarily, one might have liked to associate the scalef PQ
with the scale of electroweak symmetry breaking, implyi
an axion mass near the electron massma'O(102) keV.
However, experimental searches for such axions have s
been unsuccessful@7#, and indeed only a narrow allowe
window currently exists:

1010 GeV& f PQ&1012 GeV. ~6!

This then implies an axion which is exceedingly light,

1025 eV&ma&1023 eV, ~7!

and whose couplings to ordinary matter are exceedingly s
pressed. These bounds generally result from various com
nations of laboratory, astrophysical, and cosmological c
straints. In all cases, however, the crucial ingredient is
correlation between themassof the axion and the strength o
its couplingsto matter, since both are essentially determin
by the single parameterf PQ.

In this paper, we point out that this situation may be dr
tically altered in theories with large extra spacetime dim
sions. Since their original proposal@8#, such theories have
recently received considerable attention because of t
prospects for lowering the fundamental grand unified the
~GUT! scale@9#, the fundamental Planck scale@10#, and the
fundamental string scale@11#. As a result of these develop
ments, it is now understood that all three of these scales
be adjusted to arbitrary values, perhaps even values in
TeV range, without violating experimental constraints.
course, if one lowers these fundamental scales below the
symmetry-breaking scale in Eq.~6!, then it might seem dif-
ficult to preserve the axion solution to the strongCP prob-
lem. In fact, this observation has been used@12# to argue that
the fundamental scales of physics should be taken at s
intermediate scale near the PQ scale. However, this argum
assumes that the PQ mechanism itself remains untouche
the presence of the extra large dimensions.

In this paper, we shall generalize the PQ mechanism
higher dimensions. More specifically, we shall consider
consequences of placing the PQ axion in the ‘‘bulk’’~i.e.,
perpendicular to thep-brane that contains the standa
model! so that the axion accrues an infinite tower of Kaluz
Klein excitations. Placing the QCD axion in the bulk has a
been discussed previously in Refs.@10,13#, and is completely
analogous to recent ideas concerning the placement of
right-handedneutrino in the bulk @14,15# in order to lower
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the neutrino seesaw scale and obtain neutrino oscillat
with light ~or even vanishing@14#! neutrino masses.

At first sight, it may seem that Kaluza-Klein modes f
the axion cannot possibly have a significant effect on ax
phenomenology. After all, we do not generally expe
Kaluza-Klein modes to play a significant role unless th
masses are of the same order as the mass of the usual
dimensional state. However, because extra spacetime dim
sions off the brane can potentially be as large as a millime
the lightest corresponding Kaluza-Klein modes can ha
masses;O(1024 eV). Note, in particular, that this boun
does not rely on choosing any particular mass scale for
underlying higher-dimensional theory, and likewise mak
no assumption concerning the~an-!isotropy of the compacti-
fication. Instead, this bound comes directly from the curr
status of gravitational Cavendish experiments. Remarka
however, this Kaluza-Klein bound falls directly within th
allowed range~7! for the mass of the four-dimensional ax
ion. It is precisely for this reason that it is important to stu
the effects that Kaluza-Klein axions can have on axion p
nomenology.

Given this, we shall find that placing the axion in the bu
can have a number of surprising consequences for a
physics, all of which provide new ways of rendering th
axion ‘‘invisible.’’

First, in Sec. II, we shall show that the mass of the ax
can bedecoupledfrom the PQ symmetry-breaking scale, an
under certain circumstances is essentially set by the radiuR
of the bulk:

ma&O~R21!. ~8!

Thus, remarkably, the allowed range~7! for the axion mass
is consistent with radii in the millimeter or sub-millimete
range. More importantly, however, this result implies tha
is possible to adjust the PQ symmetry breaking scale in
pendently of the axion mass in order to control the stren
of thecouplingsof this axion to ordinary matter. This featur
does not arise in four dimensions, and might be usefu
order to provide an alternative explanation for an ‘‘invi
ible’’ axion. A detailed numerical discussion of this possib
ity will be presented in Sec. V.

Second, in Sec. III, we shall show that the presence o
infinite tower of Kaluza-Klein axion modes can induce t
novel phenomenon oflaboratory axion oscillations. These
oscillations are completely analogous to laboratory neutr
oscillations, but we shall find that under certain circum
stances they lead to a complete and rapid decoherence o
axion field. This implies that an axion, once produced in
laboratory, will ‘‘decohere’’ extremely rapidly. This is there
fore a second higher-dimensional phenomenon that can
tribute to the ‘‘invisibility’’ of the axion under certain cir-
cumstances.

Third, in Sec. III, we shall also discuss the role played
the excited axion Kaluza-Klein states in axion-mediated p
cesses and decays, and propose several experimental m
ods of detecting their existence. These would therefore p
vide direct experimental tests of the higher-dimensio
nature of the axion field.
3-2



ir-
za

lla
r-

PQ
n
n
ir
.
ns
er
ns
he
pl
e
e

he

om
s

t

tr

e
th

om
r

ll
s
th

ls

ur-

he
tal

ken
e

re-
vi-
ot
as-

ass

ex-
sion
ete
rk-
cts.
-
PQ
the
se

ies.
y,
-

ed

e
the

an

t
-

,

re-
rm
nt

.
le

INVISIBLE AXIONS AND LARGE-RADIU S . . . PHYSICAL REVIEW D 62 105023
Finally, in Sec. IV, we shall show that under certain c
cumstances, the presence of the infinite tower of Kalu
Klein axion modes can actuallyacceleratethe dissipation of
the energy associated with cosmological relic axion osci
tions. This implies a weakening of the usual fou
dimensional cosmological relic oscillation bounds on the
symmetry-breaking scale, which in turn may permit axio
matter couplings to be suppressed even more strongly tha
the usual four-dimensional case. This is therefore a th
higher-dimensional feature leading to an ‘‘invisible’’ axion

Together, these results suggest that ‘‘invisible’’ axio
can emerge quite naturally within the context of high
dimensional theories with large-radius compactificatio
and have significantly different phenomenologies than t
do in four dimensions. Moreover, many of our results ap
to bulk fields in general, and transcend the specific cas
the axion. This is illustrated in Sec. VI, where we consid
the consequences of extra dimensions for another hypot
cal particle, the so-called standard-model dilaton.

II. A HIGHER-DIMENSIONAL PECCEI-QUINN
MECHANISM

In order to generalize the Peccei-Quinn~PQ! mechanism
to higher dimensions, we will assume that there exists a c
plex scalar fieldf in higher dimensions which transform
under a globalU(1)PQ symmetry:

f→eiLf. ~9!

This symmetry is assumed to be spontaneously broken by
bulk dynamics so that̂f&5 f PQ/A2, where f PQ is the en-
ergy scale associated with the breaking of the PQ symme
We thus write our complex scalar fieldf in the form

f'
f PQ

A2
eia/ f PQ ~10!

wherea is the Nambu-Goldstone boson~axion! field. If we
concentrate on the case of five dimensions for concreten
then the kinetic-energy term for the scalar field takes
form

SK.E.5E d4x dyMs]Mf* ]Mf5E d4x dyMs

1

2
]Ma]Ma

~11!

whereMs is a fundamental mass scale~e.g., a type I string
scale!, and where we have neglected the contributions fr
the radial mode. Herexm are the coordinates of the fou
uncompactified spacetime dimensions,y is the coordinate of
the fifth dimension, and theM spacetime index runs over a
five dimensions:xM[(xm,y). Note that there is no mas
term for the axion, as this would not be invariant under
U(1)PQ transformation

a→a1 f PQL. ~12!

Furthermore, as a result of the chiral anomaly, we will a
assume a bulk-boundary coupling of the form
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Scoupling5E d4x dy
j

f PQ

g2

32p2 aFa
mnF̃mnad~y! ~13!

whereFmna is the~four-dimensional! QCD field strength de-
scribing the QCD gauge fields which are confined to a fo
dimensional subspace~e.g., a D-brane! located aty50, and
where j is a model-dependent quantity parametrizing t
strength of the axion couplings to matter. Thus, our to
effective five-dimensional axion action takes the form

Seff5E d4x dyF1

2
Ms]Ma]Ma1

j

f PQ

g2

32p2 aFa
mnF̃mnad~y!G .

~14!

While we have assumed that the spontaneously bro
U(1)PQ is parametrized byf PQ, one still has to address th
fact that gravitational effects can also break theU(1)PQ sym-
metry. In other words, gravitational interactions do not
spect global symmetries. Ultimately, this can lead to a gra
tational contribution to the axion mass which is n
necessarily suppressed. In this paper, however, we will
sume that the gravitational contributions to the axion m
are indeed suppressed, and thatU(1)PQ remains a valid sym-
metry even in the presence of gravitational effects. For
ample, such suppression might arise due to the suppres
of gravitational interactions across a large bulk, discr
symmetries of the sort that might come from Sche
Schwarz compactifications, or other large-radius effe
Likewise, we point out that if our underlying higher
dimensional theory is a string theory, then such a global
symmetry can emerge only as an effective symmetry of
low-energy effective string Lagrangian. This is becau
string theory does not provide continuous global symmetr

In order to obtain an effective four-dimensional theor
our next step is to compactify the fifth dimension. For sim
plicity, we shall assume that this dimension is compactifi
on a Z2 orbifold of radiusR where the orbifold action is
identified asy→2y. This implies that the axion field will
have a Kaluza-Klein decomposition of the form

a~xm,y!5 (
n50

`

an~xm!cosS ny

R D ~15!

wherean(xm)PR are the Kaluza-Klein modes and where w
have demanded that the axion field be symmetric under
Z2 action ~in order to have a light zero mode that we c
identify with the usual four-dimensional axion!.

In principle, we should also allow for the possibility tha
the axion fieldwindsnon-trivially around the extra compac
tified dimension, with winding numberw. This possibility of
winding arises becausea is really only an angular variable
as evident from Eq.~10!, and would imply that we should
introduce an extra termw fPQy/R into the mode expansion
~15!. Note, in particular, that such windings cannot be
moved by global Peccei-Quinn transformations of the fo
~12!. However, such a winding term would not be invaria
under the orbifold symmetryy→2y, and thus only the un-
wound configurationw50 survives the orbifold projection
Even if we were to compactify the axion field on a circ
3-3
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rather than an orbifold, such a term would contribute only
overall additive constant to the resulting effective poten
for the axion field, and would not change any of the sub
quent physics. It is therefore sufficient to restrict our atte
tion to the unwound configuration withw50.

It is also interesting to note that with respect to the fo
dimensional Kaluza-Klein axion modesan , the Peccei-
Quinn transformation~12! takes the form

a0→a01 f PQL

~16!
ak→ak for all k.0.

Thus, we see that onlya0 serves as the true axion transform
ing under the PQ transformation, while the excited Kalu
Klein modesak remain invariant.

Substituting Eq.~15! into Eq. ~14! and integrating over
the fifth dimension, we then obtain an effective fou
dimensional Lagrangian density

Leff5LQCD1
1

2 (
n50

`

~]man!22
1

2 (
n51

`
n2

R2 an
2

1
j

f̂ PQ

g2

32p2S (
n50

`

r nanDFa
mnF̃mna ~17!

where

r n[H 1 if n50,

A2 if n.0 .
~18!

Note that in order to obtain Eq.~17!, we must individually
rescale each of the Kaluza-Klein modesan in order to ensure
that they have canonically normalized kinetic-energy term
It is this that produces the relative rescaling coefficientsr n in
Eq. ~18!. We have also definedf̂ PQ[(VMs)

1/2f PQ, whereV
is the volume of our compactified space. Ford extra dimen-
sions, this definition generalizes tof̂ PQ[(VMs

d)1/2f PQ. For
example, assuming ad-dimensional toroidal compactifica
tion impliesV5(2pR)d, resulting in the relation

f̂ PQ[~2pRMs!
d/2f PQ. ~19!

Note that while f PQ sets the overall mass scale for th
breaking of the Peccei-Quinn symmetry, it is the volum
renormalized quantityf̂ PQ that parametrizes the coupling b
tween the axion and the gluons. In general, sinceMs

@R21, we find that f̂ PQ@ f PQ. Therefore, as pointed out i
Ref. @10#, this volume-renormalization of the brane-bu
coupling can be used to obtain sufficiently suppres
axion–gauge-field couplings even iff PQ itself is taken to be
relatively small. In other words, even if we demand thatf̂ PQ

be in the approximate range 108 GeV& f̂ PQ&1012 GeV, the
fundamental Peccei-Quinn symmetry-breaking scalef PQ can
be substantially reduced, potentially all the way to the T
range. This volume suppression is thus one high
dimensional way@10# of avoiding the need for a high funda
mental Peccei-Quinn scalef PQ.
10502
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Two comments are important at this stage. First, in tor
dally compactified higher-dimensional theories with reduc
Planck scales, the higher-dimensional Planck scaleM* and
the usual four-dimensional Planck scaleMPlanckare related to
each other via@10#

MPlanck5~2pRM* !n/2M* ~20!

wheren is the total number of extra spacetime dimensions
the bulk. IdentifyingM* ;Ms , we therefore see that th
n-dimensional volume factor (2pRMs)

n/2 must already be
adjusted in order to account for the difference betweenMs
;O(TeV) andMPlanck;O(1019 GeV). If we were to take
d5n for the current axion case, this would imply either th
f̂ PQ;MPlanck ~which would presumably overclose the un
verse!, or that Ms!O(TeV) ~which would clearly violate
current experimental bounds!. Therefore, if we assume a
isotropic compactification with all radii taken equal, we s
that an intermediate scalef̂ PQ can be generated via Eq.~19!
only if we haved,n. In other words, under these assum
tions, the axion must be restricted to asubspaceof the full
higher-dimensional bulk. This has already been pointed
in Ref. @13#, and is analogous to similar restrictions that ar
in the case of higher-dimensional neutrinos@14,15#. Note
that such ‘‘partial-bulk’’ fields generically arise in type
string theory; a discussion of some of their phenomenolo
cal effects and collider signatures can be found in Ref.@16#.

Our second comment concerns the relevance of the m
scale f̂ PQ that is generated by this volume factor. Of cours
it is apparent from Eq.~17! that f̂ PQ ~rather thanf PQ) sets the
scale for couplings between gauge fields and individual
ion modesak . However, we have also seen in Eq.~17! that
the gauge fields couple not to an individual axion modeak ,
but rather to the linear superposition

a8[
1

AN
(
n50

nmax

r nan5
1

AN
S a01A2(

n51

nmax

anD ~21!

where

N[112nmax. ~22!

Herenmax is a cutoff, determined according to the underlyin
mass scaleMs ~which sets the limit of validity of our higher-
dimensional effective field theory1!. Taking nmax'RMs
@1, we then find that the axion-gluon coupling in Eq.~17!
takes the form

AN

f̂ PQ

a8Fa
mnF̃mna'

1

Ap f PQ

a8Fa
mnF̃mna . ~23!

Thus it is actuallyf PQ, rather thanf̂ PQ, that sets the scale fo
axion couplings involving the entire Kaluza-Klein linear s

1Note that the heavy modes with masses of orderMs can be
treated within field theory along the lines discussed in Ref.@17#,
and within string theory along the lines discussed in Ref.@18#.
3-4
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perpositiona8. In other words, the effects of the volum
factor in Eq.~19! are cancel led by the normalization of th
Kaluza-Klein linear superpositiona8. Of course, this is ex-
pected from the perspective of the higher-dimensional the
in which f PQ is the only fundamental mass scale, and inde
this cancellation of the volume factor persists for any num
of extra spacetime dimensions. Because we expectf PQ

! f̂ PQ in scenarios with large extra spacetime dimensions,
see that axion couplings involving the linear superposit
a8 are relatively strong, and pose a serious threat to the
visibility of the higher-dimensional axion. We shall discu
how this problem may be overcome in subsequent sectio

Similar observations also apply for axion couplings
standard-model fermions. The invariance under theU(1)PQ
transformationa→a1 f PQL implies that axions can be a
most derivatively coupled to fermions carrying a PQ char
If we assume that these fermions are also restricted to
D-brane aty50 ~as would be the case for all standard-mod
fermions!, then this axion-fermion coupling is restricted
take the form

S acc;E d4x
1

f̂ PQ

~]mauy50!~ c̄gmg5c!. ~24!

Here auy50 is the full five-dimensional bulk axion field
evaluated aty50, and the bulk-brane coupling strengthf̂ PQ

is defined in Eq.~19!. Note that f̂ PQ is the same volume
rescaled axion decay constant that parametrizes the
plings to the gauge fields, with the volume factor emerg
just as for the axion-gauge couplings. Using the Kalu
Klein decomposition~15!, the action then becomes

Sacc;
1

f̂ PQ
(
n50

`

r nE d4x~]man!~ c̄gmg5c!

;
1

f PQ
E d4x~]ma8!~ c̄gmg5c!, ~25!

and we see that once again the entire Kaluza-Klein lin
superpositiona8 couples to the charged fermions. This
completely analogous to the situation in Eq.~17! for the
gauge fields. It is important to stress that this need not h
been the result from a purely four-dimensional perspect
Indeed, given the Peccei-Quinn transformation proper
~16!, we see that it is only the zero-modea0 which requires
a derivative coupling to fermions; the other axion modesak
area priori free to have non-derivative couplings. It is ther
fore only the higher-dimensional structure of the axion fie
that forces all of the axion modes to have identical derivat
couplings to charged fermions. Moreover, we see from
~25! that while the mass scale for the couplings of individu
Kaluza-Klein axion fermions to fermions is set byf̂ PQ, the
mass scale for the coupling of the full linear superpositiona8
to fermions is set byf PQ.

Let us now proceed to verify that this higher-dimension
Peccei-Quinn mechanism still cancels theCP-violating
phase, and use this to calculate themassof the axion. Given
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the Lagrangian~17!, we observe thata8;(n50
` r nan serves

as the overall quantity that parametrizes the size ofCP sym-
metry breaking. Applying the one-instanton dilute-gas a
proximation, it is straightforward to show that

^Fa
mnF̃mna&52LQCD

4 sinS j

f̂ PQ
(
n50

`

r nan1Q̄ D . ~26!

This gives rise to an effective potential for the axion mod
in the QCD vacuum

V~an!5
1

2 (
n51

`
n2

R2 an
21

g2

32p2 LQCD
4

3F12cosS j

f̂ PQ
(
n50

`

r nan1Q̄ D G . ~27!

In order to exhibit the Peccei-Quinn mechanism, we n
minimize the axion effective potential,

]V

]an
5

n2

R2 an1r n

j

f̂ PQ

g2

32p2LQCD
4 sinS j

f̂ PQ
(
n50

`

r nan1Q̄ D 50,

~28!

yielding the unique solution

^a0&5
f̂ PQ

j
~2Q̄1 lp!, l P2Z

^ak&50 for all k.0. ~29!

Note that while any valuel PZ provides an extremum of the
potential, only the valuesl P2Z provide the desiredminimum
of the potential. Thus, this higher-dimensional Peccei-Qu
mechanism continues to solve the strongCP problem: we
see thata0 is the usual Peccei-Quinn axion which solves t

strong CP problem by itself by cancelling theQ̄ angle,
while all of the excited Kaluza-Klein axionsak for k.0
have vanishing VEVs. This makes sense, since onlya0 is a
true massless Nambu-Goldstone field from the fo
dimensional perspective of Eq.~17!. This is also evident
from the Peccei-Quinn transformation properties~16!.

However, as we shall now show, these excited Kalu
Klein axion states nevertheless have a drastic effect on
axion mass matrix. In order to derive the mass matrix,
consider the local curvature of the effective axion poten
around its minimum:

M nn8
2 [

]2V

]an]an8
U

^a&

. ~30!

From this we obtain
3-5
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M nn8
2 [

n2

R2 dnn81j2
g2

32p2

LQCD
4

f̂ PQ
2

r nr n8

3cosS j

f̂ PQ
(
n50

`

r nan1Q̄ D U
^a&

, ~31!

and in the vicinity of the minimum~29! this becomes

M nn8
2

5
n2

R2 dnn81j2
g2

32p2

LQCD
4

f̂ PQ
2

r nr n8 . ~32!

Let us now define

mPQ
2 [j2

g2

32p2

LQCD
4

f̂ PQ
2

y[
1

mPQR
. ~33!

Thus mPQ is the expected mass that the axion would or
narily have taken in four dimensions~depending onf̂ PQ
rather thanf PQ itself!, andy is the ratio of the scale of the
extra dimension tomPQ. Our mass matrix then takes th
form

M 25mPQ
2 ~r nr n81y2n2dnn8!, ~34!

or equivalently

M 25mPQ
2 S 1 A2 A2 A2 . . .

A2 21y2 2 2 . . .

A2 2 214y2 2 . . .

A2 2 2 219y2 . . .

A A A A �

D .

~35!

Note that the usual Peccei-Quinn case corresponds to
upper-left 131 matrix, leading to the expected resultM 2

5mPQ
2 . Thus, the additional rows and columns reflect t

extra Kaluza-Klein states, and their physical effect is to p
the lowest eigenvalue of this matrix away frommPQ

2 .
Deriving the condition for the eigenvalues of this matr

is straightforward. Let us denote the eigenvalues of this m
trix asl2 rather thanl because this is a~mass! 2 matrix. We
then find that the eigenvalues are given as the solutions to
transcendental equation

pl̃

y
cotS pl̃

y
D 5l̃2 ~36!

where we have defined the dimensionless eigenvalue

l̃[l/mPQ. ~37!
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In terms of dimensionful quantities, this transcendental eq
tion takes the equivalent form2

pRl cot~pRl!5
l2

mPQ
2

. ~38!

For each eigenvaluel, the corresponding normalized ma
eigenstateâl is exactly given by

âl5 (
k50

`

Ulkak ~39!

whereak are the Kaluza-Klein axion modes given in Eq.~15!
and whereUlk is the unitary matrix that diagonalizesM 2.
This matrix is given by

Ulk[S r kl̃
2

l̃22k2y2D Al ~40!

where

Al[
A2

l̃
~ l̃2111p2/y2!21/2. ~41!

Note that the unitarity of the matrixU implies that
(luUl0u251, which in turn implies

(
l

Al
251. ~42!

For future reference, we also record another useful iden
which will be proven in Sec. IV:

(
l

l̃2Al
251. ~43!

Finally, combining Eqs.~36! and~40!, it is straightforward to
show that

2Interestingly, this eigenvalue equation is identical to that wh
emerges@14# when the right-handed neutrinonR is placed in the
bulk, with the mass scalemPQ in the axion case corresponding t
the Dirac couplingm in the neutrino case. This implies that there
a formal relation between the Kaluza-Klein axion modes and
Kaluza-Klein neutrino modes. Remarkably, this correspondence
ists even though the axion and right-handed neutrino have diffe
spins, and even though the mechanisms for mass generation
completely different in the two cases. Moreover, in Sec. VI,
shall demonstrate that the same mass matrix and eigenvalue e
tion also emerge when the standard-modeldilaton is placed in the
bulk of extra spacetime dimensions. This suggests that many o
higher-dimensional phenomena to be discussed in this paper~such
as laboratory and cosmological relic axion oscillations! may have a
correspondingly general phenomenology that is equally applica
to neutrinos, dilatons, as well as other bulk fields that transform
singlets under the standard-model gauge group.
3-6
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(
k50

`

r kUlk5l̃2Al . ~44!

Note that all three of these identities hold for all values
y[(mPQR)21. This in turn allows us to rewrite Eq.~21! in
the form

a85
1

AN
(
l

l̃2Alâl . ~45!

We can check that Eq.~38! makes sense in the limitR→0.
In this limit, the Kaluza-Klein states become infinitely hea
and decouple; thus we should be left with the lightest eig
valuel5mPQ. And this is indeed what happens: asR→0,
we seepRl cot(pRl)→1, whereupon we obtainl5mPQ,
with all other eigenvalues infinitely heavy. AsR becomes
larger, the effect of the extra large dimension is felt throu
a reduction of this lowest eigenvalue. Thus, asR increases,
the mass of the lightest axion decreases.

One important consequence of Eq.~38! is that the lightest
axion mass eigenvaluema is strictly bounded by the radius

ma< 1
2 R21. ~46!

This result~46! holdsregardlessof the value ofmPQ. Thus,
in higher dimensions, we see that whenmPQ* 1

2 R21, the size
of the axion mass is set by the radiusR and not by the
Peccei-Quinn scalef PQ. In Fig. 1 we show the value of th
axion massma as a function ofy21[mPQR. Of course, for
mPQR→0 ~corresponding to eitherR→0 or mPQ→0), we
see that we indeed have the expected resultma'mPQ. This
is indicated by the diagonal dashed line in Fig. 1. Howev
asmPQR increases, we see that the axion mass departs f
this expected linear behavior, and instead is bounded by
inverse radius of the extra spacetime dimension. In fact, fr
Fig. 1, we see that we can approximate the mass of the a
as

ma'min~ 1
2 R21,mPQ!. ~47!

Thus the mass of the axion is determined solely by the ra
of the extra spacetime dimension when1

2 R21&mPQ.
As a result of this unexpected higher-dimensional beh

ior for the axion mass, we see that whenmPQ* 1
2 R21, the

Peccei-Quinn scalef PQ essentiallydecouplesfrom the axion
mass. Indeed, as long asmPQ* 1

2 R21, we see thatma
< 1

2 R21 regardlessof the specific sizes ofmPQ or LQCD.
This observation has a number of interesting implicatio

First, given Eq.~46!, we see that an axion mass in the a
lowed range~7! is already achieved forR in the submillime-
ter range, independently ofmPQ. This therefore provides fur
ther motivation for such submillimeter extra dimensions.

Second, and even more importantly, this result impl
that the usual relation between the mass of the axion an
couplings to ordinary matter no longer holds in higher
mensions. Indeed, we have the surprising result thatf PQ can
still be lowered or raised arbitrarily without affecting th
axion mass, providedmPQ* 1

2 R21. This suggests that it ma
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be possible to tune the fundamental Peccei-Quinn symm
breaking scalef PQ in such a way as to weaken the axio
couplings to matter to whatever values are required to m
the axion sufficiently invisible, all without affecting the ax
ion mass. This may therefore provide a new method of
taining an invisible axion. As we shall see, however, th
possibility is subject to several important numerical co
straints. We shall therefore defer a detailed discussion of
possibility to Sec. V.

III. LABORATORY AXION OSCILLATIONS

In this section we discuss the novel possibility oflabora-
tory axion oscillations. Note that these are not the tradition
cosmological relic axion oscillations~which will be dis-
cussed in Sec. IV!, but rather ‘‘laboratory’’ axion oscillations
that now arise in higher dimensions because the phys
Peccei-Quinn axiona0 is no longer a mass eigenstate. The
laboratory axion oscillations are therefore completely ana
gous to laboratory neutrino oscillations, which similarly ari
because the neutrino gauge eigenstates differ from the
trino mass eigenstates. In the present axion case, such o
lations are possible because of the non-diagonal nature o
axion mass matrix~35!. Therefore, as it propagates, it
possible for the four-dimensional axion zero-modea0 to os-
cillate into any of the higher-frequency axion modes in
Kaluza-Klein tower. Indeed, as we shall see, these osc
tions can provide yet another mechanism that may contrib
to the ‘‘invisibility’’ of the axion.

FIG. 1. The mass of the axion zero mode as a function of

dimensionless productmPQR[y21, where mPQ;LQCD
2 / f̂ PQ. Al-

though this reproduces the expected resultma'mPQ when mPQ

!R21 ~corresponding to the diagonal dashed linelR5mPQR), we
see that the axion mass is strictly bounded by the inverse radiu
higher dimensions, with the precise value ofmPQ essentially decou-
pling for mPQ*

1
2 R21. This implies that in higher dimensions, th

Peccei-Quinn scalef PQ can be adjusted arbitrarily within this pa
rameter range without affecting the axion mass.
3-7



-

as

-

r-

n-

KEITH R. DIENES, EMILIAN DUDAS, AND TONY GHERGHETTA PHYSICAL REVIEW D62 105023
FIG. 2. Higher-dimensional axion oscilla
tions, as discussed in the text.~a! The probability
P0→0(t) that the axion zero mode is preserved
a function of time, taking a reference valuey
[(mPQR)2150.4. ~b! The period-averaged pres
ervation probabilitŷ P0→0(t)& as a function ofy.
The limit y@1 corresponds to the usual fou
dimensional case, while the oppositey!1 limit
corresponds to an extremely large extra dime
sion with very light Kaluza-Klein states.
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A. Laboratory oscillations of the axion zero modea0

It is straightforward to calculate these oscillation pro
abilities in terms of the mass mixing matrix~35! and the
U-matrix ~40! that diagonalizes it. From a four-dimension
perspective, we see from Eq.~16! that only the zero modea0
serves as abonafideaxion transforming under the PQ tran
formation. Therefore, let us first calculate the probability th
this four-dimensional axiona0 oscillates into any of its cor-
responding Kaluza-Klein excitations as it propagates, or c
versely the probability that the four-dimensional axiona0 is
preserved as a function of time. Assuming that the axion
given an initial highly relativistic momentump, we find that
the probability thata0 is preserved is given by

P0→0~ t !5U(
l

Al
2e2Glt/2expS il2t

2p DU2

5(
l

Al
4e2Glt12 (

l8,l

Al
2Al8

2 e2(Gl1Gl8)t/2

3cosS @l22~l8!2#t

2p D . ~48!

HereAl is defined in Eq.~41!, andGl is the decay width of
the corresponding Kaluza-Klein axion. Thus, even thou
P0→051 at the initial timet50, we see that this probability
decreases at later times and ultimately oscillates aroun
period-averaged value

^P0→0~ t !&5(
l

Al
4e2Glt ~49!

which itself diminishes exponentially with time. Note th
the calculations leading to these results are similar to
higher-dimensional neutrino oscillation calculations in R
@14#.

It is important at this stage to separate two effects wh
influence the axion preservation probability. The first is t
oscillation itself, which arises due to the non-trivial axio
mass matrix and which reflects the mixing of the excit
Kaluza-Klein axion states. It is this oscillation which is o
focus in this section. By contrast, the second effect is ax
decayas reflected in the decay widthsGl . In general, these
decay widths result from the dominant decay modeâl

→gg, and therefore scale asGl'l3/ f̂ PQ
2 . This implies that
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for the lowest Kaluza-Klein eigenvalues and sufficien
small times, the productGlt is typically extremely small.
This is in accordance with our expectation that the us
four-dimensional axion is extremely stable. For examp
takingl0'mPQ'1025 eV, we see thatG0t!1 for all times
t&1048 sec. This upper limit exceeds the age of the unive
by 20 orders of magnitude. Therefore, particularly for t
lowest Kaluza-Klein eigenvalues, it is safe to neglect the
decay widths entirely, and concentrate solely on the osc
tions. For example, sinceAl

4 decreases rapidly as a functio
of l, only the lowest eigenvalues dominate the sum in E
~49!. We therefore find that we can approximate

^P0→0~ t !&'(
l

Al
4 , ~50!

which is independent of time. We stress, however, that
decay widthsGl grow rapidly as a function of the mass o
the Kaluza-Klein eigenstateâl . We have therefore included
these decay widths in Eqs.~48! and ~49! for completeness,
and will discuss the effects that they induce more carefully
the end of this section.

In Fig. 2~a!, we have plotted the behavior ofP0→0(t) as a
function of time, taking a reference valuey[(mPQR)21

50.4. Note that the jaggedness of the probability curve
flects the multi-component nature of the oscillation in whi
many different individual Kaluza-Klein oscillations interfer
with incommensurate phases. Although this oscillati
clearly leads to both axion deficits and axion regeneratio
we see that while the axion regenerations are nearly total
axion deficits are not total. This is in marked contrast to
results from a simple two-state oscillation. We also obse
that these oscillations are approximately periodic, with
wavelength set by the lowest-lying eigenvalue differen
This is because it is the lowest-lying Kaluza-Klein axio
that play the dominant role in producing this oscillation. As
result of this fact, we see that^P0→0(t)& is effectively con-
stant as a function of time, in accordance with Eq.~50!.
Indeed, the interpretation of this oscillation is complete
analogous to that given in Ref.@14# for higher-dimensional
neutrino oscillations. We shall discuss the possibilities
experimentally detecting such oscillations at the end of t
section.

In Fig. 2~b!, we have plotted the time-averaged probab
ity ^P0→0(t)& given in Eq. ~50! as a function of y
3-8
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INVISIBLE AXIONS AND LARGE-RADIU S . . . PHYSICAL REVIEW D 62 105023
[(mPQR)21. For y@1 ~corresponding to the usual fou
dimensional limit!, we see that̂P0→0(t)&→1, as expected
reflecting the fact that our single axion field cannot oscill
because its Kaluza-Klein states are infinitely heavy and
sentially decouple. More interestingly, however, we see t
in the y!1 limit ~corresponding to extremely large radii o
equivalently a quasi-continuous spectrum of light Kaluz
Klein modes!, the oscillation probability~50! approaches a
fixed value

lim
y→0

^P0→0~ t !&5 lim
y→0

(
l

Al
45

2

3
. ~51!

Thus, for extremely large radii, we expect to see on aver
only 2/3 of the axion flux that would have appeared in t
four-dimensional case.

B. Laboratory oscillations of the axion superpositiona8

For many practical purposes, there exists a different pr
ability that may be more relevant as a measure of labora
axion oscillations. As we have seen in Sec. II, standa
model gauge bosons and fermions generically couple no
a0, but rather to the linear superpositiona8 given in Eq.
~21!. Thus, in any laboratory process that produces axion
is mediated by axions, a more crucial oscillation probabi
is the probabilityPa8→a8(t) that this particular linear com
bination a8 is preserved as a function of time. Indeed, w
have already seen in Sec. II that while the standard-mo
couplings to individual axion modes scale as 1/f̂ PQ and hence
are already somewhat ‘‘invisible,’’ the couplings toa8 scale
as 1/f PQ and hence are significantly larger. Such couplin
therefore pose the largest immediate threat to axion invis
ity.

The calculation of the probabilityPa8→a8(t) proceeds in
an analogous manner. In general, the amplitude for an a
transitionak→al is given by

Ak→ l~ t !5(
l

Ul lUlk* e2Glt/2e2 il2t/2p ~52!

whereUlk are the~real! unitary matrix elements defined i
Eq. ~40! and where we have omitted an overa
(k,l )-independent phase. The probability thata8 is preserved
as a function of time is therefore given by

Pa8→a8~ t !5
1

N2U (
k,l 50

`

r kr lAk→ l~ t !U2

~53!

where the normalization factorN is given in Eq.~22!. In
evaluating Eq.~53!, it is convenient to use the identity~44!
in order to perform the Kaluza-Klein summations. We th
find
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Pa8→a8~ t !5
1

N2 F(
l

l̃8Al
4e2Glt

12 (
l8,l

l̃4~ l̃8!4Al
2Al8

2 e2(Gl1Gl8)t/2

3cosS @l22~l8!2#t

2p D G , ~54!

implying a period-averaged probability

^Pa8→a8~ t !&5
1

N2(
l

l̃8Al
4e2Glt. ~55!

Just as withP0→0(t), we will find it convenient to distin-
guish between two different effects: the overall ‘‘damping
that arises due to axion decays~encoded within the decay
widths Gl), and the oscillations that arise due to the no
trivial mixings of the excited Kaluza-Klein states. In order
concentrate on the latter effect, we shall therefore setGl

50 for simplicity. Moreover, as we shall see, this assum
tion will not change our phenomenological resultsregardless
of the time intervalt in Eq. ~57!. Thus, takingGl50, we see
that Eq.~54! reduces to

Pa8→a8~ t !5
1

N2 F(
l

l̃8Al
412 (

l8,l

l̃4~ l̃8!4Al
2Al8

2

3cosS @l22~l8!2#t

2p D G , ~56!

implying a time-averaged probability

^Pa8→a8~ t !&5
1

N2(
l

l̃8Al
4 . ~57!

It is straightforward to evaluate this time-averaged pro
ability for different values ofy. Remarkably, however, we
find that

lim
nmax→`

^Pa8→a8~ t !&50! ~58!

We therefore have virtually no probability for detecting th
linear combinationa8 at any later time after it is produced
Indeed, at the initial timet50, the axion probability starts a
1. This is guaranteed by the unitarity of theU-matrix in Eq.
~40!, and may be verified directly from Eq.~56!. However,
for t.0, the multi-component Kaluza-Klein oscillation
drive the net probability rapidly to zero. Indeed, as we sh
see, this holds for allt.0, and does not rely on taking th
t→` limit. At no later time does a macroscopic axion rege
eration appear. It is for this reason that it is justified to
Gl50 in Eqs.~54! and ~55!.

Of course, these conclusions rely on taking thenmax→`
limit in Eq.~58!. However, even if we truncatenmax at a finite
value;O(M stringR) ~reflecting the expected limit of validity
3-9



h-

ve

/

l
ro
m
te

c

in
bil-
is
of

erpo-
n

an
ro
he

the
e
of

-

b

-
o

en

a-
i-

n
l-

al
f
Eq

r-

ti
ly-

d

ult
re-

later
o

d
at

igi-

KEITH R. DIENES, EMILIAN DUDAS, AND TONY GHERGHETTA PHYSICAL REVIEW D62 105023
for our effective field-theoretic treatment!, we find

^Pa8→a8~ t !&&~M stringR!21. ~59!

For M string'10 TeV andR'1 millimeter, this implies

^Pa8→a8~ t !&&O~10217!. ~60!

Such an axion-mediated process therefore continues to
truly invisible in the sense that thea8 state literally ‘‘disap-
pears’’ over a very short time interval, with only a vanis
ingly small probability for detection of thea8 state at any
later time. This behavior is illustrated in Fig. 3. As we ha
noted, this is important because thea8 state couples to
standard-model fields with an unsuppressed coupling 1f PQ

rather than with a volume-suppressed coupling 1/f̂ PQ.
Note that asy→` ~reproducing the four-dimensiona

limit !, the time needed for the probability to drop to ze
increases without bound. Thus, in the four-dimensional li
y→`, the probability begins and remains at 1, as expec
However, for all finite values ofy, the axion probability
Pa8→a8(t) drops to zero in finite time, and remains there~as
shown in Fig. 3!. Indeed, fornmax@1, we see that the time
t0 for the axion probability to drop to a predetermined fra
tion of its initial value scales as3

3Note that the derivations of these scaling results can often
quite subtle. In order to derive Eq.~62!, we first observe thatt0

;t0 /N2, whereN is the normalization factor in Eq.~22! and where
t0 is a time scale that is independent ofnmax. This scaling behavior
holds independently ofy whennmax@1, as can be verified numeri
cally. Given this, it is straightforward to investigate the behavior
t0 as a function ofy, leading to the resultt0;y22. We thus obtain
t0;(nmaxy)22. The final step is to realize that there is a hidd
y-dependence buried in the meaning of the cutoffnmax, and that in
order to compare cutoffs for different values ofy, we must choose
a uniform y-independent convention for the Kaluza-Klein trunc
tion. Specifically, for each value ofy, we must choose an appropr
ate y-dependent normalization of the cutoffnmax such that the
rescaled cutoffnmax8 has a fixed,y-independent net effect in a
eigenvalue sum such as Eq.~56!. It turns out that such a renorma
ization compels us to choosenmax8 ;y2nmax. We therefore findt0

;y2/(nmax8 )2. To provide some explicit numbers, let us definet0 as
the time needed for the axion probability to fall to 10% of its initi
value, and let us likewise definencrit to be the minimum number o
Kaluza-Klein eigenvalues that must be included in the sum in
~56! order to produce an initial axion probability of 0.99.~In this
connection, note that it is only in the formalnmax→` limit that the
initial probability truly approaches 1.! We then find that t0

'9.665/y2 andncrit'981/y2. This latter relation enables us to no
malize our values ofnmax in relation to ncrit by defining nmax8
[nmax/ncrit5y2nmax/981, leading to the final result

SmPQ
2

2p D t0'1025
y2

~nmax8 !2
. ~61!

The value of the rescaled cutoffnmax8 is then arbitrary, and may be
chosen according to considerations beyond those of our effec
field-theory approach~such as truncating according to the under
ing string scale!.
10502
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t0;
y2

nmax
2

. ~62!

Thus, asy→`, we see thatt0→`, while for finite values of
y this ‘‘decoherence time’’ is extremely short. This results
an essentially immediate suppression of the axion proba
ity. Moreover, as we shall verify later in this section, th
decoherence time is substantially smaller than the lifetime
the heaviest Kaluza-Klein mode contained withina8. This
decoherence mechanism therefore renders the axion sup
sition a8 virtually invisible with respect to subsequent axio
interactions involvinga8.

It is straightforward to understand this suppression at
intuitive level. Unlike the case with the simple axion ze
mode a0, in the present case our initial axion state is t
infinite linear superpositiona8 given in Eq. ~21!. Let us
therefore consider the behavior of the individual terms in
probability sum~56! asnmax gets large. For this purpose w
may drop all factors of two and focus only on the behavior
Pa8→a8 as a function ofnmax. For fixedy and large eigen-

valuesl̃, we havel̃4Al
2'2. Therefore, as we introduce in

creasingly heavy eigenvalues into the probability sum~56!,
we find the effective behavior

e

f

.

ve

FIG. 3. The axion preservation probabilityPa8→a8(t) as a func-
tion of the numbernmax of Kaluza-Klein states which are include
in the system. For this plot we have sety515, and taken~a! nmax

51; ~b! nmax52; ~c! nmax53; ~d! nmax55; and~e! nmax530. As
nmax increases, the axion probability rapidly falls to zero as a res
of the destructive interference of the Kaluza-Klein states, and
mains suppressed without significant axion regeneration at any
times. Note, in particular, that the ‘‘spikes’’ in this plot are als
suppressed as;1/nmax, and vanish for largenmax. Thus, for sig-
nificantly large nmax, the destructive interference of the excite
Kaluza-Klein states causes the axion to ‘‘decohere,’’ implying th
there is negligible probability for subsequently detecting the or
nal axion state at any future time.
3-10
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Pa8→a8~ t !;
1

nmax
2 F(

l
~1!12 (

l8,l

~1!cosS @l22~l8!2#t

2p D G
~63!

where eachl sum containsnmax terms. Fort50, this result
factorizes to take the simple leading form

Pa8→a8~0!;
1

nmax
2 (

l,l8
~111!;

1

nmax
2

nmax
2 . ~64!

In other words, the presence of two independentl sums
provides an effective factor ofnmax

2 which cancels the facto
of nmax

22 that resulted from the normalization ofa8. This ini-
tial coherent contribution of the independent twol sums
enables the initial probability to start at 1 regardless of
size of the volume of the compactified space. Indeed,
initial statea8 is a highly coherent state. However, at lat
times t.0, the cosine terms in Eq.~63! no longer add co-
herently to the sum, and their destructive interference ef
tively causes the sum to scale only asnmax, corresponding to
a single diagonall sum:

Pa8→a8~ t !;
1

nmax
2 (

l
~1!;

1

nmax
2

nmax;
1

nmax
. ~65!

This phenomenon is completely analogous to the fact th
random walk traverses only the square root of the dista
traversed by a coherent, directed walk. It is for this rea
that the net axion preservation probabilityPa8→a8(t) is so
strikingly suppressed. Essentially, the initial axion statea8
has ‘‘decohered’’ as a result of the incoherent Kaluza-Kl
oscillations induced by the non-diagonal axion mass mat

We thus conclude that in higher dimensions, all axio
mediated processes which rely on the production and su
quent detection of thea8 mode are strongly suppressed by
rapid ‘‘decoherence’’ which renders them virtually ‘‘invis
ible.’’ This decoherence arises as a result of the destruc
interference of the infinite-component laboratory axion os
lations. We see, then, that this provides an entirely n
higher-dimensional mechanism which can contribute to
invisibility of a8-mediated processes.

It is important to stress that this decoherence mechan
is relevant only for those processes which are sensitive to
time evolution of the axion. As we have indicated, this
cludes all axion-mediated process~e.g., axion-exchange pro
cesses!, as well as processes in which the axion is direc
detected in the laboratory. Moreover, measurements of
axion flux from the Sun or from supernovae also fall into th
category. However, this doesnot include processes which ar
insensitive to axion time evolution. These include, for e
ample, axion-production processes in which the axion
pears only as missing energy. Nevertheless, invisibility
be achieved for such processes by adjusting the value off̂ PQ
via the mechanisms discussed in Secs. II and IV.

Finally, we remark that our higher-dimensional decoh
ence mechanism is completely general, and applies not
to axions, but also to any bulk fieldf whose ‘‘shadow’’
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interaction with the standard-model brane involves a c
pling between standard-model fields and a ‘‘brane shado
Kaluza-Klein superposition

f~y50!5(
k

ckfk ~66!

with non-zero coefficientsck . Just as in the axion case con
sidered above, the non-trivial time-evolution of the Kaluz
Klein modes will cause the initial superpositionf(y50) to
‘‘decohere’’ extremely rapidly. This will necessarily produc
a severe damping of any standard-model process on
brane that involves couplings to the coherent statef(y
50). For example, this might therefore provide a part
solution to the notorious dilaton problem in string theory:
may simply be that the string-theoretic dilaton is ‘‘invis
ible,’’ in much the same way as the axion is invisible. Sim
lar considerations may also apply to Kaluza-Klein gravito
as well as other bulk moduli fields.

C. Laboratory oscillations inducing ak\a8

Finally, let us consider a third relevant oscillation pro
ability. As we discussed above, fields on the standard-mo
brane can couple only to the linear combinationa8. This is
why the probabilityPa8→a8(t) is the appropriate probability
for processes involving both standard-model production
detection of axions. However, for axions that are produc
through mechanisms involving bulk fields~which are non-
localized! rather than brane fields~which are localized!, it is
possible to envisage situations in which a single Kalu
Klein modeak ~e.g., the zero modea0) is produced. How-
ever, detection of such an axion mode on our standard-m
brane continues to involve couplings toa8, and therefore in
such cases a relevant probability for detection is given b

Pa0→a8~ t !5
1

NU(
l 50

`

r lA0→ l~ t !U2

5
1

N F(
l

l̃4Al
4e2Glt

12 (
l8,l

l̃2~ l̃8!2Al
2Al8

2 e2(Gl1Gl8)t/2

3cosS @l22~l8!2#t

2p D G . ~67!

However, just as in the previous case, this probability v
ishes in the limitnmax→`, even if we again setGl50.
Specifically, the probability to produce the specific coher
statea8 on the standard-model brane vanishes asnmax→`.
Moreover, the same is true for all probabilitiesPak→a8(t) for
all k and for ally. Of course, we cannot interpret this resu
as a decoherence, since even the initial probability att50
vanishes asnmax→` due to the negligible overlap betwee
ak and a8. Nevertheless, this demonstrates that even if
3-11
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KEITH R. DIENES, EMILIAN DUDAS, AND TONY GHERGHETTA PHYSICAL REVIEW D62 105023
axion is produced by bulk fields not restricted to t
standard-model brane, the probability for its subsequent
tection in the laboratory is vanishingly small.

D. Axion detection and decay

Finally, we shall conclude this section by discussing
number of additional effects that arise due to the existenc
an infinite tower of excited Kaluza-Klein axion states. O
comments in this subsection will primarily be focused on
possibility of axion detection and in particular on the role
axion decays.

First, as already mentioned above, we must distingu
between processes in which the time-evolution of the ax
plays a role and processes which are insensitive to the t
evolution of the axion. For example, the latter include axio
production processes in which the axion is emitted into
bulk and therefore is manifested on the standard-model b
only as missing energy. A simple example of this is t
axion-emission process

FF̃→a8→bulk ~68!

where the axion, once produced, flies into the bulk. As
have seen in Sec. II, this process scales as 1/f PQ rather than
1/f̂ PQ. This already leads to the severe constraintf PQ
*O(TeV), and is completely analogous to the possibilit
for detecting graviton emission in upcoming TeV-scale c
lider experiments. We shall discuss one such missing-en
signature in more detail in Sec. V.4

By contrast, processes which involve an actualdetection
of the axion on the standard-model brane are necess
time-dependentbecause they involve a non-zero time inte
val between axion production and axion detection. Howev
even within this category of time-dependent processes, t
are further subdivisions that can be made. One impor
distinction is the length of the time interval between axi
production and axion detection. Certain axion-mediated p
cesses, such as those taking place entirely within accele
experiments, take place on time scales that are very s
compared to the axion lifetime. By contrast, others~such as
those involving fluxes of axions which are produced in t
Sun or in supernovae and which are subsequently dete
on Earth! involve much longer time scales.

4The rough boundf PQ*O(TeV) quoted above is primarily a col
lider bound, but it is natural to wonder whether supernova or r
giant constraints might be more severe. However, the TeV-s
axion scenario envisioned here is safe with respect to these a
physical constraints for the same reason that the TeV-scale gra
scenarios are safe: the number of Kaluza-Klein modes that
available to carry energy into the bulk depends crucially on
temperature of the relevant astrophysical object, and these tem
tures are typically far smaller than the TeV-sized fundamental
ergy scale of the theory. A detailed discussion of this point in
gravitational context can be found in Ref.@10#, and will not be
discussed further in this paper.
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This distinction between ‘‘long’’ and ‘‘short’’ time scales
therefore depends on the axion lifetime. Ordinarily, in fo
dimensions, the axion is relatively long-lived because it is
light and so weakly coupled to ordinary matter. Indeed,
dominant axion decay mode is to two photons, yielding
lifetime

t4D~a→gg!5
1

G4D~a→gg!
'S 4p

a D 2S f̂ PQ
2

mPQ
3 D '1048 sec.

~69!

In this expression, we are writingf̂ PQ'1012 GeV to denote
the usual four-dimensional Peccei-Quinn symmetry-break
scale, and takingmPQ'1025 eV to denote the usual four
dimensional axion mass.~We choose these symbols in ord
to facilitate the comparison between the four-dimensio
and higher-dimensional situations.! We are also disregarding
numerous model-dependentO(1) coefficients which do not
affect the overall scale of the result. Thus, in four dime
sions, the axion is extraordinarily stable.

In higher dimensions, this situation changes dramatica
Of course, the coherent axion modea8 is not a mass eigen
state, and thus, strictly speaking, it does not have a w
defined ‘‘lifetime.’’ Nevertheless, we can determine an e
fective lifetime fora8 by estimating the shortest lifetime o
any of the mass eigenstatesâl of which it is comprised. This
then yields the time scale over which the coherent statea8
naturally decays as a result of its couplings to ordinary m
ter. In general, it is the heaviest Kaluza-Klein mass eig
states which have the shortest lifetimes, with the decay m
into two photons continuing to be dominant. As a function
the cutoffnmax, the ‘‘lifetime’’ of the coherent statea8 can
therefore be estimated to be

tD.4~a8→gg!5
1

G4D~ âlmax
→gg!

'S 4p

a D 2S f̂ PQ
2

M string
3 D

5S mPQ

M string
D 3

t4D~a→gg!

'1023 sec. ~70!

In this expression we have takennmax'RMstring, implying
lmax'M string. We have also chosenM string51 TeV for sim-
plicity. Thus, we see that the coherent state can be expe
to decay to two photons much more rapidly than the us
four-dimensional axion. Of course, in this calculation w
have taken the cutofflmax'M string, which represents the
‘‘worst-case’’ scenario. In any axion-related process of to
energy E,M string, the production of Kaluza-Klein axion
modesâl with l*E will be kinematically disfavored. We
would then takelmax'E, which can increase the lifetime
considerably.

A priori, this significant reduction in the axion lifetim
relative to the four-dimensional case means that our ‘‘de
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INVISIBLE AXIONS AND LARGE-RADIU S . . . PHYSICAL REVIEW D 62 105023
herence’’ phenomenon fora8 is irrelevant unless the deco
herence timet0 is even smaller. However, it is straightfo
ward to verify that this is indeed the case. Consulting E
~61!, we see that

t0'y4S p

1 TeVD S M string

1 TeVD 22

310233 sec ~71!

where we have takennmax8 'RMstring. For all phenomeno-
logically interesting values ofp and M string, we thus con-
clude thatt0!tD.4. We see, therefore, that the cohere
axion modea8 indeed decoheres sufficiently rapidly to ju
tify the Gl50 approximation that was used in deriving it.5

Given that the coherent statea8 has an intrinsic lifetime
ta8'1023 sec, we can therefore use this as a benchmark
separating ‘‘long’’ and ‘‘short’’ processes. For laboratory o
cillations over time scales shorter than this, it is legitimate
neglect the axion decay widths in calculations of these os
lations. By contrast, calculations of oscillations over long
time scales require the inclusion of the decay widths, a
will therefore start to feel the effects of axion decays.

It is therefore important to understand the effects of su
axion decays, particularly as they relate to axion ‘‘invisib
ity.’’ For this purpose, we may draw another distinction, th
time between processes that take place entirely withi
single detector~such as an axion-mediated processFF̃→a8

→FF̃), and those which take place largely outside our
tector~such as an axion beam travelling from the Sun to
Earth!. For processes taking place entirely within a sing
detector, axion decay represents a breakdown of invisib
because we can in principle detect the emitted decay p
ucts. For example, even though we have found t
Pa8→a8(t) is suppressed for all timest exceeding the deco
herence timet0, the decohered state will nevertheless co
tinue to propagate until the individual Kaluza-Klein axio
modes that comprise this decohered state themselves d
This will be discussed in more detail below. Given this o
servation, one might initially doubt the phenomenologic
importance of thea8 decoherence phenomenon. Howev
the important point is that it is only thecoherentstatea8
which couples to standard-model fields with the potentia
dangerous unsuppressed coupling 1/f PQ, whereas individual
Kaluza-Klein axion modes instead experience the safer s
pressed coupling 1/f̂ PQ. The decoherence phenomen
therefore indicates that there is only a vanishingly small ti
interval during which a process of the formFF̃→a8→FF̃
can possibly occur with a dangerously large amplitude s
ing as 1/f PQ

2 . After this initial time interval, thea8 state

5In comparing Eqs.~70! and ~71!, we must actually account fo
the relative rescaling of the cutoffnmax→nmax8 , as discussed abov
Eq. ~61!. This introduces an additional multiplicative facto
(y2/981)3 into Eq. ~70!, thereby shorteningtD.4 by an additional
factor '1029 for y'O(1). However, we see from Eq.~71! that
this still does not affect our main conclusion thatt0!tD.4.
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decoheres, and all subsequent interactions and decays
have amplitudes scaling as 1/f̂ PQ

2 .
In sharp contrast are processes which largely take p

outsideour detectors. In such cases, we do not expect to
able to detect the decay products that result from axion
cays at intermediate times. For example, in the case o
axion beam travelling from the Sun to the Earth, the photo
emitted in flight through axion decays are presumably ind
tinguishable from the general background radiation. In su
situations, therefore, axion decays lead not to a loss of in
ibility, but rather to anenhancementof it. For example, let us
consider the probability that the initial statea8 will be found
in a particular mass eigenstateâl as function of time. Fol-
lowing the same procedure as above and using Eq.~45!, we
find the probability

Pa8→âl
~ t !5

1

N
l̃4Al

2e2Glt. ~72!

Note that this is an exact result valid for all times, with axio
decays producing an exponential suppression for the p
ability. Moreover, as we shall now demonstrate, this fact c
be used to provide a direct experimental test of the high
dimensional nature of the axion. Using Eq.~72!, we may
define

Ptot~ t ![(
l

Pa8→âl
5

1

N (
l

l̃4Al
2e2Glt ~73!

as a ‘‘collective’’ amplitude that the axion modea8 survives
as a function of time. This interpretation is justified becau
Ptot(t) is nothing but the time-dependent norm of the orig
nal a8 superposition:

Ptot~ t !5^a8~ t !ua8~ t !&. ~74!

Given this norm, the collective decay width~i.e., the instan-
taneous decay probability per unit time! is given as

^G&[2
1

Ptot

dPtot~ t !

dt
5

(
l

Gll̃4Al
2e2Glt

(
l

l̃4Al
2e2Glt

, ~75!

in complete analogy with the formalism for radioactive d
cays. However, because of the presence of an infinite to
of Kaluza-Klein states, it is immediately apparent that^G& is
itself a function of time. For example, at very early times w
have ^G&;Glmax

;M string
3 / f̂ PQ

2 , where lmax'M string is the
heaviest mass eigenvalue included in the linear superp
tion. By contrast, at extremely late times, we have^G&
→Gl0

wherel0 is thelightestmass eigenvalue. Since^G& is
the instantaneous decay probability per unit time~which can
be measured in our Earth-bound detector!, a time-variation in
^G& from different axion sources at different distances wou
3-13
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serve as a direct experimental test of the higher-dimensi
nature of the axion.6

Finally, let us briefly comment on the possibility of me
suring the laboratory axion oscillations discussed previou
Although we have shown that individual probabilities su
as Pak→al

(t) experience sinusoidal oscillations as functio
of time, at a physical level these calculations presuppose
we are capable of experimentally detecting individu
Kaluza-Klein modesak . In other words, these calculation
presuppose that we are able to distinguish the final ax
states according to their Kaluza-Klein quantum numbers
situations where such detections can be made, our prev
results continue to apply. However, in the most straightf
ward scenarios, all Kaluza-Klein states will have identic
decay modes~e.g., into two photons!, leaving us with no
experimental ‘‘handle’’ through which to detect the presen
of an individual oscillation. Thus, the prospects for detect
individual laboratory axion oscillations depend crucially
the ability to perform laboratory axion measurements wh
are sensitive to particular Kaluza-Klein quantum numbe
Of course, this is completely analogous to the case of n
trino oscillations, where the existence of neutrino dec
modes that distinguish between different neutrino quan
numbers@such asSU(2) gauge charge or flavor# permits the
detection of neutrino oscillations. While it is not hard
imagine scenarios in which Kaluza-Klein selection ru
might be exploited in order to make such individual me
surements in the axion case, the details of such scenario
expected to be highly model-dependent since they nece
ily depend on the specific geometry of the compactificati
We shall therefore not consider this issue further. Regard
of this issue, however, the most important experimental
nature of these oscillations is the net decoherence that
induce for the linear superpositiona8. As we have seen, thi
decoherence is striking and renders the axion invisible w
respect to subsequent laboratory interactions.

IV. COSMOLOGICAL RELIC AXION OSCILLATIONS

In this section, we shall discuss a third highe
dimensional effect that can contribute to the ‘‘invisibility
of axions: the rate at which the energy trapped in cosmolo
cal relic axion oscillations is dissipated. As we shall see,
presence of an infinite tower of Kaluza-Klein axion sta
can, under certain circumstances, actuallyenhancethe rate at
which this oscillation energy is dissipated. In such cases,
effective Peccei-Quinn scalef̂ PQ can therefore be raised be
yond its usual relic-oscillation bounds, leading to an ax

6After this paper originally appeared, some of these ideas c
cerning the phenomenological consequences of solar Kaluza-K
axions were further investigated in Ref.@21#. It was found that
heavy Kaluza-Klein modes can be measured experimentally wi
feasible terrestrial detector without significant background inter
ence. It was also shown that the decays of solar Kaluza-Klein
ions do not produce unacceptable amounts of x-ray luminosity. T
is therefore an interesting experimental possibility for detecting
lar Kaluza-Klein axions.
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whose couplings to matter are even more suppressed tha
four dimensions. This can therefore provide another high
dimensional way of achieving an ‘‘invisible’’ axion.

Let us first recall the situation in four dimensions. One
the most important constraints on the scale of Peccei-Qu
symmetry breaking, and hence on the mass of the axion
the strength of its couplings to ordinary matter, comes fr
cosmological relic axion oscillations. Unlike the laborato
oscillations discussed in the previous section, these cos
logical relic oscillations arise due to the fact that as the u
verse cools and passes through the QCD phase transitio
T'LQCD, instanton effects suddenly establish a non-z
axion potential where none previously existed. In the us
four-dimensional situation, the axion can therefore find its
displaced relative to the newly-established minimum of
potential, and begin to oscillate around it according to
differential equation

d2a

dt2
13H~ t !

da

dt
1ma

2a50, t*tQCD. ~76!

Here H(t)51/(2t) is the Hubble constant, where we a
assuming for simplicity that this time-evolution takes pla
entirely in a radiation-dominated universe. We are also
suming that the axion massma is independent of time fort
*tQCD and vanishes for timest&tQCD. We are also neglect
ing the decay width of the axion. In general, the initial am
plitude of this oscillation attQCD is set by the initial random
angular displacement of the axion field. This scales asf PQ,
wheref PQ is the axion decay constant. Although these os
lations are ultimately damped due the cosmological Hub
expansion term, a relic of these axion oscillations should s
exist today. Imposing the requirement that the energy sto
in the relic oscillation today be less than the critical ener
density ~so as not to overclose the universe! then sets an
upper boundf PQ&1012 GeV which is consistent with bound
obtained through other means. This is therefore a bound
the ‘‘invisibility’’ of the axion.

At first glance, it might seem that this issue should
longer play a role in our higher-dimensional scenario
which the fundamental scalef PQ of Peccei-Quinn symmetry
breaking is substantially lowered~perhaps even to the TeV
range! as a result of the volume factor in Eq.~19!. Indeed, it
is the ~low! fundamental mass scalef PQ rather than the
~high! effective mass scalef̂ PQ which sets the size of the
vacuum expectation value~VEV! of the axion fielda in the
five-dimensional Lagrangian~14!, and which similarly sets
the overall scale of the initial random angular displacem
of the axion field. However, in passing from Eq.~14! to the
four-dimensional Lagrangian~17!, there is an implicit
volume-dependent rescaling of the axion field, as discus
below Eq.~18!. Thus, even though initial displacement of th
unrescaled axion field scales withf PQ, the initial displace-
ment of the rescaled axion field scales withf̂ PQ. The danger
of an excessive oscillation energy density today is theref
just as relevant for our higher-dimensional scenario as i
for the usual four-dimensional case.
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INVISIBLE AXIONS AND LARGE-RADIU S . . . PHYSICAL REVIEW D 62 105023
In fact, this danger may actually be greater in the high
dimensional case. This is because the Kaluza-Klein red
tion yields not only the usual zero-mode axiona0, but also
an infinite tower of excited Kaluza-Klein axionsak (k
.0). The above differential equation for the axion oscil
tions then generalizes to

d2ak

dt2
13H~ t !

dak

dt
1M kl

2 al50, t*tQCD ~77!

where M 2 is the non-diagonal mass matrix given in E
~35!. ~Note that we shall continue to neglect axion dec
widths in these equations; this assumption will be justified
the end of this section.! Of course, due to their Kaluza-Klein
masses, these excited Kaluza-Klein axions feel a non-z
potential even prior to the QCD phase transition~i.e., even
prior to the ‘‘turn-on’’ of mPQ), and it is therefore reasonab
to assume that they are already sitting at their minima at
time of the QCD phase transition. However, due to the n
diagonal mass mixing matrix in Eq.~77!, the initial displace-
ment of only the zero-mode axiona0 is sufficient to trigger
the excited Kaluza-Klein modes into oscillation. This situ
tion is illustrated in Fig. 4.

Given this observation, there area priori three possible
effects that these excited Kaluza-Klein states can have on
system. First, it is possible that these excited Kaluza-Kl
states will ‘‘capture’’ oscillation energy from the zero-mod
oscillation, and essentially store it. Thus, in this case,
total energy density of the system would dissipate m
slowly, thereby resulting in a greater relic energy dens
today. This would seriously strengthen the five-dimensio
axion bounds relative to the usual four-dimensional boun
and provide the most serious threat to the viability of the
higher-dimensional scenarios. The second possibility is
although the excited Kaluza-Klein states steal energy fr
the zero-mode oscillation, they may be able to dissipat
moreeffectively. This would then lead to anenhancedrelic
energy loss rate, implying a weakened bound on the hig
dimensional scenarios. Finally, the third possibility is th
the two effects cancel exactly, with the excited Kaluza-Kle
states oscillating in such a way that even though they cap
some energy from the zero mode, they also alter the ti
development of the zero mode in an exactly compensa
manner. Thus the traditional four-dimensional bounds wo
remain unchanged.

In order to determine which of these possibilities is re
ized, we must solve the coupled differential equations~77!.
In so doing, we shall make the following assumptions. Fi
we shall assume that prior to the QCD phase transition
tQCD, the axion zero-mode experiences no potential a
therefore has an initial displacement set to 1~in units of
f̂ PQ). We shall likewise assume thatda0 /dt50 at t
5tQCD. By contrast, for the excited Kaluza-Klein mode
ak (k.0), we shall begin with the initial conditionsak
5dak /dt50 at tQCD. These conditions reflect the fact th
these excited modes have non-zero Kaluza-Klein ma
even prior to the ‘‘turn-on’’ of mPQ at tQCD, and hence
should have essentially settled into their minima prior to
QCD phase transition. Although it is possible for the ligh
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Kaluza-Klein axion modes to have small displacements
well, for simplicity we shall ignore this possibility in wha
follows. Note that this assumption also enables us to s
with identical initial relic oscillation energy densities in bo
the four- and five-dimensional situations, and thereby
ables us to make a direct comparison of the effects of
Kaluza-Klein modes on the cosmological time-evolution
the system. Finally, in substituting the matrix~35! into Eq.
~77!, we shall assume thatmPQ(t) is given exactly by the
step function

mPQ~ t !5mPQQ~ t2tQCD!. ~78!

The constancy ofmPQ(t) for t.tQCD is often referred to as
the ‘‘adiabatic’’ approximation. We caution, however, th
for large values ofmPQ this step-function approximation ca
differ quite substantially from the results of a more care
analysis of the time–temperature dependence of the a
mass due to instanton effects@19#.

Given these assumptions, it turns out to be possible
solve the differential equations~77! analytically for all times
t>tQCD and for an arbitrary number of Kaluza-Klein mode
We therefore do not need to make any further approxim
tions ~such as the traditional separation into so-called ‘‘ov
damped,’’ ‘‘underdamped,’’ and ‘‘critically damped’’ oscil
lation phases!. The first step in our analytical solution is t
decouple the differential equations~77! by passing to the
mass-eigenstate basisâl defined in Eq.~39!. In order to

FIG. 4. A plot of the coupled Kaluza-Klein cosmological rel
axion oscillations. For this plot, we have normalized the initial d
placement of the axion zero mode to 1, and takeny50.5, mPQ

52, and tQCD51 ~in dimensionless units!. We have also consid-
ered the effects of only the first three excited Kaluza-Klein mod
Although the excited Kaluza-Klein modes have vanishing init
displacements, they are triggered into oscillation as a result of
initial displacement of the zero mode. This in turn changes
subsequent time evolution of the zero mode. By contrast, the su
imposed dashed line shows the behavior of the usual fo
dimensional axion zero mode in they→` limit ~i.e., the usual
four-dimensional case when no Kaluza-Klein modes are presen!.
3-15
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work with dimensionless quantities, we shall defineãl

[âl / f̂ PQ. Each of our uncoupled differential equations th
takes the form

d2ãl

dt2
1

3

2t

dãl

dt
1l2ãl50. ~79!

For simplicity we can recast this equation into the form

d2ãl

dt2
1

3

2t

dãl

dt
1ãl50 ~80!

where we have definedt[lt. The most general solution t
this equation is then given by

ã~t!5t21/4@c1J1/4~t!1c2J21/4~t!# ~81!

whereJn(t) are the Bessel functions of first kind. We ther
fore wish to solve for the unknown constant coefficientsc1

andc2 . To do this, we impose our initial conditions. In th
original Kaluza-Klein basis, these conditions are given
ak(t0)5 f̂ PQdk0 and dak(t0)/dt50 wheret0[tQCD is the
initial time at which we begin the time evolution of our axio
fields ~representing the ‘‘turn-on’’ time formPQ). In the di-
mensionlessmass-eigenstatebasis, these initial condition
therefore take the form:

ãl~t0!5Al ,
dãl

dt
U

t5t0

50 ~82!

whereAl is defined in Eq.~41!. The assumptions underlyin
these initial conditions were discussed above. Thus, in
mass-eigenstate basis, we see thateachof the Kaluza-Klein
modes begins with an initial displacement. Solving forc6 is
then straightforward. The first initial condition~the displace-
ment condition! trivially gives the constraint

c1J1/41c2J21/45Alt0
1/4 ~83!

where for notational convenience any Bessel function writ
without an argument is understood to be evaluated att0.
Using the Bessel-function identity

d

dt
@t6nJn~t!#56t6nJn71~t!, ~84!

we see that the initial velocity constraint takes the form

dãl

dt
5t21/4@2c1J5/4~t!1c2J25/4~t!#, ~85!

implying c1J5/45c2J25/4. Together with Eq.~83!, this
leads to the solutions

c652
p

A2
Alt0

5/4J75/4 ~86!

where we have used the further identity
10502
y

e

n

J1/4J25/41J21/4J5/452
A2

pt0
. ~87!

Substitutingc6 from Eq. ~86! into the solution given in Eq.
~81!, we thus obtain our final closed-form solution to th
axion differential equation:

ãl~t!52
p

A2
Alt0

5/4t21/4j ~t0 ;t! ~88!

where we have defined

j ~t0 ;t![J25/4~t0!J1/4~t!1J5/4~t0!J21/4~t!. ~89!

This implies that the first time derivative is given by

dãl

dt
5

p

A2
Alt0

5/4t21/4j 8~t0 ;t! ~90!

where we have likewise defined

j 8~t0 ;t![J25/4~t0!J5/4~t!2J5/4~t0!J25/4~t!. ~91!

Note thatj 8(t0 ;t)→0 ast→t0, as expected, since the in
tial velocities vanish for each of the axion modes.

Now, the energy contribution from a single modeãl is
given by

r̃l~t![
l̃2

2
F ãl

21S dãl

dt
D 2G ~92!

wherel̃ is the dimensionless eigenvalue defined in Eq.~37!

and wherer̃[r/(mPQ
2 f̂ PQ

2 ) is a dimensionless energy densit
Substituting in the above results, we therefore find

r̃l~t!5
p2

4
Al

2l̃2t0
5/2t21/2@ j ~t0 ;t!21 j 8~t0 ;t!2#. ~93!

While this expression is exact for all timest, it is also
useful to have an approximation valid for extremely la
times satisfyingt@1 ~such as the present cosmologic
time!. Using the Bessel-function asymptotic expansion

Jn~t!'A 2

pt
cosS t2

pn

2
2

p

4 D as t→`, ~94!

it is straightforward to show that

j ~t0 ;t!21 j 8~t0 ;t!2'
2

pt
$@J5/4~t0!#21@J25/4~t0!#2

1A2J5/4~t0!J25/4~t0!%. ~95!

Given the exact result~93!, we can convert fromt back to
our original time variablet to obtain the final closed-form
solution
3-16
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r̃l~ t̃ !5
p2

4
Al

2l̃4 t̃ 0
5/2t̃ 21/2@ j ~ l̃ t̃ 0 ;l̃ t̃ !21 j 8~ l̃ t̃ 0 ;l̃ t̃ !2#

~96!

where we have defined the dimensionless timet̃[mPQt.
Thus, adding together the contributions from all the ma
eigenstate modes, we obtain the final energy density:

r̃~ t̃ !5(
l

r̃l~ t̃ !

5
p2

4
t̃ 0

5/2t̃ 21/2(
l

Al
2l̃4@ j ~ l̃ t̃ 0 ;l̃ t̃ !21 j 8~ l̃ t̃ 0 ;l̃ t̃ !2#.

~97!

Note that this is theexactresult for the relic oscillation en
ergy density as a function of time.

It is easy to verify thatr̃( t̃ ) has the correct limit ast̃
→ t̃ 0. Indeed, ast̃→ t̃ 0, we find using the identity~87! that
r̃(t)→ r̃0, where

r̃0[
1

2 (
l

l̃2Al
2 . ~98!

This is indeed the correct value of the initial energy in t
mass-eigenstate basis, since each mass eigenmode start
zero velocity and with initial displacementAl . However, in
our original Kaluza-Klein basis, our initial conditions att̃ 0
consist of having only the zero mode displaced by 1. T
implies thatr̃51/2. Comparing this result with Eq.~98! then
yields the identity quoted in Eq.~43!. In particular, this iden-
tity holds for ally, as can be verified directly by substitutin
the values ofl andAl and evaluating the eigenvalue sum

For late timesl̃ t̃ @1, the exact result~97! for the energy
density simplifies to take the form

r̃~ t̃ !5
p

2
X~ t̃ 0! t̃ 0

5/2t̃ 23/2 ~99!

where thetime-independentcoefficientX( t̃ 0) is given by

X~ t̃ 0![(
l

Al
2l̃3$@J5/4~ l̃ t̃ 0!#21@J25/4~ l̃ t̃ 0!#2

1A2J5/4~ l̃ t̃ 0!J25/4~ l̃ t̃ 0!%. ~100!

This demonstrates that asymptotically, the total energy d
sity falls as r̃( t̃ ); t̃ 23/2 regardlessof the presence of the
excited axion Kaluza-Klein modes. Moreover, in th
‘‘double-asymptotic’’ cases in which we also havel̃ t̃ 0@1
for all l̃, we can further approximate

X~ t̃ 0!'
1

p t̃ 0
(
l

l̃2Al
25

1

p t̃ 0

, ~101!

where we have used the identity~43! in the last equality. We
then find
10502
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r̃~ t̃ !'
1

2S t̃

t̃ 0
D 23/2

, ~102!

which is consistent with the initial energy densityr̃( t̃ 0)
51/2. However, for practical purposes, we shall focus on
expressions~99! and~100! in which t̃ is taken large butt̃ 0 is
kept arbitrary. This is becausel̃ t̃ 0 can occasionally be rela
tively small ~particularly for the lightest eigenvalues! even if
t̃ 0 itself is relatively large. Finally, in the four-dimensiona
y→` limit, we find that l̃k→ky for k>1, while l̃0→1.
Thus, in this limit, the excited Kaluza-Klein modes decoup
and we obtain the four-dimensional result

X4D~ t̃ 0!5@J5/4~ t̃ 0!#21@J25/4~ t̃ 0!#21A2J5/4~ t̃ 0!J25/4~ t̃ 0!.

~103!

As expected, this approaches the value given in Eq.~101! for
t̃ 0@1.

We see from Eq.~99! that although therate of energy loss
remains fixed at asymptotic times, the presence of
Kaluza-Klein states can nevertheless change the ove
value of the energy. This is because the oscillating exci
Kaluza-Klein states can change the rate of energy los
intermediatetimes, possibly leading to an enhanced or
minished energy at late times. The cumulative effect of th
Kaluza-Klein states at late times is encoded within the
pressionX( t̃ 0). Therefore, in order to understand the effe
of the Kaluza-Klein states on the energy dissipation rate,
need to understand the behavior ofX( t̃ 0) as a function of the
radius variabley[(mPQR)21 for a fixed initial time t̃ 0.

The results are rather surprising. Of course, fort̃ 0@1, we
are in the ‘‘double-asymptotic’’ regime (t̃ 0 , t̃ )@1 for which
Eqs.~101! and~102! are expected to apply. We therefore fin
that in such cases the presence of the Kaluza-Klein mo
doesnot alter the energy density relative to the energy de
sity that would have been obtained in four dimensions.
other words, even though we have an infinite set of Kalu
Klein axion modes which are induced into oscillation as
result of the initial displacement of the axion zero mod
these oscillations nevertheless change the time-developm
of the zero mode in a compensatory manner so that the
oscillation energy density as a function of time is exac
preserved. This indicates that in such situations, the hig
dimensional axion scenarios are no less viable than the u
four-dimensional scenarios.

Even more surprising, however, is the situation that ari
for smaller t̃ 0. In such cases, we cannot use the ‘‘doub
asymptotic’’ expression~101!, and we must resort to the ful
expression in Eq.~100!. We then find thatX( t̃ 0) is smaller
than the four-dimensional value given in Eq.~103!, which
implies that

r~ t !,r4D~ t !. ~104!

In other words, even though the excited Kaluza-Klein sta
are triggered into oscillation by the initial displacement
3-17
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the zero mode, these Kaluza-Klein states dissipate the o
lation energymore efficientlyand result in a netdecreasein
the oscillation energy as a function of time relative to t
four-dimensional case. This situation is shown in Fig.
where we plotr(t)/r4D(t)5X( t̃ 0)/X4D( t̃ 0) as a function of
y[(mPQR)21 for three different values oft̃ 0. Note that in
the y→0, t0→0 limit, the ratio r(t)/r4D(t) decreases
asAy.

We thus conclude that in such situations, the presenc
coupled relic Kaluza-Klein axion oscillations can actua
weakenthe usual four-dimensional upper bounds onf̂ PQ.
This implies that it may be possible to consider higher val
of f̂ PQ than are usually allowed in four dimensions, there
further diminishing the axion couplings to matter and prov
ing yet another higher-dimensional method of achieving
‘‘invisible’’ axion. We hasten to point out, however, that th
size of this effect depends crucially on the value ofy as well
as on the initial timet̃ 0 at which the axion potential is estab
lished. In general, for a given value oft̃ 0, we can expect to
see a sizable deviation from the four-dimensional asympt
result only whenl t̃ 0&O(1) for the lightest eigenvalues
This implies y t̃0&O(1). Taking t051025 seconds~corre-
sponding to the QCD phase transition! and a reference valu

FIG. 5. The energy-dissipation ratio factorr(t)/r4D(t)

5X( t̃ 0)/X4D( t̃ 0) as a function ofy[(mPQR)21, assuming~a! t̃ 0

510; ~b! t̃ 051; and ~c! t̃ 050.1. All cases reduce to the usu
four-dimensional result asy→`, with the Kaluza-Klein axion
states decoupling. However, as the size of the extra dimen
grows andy decreases from infinity, we see that the net effect of
Kaluza-Klein states is to dissipate the relic oscillation energy d
sity morerapidly, leading to smaller relic oscillation energy dens

ties at final times. The size of this effect depends ont̃ 0, with

smaller values oft̃ 0 corresponding to sizable effects at large valu

of y, while for larger values oft̃ 0 this effect is delayed until corre
spondingly smaller values ofy. In general, this effect becomes su

stantial fory t̃0&O(1). Note that all curves tend to zero in they
→0 limit, implying an infinitely rapid dissipation of the relic oscil
lation energy density in the full five-dimensional limit.
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mPQ51024 eV, we find t̃ 0[mPQt0'106. ~By contrast, the
current cosmological time is given byt̃'1029, correspond-
ing to t51018 seconds.! This implies that in practice, we
should not expect to see a sizable decrease in the cosmo
cal relic oscillation energy density unlessy&O(1026).
However, this assumes that a particular value ofmPQ, which
in turn assumes a particular fixed value off̂ PQ via Eq. ~33!.
Changingf̂ PQ can therefore change this result substantia
We shall discuss this possibility in Sec. V.

Finally, let us briefly discuss the issue of axion lifetim
as they relate to these cosmological relic oscillations. O
narily, relic axion oscillations are important precisely b
cause the usual four-dimensional axion is so long-liv
However, in higher dimensions, we have seen in Sec. III t
the heavy Kaluza-Klein axion modes become more and m
unstable, and hence cannot be expected to survive ove
long cosmological time scales we have been assuming.
therefore natural to wonder whether this places our con
sions about enhanced energy dissipation rates in jeopard
other words, it is nota priori obvious that we are justified in
neglecting the excited Kaluza-Klein decay widths in E
~77!. However, we have seen that relic axion oscillations
higher dimensions are primarily sensitive not to the heav
axion modes, but to the lightest modes. For sufficiently la
radii, these lightest modes have masses which are relati
close to the mass of the axion zero mode, and we have
ready seen in Fig. 1 that this in turn is bounded from abo
by the usual four-dimensional axion massmPQ. Thus, the
lightest axion Kaluza-Klein modes continue to be extrem
long-lived, and will therefore survive to induce the enhanc
ment of the oscillation energy dissipation rate that we ha
observed.

V. SOME NUMBERS, BOUNDS, AND CONSTRAINTS

Let us now combine our different results from the prece
ing sections. Our goal will be to determine the extent
which a self-consistent picture of axion energy sca
emerges from the previous results.

We begin with the three fundamental equations given
Eqs.~19! and ~33!. For simplicity, in Eq.~33! we shall take
g25gGUT

2 51/2, and in Eq.~19! we shall taked51. We can
therefore combine these three equations in order to exprey
in terms of the fixed quantitiesLQCD, M string ~the fundamen-
tal underlying mass scale in the theory!, and the effective
axion decay constantf̂ PQ ~our measure of ‘‘invisibility’’!.
For simplicity we shall also takef PQ5M string, since we want
to have only one fundamental mass scale in the probl
This then yields the result

y'
16p2

j

M string
3

f̂ PQLQCD
2

. ~105!

We know thatM string cannot be lower than'O(1 TeV),
and LQCD is absolutely fixed ('250 MeV). We therefore
find that in general,y is bounded from below:
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y*ymin'
2.531012 GeV

j f̂ PQ

. ~106!

Thus, assumingj'O(1), we seethat f̂ PQ'1012 GeV is con-
sistent with havingy'O(1). Remarkably, this is precisely
the region where we expect to find the axion mass becom
independent off̂ PQ, as shown in Fig. 1.

While this shows the self-consistency of the situation
picted in Fig. 1, a natural question arises as to whether
possible to tolerate larger values ofM string. Indeed, slightly
larger values ofM string @e.g., in theO(10 TeV) range# may
be preferred on the basis of detailed comparisons with
perimental data. Ordinarily, it might seem to be impossi
to increase the value ofM string any further, because we se
from Eq.~105! that increasingM string requires increasingf̂ PQ
in order to maintain theO(1) values ofy ~as preferred on the
basis of Fig. 1!, and increasingf̂ PQ generally runs into diffi-
culties with cosmological relic oscillation energy densiti
overclosing the universe. However, we have seen in Sec
that the Kaluza-Klein axion modes may be capable of di
pating this excess energy density more rapidly so as to ev
these bounds. The question then arises: to what extent
we increasef̂ PQ, thereby making the axion increasingly ‘‘in
visible,’’ without disturbing the relic energy density bound

Note that increasingf̂ PQ has a number of effects. First, a
f̂ PQ increases, we find from Eq.~106! that ymin decreases
This means thaty can be chosen even smaller. However,
also find from Eq.~33! that mPQ decreases, which in turn
implies that t̃ 0[mPQt0 ~the dimensionless time of the QC
phase transition! also decreases. Definingycrit to be the criti-
cal value of y at which we start to observe a significa
decrease in the relic oscillation energy density, we have
ready seen in Sec. IV thatycrit' t̃ 0

21. Thus, ast̃ 0 decreases
we see thatycrit increases, implying that it becomes easier
compensate for the effect of having increasedf̂ PQ in the first
place. Indeed, this suggests that there might be an alte
tive, self-consistent, significantly higher value off̂ PQ than
previously thought.

In order to determine this self-consistent value off̂ PQ, we
first note from Eq.~33! that

mPQ'
~2.531023 GeV2!j

f̂ PQ

. ~107!

This in turn implies that

t̃ 0[mPQt0'
~3.831016 GeV!j

f̂ PQ

~108!

where we have takent0'1025 sec ~corresponding to the
QCD phase transition!. We thus have

jycrit'
f̂ PQ

3.831016 GeV
, ~109!
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which implies that we can obtainycrit'O(1) simply by tak-
ing j'O(1) and

f̂ PQ'3.831016 GeV'MGUT. ~110!

In other words, if we takef̂ PQ'MGUT, then we have a self-
consistent solution withymin'O(1), ycrit'O(1), and
M string'20 TeV. For such values, the axion mass is indep
dent of f̂ PQ, and the Kaluza-Klein modes begin to induce
significant reduction in the final relic oscillation energy de
sity which can in principle compensate for the increase
f̂ PQ. Remarkably, this analysis suggests thatf̂ PQ, the effec-
tive Peccei-Quinn symmetry-breaking scale, may be rela
to MGUT, the effective four-dimensional GUT symmetry
breaking scale.

Of course, there is still one constraint that we have
imposed in the above analysis: we have not restricted
size of the radiusR of the extra spacetime dimension. I
principle, this is not a problem because the standard-mo
fields are restricted to a D-brane, and thus there are
bounds on the sizes of such transverse extra dimensions
can arise from standard-model processes. However, gra
is generally free to propagate into whatever extra dimensi
exist, leading to the additional constraintR&O~millimeter!.
It is therefore important to understand how this addition
constraint limits the above scenarios. We stress, howe
that imposing this additional constraint relies on the assum
tion that gravity is indeed free to propagate in the extra
mensions. Recent ideas concerning ‘‘gravity localizatio
@20# have shown that this need not always be the case.

If we do assume this to be the case, however, then
above scenarios are significantly restricted. RequiringR21

*1024 eV implies7 that

mPQ*
10213 GeV

y
. ~111!

Moreover, using Eq.~107!, we find that this implies that

f̂ PQ&~2.531010 GeV!jy. ~112!

7Note that imposing this constraint is actually somewhat sub
and depends on a choice of which variables to hold fixed. In

analysis in this section, we have been takingf̂ PQ and y as inputs,
and treatingM string, R, andmPQ as derived quantities. Thus, wit

this convention,f̂ PQ is considered to be independent ofR, while f PQ

~identified withM string) is considered to be anR-dependent quantity.
Note that this procedure exactly mimics the situations@9,10# in
which the GUT and Planck scales are lowered by extra space
dimensions: it is always the ‘‘measured,’’ large, four-dimension
scale that is held fixed, while the reduced higher-dimensional s
is viewed as a function ofR. We therefore continue this conventio

in the present case even though neitherf̂ PQ nor f PQ has been ex-
perimentally measured.
3-19
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This therefore sets anupper boundon f̂ PQ as a function ofy.
Combining this upper bound with Eq.~105!, we thereby ob-
tain the constraint

jy*10S M string

1 TeVD 3/2

. ~113!

Thus, the lower limit fory depends crucially on the mode
dependent parameterj and the value we choose forM string.
Sincej reflects the PQ charges of the ordinary fermions, i
not unreasonable to assume thatj may be somewhat large
than 1. TakingM string'1 TeV therefore still enables us t
havey'O(1). However, despite this fact, we can combi
Eq. ~109! with Eq. ~112! to show that

ycrit&~6.631027!y. ~114!

Thus the value ofy in this case is always significantly large
than the critical value that would be required in order
reduce the relic oscillation energy density below its us
four-dimensional value.

Of course, this does not disturb the self-consistency
this scenario. As a result of Eq.~112!, f̂ PQ may still be in the
range that satisfies the usual four-dimensional bounds,
we have seen in Sec. IV that the presence of the Kalu
Klein axion states does not increase the final relic oscillat
energy density relative to the four-dimensional case. Mo
over, these axions continue to be virtually ‘‘invisible
against direct detection and/or subsequent interactions
result of the decoherence effect discussed in Sec. III. T
this picture continues to be self-consistent, and continue
lead to an invisible axion. Furthermore, although we ha
restricted our analysis to the case of a single extra dimens
the corresponding constraints in higher dimensions may
significantly weaker. In any case, a much more deta
analysis is necessary in order to make the above nume
bounds more precise, and to determine whether further
perimental constraints may be imposed.

There are also other phenomenological constraints
may be imposed, particularly constraints that are insensi
to axion time-evolution. Good examples of this would
axion missing-energy signatures, such as might arise f
the decayK1→p1a8. In four dimensions, this process has
branching ratio which scales asf̂ PQ

22 , leading to a bound

f̂ PQ*104 GeV. In five dimensions, by contrast, this branc
ing ratio scales as

BR~K1→p1a8!;
1

f̂ PQ
2 (

n50

RmK

1;
RmK

f̂ PQ
2

;S mK

M string
D 1

f PQ
2

.

~115!

For mK'500 MeV, this then implies the constraint

f PQ*A mK

M string
104 GeV. ~116!

Taking f PQ5M string then leads to the boundM string
*370 GeV, which is consistent with the idea of lowerin
the string scale to the TeV-range. Moreover, as we h
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already mentioned in Sec. III, such a TeV-scale axion s
nario is safe with respect to supernova or red-giant bou
for the same reasons that the TeV-scale graviton scena
are safe@10#, namely that supernova and red-giant tempe
tures are much smaller than the fundamental energy sca
our theory. Of course, we reiterate that a much more deta
analysis of these and other processes is necessary in ord
sharpen these bounds and constraints.

Finally, it may also happen that an axion process in hig
dimensions exactly reproduces the four-dimensional res
As an example of this, let us consider ana8-exchange pro-
cess at zero momentum transfer~e.g.,FF̃→a8→FF̃). The
amplitude for such a process is given by

A5
1

f PQ
2 ^a8a8&;

1

f̂ PQ
2 (

m,n50

`

r mr n^aman& ~117!

where^BA& denotes the propagator from stateA to stateB.
Passing to the mass-eigenstate basisâl via Eq. ~39! and us-
ing the zero-momentum propagator^âl8âl&5dl8l /l2, we
find that this amplitude then takes the form

A5
1

f̂ PQ
2 mPQ

2 (
l

1

l̃2 (
m,n50

`

r mr nUlmUln5
1

f̂ PQ
2 mPQ

2
.

~118!

Note that we have used Eq.~44! followed by Eq.~43! in the
final equality. However, we see that the final result is noth
but the amplitude that we would have obtained in four
mensions for an axion that couples with the usual fo
dimensional couplingf̂ PQ and has the usual four-dimension
massmPQ. Thus, in this case, we obtain no new boun
coming from sucha8-mediated processes. This stands
stark contrast to the analogous case of graviton-media
processes, from which one can generally derive string
bounds on the radii of the extra spacetime dimensions.
course, we stress that this result holds only for zero mom
tum transfer, and is likely to be different when sizable m
menta are carried by the intermediate axion state.

VI. THE STANDARD-MODEL DILATON

The above considerations about placing a standard-m
singlet field in the bulk are actually quite general, and tra
scend the specific example of the QCD axion. To illustr
this point, let us briefly consider the case of another conj
tured particle, the standard-model dilaton. This particle
introduced into the standard model in order to restore
classical scale invariance broken by mass terms. The sc
invariant extension of the scalar sector of standard mode
given by @22#

L5 1
2 ~]mD !21~Dmf!~Dmf!†2V0~f,s! ~119!

where f is the Higgs field and where the standard-mod
dilaton fieldD, like the axion fielda, is written in terms of a
decay constantf D via a relation of the form

D5 f Dexp~s/ f D!. ~120!
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By suitably choosing the parameters in the tree-level Hi
potential V0(f,s), we can arrangês&50. Consequently
^D&5 f D represents the mass scale at which dilation inv
ance is spontaneously broken. After quantum corrections
included, the scalar potential can be written in the form@23#

V5
D4

f D
4 V where V[FV0~f,0!1V(1)~f,0!2D~f,0!ln

D

f D
G .

~121!

HereV(1)(f,0) is the one-loop contribution to the effectiv
potential andD(f,0) is the divergence of the dilation cu
rent. The presence ofD(f,0) in this expression breaks th
scale invariance, and gives rise to a dilaton mass

mD
2 52

4^D&
f D

2 ~122!

where^V&5D/4 at the minimum of the potential~121!. Note
that in the standard model, the heavy top-quark mass lea
^D&.0. Thus, in order to change the sign of^D&, one re-
quires additional heavy Higgs-boson contributions for
stability of the dilaton potential.

Let us now consider what happens when the dilaton fi
propagates in a five-dimensional bulk and therefore ha
Kaluza-Klein decomposition of the form

D~xm,y!5 (
n50

`

Dn~xm!cosS ny

R D . ~123!

The five-dimensional action for the dilaton then takes
form

S5E d4x dyMs@
1
2 ~]MD !22V~x!d~y!# ~124!

whereV is given in Eq.~121!. Substituting Eq.~123! into
Eq. ~124! and integrating over the fifth dimension then giv
rise to the effective four-dimensional Lagrangian

Leff5
1

2(
n50

`

~]mDn!22
1

2 (
n51

`
n2

R2 Dn
22

1

f̂ D
4 S (

n50

`

r nDnD 4

3FV0~f,0!1V(1)~f,0!2D~f,0!lnS 1

f̂ D
(
n50

`

r nDnD G
~125!

where f̂ D[A2pRMstring f D and where we have canonical
normalized the dilaton kinetic terms. The minimum of t
effective dilaton potential therefore occurs at

^D0&5 f̂ D

^Dn&50 for all n>1. ~126!

We can derive the dilaton mass matrix by considering
local curvature of the effective dilaton potential near
minimum. This is completely analogous to the axion ca
~30!, and gives rise to
10502
s

i-
re

to

e

d
a

e

e

e

~MD!nn8
2 [

n2

R2 dnn82
4D

f̂ D
2

r nr n8 . ~127!

Remarkably, this mass matrix has exactly the same struc
as in the axion case~32!, and consequently the physical im
plications will be identical to those for the axion. Of cours
this result is expected since the dilaton and axion are b
Nambu-Goldstone bosons of a spontaneously broken s
metry, and consequently have similar couplings to
anomalous divergences of their respective currents.

VII. CONCLUSIONS

In this paper, we have studied some of the novel effe
that arise when the QCD axion is free to propagate in
bulk of large extra spacetime dimensions. First, we fou
that under certain circumstances, the mass of the axion
become independent of the energy scale associated with
breaking of the Peccei-Quinn symmetry. This feature d
not arise in four dimensions. Because this energy scale
termines the couplings between the axion and ordinary m
ter, this suggests that in higher dimensions, one has the
dom to adjust the strength of the axion couplings witho
disturbing the axion mass. This can therefore provide a n
mechanism for achieving an invisible axion.

Second, we pointed out that in such higher-dimensio
scenarios, the axion will typically experiencelaboratory ax-
ion oscillationswhich are completely analogous to neutrin
oscillations. This is therefore a new and unexpected phen
enological feature for axions that does not exist in the us
four-dimensional case. Moreover, we found that these la
ratory oscillations can cause axions to ‘‘decohere’’ e
tremely rapidly. This is therefore a second highe
dimensional phenomenon that may contribute to an invis
axion. Moreover, this phenomenon arises for all non-z
radii.

Third, we discussed the role that excited Kaluza-Kle
axion states may play in axion-mediated processes and a
decays. This enabled us to propose several direct experim
tal tests of the proposed higher-dimensional nature of
axion.

Finally, we found that under certain circumstances,
presence of these Kaluza-Klein axion modes can sign
cantly accelerate the dissipation of the energy associ
with cosmological relic axion oscillations. Moreover, eve
when these circumstances are not met, we found that
Kaluza-Klein states do not induce a violation of the usu
four-dimensional bounds. This demonstrates that s
higher-dimensional axion scenarios are no less viable t
their four-dimensional counterparts, and indeed may even
preferred on the basis of their remarkable ‘‘invisibility’’ de
coherence properties.

Of course, there are many aspects of higher-dimensio
axion phenomenology which we havenot examined in this
paper. These include the role that axions play in stellar e
lution, the thermal production of axions, axionic string d
cay, and isocurvature axion fluctuations. While some
these topics have been discussed in Ref.@13#, it will be in-
3-21
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teresting to further explore the role that extra spacetime
mensions can play in these areas.

Although we have focused primarily on the case of QC
axions, we stress that much of our analysis is comple
general and may apply for other bulk fields as well. This w
explicitly illustrated in Sec. VI, where we considered t
case of the standard-model dilaton. Similarly, we expect
our analysis will also apply to other bulk fields such
Kaluza-Klein gravitons, string-theoretic dilatons, and oth
bulk moduli. Indeed, the twin properties of laboratory osc
lations and decoherence leading to ‘‘invisibility’’ are likel
to play an important role in experimental searches for s
particles, and likewise an analysis of the effects of their
B

10502
i-

ly
s

at

r

h
-

cited Kaluza-Klein modes on cosmological evolution
likely to parallel the analysis in Sec. IV. Moreover, both
these effects are likely to play an important role in the a
important questions of dilaton and radion stabilization. W
therefore leave these issues for future investigation.
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