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Nonequilibrium evolution and symmetry structure of the large-N F4 model at finite temperature

Jürgen Baacke* and Katrin Heitmann†

Institut für Physik, Universita¨t Dortmund D-44221 Dortmund, Germany
~Received 31 March 2000; published 23 October 2000!

We consider the large-N F4 theory with spontaneously broken symmetry at finite temperature. We study, in
the large-N limit, quantum states which are characterized by a time-dependent, spatially homogeneous expec-
tation value of one of the field components,fN(t), and by quantum fluctuations of the otherN21 compo-
nents, which evolve in the background of the classical field. Investigating such systems out of equilibrium has
recently been shown to display several interesting features. We extend here this type of investigation to
finite-temperature systems. Essentially, the novel features observed atT50 carry over to finite temperature.
This is not unexpected, as the main mechanisms that determine the late-time behavior remain the same. We
extend two empirical, presumably exact, relations for the late-time behavior to finite temperature and use them
to define the boundaries between the regions of different asymptotic regimes. This results in a phase diagram
with the temperature and initial value of the classical field as parameters, the phases being characterized by
spontaneous symmetry breaking and symmetry restoration, respectively. The time evolution is computed
numerically and agrees very well with expectations.

PACS number~s!: 11.10.Wx, 11.15.Pg, 11.30.Qc
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I. INTRODUCTION

The investigation of theO(N) vector model at largeN has
a long-standing history in quantum field theory@1–3#. One
of the main aspects was the question of symmetry restora
at high temperature, which for some time was controvers
The dynamical exploration of a special class of nonequi
rium properties has been developed only recently@4–7#.

The out-of equilibrium configuration that has been stud
mainly is characterized by an initial state in which one of t
components has a spatially homogeneous classical exp
tion value f(t). This implies that the otherN21 compo-
nentsc i(x,t), i 51, . . . ,N21, have a mass that is differen
from the mass in the ground state. This means that t
initial state is related to the Fock-space vacuum state b
Bogoliubov transformation. The evolution of the system
governed by the classical equation of motion for the fi
f(t) and by the mode equations for the quantum fie
c(x,t). The expectation valuêc(x,t)c(x,t)& appears in
both equations of motion: this constitutes the quantum b
reaction. In the one-loop approximation, in contrast to
large-N approximation, this quantum back reaction only a
pears in the classical equation of motion. This leads to d
sive differences in the late-time behavior.

We have previously@8# carried out such dynamical com
putations for theO(N) vector model in the limit of largeN at
finite temperature for the case of unbroken symmetry,
with a positive mass term. Here we will consider the case
spontaneously broken symmetry. In this case, at low te
peratures the fieldsc i(x,t) will be the Goldstone modes
This is the case for the ground state atT50 and at finite
temperature; for nonequilibrium initial states, these mo
become massless when the system settles to a stationary
at late times. Symmetry restoration happens at high temp
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ture and at large values of the initial fieldf~0!; then, at late
times these modes stay massive while the classical field
ishes, and thereby the spontaneous symmetry breaking
appears.

Our investigation, as well as the analogous ones aT
50, is limited to fields, masses~as solutions of the gap equa
tion!, and temperatures much smaller than the scale of
Landau ghost,mx5m1 exp(8p2/l), wherem1 is a renormal-
ization scale, taken of orderAlv. So the question of sym
metry nonrestoration at ‘‘really’’ high temperatures@3# will
not be addressed here.

The plan of the paper is as follows. In Sec. II we intr
duce the model and set up the equations governing the
equilibrium evolution. In Sec. III we discuss the renorma
ization of the equations of motion and of the energ
momentum tensor: some details are referred to the Appen
In Sec. IV we discuss the phase structure of the system
function of temperature and initial conditions. In Sec. V w
present the results of the numerical computations. Some
clusions are drawn in Sec. VI.

II. FORMULATION OF THE MODEL

We consider theO(N) vector model with the Lagrangian

L5
1

2
]mf i]mf i2

l

4N
~f if i2Nv2!2, ~2.1!

wheref i , i 51, . . . ,N, areN real scalar fields. The nonequ
librium state of the system is characterized by a class
expectation value which we take in the direction offN . We
split the field into its expectation valuef and the quantum
fluctuationsc via

f i~x,t !5dN
i ANf~ t !1c i~x,t !. ~2.2!

In the large-N limit one neglects, in the Lagrangian, all term
which are not of orderN. In particular, terms containing th
©2000 The American Physical Society22-1
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fluctuationcN of the componentfN are at most of orderAN
and are dropped therefore. The fluctuations of the other c
ponents are identical: their summation produces factorN
215N@11O(1/N)#. In the broken symmetry case these a
the Goldstone modes. Identifying all the fieldsc1 ,...,cN21
asc, the leading order term in the Lagrangian then takes
form

L5N~Lf1Lc1LI !, ~2.3!

with

Lf5
1

2
]mf]mf2

l

4
~f22v2!2, ~2.4!

Lc5
1

2
]mc]mc1

l

2
v2c21

l

4
~c2!2,

~2.5!

LI52
l

2
c2f2, ~2.6!

wherec2 is to be identified with(c ic i /N.
We decompose the fluctuating field into momentu

eigenfunctions via

c~x,t !5E d3k

~2p!32vk0
@akUk~ t !eik•x1ak

†Uk* ~ t !e2 ik•x#,

~2.7!

with vk05Am0
21k2. The massm0 will be specified below.

This field decomposition defines a vacuum state as be
annihilated by the operatorsak .

The equations of motion for the fieldf(t) and of the
fluctuationsUk(t) have been derived in this formalism b
various authors@9–11#.

We include in the following the counterterms that we w
need later in order to write the renormalized equations. T
equation of motion for the fieldf becomes

f̈~ t !1dm2f~ t !2lv2f~ t !1~l1dl!f~ t !@f2~ t !1F~ t,T!#

50. ~2.8!

HereF(t,T) is the divergent fluctuation integral; it is give
by the average of the fluctuation fields defined by the ini
density matrix. For a thermal initial state of quanta with e
ergy vk05Ak21m0

2, it is given by

F~ t,T!5^c2~x,t !&5E d3k

~2p!32vk0
coth

bvk0

2
uUk~ t !u2.

~2.9!

The mode functions satisfy the equation

F d2

dt2
1vk

2~ t !GUk~ t !50 ~2.10!

and the initial conditions
10502
-

e

g

e

l
-

Uk~0!51, U̇k~0!52 ivk0 . ~2.11!

The time-dependent frequencyvk(t) is given by

vk
2~ t !5k21M2~ t !, ~2.12!

with the time-dependent mass

M2~ t !52lv21dm21~l1dl!@f2~ t !1F~ t !#. ~2.13!

Using this definition, the classical equation of motion can
rewritten as

f̈~ t !1M2~ t !f~ t !50, ~2.14!

which is the same equation as the one forUk(t) with k50
~zero mode!. Of course, the initial conditions are differen
andf(t) is real.

As in our previous work, we rewrite the mode equation
the form

F d2

dt2
1vk0

2 GUk~ t !52V~ t !Uk~ t !, ~2.15!

whereby we have defined the time-dependent potentialV(t)
5M2(t)2M2(0); we further identify m05M(0) as the
‘‘initial mass.’’

The average of energy with respect to the initial dens
matrix is given by1

E5
1

2
ḟ2~ t !1

1

2
~2lv21dm2!f2~ t !1

l1dl

4
f4~ t !1dL

1E d3k

~2p!32vk0
coth

bvk0

2 H 1

2
uU̇k~ t !u2

1
1

2
vk

2~ t !uUk~ t !u2J 2
l1dl

4
F2~ t,T!. ~2.16!

It is easy to check, using the equations of motion~2.14! and
~2.10!, that the energy is conserved. The energy density
the 00 component of the energy-momentum tensor. The
erage of the energy momentum tensor for our system is
agonal: its space-space components define the pres
which is given by

p5f2~ t !2E1dj
d2

dt2
@f2~ t !1F~ t,T!#

1E d3k

~2p!32vk0
coth

bvk0

2 S vk0
2 1

k2

3 D uUk~ t !u2. ~2.17!

Here dj is the renormalization of the conformal couplin
term j(gmn]22]m]n)f2, which has been used for the im
proved energy momentum tensor@12#.

1Note that twice the last term, with positive sign, is included in t
fluctuation energy, sincevk

2(t) containsF(t,T).
2-2
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III. RENORMALIZED EQUATION OF MOTION

The expressions for the time-dependent massM2(t), the
energy densityE(t), and the pressure are still undefined
they involve divergent integrals over the fluctuations. O
approach to regularization and renormalization has been
sented previously@13,8#. It is based on expanding the fluc
tuationsUk(t) and subsequently the various integrals invo
ing these fluctuations with respect to the time-depend
potential V(t). As this procedure has been presented e
where in detail, we just give the outline here.

The expansion of the fluctuations with respect toV(t) is
given in the Appendix. We use this perturbative expansion
order to single out the divergent contributions in the fluctu
tion integral. One finds

F~ t !5I 21~m0 ,T!2I 23~m0 ,T!@M2~ t !2M2~0!#

1Ffin~ t,T!, ~3.1!

where the finite part ofF(t,T) can be written as

Ffin~ t,T!5E d3k

~2p!3

1

4vk0
3 E

0

t

dt8

3cos@2vk0~ t2t8!#V̇~ t8!coth
bvk0

2

1E d3k

~2p!3

1

2vk0
@2 Ref k

~2!~ t !

1u f k
~1!~ t !u2#coth

bvk0

2
, ~3.2!

and where the divergent integrals are defined as

I 21~m0 ,T!5E d3k

~2p!3

1

2vk0
S 11

2

ebv021D
5I 21~m0!1S21~m0 ,T!, ~3.3!

I 23~m0 ,T!5E d3k

~2p!3

1

4vk0
3 S 11

2

ebv021D
5I 23~m0!1S23~m0 ,T!. ~3.4!

The integralsI 2k(m0) are the genuine divergences whic
appear in the renormalization atT50. Their dimensionally
regularized form is given by

I 23~m0!5H E d3k

~2p!3

1

4vk0
3 J

reg

5
1

16p2 H 2

e
1 ln

4pm2

m0
2 2gJ ,

~3.5!
10502
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I 21~m0!5H E d3k

~2p!3

1

2vk0
J

reg

52
m0

2

16p2 H 2

e
1 ln

4pm2

m0
2 2g11J

52m0
2I 23~m0!2

m0
2

16p2 . ~3.6!

The additional temperature-dependent termsS2k(m0 ,T) are
finite. They are defined as

S21~m0 ,T!5E d3k

~2p!3

1

vk0~ebvk021!
, ~3.7!

S23~m0 ,T!5E d3k

~2p!3

1

2vk0
3 ~ebvk021!

.

~3.8!

It is convenient to include these finite terms into the defi
tion of Ffin(t,T). Then the time-dependent mass takes
form

M2~ t !5l~f22v2!1dlf21dm21~l1dl!@ I 21~m0!

2I 23~m0!V~ t !1F̃fin~ t,T!#, ~3.9!

with

F̃fin~ t,T!5S21~m0 ,T!2V~ t !S23~m0 ,T!1Ffin~ t,T!.

~3.10!

The time-dependent mass~3.9! contains both renormaliza
tion constantsdm anddl. Furthermore, its definition by this
equation is implicit:M2(t) also appears on the right-han
side of Eq.~3.9! in V(t).

We now have to fix the renormalization counterterms
such a way that the relation between the time-depend
mass andf(t) becomes finite. An additional constraint d
rives from the requirement that the renormalization coun
terms should not depend on the initial condition, but only
the parameters appearing in the Lagrangian, i.e.,l andv and
renormalization conventions.

We first determinedl by considering the difference

V~ t !5M2~ t !2M2~0!5~l1dl!@f2~ t !2f2~0!

2I 23~m0!V~ t !1F̃fin~ t,T!2F̃fin~0,T!#. ~3.11!

The divergent parts depend on the initial massm0 . We have
to replace this by a renormalization scale independent of
initial conditions. In Ref.@8# we had chosen the scalem,
wherem was the mass parameter appearing in the Lagra
ian. Here the analogous mass squared would bem252lv2

and som would be imaginary. We therefore choose anoth
scalem1 which we do not specify here. In the numeric
computations we have used the physical Higgs boson m
m1

25mH
2 52lv2.

We rewrite the implicit equation forV(t) as
2-3



.

in

p

me

red

the
we

to

sed
as
le of

hat
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V~ t !@11~l1dl!I 23~m1!#

5~l1dl!$f2~ t !2f2~0!2@ I 23~m0!

2I 23~m1!#V~ t !1F̃fin~ t,T!2F̃fin~0,T!%

~3.12!

and require

l1dl

11~l1dl!I 23~m1!
5l. ~3.13!

Solving with respect todl, we find

dl5
l2I 23~m1!

12lI 23~m1!
. ~3.14!

Inserting this relation into Eq.~3.12! we find

V~ t !5lC@f2~ t !2f2~0!1F̃fin~ t,T!2F̃fin~0,T!#,

~3.15!

with

C5
1

11l@ I 23~m0!2I 23~m1!#
5

1

11
l

16p2 lnS m1
2

m0
2D .

~3.16!

Equation~3.15! is a finite relation for the potentialV(t) since
the difference@ I 23(m0)2I 23(m1)# is finite. Going back to
Eq. ~3.10!, we realize thatF̃fin on the right-hand side of Eq
~3.15! contains a term proportional toV(t). Taking account
of this term, we rewriteV(t) in terms ofFfin as

V~ t !5lCT@f2~ t !2f2~0!1Ffin~ t,T!#, ~3.17!

with

CT5
1

11
l

16p2 lnS m1
2

m0
2D 1lS23~m0 ,T!

. ~3.18!

Recall thatFfin(t) is the mode integral of second order
V(t) and vanishes att50.

We now go back to Eq.~3.9!, which we take at the initial
time t50:

m0
2[M2~0!5l@f2~0!2v2#1dlf2~0!1dm21~l1dl!

3@ I 21~m0!1F̃fin~0,T!#. ~3.19!

This is an implicit relation betweenm0 and f~0!, which,
however, contains still the infinite quantitiesdl, dm, and
I 21(m0). Using Eq.~3.6!, we can rewrite Eq.~3.19! as
10502
m0
25~2lv21dm2!1~l1dl!Ff2~0!2m0

2I 23~m0!

2
m0

2

16p2 1F̃fin~0,T!G . ~3.20!

As the renormalization condition, we requirem0 to vanish
for temperatureT50 at the minimum of the potentialf
5v, as is the case at the tree level. We note thatm0

250 is
not the curvature of the tree-level potential atf5v, which is
mH

2 52lv2. It is the mass of the fluctuations atf5v in the

large-N approximation. ForT50 we haveF̃fin(t50,T50)
5S21(m0 ,T50)50. Settingm050, f(0)5v in the gap
equation~3.20!, we get immediately

dm252dlv252
l2v2I 23~m1!

12lI 23~m1!
. ~3.21!

Inserting this into Eq.~3.20!, we obtain the renormalized ga
equation

m0
25lCFf2~0!2v22

m0
2

16p2 1S21~m0 ,T!G . ~3.22!

For the numerical computation it is easier to choose so
m0

2>0 and to use the gap equation solved forf2(0):

f2~0!5
m0

2

l
1v21

m0
2

16p2 S 11 ln
m1

2

m0
2D 2S21~m0 ,T!.

~3.23!

For t.0, the renormalized relation for the mass squa
M2(t) we find, using Eqs.~3.15! and ~3.22!, is

M2~ t !5m0
21V~ t !5lCFf2~ t !2v22

m0
2

16p2 1F̃fin~ t,T!G .
~3.24!

Having thus obtained a finite relation betweenf(t) and
M(t), the equations of motion for the classical fieldf(t)
and for the modesUk(t) are well defined and finite.

The way in which we have renormalized has made
cutoff disappear. This was possible only to the extent that
could safely neglect corrections of ordere in the evaluation
of the divergent integrals. One way of achieving this is
take the limite→0. This implies, for the bare couplingl0 ,

l05 lim
e→0

l

12
l

16p2

2

e

502, ~3.25!

so this is the case of ‘‘negative bare coupling’’ as discus
in @3#. One can leave the cutoff finite, however, as long
the masses and momenta are much smaller than the sca
the Landau ghost,mx5m1

2 exp(8p2/l). This will be the case
here. This is not related to a pragmatic momentum cutoff t
we apply to the convergent integrals of the finite part.
2-4
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While we have found here the gap equation as a s
consistency condition, it can also be derived@5,7# from a
potential~free energy!, which here takes the form

V~m0
2,F2,T!5

m0
2

2 H f22v22
m0

2

2l
1

m0
2

32p2 F lnS m0
2

m1
2D 2

3

2G J
1E d3k

~2p!3

1

b
ln@12exp~2bv0!#. ~3.26!

The gap equation then follows from the condition

]V~m0
2,f2,T!

]m0
2 50. ~3.27!

It should be mentioned here that the gap equation has
solutions, one of which lies above the scale of the Land
ghost, mx5m1 exp(8p2/l2). In the sense that we conside
here the model as giving rise to a low-energy effect
theory, we discard this high-mass solution and its discuss
The solution we consider is the low-energy one, which is
orderAlv or m1 .

The energy density is given by

E5
1

2
ḟ2~ t !1

1

4
~l1dl!~f22v2!21dL1Efl~ t,T!

2
l1dl

4
F2~ t,T!. ~3.28!

Here we have used already thatdm252dlv2, and part of
the ‘‘cosmological constant’’ countertermdL is included in
dlv4/4. The fluctuation energy is given by

Efl~ t,T!5E d3k

~2p!32vk0
coth

bvk0

2 H 1

2
uU̇k~ t !u2

1
1

2
vk

2~ t !uUk~ t !u2J . ~3.29!

We again split off the temperature-dependent contribut
via

Efl~ t,T!5Efl~ t,0!1DEfl~ t,T!, ~3.30!

where the second term on the right-hand side,

DEfl~ t,T!5E d3k

~2p!32vk0

2

ebvk021 H 1

2
uU̇k~ t !u2

1
1

2
vk

2~ t !uUk~ t !u2J , ~3.31!

is finite. The divergences of the first term are given@13# by
the decomposition

Efl~ t,0!5I 1~m0!1
1

2
V~ t !I 21~m0!2

1

4
V2~ t !I 23~m0!

1Efl,fin~ t,0!, ~3.32!
10502
f-

o
u

n.
f

n

with

Efl,fin~ t,0!5
1

2 E d3k

~2p!32vk0
H 1

2
u ḟ k

~1!̄u2

1
V~ t !

2
@2 Ref k

~1!̄1u f k
~1!̄u2#1

V2~ t !

8vk0
2 J .

~3.33!

We denote the sum ofEfl,fin(t,0) andDEfl(t,T) finite contri-
butions asEfl,fin(t,T). The expression for the energy the
takes the form

E5
1

2
ḟ21

l1dl

4
~f22v2!21Efl,fin~ t,T!1I 1~m0!

1
1

2
V~ t !I 21~m0!2

1

4
V2~ t !I 23~m0!

2
l1dl

4
F2~ t,T!1dL. ~3.34!

In addition to the divergences arising fromEfl(t,T), we have
to take into consideration those ofF2(t,T), which we have
analyzed above. If all divergences and the renormaliza
constantdl are inserted, the expression turns out to be fin
i.e., the remaining countertermdL is needed only for a finite
renormalization. We require the energy to vanish atT50 for
f(t)[v, which impliesm050. ThendL50. There remains
a finite constant dependent on the initial condition

DL5
m0

4

128p2 S 11
2lC
16p2D , ~3.35!

and the energy is given by

E5
1

2
ḟ21

l

4
C~f22v2!21

1

2
Dm2~f22v2!1Efl,fin~ t,T!

2
l

4
CF̃fin

2 ~ t,T!1DL. ~3.36!

HereDm2 is given by

Dm252lC
m0

2

16p2 . ~3.37!

We write the pressure in the form

p5ḟ2~ t !2E1pfl~ t,T!1dj
d2

dt2
@f2~ t !1F~ t,T!#.

~3.38!

The renormalization does not differ form the case of unb
ken symmetry discussed in Ref.@8# and is not presented
again. We find

dj5
lx

6~12lx!
5

lI 23~m!

6@12lI 23~m!#
. ~3.39!
2-5
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The final result for the renormalized pressure reads

p5ḟ2~ t !2E1pfl,fin~ t,T!2
m0

4

96p22
m0

2

48p2 V~ t !

2
1

96p2 F lnS m1
2

m0
2D 12G V̈~ t !, ~3.40!

with

pfl,fin~ t,0!5E d3k

~2p!32vk0
H S vk0

2 1
kW2

3
D

3@2 Ref k
~2!~ t !1u f k

~1!~ t !u2#

1S 1

6vk0
2 2

m0
2

24vk0
2 D E

0

t

dt8 cos 2vk0~ t2t8!V̂~ t8!

1S 1

12vk0
2 1

m0
2

24vk0
4 D cos~2vk0t !V̈~0!

1u ḟ k
~1!̄~ t !u222 Re@ ivk0 ḟ k

~1!̄~ t !

1 ivk0f k
~1!̄~ t ! f k

~1!̄* ~ t !#J . ~3.41!

IV. ANALYSIS OF THE GAP EQUATION AND OF THE
PHASE STRUCTURE

The dynamical evolution of the nonequilibrium syste
depends on two parameters, the temperatureT and the initial
amplitude of the classical fieldf(0)5f0 , which in analogy
with thermal equilibrium systems can be considered as
external parameter. There are two regions from which
can start the system, which we will call regions II and I
There is, in addition, one region into which the system c
evolve when one considersf(t5`)5f` and notf0 as the
external parameter. We call it region I. In this section we w
characterize these regions and describe the dynamical e
tion to be expected from the analysis atT50. This analysis
is based on certain empirical results@6,7# that, though un-
proven, seem to be at least almost exact. We will genera
these results to finite temperature in a plausible heuri
way, to be confirmed by the numerical computations. W
think that the way in which we generalize these results w
give a further clue to understanding them.

A. Region I: m0
2Ë0

The gap equation requiresm0
2 to be positive. The point

wherem0
250 marks an initial condition that leads to a sol

tion f5const, ifḟ050, as we will assume in the following
For T50 this stationary amplitude isf5v. For T.0 we
can easily find this amplitude as well. Indeed, form050 the
integral S21(m0 ,T) is given by its value for massles
quanta, i.e.,
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S21~0,T!5
T2

12
, ~4.1!

and therefore

f1
2~T!5f0

2um0505v22
T2

12
. ~4.2!

For f0,f1(T) the gap equation has no real solutionm0 .
The region below the boundary~4.2! is region I.

If nevertheless one wants to start the system withf0 in
region I, one faces the problem that in this region the g
equation requiresm0

2 to be negative. Then the low
momentum modes withk2,2m0

2 have imaginary frequen
cies. So from an orthodox point of view~to which we adhere
here! the system cannot be quantized properly. One m
avoid this problem by redefining the dispersion relation
the initial frequencies viavk0

2 5k21um0
2u in this region. Of

course, att.0, M2(t) will be negative, so the ‘‘mass
squared’’ changes sign atT50, a situation called ‘‘quench’’
in analogy to a similar transition from a stable to an unsta
state by a sudden drop of temperature or inversion of a m
netic field. On the other hand, the amplitudef(t) can reach
this region at late times, but then it is in a quantum st
different from the ones we use as initial states.

B. Region II: m0
2Ì0, m`

2 Ä0

We now assumef0 is started above the boundary valu
~4.2!. If f0 is not too large, the system may, att.0, enter a
region whereM2(t),0, i.e., region I. Then the quantum
fluctuations with momentak2,2M2(t) will increase expo-
nentially, signaling instability. This causesM2(t) to in-
crease so that it is driven back to a valueM2(t).0. If the
initial amplitudef0 is sufficiently small, this forth-and-back
reaction will leadM2(t) to stabilize atM`

2 50. So at late

times F̃fin(t,T) is determined by quantum modesUk(t) that
oscillate with time-independent frequenciesv`5k: it be-
comes stationary as well and will be positive. Thereforef(t)
stabilizes at some value

f`
2 5v22F̃fin~`,T!,v22F̃fin~0,T!. ~4.3!

This is entirely analogous to the behavior found atT50 @7#.
We call the region of initial valuesf0 leading to this late-
time behavior region II.

The stabilization by back reaction onto the fluctuatio
obtained in the large-N approximation is not present in th
one-loop approximation. In this approximation, oncef(t)
dips into the unstable regionf(t),v/), the mass squared
of the fluctuations becomes negative and the low-momen
modes evolve exponentially. The effective mass of the c
sical field increases exponentially as well and continues to
so, but the mass squared of the fluctuations stays nega
The amplitudef(t) is driven towards zero. Nevertheless, t
classical energy continues to increase, as the field oscill
faster and faster, this energy being extracted from the ene
of the quantum fluctuations. Obviously, this signals the
stability of the quantum vacuum, as is already apparent fr
2-6
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the fact that the effective potential is complex in this regio
We will illustrate this by a numerical example, to be pr
sented in the next section.

At T50 the final valuef` was found to be related to th
initial value f0 by an empirical relation

f`
2 5Af0

2~2v22f0
2!, T50. ~4.4!

It is not obvious how to generalize this relation to fini
temperature. It was remarked in Ref.@7# that the relation
only depends on the initial, purely classical, energy, which
given by E5l(f22v2)2/4. Obviously, it satisfies the con
straints thatf`

2 5v2 if f05v2 and thatf`50 if classically
the system can reach the maximum of the potential;
happens atf0

25f2
2(T50)52v2. So Eq.~4.4! seems to be

related to energy considerations. We further observe tha
classical turning point is atf̄0

252v22f0
2 so that one may

write Eq. ~4.4! as the geometric mean

f`
2 5Af0

2f̄0
2. ~4.5!

This form turns indeed out to lead to the correct general
tion for finite temperature.

Obviously, the relation is characterized by the motion
early times when the quantum fluctuations have not
evolved. When discussing renormalization we have made
expansion with respect to the ‘‘potential’’V(t), which van-
ishes att50. So the same expansion can be used to study
early-time behavior. In the energy the coefficients of t
terms of first and second order inV have been absorbed int
renormalization constants. However, thethermalfluctuations
are not absorbed in this way and will add to the class
terms in an early-time expansion. These appear in the en
@see Eq.~3.34!# via

DEfl~ t,T!5S1~m0!1
1

2
V~ t !S21~m0!2

1

4
V2~ t !S23~m0!

1O~V3! ~4.6!

as a part ofEfl,fin(t,T) and via Eq.~4.10! in F̃fin(t,T). Taking
these expansions into account, the energy can be writte
the form

E.
l

4
C@af41ãf0

41bf21b̃f0
21cf2f0

2#1const

~4.7!

up to terms of orderV3. We need the coefficients

a512lCTS23~m0 ,T!, ~4.8!

b522@v22S21~m0 ,T!#, ~4.9!

c5lCCTS23~m0 ,T!. ~4.10!

The classical turning point is given by
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f̄0
252

b1~a1c!f0
2

a

5
1

12lCTS23
@2v22S212~11lCTS23!f0

2#,

~4.11!

so that we are led to suppose

f`
2 ~T!5A 1

12lCTS23

3Af0
2@2v222S212~11lCTS23!f0

2#.

~4.12!

We find indeed~see below! that this relation is very well
fulfilled numerically. According to this formula, region II is
limited by the requirement that the expression in the squ
root be positive, so the boundary between region II and
new region III is given by

f2
252

v22S21~m0 ,T!

11lCTS23~m0 ,T!
. ~4.13!

We note that the relation is implicit: the value ofm0 that
appears on the right-hand side is related tof2

2 on the left-
hand side by the gap equation.

C. Region III: f`Ä0,M`
2 Ì0

If the value f0 becomes larger thanf2 , the stationary
state with constantf and vanishing massM2(t) is no longer
attained, and the system reaches another asymptotic re
whereM2(`)Þ0, whereasf(t)→0. This regime is similar
to the one that describes the late-time behavior for the
broken symmetry case. We call the region of initial valu
f0 that leads to such a behavior region III.

There are two phenomena that characterize the trans
to this region. On the one hand, the stabilization of the s
tem is taken over by the phenomenon of parametric re
nance. On the other hand, the system has enough energ
that f(t) can move over the maximum of the potential
f50 and indeed will oscillate aroundf50. Accordingly,
the threshold value off0 at which these two phenomena s
in can be characterized by two,a priori unrelated, criteria.
Both rely on plausible assumptions, which atT50 lead to
the same prediction for the critical value off0 .

The criterion based on the energy consideration has b
presented in the previous subsection: we now describe
criterion supplied by the phenomenon of parametric re
nance. For the case of unbroken symmetry, it was found
zero@6# and finite temperature@8# that the late-time behavio
is described by an empirical sum rule which relatesM`

2 to
the initial amplitude. ForT50 an analogous sum rule wa
found to hold for the case of spontaneously broken symm
as well @7#. It is given by
2-7
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m`
2 5211

h0
2

2
. ~4.14!

Herem andh are normalized in such a way that the classi
equation of motion at early times, i.e., in the parametric re
nance regime without back reaction, reads

h92h1h350, ~4.15!

where the primes denote a derivative with respect tot5at
and whereh5bf, alsom5M/a. With h~t! a solution of
Eq. ~4.15!, the mode equation becomes a Lame´ equation.
The sum rule implies@6# that the frequenciesv2(t)
5M2(t)1k2 are shifted outside the parametric resonan
band of the Lame´ equation. Though there is no rigorous de
vation for the sum rule, it accordingly seems related to
parametric resonance phenomenon.

As the shift of the frequencies outside the parame
resonance region must have happened at the end of the p
where the evolution of the system is described by parame
resonance, we will again consider the initial classical evo
tion. Again, in addition to the classical terms, we have
take into account the terms due to the thermal fluctuations
terms of the parameters introduced in the previous sect
the equation of motion is given by

FIG. 1. Phase diagram in thef0
2-T plane.

FIG. 2. Phase diagram in them0
2-T plane.
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f̈1lCaf31
l

3
C~b1cf0

2!f50. ~4.16!

Comparing to the normalized equation~4.15!, we determine
the factorsa andb to be

a5AlC
2

Ab1cf0
2, ~4.17!

b5A2
2a

b1cf0
2, ~4.18!

so that the asymptotic mass is given by

M`
2 5a2S 211

1

2
b2f0

2D
5lCH 2v21S21~m0 ,T!

1
1

2
@11lCTS23~m0 ,T!#f0

2J . ~4.19!

Again, f0 and m0 are related by the gap equation. At th
transition from region II to region III, the asymptotic mas
vanishes. It is easily seen that this criterion leads to an id
tical equation for the boundary, i.e., Eq.~4.13!.

The field amplitude decreases to zero at late times in
regime. So the symmetry is restored dynamically at h
excitation characterized by a high value off0 .

At the critical temperatureT5A12v, both boundaries
f1(T) and f2(T) become zero. AboveTC the behavior of
the system is the same as for region III for all initial valu
of f0 . While at the border between region I and II there w
a lowest value forf0 for obtaining real solutions of the ga
equation, now there is a lowest value ofm0 , the one for
which f050. It is obtained by solving the gap equation f
f050 and agrees with the thermodynamical equilibriu
valuemb at that temperature, as defined, e.g., in Eq.~3.38! of
Ref. @2#. Of course, withf050 the system remains static.

Having defined the three regions by the two boundar
~4.2! and~4.13!, we present, in Fig. 1, a phase diagram in t
f0

2-T plane. Figure 2 shows the phase diagram in them0
2-T

FIG. 3. Evolution of classical field in region II.
2-8
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plane, displaying, aboveTC , the regionm0,mb , which is
excluded as an initial condition. We have to stress that
boundary between regions II and III relies on an empiri
relation.

The symmetry restoration above a critical temperature
expected naively. However, if the temperature becomes n
perturbatively large,T.A12m1 exp(8p2/l), the gap equation
does not have solutions any longer. Then the free ene
attains its maximum at the boundarym050 and theO(N)
symmetry is again broken@3#. This phenomenon of ‘‘sym-
metry nonrestoration,’’ as well as the existence of the sec
solution of the gap equation abovemx5m1 exp(8p2/l), will
not be discussed here, as it is not part of the low-ene
effective theory.

V. NUMERICAL RESULTS

We have discussed already in the previous section
type of nonequilibrium behavior to be expected in the diff
ent regions of phase space. The numerical results fol
these expectations. We have chosen generally the param
v51 andl51. We present results for the various regions
the T-f0 plane. The critical temperature is 2)53.464. We
choose temperatures betweenT51 and 4, the latter one be
ing above the phase transition. The numerical method
been described in@8#. We just recall that all the integral

FIG. 4. Evolution ofM2(t) in region II.

FIG. 5. The momentum spectrum forT51 at t575 displaying
‘‘dynamical Bose-Einstein condensation,’’ with a fit sin2(kt)/k2.
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computed numerically are finite, so cutting off the mome
tum integration at some reasonable value is unrelated to
offs used for renormalization.

We first consider initial conditions in region II. The ex
pectation value off, shown in Fig. 3, becomes constant a
different from zero ast→`. This signals spontaneous brea
down of theO(N) symmetry. As displayed in Fig. 4, th
massM2(t) vanishes ast→`, as expected form the Gold
stone theorem. The momentum distribution of the quant
fluctuations peaks atk50 asuUk(t)u2}k22, leading to long-
range correlations, a phenomenon called ‘‘dynamical Bo
Einstein condensation’’ in Ref.@7# and investigated further
for finite volume, in Ref.@18#. We show an example of the
momentum distribution in Fig. 5, but we have not studied
phenomenon in detail.

The relation between the asymptotic value ast→` for
f(t) and the initial amplitudef0 is displayed in Figs. 6–8
for T51, 2.5, and 3. We compare the data with our gen
alization ~4.12! of the empirical formula~4.4! given in Ref.
@7#. The data are obtained by averaging over the second
of the time interval. The agreement is excellent, except at
phase boundary where the averaging converges slowly.

As an illustration of the behavior of the system in th
unstable region in the one-loop approximation, we show
Fig. 9, the evolution of the field amplitude and, in Fig. 1
the exponential behavior of the fluctuation integral and of

FIG. 6. Late-time amplitudef(`) vs. initial amplitudef0 for
T51 ~asterisks!, compared with Eq.~4.12! ~solid line!.

FIG. 7. The same as Fig. 3 forT52.
2-9
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effective mass squaredM2(t) of the classical field.
The behavior of the system in region III is displayed

Figs. 11 and 12. The amplitudef(t) is seen to decrease t
zero. The decrease is power like, not exponential, a phen
enon called anomalous relaxation in Ref.@6#. Figure 12
shows the squared massM2(t), which is seen to converge t
an asymptotic valueM`

2 . The sum rule for this asymptoti
value, Eq.~4.12!, is compared to the data in Fig. 13 forT
51.5, 2.5, and 4. The agreement is again excellent.

We have not presented the results for the pressure an
ratio of pressure and energy, which varies between 0 fo
nonrelativistic and 1/3 for an ultrarelativistic ensemble. He
these are dominated, already atT51, by the purely therma
contributions, so that the fluctuations generated by the
tion of the fieldf(t) are relatively unimportant.

VI. CONCLUSIONS AND OUTLOOK

The dynamical exploration of the quantum states of
O(N) lF4 theory in the limitN→` has been extended he
to finite temperature. We have performed numerical simu
tions with various initial fieldsf05f(0) and initial masses
m0 related by the gap equation and for various temperatu
T. Depending on the initial conditions we find, in analogy
computations at zero temperature@6,7#, final states with re-
storedO(N) symmetry and final states for which the sym

FIG. 8. The same as Fig. 3 forT53.

FIG. 9. Evolution of the classical field in the one-loop appro
mation.
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metry is spontaneously broken. The resulting phase diagr
resemble typical phase diagrams of thermodynamical s
tems, with the temperature and an external variable as
rameters. Instead of, e.g., the magnetic field or the press
we have here the initial valuef0 as external parameter
While the initial states are thermal states, the final states
not.

We have generalized two empirical formulas, the relat
between the initial and asymptotic field amplitudes in reg
II and the formula for the asymptotic value ofM2(t) in
region III to finite temperature, extending the plausibility a
guments given in@7#. While we have not been able, either,
derive these formulas, the way of generalizing them m
give some clue for such a derivation. Both relations a
linked as they give the same formula for the boundary
tween regions II and III, though the arguments for their he
ristic derivation are seemingly different. Furthermore, it
clear that both of them are based on the early-time behav
Obviously, the fluctuations have to be included up to ord
V2(t) in a perturbative expansion. AtT50 these terms are
essentially absorbed into renormalization constants, so
the purely classical behavior prevails. One may also form
late the modifications at finite temperature in terms
temperature-dependent masses and couplings. It is the ro
the large-N quantum back reaction to transmit the early-tim

FIG. 10. The fluctuation integral~solid line! andM2(t) ~dashed
line! in the one-loop approximation.

FIG. 11. Evolution of the classical field in region III.
2-10
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behavior into the late-time one.
Unfortunately, there are many interesting models

which the large-N approach is not possible or not adequa
The one-loop approximation, on the other hand, can be
plied in general. However, it shows features that seem
make it obsolete for describing nonequilibrium phenome
especially for theories with spontaneous symmetry break
As an illustration, we have shown the typical behavior o
spontaneously brokenlF4 model in the one-loop approxi
mation. The system does not reach a stationary state at
times: the effective mass of the classical field diverges
ponentially, while the effective mass of the quantum fluctu
tions is and stays negative. This is due to the lack of
quantum back reaction onto the fluctuations. The fact t
one finds such a pathological behavior may, however, in
cate the correct physics and is not necessarily a consequ
of an inadequate approximation. It is known that the syst
is indeed unstable for spatially constantstatic fields: it is an
instability with respect to formation of domains@14#. For
space-dependentfields like minimal bubble configurations
the one-loop approximation to the effectiveaction does not
display any unplausible features@15–17#, though the effec-
tive potential is complex in the unstable region. So it is n
clear whether the ‘‘taming’’ of the instability introduced b

FIG. 12. Evolution ofM2(t) in region III.

FIG. 13. The asymptotic sum rule forM2(t). The data forT
51.5 ~diamonds!, T52.5 ~asterisks!, andT54 ~triangles! are com-
pared to Eq.~4.19! ~solid lines!.
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the large-N approximation necessarily improves the und
standing of the physics.

In this situation it is certainly very important to develo
new approaches to the evolution of quantum systems
theories with spontaneously broken symmetry@19,20#. There
are indications in a large-N quantum mechanical system@20#
that the large-N limit may be misleading, as the next-to
leading corrections become large especially at late times.
not clear, however, what the impact of these results on qu
tum field theory will be. One of the problems is that,
contrast to the large-N and one-loop approximations, altern
tive wave functionals pose problems with renormalizati
@19#. This is not only a technical problem. It is connect
~trivially ! to the fact that the higher the dimension of spa
the more the ultraviolet behavior of the system will be im
portant.

A surprising feature of the nonequilibrium evolution
the large-N approximation is its lack of thermalization. Ou
evolution equations are exact in the large-N limit, so ther-
malization is expected to be related to 1/N corrections. Such
corrections would include the rescattering of the quant
modes; implementing them into numerical computations
311 dimensions seems out of scope at present. Rescatte
of classicalfluctuations is taken into account in the 3D la
tice simulations of Ref.@21#. It is observed that rescatterin
smoothes out the parametric resonance structures, bu
thermal distributions have been presented. Various lat
simulations in 111 dimensions find thermalization. Aart
and Smit @22# find thermal distributions of fermions in a
lattice simulation of the (111)-dimensional Abelian Higgs
model. There the bosonic fluctuations are treated classic
For the bosonic modes an approximate thermalization
found in an Abelian Higgs model coupled to an inflaton@23#.
An effective temperature, defined by matching the obser
distributions to thermal ones, is found to be moderately m
mentum dependent.

It should be noted generally that a classical ensembl
fixed energy cannot thermalize in the strict sense becaus
the Rayleigh-Jeans divergence. A more general difficu
arises from the fact that one cannot expect the distributi
functions to be those of a free theory while one is consid
ing the dynamics of an interacting one. In a recent rep
@24#, Berges and Cox have considered the nonequilibri
quantum evolution of af4 theory in 111 dimensions, in-
cluding two-loop corrections. They find the system to th
malize with a distribution derived in finite-temperature qua
tum field theory in the same approximation.

Thermalization is also a question of time scales. Rec
lattice simulations of af4 model @25# show that the early-
time behavior is well described by the Hartree approximat
~as appropriate forN51!, while the system thermalizes late
on. Likewise, the large-N approximation was found@20# to
describe the early-time behavior of a quantum mechan
system withN degrees of freedom. The time scale one wh
the approximation breaks down is found to depend onN:
below a ‘‘critical’’ value of N'20, the approximation de
scribes only the first oscillations of the system. How the
results, and the one of Ref.@24#, translate to three-
dimensional systems remains to be seen. Tentatively
2-11
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may ask the question how our phase diagrams will chang
the system finally comes to thermal equilibrium. The te
peratureT` of such a final state will depend only on th
initial energy, which is a function ofm0 andT0 . This depen-
dence can easily be computed. The transition between
symmetric and the broken symmetry phases occurs atT`

5A12v. This phase boundary is plotted as a dashed line
Fig. 2. One finds that region III in which the nonequilibriu
system tends to a symmetric final state withf`50, M`

Þ0 is divided into two parts. In the region below the ne
phase boundary, the thermalized system is in the bro
symmetry phase. We recall that the temperature-depen
potential is flat forf2,v2(T)5v22T2/12, so thatf` is not
fixed uniquely.

It has to be seen how the results found in low
dimensional and/or classical systems translate to nonequ
rium quantum field theory in 311 dimensions. One may
expect that the approximation will be good at lower values
N and for larger times than in the lower-dimensional mode
One of the essential findings of the previous analysis of R
@6#, @7# and of this work is the close relationship between
late-time behavior and the initial conditions. This impli
that the essential features of the late-time behavior are fi
already by the back reaction at early times. However,
system will evolve, and possibly thermalize, at later tim
this initial period will be important for the further evolutio
of the nonequilibrium system.

ACKNOWLEDGMENTS

The authors thank G. Aarts, D. Cormier, H. de Vega,
Salgado, and I. Tkachev for useful discussions. J.B. tha
the Deutsche Forschungsgemeinschaft for partial suppor
der Grant No. Ba 703/6-1. K.H. thanks the Graduiertenkol
‘‘Erzeugung und Zerfa¨lle von Elementarteilchen’’ for partia
support.

APPENDIX: PERTURBATIVE EXPANSION

The mode functionsUk(t) with the initial conditions in-
troduced in Sec. II satisfy the integral equation

Uk~ t !5e2 ivk0t1E
0

`

dt8Dk,ret~ t2t8!V~ t8!Uk~ t8!,

~A1!

with

Dk,ret~ t2t8!52
1

vk0
Q~ t2t8!sin@vk0~ t2t8!#. ~A2!

We separateUk(t) into the trivial part corresponding to th
caseV(t)50 and a functionf k(t) which represents the reac
tion to the potential by making the ansatz

Uk~ t !5e2 ivk0t@11 f k~ t !#. ~A3!

Here f k(t) satisfies then the integral equation
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f k~ t !5E
0

t

dt8Dk,ret~ t2t8!V~ t8!@11 f k~ t8!#eivk0~ t2t8!

~A4!

and an equivalent differential equation

f̈ k~ t !22ivk0 ḟ k~ t !52V~ t !@11 f k~ t !#, ~A5!

with the initial conditionsf k(0)5 ḟ k(0)50. We expand now
f k(t) with respect to orders inV(t) by writing

f k~ t !5 f k
~1!~ t !1 f k

~2!~ t !1 f k
~3!~ t !1¯ ~A6!

5 f k
~1!~ t !1 f k

~2!~ t !, ~A7!

where f k
(n)(t) is of nth order inV(t) and f k

(n)(t) is the sum
over all orders beginning with thenth one:

f k
~n!~ t !5(

l 5n

`

f k
~ l !~ t !. ~A8!

The f k
(n) are obtained by iterating the integral equation~A4!

or the differential equation~A5!. The functionf k
(1)(t) is iden-

tical to the functionf k(t) itself, which is obtained by solving
Eq. ~A5!. The functionf k

(2)(t) can again be obtained by it
eration via

f k
~2!~ t !5E

0

t

dt8Dk,ret~ t2t8!V~ t8! f k
~1!~ t8!eivk0~ t2t8!.

~A9!

The integral equations can be used in order to derive
asymptotic behavior asvk0→` and to separate divergen
and finite contributions. This has been described previou
in extenso@13#. We illustrate the procedure by calculatin
the relevant leading terms forf k

(1)(t). We have

f k
~1!~ t !5

i

2vk0
E

0

t

dt8$exp@2ivk0~ t2t8!#21%V~ t8!.

~A10!

Integrating by parts, we obtain

f k
~1!~t !52

i

2vk0
E

0

t

dt8V~ t8!2
1

4gqk0
2 V~ t !

1
1

4vk0
2 E

0

t

dt8 exp@2ivk0~ t2t8!#V̇~ t8!.

~A11!

For the expansion of the fluctuation integralF(t), we need
the real part off k

(1) , for which we find

Rehk
~1!~ t !52

1

4vk0
2 V~ t !1

1

4vk0
2

3E
0

t

dt8 cos@2vk0~ t2t8!#V̇~ t8!. ~A12!
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The second term decreases at least asvk0
23. In terms of the

perturbative expansion for the functionsf k , we can the mode
functions appearing in the fluctuation integral as

uUku25112 Ref k
~1!1u f k

~1!u2. ~A13!

Using Eq.~A12!, the leading behavior of this expression i
A

D

J

y

. D

. R

. D

10502
112 Ref k
~1!1u f k

~1!u2.12
1

2vk0
2 V~ t !. ~A14!

Similarly, the integrand of the energy density and press
can be expanded@13#. As these are more divergent, the ca
culations require more integrations by parts in order to sin
out the leading powers invk0 and they become more in
volved.
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