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Nonequilibrium evolution and symmetry structure of the large-N ®* model at finite temperature
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We consider the largs-®* theory with spontaneously broken symmetry at finite temperature. We study, in
the largeN limit, quantum states which are characterized by a time-dependent, spatially homogeneous expec-
tation value of one of the field components,(t), and by quantum fluctuations of the otHér1 compo-
nents, which evolve in the background of the classical field. Investigating such systems out of equilibrium has
recently been shown to display several interesting features. We extend here this type of investigation to
finite-temperature systems. Essentially, the novel features observied Gatcarry over to finite temperature.

This is not unexpected, as the main mechanisms that determine the late-time behavior remain the same. We
extend two empirical, presumably exact, relations for the late-time behavior to finite temperature and use them
to define the boundaries between the regions of different asymptotic regimes. This results in a phase diagram
with the temperature and initial value of the classical field as parameters, the phases being characterized by
spontaneous symmetry breaking and symmetry restoration, respectively. The time evolution is computed
numerically and agrees very well with expectations.

PACS numbs(s): 11.10.Wx, 11.15.Pg, 11.30.Qc

I. INTRODUCTION ture and at large values of the initial fielgp(0); then, at late
times these modes stay massive while the classical field van-

The investigation of th©(N) vector model at larghl has  ishes, and thereby the spontaneous symmetry breaking dis-
a long-standing history in quantum field thedtl~3]. One  appears.
of the main aspects was the question of symmetry restoration Our investigation, as well as the analogous oned at
at high temperature, which for some time was controversial=0, is limited to fields, masseas solutions of the gap equa-
The dynamical exploration of a special class of nonequilib-tion), and temperatures much smaller than the scale of the
rium properties has been developed only recefatly7]. Landau ghostm,=m, exp(87%/\), wherem, is a renormal-

The out-of equilibrium configuration that has been studiedzation scale, taken of ordefAv. So the question of sym-
mainly is characterized by an initial state in which one of themetry nonrestoration at “really” high temperaturg3] will
components has a spatially homogeneous classical expectast be addressed here.
tion value ¢(t). This implies that the otheN—1 compo- The plan of the paper is as follows. In Sec. Il we intro-
nentsy;(x,t), i=1,... N—1, have a mass that is different duce the model and set up the equations governing the non-
from the mass in the ground state. This means that theiequilibrium evolution. In Sec. lll we discuss the renormal-
initial state is related to the Fock-space vacuum state by &ation of the equations of motion and of the energy-
Bogoliubov transformation. The evolution of the system ismomentum tensor: some details are referred to the Appendix.
governed by the classical equation of motion for the fieldin Sec. IV we discuss the phase structure of the system as a
¢(t) and by the mode equations for the quantum fieldsfunction of temperature and initial conditions. In Sec. V we
¥(x,t). The expectation valuéy(x,t)¥(x,t)) appears in present the results of the numerical computations. Some con-
both equations of motion: this constitutes the quantum backlusions are drawn in Sec. VI.
reaction. In the one-loop approximation, in contrast to the

largeN approximation, this quantum back reaction only ap- Il. FORMULATION OF THE MODEL
pears in the classical equation of motion. This leads to deci-
sive differences in the late-time behavior. We consider thé®(N) vector model with the Lagrangian
We have previously8] carried out such dynamical com- L N
utations for theD(N) vector model in the limit of larg®\ at _ i i i 22
Enite temperature( fgr the case of unbroken symrr?etry, ie., L=50ud0" ¢ = gN (¢ ¢ —NUT, @D
with a positive mass term. Here we will consider the case of _
spontaneously broken symmetry. In this case, at low temwhere¢', i=1,... N, areN real scalar fields. The nonequi-

peratures the fieldg;,(x,t) will be the Goldstone modes. librium state of the system is characterized by a classical
This is the case for the ground stateTat 0 and at finite  expectation value which we take in the directiondaf. We
temperature; for nonequilibrium initial states, these modesplit the field into its expectation valug¢ and the quantum
become massless when the system settles to a stationary stétetuationsy via

at late times. Symmetry restoration happens at high tempera-

¢'(x,1) = SN G(t) + ¢/ (x,1). (2.2
*Email address: baacke@physik.uni-dortmund.de In the largeN limit one neglects, in the Lagrangian, all terms
TEmail address: heitmann@hall.physik.uni-dortmund.de which are not of ordeN. In particular, terms containing the

0556-2821/2000/620)/10502213)/$15.00 62 105022-1 ©2000 The American Physical Society



JURGEN BAACKE AND KATRIN HEITMANN PHYSICAL REVIEW D 62 105022

fluctuationy of the componenty, are at most of ordey/N

; Uk(0)=1, Uk(0)=—iwy. (2.1
and are dropped therefore. The fluctuations of the other com-
ponents are identical: their summation produces fackdrs The time-dependent frequeney(t) is given by
—1=N[1+O(1/N)]. In the broken symmetry case these are
the Goldstone modes. Identifying all the fields,...,¢n_1 wi(t)=k?+ M?3(1), (2.12
as i, the leading order term in the Lagrangian then takes the
form with the time-dependent mass
L=N(Ly+Ly+ L)), (2.3 M?(t)= =02+ 6m?+ (N + N[ P2(H) + F(1)].  (2.13
with Using this definition, the classical equation of motion can be
rewritten as
L _lé? O™ _ﬁ( 2_ 2)2 (24) .
0= g Iud9 o= g ($7m0)" ' B(t)+ M2(t) (1) =0, (2.14
1 A A which is the same equation as the one y(t) with k=0
Ly=5dupd"+ §vz¢2+ Z(lﬁz)z, (zero modg Of course, the initial conditions are different
(2.5) and ¢(t) is real.
As in our previous work, we rewrite the mode equation in
A the form
Ly=—5 9742 (2.6 )

wherey? is to be identified with= ' ¢//N.
We decompose the fluctuating field into momentum

eigenfunctions via
dk ik-x INES —ik-x
(Zw)fgzwko[akuk(t)e +akUk(t)e ]1

lﬂ(X,t):f
(2.7

With wyo=+m2+k?% The masan, will be specified below.
This field decomposition defines a vacuum state as bein
annihilated by the operatoss; .

The equations of motion for the fieléh(t) and of the
fluctuationsU,(t) have been derived in this formalism by
various author$9—11].

We include in the following the counterterms that we will

3

need later in order to write the renormalized equations. The

equation of motion for the field becomes

(1) + SmPp(t) —Nv2d(t) + (A + S\) ([ (1) + F(t, T)]
=0. (2.9

Here F(t,T) is the divergent fluctuation integral; it is given

by the average of the fluctuation fields defined by the initial

density matrix. For a thermal initial state of quanta with en-
ergy w,o= vk +m02, it is given by

F,T)=(yA(x t)>=f ko 5| U2
' ’ (2m) 2wy
(2.9
The mode functions satisfy the equation
2
W-I—wﬁ(t) U(t)=0 (2.10

and the initial conditions

10502

U(t)= =W U(1), (2.19

d 2
w + wig
whereby we have defined the time-dependent potebtigl
= M?(t)— M?(0); we further identify my=A1(0) as the
“initial mass.”
The average of energy with respect to the initial density
matrix is given by

£= %¢2<t)+ %(—)\v2+ o) B2(1) + T (1) + oA

g
+f<

+ %wﬁ(t)lukmlz] - #ﬁ(t,ﬂ-

d3k

27)%2wy

Bwyg

coth

1 .
I
(2.1

It is easy to check, using the equations of moti@ri4) and
(2.10, that the energy is conserved. The energy density is
the 00 component of the energy-momentum tensor. The av-
erage of the energy momentum tensor for our system is di-
agonal: its space-space components define the pressure,
which is given by

d2
p= (1)~ E+ 6é tz[¢ (H+FHLT)]

+f<

Here 6¢ is the renormalization of the conformal coupling
term £(9,,0°—d,d,) $?, which has been used for the im-
proved energy momentum tengdd2].

d3k
27) 32wy

ﬂko

coth

IUk(t)l2 (2.17

wk0+

INote that twice the last term, with positive sign, is included in the
fluctuation energy, sinceﬁ(t) containsA(t,T).

2-2
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I1l. RENORMALIZED EQUATION OF MOTION [ d3k 1 ]
| _.(mp)= f -
The expressions for the time-dependent m&g¥t), the 1(Mo) (2m)° 2wy9 reg
energy density¢(t), and the pressure are still undefined as ) 5
they involve divergent integrals over the fluctuations. Our __ M E+|n47TM 1
approach to regularization and renormalization has been pre- 1672 | € Y

sented previously13,8]. It is based on expanding the fluc-
tuationsU,(t) and subsequently the various integrals involv-
ing these fluctuations with respect to the time-dependent
potential V(t). As this procedure has been presented else-
where in detail, we just give the outline here. The additional temperature-dependent tedng(mg,T) are
The expansion of the fluctuations with respectA@) is  finite. They are defined as
given in the Appendix. We use this perturbative expansion in
order to single out the divergent contributions in the fluctua- d3k 1

=—m(2)|,3(m0)— (36)

ol 3
ﬁmlom <::3

tion integral. One finds 2_1(mo, T)= 27 wg(@PP0—1)" (3.7)
FIO=1_1(mo, )~ 1_g(mg, TILMZ(t) ~ MZ(0)] s memy= | Sk 1
—Ro (27)° 2wpy(eP0—1)
o ) It is convenient to include these finite terms into the defini-
where the finite part of(t,T) can be written as tion of F,(t,T). Then the time-dependent mass takes the
form
3
Fo(tT) = f B fdt’ M2() = N(p2—02)+ S\ 2+ SmP+ (A + SN)[1 _1 (M)
(2m)° 4w Jo 5
=1 _3(mo) V(1) + Frin(t, T) ], (3.9
5 R hﬁwm
XCOE{ wko(t_t )]V(t )COt 2 W|th
k1 @ Fin(t.T) =5 _3(Mo, T) = VDS (Mo, T)+ Fyn(t,T).
3 [2 Ref (1)
= Bwyo The time-dependent mag8.9) contains both renormaliza-

(3.2 tion constantssm and S\. Furthermore, its definition by this

equation is implicit: M?(t) also appears on the right-hand
side of EQ.(3.9 in W(t).
and where the divergent integrals are defined as We now have to fix the renormalization counterterms in
such a way that the relation between the time-dependent
ok 1 5 mass andp(t) becqmes finite. An additional _constraint de-
I (Mg T):j (1+ ) rives from the requirement that the renormalization counter-
' (27)° 2wy efro—1 terms should not depend on the initial condition, but only on
the parameters appearing in the Lagrangian,Ai.endv and

=1-1(mo) +2_4(my, T), (33 renormalization conventions.
We first determined\ by considering the difference
d®k 1 2 ALY — AA2(0)) — 204\ _ 12
R e V() = M0~ MP(0) = (\+ M) [ 42(0)— #2(0)
—1_ V() + Fan(t, T) = Fin(0T)]. (3.1
—1y(mg) 3 a(m,T). (3.4 3(Mo) V() + Fiin(t, T) = Fin(0,T)]. (3.1

The divergent parts depend on the initial mags We have

to replace this by a renormalization scale independent of the
initial conditions. In Ref.[8] we had chosen the scaig,
wherem was the mass parameter appearing in the Lagrang-
ian. Here the analogous mass squared woulthbe — \v?

and som would be imaginary. We therefore choose another
2 b p? ] scalem; which we do not specify here. In the numerical

The integralsl _,(my) are the genuine divergences which
appear in the renormalization @t=0. Their dimensionally
regularized form is given by

—+In—s—vy computations we have used the physical Higgs boson mass
€ Mo m3=mZ=2\0v2.
(3.5 We rewrite the implicit equation foy(t) as

| - d*k 1 1
-3(Mo)=) | 23 203, . 16n7

105022-3
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V)[L+(N+ M) _3(my)]
=(N+ M) {B*(t) — ¢*(0) —[1 _3(my)
= 1_a(M) V(D) + Fiin(t,T) = F5in(0.T)}
(3.12
and require
N+ ON
Tr Nt onl _amy (313
Solving with respect tad\, we find
N= % (3.14

Inserting this relation into Eq3.12 we find

V(1) =NCL ¢2(t) = ¢*(0) + Fn(t, T) = Fiin( O.T),
(3.19

with

1 _ 1
LHN[1_g(mg)—1_5(my)] A ln(”ﬁ)
" 1on? :

(3.16

Equation(3.15 is a finite relation for the potentiad(t) since
the difference | _3(mg) —1_3(my)] is finite. Going back to
Eq. (3.10, we realize thatF;, on the right-hand side of Eq.
(3.15 contains a term proportional #%(t). Taking account
of this term, we rewrite/(t) in terms of F, as

C=

V(1) =NCr[ p2(t) — $%(0) + Fyin(t, T)1, (3.17
with

1
CT =

(3.18

m2
+AS 3( Mo, T)
0

A
1+ 6q_rzln

Recall thatF;,(t) is the mode integral of second order in
V(t) and vanishes &t=0.

We now go back to E¢3.9), which we take at the initial
timet=0:

ma=M2(0) =\[ ¢2(0) —v2]+ 6\ p%(0) + Sm?+ (A + S\)
X[1-1(mg) + Fiin(0.T)]. (3.19
This is an implicit relation betweem, and ¢(0), which,

however, contains still the infinite quantitie®, ém, and
I _1(mg). Using Eq.(3.6), we can rewrite Eq(3.19 as

PHYSICAL REVIEW D 62 105022

ma=(—\v2+6m?)+ (N + 57\){ #%(0)—mal _5(mp)

2

mgy ~
- 16’772 +~7:fin(0:T) . (32@

As the renormalization condition, we requing, to vanish
for temperatureT=0 at the minimum of the potentiap
=v, as is the case at the tree level. We note thgt0 is
notthe curvature of the tree-level potentialégt v, which is
mZ=2\v2. It is the mass of the fluctuations @t=v in the
largeN approximation. FofT=0 we haveZ;,(t=0,T=0)
=3 _1(my, T=0)=0. Settingmy=0, ¢(0)=v in the gap
equation(3.20, we get immediately

)\szl ,3(ml)

2 _\p2_ 7 73
om O\v TN _y(my)

(3.20

Inserting this into Eq(3.20, we obtain the renormalized gap
equation

mg
16772

(3.22

+271(m0,T) .

mgzxc[ $*(0)—v?—

3

For the numerical computation it is easier to choose some
mSBO and to use the gap equation solved §(0):

2 2

my
O) 2_1(m0,T).
(3.23

For t>0, the renormalized relation for the mass squared
M?(t) we find, using Eqs(3.15 and(3.22, is

1+In

m2
2 _0
¢ (0)_ \ 16’77'2

(1) —v?— lg + Fan(t T)}
16’772 fin\ty .
(3.29

Having thus obtained a finite relation betweeift) and
M(t), the equations of motion for the classical fieldt)
and for the mode#J, (t) are well defined and finite.

The way in which we have renormalized has made the
cutoff disappear. This was possible only to the extent that we
could safely neglect corrections of ordein the evaluation
of the divergent integrals. One way of achieving this is to
take the limite—0. This implies, for the bare coupling,,

M2(t)=m3+W(t)= xc[

No=lim————=0", (3.25

e—0, -
1 1672 €

so this is the case of “negative bare coupling” as discussed
in [3]. One can leave the cutoff finite, however, as long as
the masses and momenta are much smaller than the scale of
the Landau ghos’mxsz exp(8?/\). This will be the case
here. This is not related to a pragmatic momentum cutoff that
we apply to the convergent integrals of the finite part.

105022-4
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While we have found here the gap equation as a selfwith
consistency condition, it can also be derivigd7] from a
potential(free energy, which here takes the form

1.
6ﬂf|n(t 0 J(Zw)32w [ |fk(1)|2

2 g2y M0 inﬁ_ﬁ_(ﬁ%§
Vimo. 251 = [¢ "o T3 M) 2 il )[ZR et 1 +|f<1>|z]+V2( )}_
Wo
f(z In[l exp(—Bwg)]. (3.26 (3.33

We denote the sum dfy 4,(t,0) andA&(t,T) finite contri-

The gap equation then follows from the condition butions as&; 5n(t,T). The expression for the energy then

(mo ¢2 T takes the form
—' . 3.2
6’mo (329 1.2 N+ O\ 5 o
E=5 ¢+ ——(#"=v )"+ & (1, T) +11(Mo)

It should be mentioned here that the gap equation has two
solutions, one of which lies above the scale of the Landau
ghost, m,=m, exp(87%/\?). In the sense that we consider

1 1
"’EV(t)'—l(mo)_ZVz(t)|—3(m0)
here the model as giving rise to a low-energy effective

theory, we discard this high-mass solution and its discussion.
The solution we consider is the low-energy one, which is of

order VAv orm;.
The energy density is given by

1. 1
E= §¢2(t)+ Z()\+ SN) (% —v?2)%+ SA+ & (1, T)

N+ O

F2(t,T). (3.29

Here we have used already thém?=— S\v?, and part of
the “cosmological constant” counterter@\ is included in
S\v*/4. The fluctuation energy is given by

d3k 1
gfl(tlT):f (277)32(” COthB ko+§|uk(t)|2
1
+§wﬁ<t>|uk(t>|2]. (3.29

We again split off the temperature-dependent contribution

via

gf|(t,T)=gf|(t,0)+A(€ﬂ(t,T), (33@

where the second term on the right-hand side,

d 2 1. )
Agfl(t!T): f (277)32‘0k0 eﬁwko_ 1 E'Uk(t)l

1
+§wi<t>|uk<t>|2],

(3.31)

is finite. The divergences of the first term are giyés] by
the decomposition

1 1
E(L0)=11(mo)+ 5 VDI 1(mg) = V(D)1 (o)

+ &iin(,0), (3.32

(t,T)+ SA. (3.34

In addition to the divergences arising frafj(t,T), we have

to take into consideration those @#(t,T), which we have

analyzed above. If all divergences and the renormalization

constants\ are inserted, the expression turns out to be finite:

i.e., the remaining counterter@i is needed only for a finite

renormalization. We require the energy to vanisi at0 for
¢(t)=v, which impliesmy=0. ThenSA =0. There remains

a finite constant dependent on the initial condition

4
Mg

AA= 17802

(3.39

2\C
+ 167

and the energy is given by

1. A 1
&= §¢2+ ZC(¢2_02)2+ zAmz(d’z_Uz)*'gﬂ,ﬁn(taT)

N -
Here Am? is given by
. mg
Ame= —ACW (3.3

We write the pressure in the form
. d?
p=g*(t)—E+py(t, T)+ 5§W[¢z(t)+7’(t,T)]-
(3.38

The renormalization does not differ form the case of unbro-
ken symmetry discussed in Rd®] and is not presented
again. We find

AX N _3(m)
6(1—Ax) B[1—\l_z(m)]"

S5¢= (3.39

105022-5
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The final result for the renormalized pressure reads T2
3 _1(0T)==—, 4.0
12
P=¢"(1) =&+ Pusin(LT) — g2~ 752 V(1) and therefore
2
1 m3 . HAT)= 42 _ o T
—— _|Inl = UT)=dglmy=0=0v"— 75- (4.2
96,2 In(mg +2| (1), (3.40 Mo 12

For ¢o<¢+(T) the gap equation has no real solutiong.
with The region below the boundar4.2) is region I.

If nevertheless one wants to start the system within
region |, one faces the problem that in this region the gap
equation requiresmé to be negative. Then the low-
momentum modes wit||{2<—m§ have imaginary frequen-
cies. So from an orthodox point of viefto which we adhere
here the system cannot be quantized properly. One may

1 mS ¢ avoid this problem by redefining the dispersion relation for
+(7— j)J dt’ cos 2w,o(t—t")Vi(t’)  the initial frequencies vianZ,=k?+|m3| in this region. Of

Bwig  24wio/ Jo course, att>0, M?2(t) will be negative, so the “mass

|22
2
wk0+ ?

d3k
Psfin(t,0) = j 27 g

x[2 Ref@(t)+[f(1)|?]

1 m2 squared” changes sign at=0, a situation called “quench”

+(_2_+ —°4> cos{Zwkot)i'/(O) in analogy to a similar transition from a stable to an unstable
12wiy 24wy state by a sudden drop of temperature or inversion of a mag-

netic field. On the other hand, the amplitud@ét) can reach

£ (Dty]2— i F (D) . . .

+[f (D] =2 R wof (1) this region at late times, but then it is in a quantum state
different from the ones we use as initial states.
+iwkofk“><t>fk<1>*<t>]}. (3.4 | o

B. Region Il: mg>0, m,=0

We now assumeb, is started above the boundary value
IV. ANALYSIS OF THE GAP EQUATION AND OF THE (4.2). If o is not too large, the system may, tat0, enter a
PHASE STRUCTURE region whereM=(t)<0, i.e., region |. Then the quantum

fluctuations with momentk®< — M?(t) will increase expo-
The dynamical evolution of the nonequilibrium system nentially, signaling instability. This cause&t?(t) to in-
depends on two parameters, the temperafuaed the initial  crease so that it is driven back to a vals?(t)>0. If the
amplitude of the classical fiel¢(0)= ¢o, which in analogy initial amplitude ¢, is sufficiently small, this forth-and-back
with thermal equilibrium systems can be considered as ageaction will lead M2(t) to stabilize atAM2=0. So at late

external parameter. There are two regions from which we. > . .
can start the system, which we will call regions Il and IIISIm?S}}‘”(t’.T) IS defcermmed by quantum _modbb&(t) that
' oscillate with time-independent frequencies,.=k: it be-

There is, in addition, one region into which the system can . : -
: S comes stationary as well and will be positive. Therefg(¢)
evolve when one considegs(t=«)= ¢., and not¢, as the o
. ! . ) .. Stabilizes at some value
external parameter. We call it region I. In this section we will
characterize these regions and describe the dynamical evolu- 2_.2_7% 2_%
. . . . =0— Fiin(0, T)<v— F;in(0,T). 4.3
tion to be expected from the analysisTat 0. This analysis $==v (>, T) <0 i(0.T) .3
is based on certain empirical resuf,7] that, though un- g is entirely analogous to the behavior foundrat0 [7].
proven, seem to be at least almost exact. We will generalizgye ¢4l the region of initial valuess, leading to this late-
these results to finite temperature in a plausible heuristi¢ o behavior region II.
way, to be confirmed by the numerical computations. We  he giapilization by back reaction onto the fluctuations
thmk that the way in which we ggnerallze these results willypiained in the largé¢ approximation is not present in the
give a further clue to understanding them. one-loop approximatianin this approximation, once(t)
dips into the unstable regio#(t)<v/v3, the mass squared
A. Region I: m2<0 of the fluctuations becomes negative and the low-momentum
) .5 . ) modes evolve exponentially. The effective mass of the clas-
The gap equation requirgsg to be positive. The point  gjc4) field increases exponentially as well and continues to do
wheremy=0 marks an initial condition that leads to a solu- 5o put the mass squared of the fluctuations stays negative.
tion ¢=const, if po=0, as we will assume in the following. The amplitudep(t) is driven towards zero. Nevertheless, the
For T=0 this stationary amplitude ig=v. For T>0 we classical energy continues to increase, as the field oscillates
can easily find this amplitude as well. Indeed, fiog=0 the  faster and faster, this energy being extracted from the energy
integral = _;(mg,T) is given by its value for massless of the quantum fluctuations. Obviously, this signals the in-
quanta, i.e., stability of the quantum vacuum, as is already apparent from
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the fact that the effective potential is complex in this region. b+ (a+ c)qﬁﬁ
We will illustrate this by a numerical example, to be pre- _(2)=— —a
sented in the next section.
At T=0 the final valueg., was found to be related to the 1 ) 5
initial value ¢, by an empirical relation = m[zl) =2 1= (1+NCr2_3) g,
d2=p3(2v%— ¢3), T=0. (4.4 (4.10)

It is not obvious how to generalize this relation to finite SO that we are led to suppose

temperature. It was remarked in R¢¥] that the relation

only depends on the initial, purely classical, energy, which is 1

given by E=\(42—v?)?/4. Obviously, it satisfies the con- P3(T)= Vioes .

straints thatp2=0v? if ¢o=v? and thate..=0 if classically =3

the system can reach the maximum of the potential; this X\/¢é[2U2_2271_(1+)\CT273)¢(2)]-
happens aipa= ¢3(T=0)=2v2. So Eq.(4.4) seems to be

related to energy considerations. We further observe that the (4.12

classical turning point is ah2=_2v2— ¢ so that one may
write Eq. (4.4) as the geometric mean

We find indeed(see below that this relation is very well
fulfilled numerically. According to this formula, region Il is
limited by the requirement that the expression in the square
2= \/¢c2>_c2> (4.5 root be positive, so the boundary between region Il and the
new region Il is given by
This form turns indeed out to lead to the correct generaliza-
tion for finite temperature. 2_
. . . . . 2 v E*]_(mO:I—)
Obviously, the relation is characterized by the motion at P5=2 . (4.13
early times when the quantum fluctuations have not yet 1H+NCrE 5(Mo, T)
evolved. When discussing renormalization we have made an
expansion with respect to the “potential/(t), which van- We note that the relation is implicit: the value of, that
ishes at=0. So the same expansion can be used to study th@ppears on the right-hand side is related;ﬁtg)on the left-
early-time behavior. In the energy the coefficients of thehand side by the gap equation.
terms of first and second order ihhave been absorbed into
renormalization constants. However, thermalfluctuations . ) _ 2
are not absorbed in this way and will add to the classical C. Region [lI: ¢.=0, M..>0
terms in an early-time expansion. These appear in the energy If the value ¢, becomes larger thag,, the stationary
[see Eq(3.39] via state with constanp and vanishing mass1?(t) is no longer
attained, and the system reaches another asymptotic regime
1 1 where M?(=)#0, whereasp(t)— 0. This regime is similar
A&n(t,T)=24(mo) + 5 X -1(Mg) — sz(t)E_g(mo) to the one that describes the late-time behavior for the un-
broken symmetry case. We call the region of initial values
+0(V®) (4.6) ¢, that leads to such a behavior region IIl.
There are two phenomena that characterize the transition

as a part ofy n(t,T) and via Eq(4.10 in Fin(t,T). Taking to this region. On the one hand, the stabilization of the sys-

these expansions into account, the energy can be written #M iS taken over by the phenomenon of parametric reso-
the form nance. On the other hand, the system has enough energy so

that ¢(t) can move over the maximum of the potential at
A 5 ¢=0 and indeed will oscillate aroung=0. Accordingly,
E=—Cla¢*+ads+bdp?+Dbp3+cdp?d3]+ const the threshold value ob, at which these two phenomena set
4 in can be characterized by twa, priori unrelated, criteria.

4.7 Both rely on plausible assumptions, whichTat 0 lead to
- the same prediction for the critical value ¢f.
up to terms of orded”. We need the coefficients The criterion based on the energy consideration has been
o presented in the previous subsection: we now describe the
a=1-ACrx-3(mo,T), 48 (riterion supplied by the phenomenon of parametric reso-
) nance. For the case of unbroken symmetry, it was found at
b=—2[v"—=% _1(my,T)], (4.9  zero[6] and finite temperaturd] that the late-time behavior
is described by an empirical sum rule which relate to
C=ANCC2 _3(mg,T). (4.10 the initial amplitude. FolT=0 an analogous sum rule was
found to hold for the case of spontaneously broken symmetry
The classical turning point is given by as well[7]. It is given by
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FIG. 1. Phase diagram in théﬁ-T plane. FIG. 3. Evolution of classical field in region Il.
) 72 d+N\Cad®+ EC(b+c¢§)¢=o. (4.16
,ux=—1+?. (4.14 3

Comparing to the normalized equatioh15, we determine
Hereu and 7 are normalized in such a way that the classicalthe factorsa and 8 to be
equation of motion at early times, i.e., in the parametric reso-

i i i INC
nance regime without back reaction, reads a=\5 \/m, 4.17
7' —n+n3=0, (4.15
_ / 2a
where the primes denote a derivative with respect+axt B=V\ "~ b+ C¢O?' (4.18

and wheren= B¢, alsou=M/a. With 7(7) a solution of
Eqg. (4.19, the mode equation becomes a Laeguation. so that the asymptotic mass is given by
The sum rule implies[6] that the frequenciesw?(t)
= M?(t)+k? are shifted outside the parametric resonance
band of the Lamequation. Though there is no rigorous deri-
vation for the sum rule, it accordingly seems related to the
parametric resonance phenomenon. _ .2

As the shift of the frequencies outside the parametric _)\C[ 072 1(Mo, )
resonance region must have happened at the end of the phase 1
where the evolutl_on of t.he system is de_sgnbed by parametric + —[1+ACT23(mO,T)]¢3} _ (4.19
resonance, we will again consider the initial classical evolu- 2
tion. Again, in addition to the classical terms, we have to )
take into account the terms due to the thermal fluctuations. 1A\9ain, ¢o andm, are related by the gap equation. At the
terms of the parameters introduced in the previous sectiofff@nsition from region Il to region I, the asymptotic mass

Mi=a®

1
—1+§B2¢§)

the equation of motion is given by vanishes. It is easily seen that this criterion leads to an iden-
tical equation for the boundary, i.e., E@.13.
8 The field amplitude decreases to zero at late times in this

regime. So the symmetry is restored dynamically at high
excitation characterized by a high value ¢f.
61 1 At the critical temperatureT=+/12v, both boundaries
¢1(T) and ¢,(T) become zero. Abové - the behavior of
the system is the same as for region Il for all initial values
of ¢¢. While at the border between region | and Il there was
a lowest value forp, for obtaining real solutions of the gap
equation, now there is a lowest value wf,, the one for
which ¢¢=0. It is obtained by solving the gap equation for
$o=0 and agrees with the thermodynamical equilibrium
valuem; at that temperature, as defined, e.g., in B8 of
Ref.[2]. Of course, with¢po=0 the system remains static.
Having defined the three regions by the two boundaries
(4.2) and(4.13), we present, in Fig. 1, a phase diagram in the
FIG. 2. Phase diagram in the2-T plane. d)S-T plane. Figure 2 shows the phase diagram inrtlﬁeT

m,
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FIG. 4. Evolution of M*(t) in region Il. FIG. 6. Late-time amplitudep() vs. initial amplituded, for

) _ ) o T=1 (asterisky compared with Eq(4.12 (solid line).
plane, displaying, abovéc, the regionmy<mg, which is
excluded as an initial condition. We have to stress that th%omputed numerically are finite, so cutting off the momen-
boundary between regions Il and Il relies on an empiricaly, n integration at some reasonable value is unrelated to cut-

relation. _ o _offs used for renormalization.
The symmetry restoration above a critical temperature is e first consider initial conditions in region Il. The ex-

expected' naively. However, if the temperature becomgs NOMsectation value ofs, shown in Fig. 3, becomes constant and
perturbatively largeT =12m; exp(8=*/)), the gap equation ifferent from zero as— . This signals spontaneous break-

doe; nqt havel solutions any longer. Then the free energyqwn of theO(N) symmetry. As displayed in Fig. 4, the
attains its maximum at the boundamy, =0 and theO(N)  assAf2(t) vanishes as—o, as expected form the Gold-
symmetry is again broke[8]. This phen_omenOn of “sym-  stone theorem. The momentum distribution of the quantum
metry nonrestoration,” as well as the existence of the secong|,,ctuations peaks &=0 as|U,(t)|2<k 2, leading to long-
solution of the gap equation abowe,=m; exp(&7/A), will range correlations, a phenomenon called “dynamical Bose-

not bg discussed here, as it is not part of the low-energ¥:instein condensation” in Ref7] and investigated further,
effective theory. for finite volume, in Ref[18]. We show an example of the
momentum distribution in Fig. 5, but we have not studied the
V. NUMERICAL RESULTS phenomenon in detail.
) ] ) ] The relation between the asymptotic valuetase for
We have discussed already in the previous section thg(t) and the initial amplitudep, is displayed in Figs. 6—8
type of nonequilibrium behavior to be expected in the differ-for T=1 25 and 3. We compare the data with our gener-
ent regions of_ phase space. The numerical results foIIovg|ization(4.12) of the empirical formula4.4) given in Ref.
these expectations. We have chosen generally the parametef§ The data are obtained by averaging over the second half
v=1 and\=1. We present results for the various regions ingf the time interval. The agreement is excellent, except at the
the T- ¢, plane. The critical temperature is’2=3.464. We  phase boundary where the averaging converges slowly.
choose temperatures betweBr 1 and 4, the latter one be- ~ As an illustration of the behavior of the system in the
ing above the phase transition. The numerical method hagnstable region in the one-loop approximation, we show, in
been described ifi8]. We just recall that all the integrals Fig. 9, the evolution of the field amplitude and, in Fig. 10,

the exponential behavior of the fluctuation integral and of the

60
0.80
0.60 .
= 0.40 | |
&
0.20 .
0.00 ¥ " * *—
0 ) S s R i e e iiod
0.0 0.2 0.4 06 0.8 1.0 020 ‘ ‘ ‘ ‘
k 70.60 0.85 1.10 1.35 1.60
)
FIG. 5. The momentum spectrum for=1 att=75 displaying ’
“dynamical Bose-Einstein condensation,” with a fit &jik)/k>. FIG. 7. The same as Fig. 3 far=2.
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FIG. 8. The same as Fig. 3 fdr=3.
FIG. 10. The fluctuation integrgsolid line) and M?(t) (dashed
effective mass squarett?(t) of the classical field. line) in the one-loop approximation.

The behavior of the system in region Il is displayed in
Figs. 11 and 12. The amplitudg(t) is seen to decrease to Metry is spontaneously broken. The resulting phase diagrams
zero. The decrease is power like, not exponential, a phenoniesemble typical phase diagrams of thermodynamical sys-
enon called anomalous relaxation in R§]. Figure 12 tems, with the temperature and an external variable as pa-
shows the squared mas42(t), which is seen to converge to rameters. Instead of, e.g., the magnetic field or the pressure,
an asymptotic value\i2. The sum rule for this asymptotic We have here the initial value, as external parameter.
value, Eq.(4.12), is compared to the data in Fig. 13 for ~ While the initial states are thermal states, the final states are
=1.5, 2.5, and 4. The agreement is again excellent. not.

We have not presented the results for the pressure and the We have generalized two empirical formulas, the relation
ratio of pressure and energy, which varies between 0 for §etween the initial and asymptotic field amplitudes in region
nonrelativistic and 1/3 for an ultrarelativistic ensemble. Herell and the formula for the asymptotic value 0é((t) in
these are dominated, alreadyTat 1, by the purely thermal region Il to finite temperature, extending the plausibility ar-
contributions, so that the fluctuations generated by the moduments given ifi7]. While we have not been able, either, to

tion of the field ¢(t) are relatively unimportant. d_erive these formulas, the Way_of generalizing th_em may
give some clue for such a derivation. Both relations are
V1. CONCLUSIONS AND OUTLOOK linked as they give the same formula for the boundary be-

tween regions Il and Ill, though the arguments for their heu-
The dynamical exploration of the quantum states of theistic derivation are seemingly different. Furthermore, it is
O(N) A ®* theory in the limitN— has been extended here clear that both of them are based on the early-time behavior.
to finite temperature. We have performed numerical simula©Obviously, the fluctuations have to be included up to order
tions with various initial fieldsp,= ¢(0) and initial masses V2(t) in a perturbative expansion. At=0 these terms are
m, related by the gap equation and for various temperaturegssentially absorbed into renormalization constants, so that
T. Depending on the initial conditions we find, in analogy to the purely classical behavior prevails. One may also formu-
computations at zero temperaty&7], final states with re- late the modifications at finite temperature in terms of
storedO(N) symmetry and final states for which the sym- temperature-dependent masses and couplings. It is the role of
the largeN quantum back reaction to transmit the early-time

4 T
4
2 4
2 4
g o |
s 0 A
ot i
2t i
_4 1 1
0 10 20 30 4 ‘ ‘ ‘ ‘
t 0 10 20 30 40 50
. . s . t
FIG. 9. Evolution of the classical field in the one-loop approxi-
mation. FIG. 11. Evolution of the classical field in region llI.
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the largeN approximation necessarily improves the under-
standing of the physics.
71 ] In this situation it is certainly very important to develop
new approaches to the evolution of quantum systems for
5 ] theories with spontaneously broken symmér9,20. There
are indications in a larghl-quantum mechanical systdr20]
that the largeN limit may be misleading, as the next-to-
leading corrections become large especially at late times. It is
not clear, however, what the impact of these results on quan-
-1} . tum field theory will be. One of the problems is that, in
contrast to the largétand one-loop approximations, alterna-
-3 0 0 20 30 0 50 tive wave functionals pose problems with renormalization
t [19]. This is not only a technical problem. It is connected
(trivially) to the fact that the higher the dimension of space,
FIG. 12. Evolution ofM?(t) in region Ill. the more the ultraviolet behavior of the system will be im-
portant.
behavior into the late-time one. A surprising feature of the nonequilibrium evolution in

Unfortunately, there are many interesting models forthe largeN approximation is its lack of thermalization. Our

which the largeN approach is not possible or not adequate 8volution equations are exact in the lafgeimit, so ther-
The one-loop approximation, on the other hand, can be ag? alization is expected to be related tdN1¢orrections. Such

plied in general. However, it shows features that seem t((),‘orrections would include the rescattering of the quantum

make it obsolete for describing nonequilibrium phenomenagnf(ieg.; |mplgmentlng themt mfto numer:cal con:pgtatlor;ts n
especially for theories with spontaneous symmetry breaking: IMENSIons seems oult of SCope at present. Rescattering

As an illustration, we have shown the typical behavior of a,([)iigl;‘c’;"Lﬁglt{gjncstu;“gg‘?[ésl]tiﬁg g;)tge?vcecgl:r?;tlr:;gsa?tgrilr?t_
spontaneously brokend®* model in the one-loop approxi- : 9

mation. The system does not reach a stationary state at Ia%‘g oothes out the parametric resonance structures, but no

times: the effective mass of the classical field diverges exéimrﬂgtlioﬂlst?rnbﬂolns dirr]naevr?sigﬁgnﬁr?c;efr?enrtriiiiz\ggcr)nusAggce
ponentially, while the effective mass of the quantum fluctua- nd Smit[22] find thermal distributions of fermions in a

tions is and stays negative. This is due to the lack of the_ . . . . . .
guantum back reaction onto the fluctuations. The fact tha ttice simulation of the _(3#1)-d|m_en3|onal Abelian H|ggs
one finds such a pathological behavior may, however, indi_rnodel. There the bosonic quctuaﬂong are treated c_IasslcaI[y.
cate the correct physics and is not necessarily a consequeanr éh.e bOSA%n'ﬁ m&c_ies an ;ﬁproxwlne:jt? ther_n}?lltzﬁaet]lon IS
of an inadequate approximation. It is known that the systenﬁ)#gﬁg::?ne te?nlagratlgrges ?eof'ni;?)upn?atc%'?ln I'?heaobsér ed
is indeed unstable for spatially constaatic fields: it is an n etrectiv perature, defi y Ing M
instability with respect to formation of domairi44]. For distributions to thermal ones, is found to be moderately mo-

space-dependeritelds like minimal bubble configurations, mel?turr]n dlgpsnder;t.d v that a classical ble at
the one-loop approximation to the effectigetion does not should be noted generally that a classical ensemble a

display any unplausible featurés5—17, though the effec- fixed energy cannot thermalize in the strict sense because of
tive potentialis complex in the unstable region. So it is not th? Rayleigh-Jeans divergence. A more generaj d.|ff|c_ulty
clear whether the “taming” of the instability introduced by arises from the fact that one cannot expgct the Q|str|bu_t|ons
functions to be those of a free theory while one is consider-
ing the dynamics of an interacting one. In a recent report
5.0 [24], Berges and Cox have considered the nonequilibrium
quantum evolution of ap* theory in 1+ 1 dimensions, in-
. cluding two-loop corrections. They find the system to ther-
malize with a distribution derived in finite-temperature quan-
tum field theory in the same approximation.

Thermalization is also a question of time scales. Recent
lattice simulations of ap* model[25] show that the early-
time behavior is well described by the Hartree approximation
(as appropriate foN= 1), while the system thermalizes later
on. Likewise, the larg&N approximation was foun{20] to
describe the early-time behavior of a quantum mechanical

00,5 5 5 a5 system WithN de_grees of freedom._The time scale one which

' ’ N ' ’ the approximation breaks down is found to dependNon
‘ below a “critical” value of N~20, the approximation de-

FIG. 13. The asymptotic sum rule fov1?(t). The data forT ~ scribes only the first oscillations of the system. How these
=1.5(diamond$, T=2.5 (asterisky andT=4 (triangles are com-  results, and the one of Refl24], translate to three-
pared to Eq(4.19 (solid lines. dimensional systems remains to be seen. Tentatively one

M)

4.0

3.0

13

s
2.0

1.0
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may ask the question how our phase diagrams will change if t , ,

the system finally comes to thermal equilibrium. The tem- fk(t):f dt’ Ay e t—t )Vt )[ 1+ fi(t7) el kot =t)
peratureT, of such a final state will depend only on the 0 (Ad)
initial energy, which is a function ahy andT,. This depen-

dence can easily be computed. The transition between thgnd an equivalent differential equation

symmetric and the broken symmetry phases occur$. at _

=/12v. This phase boundary is plotted as a dashed line in fr (1) = 2i wpof(t)=— V) [ 1+ (1)], (A5)
Fig. 2. One finds that region Il in which the nonequilibrium .

system tends to a symmetric final state with=0, M,  with the initial conditionsf,(0)=f,(0)=0. We expand now
#0 is divided into two parts. In the region below the new f,(t) with respect to orders i(t) by writing

phase boundary, the thermalized system is in the broken

symmetry phase. We recall that the temperature-dependent fir() =Fi (O + O + I (1) +--- (AB)
potential is flat for¢><v?(T) =v2—T?/12, so thatp.. is not _
fixed uniquely. =+ 12, (A7)

It has to be seen how the results found in lower- _

dimensional and/or classical systems translate to nonequilibNheref(k”)(t) is of nth order inV(t) and f{"(t) is the sum
rium quantum field theory in 31 dimensions. One may over all orders beginning with theth one:

expect that the approximation will be good at lower values of
N and for larger times than in the lower-dimensional models.
One of the essential findings of the previous analysis of Refs.
[6], [7] and of this work is the close relationship between the
late-time behavior and the initial conditions. This implies The f(" are obtained by iterating the integral equatid)
that the essential features of the late-time behavior are fixeg, ihe differential equatiofA5). The functionf(kl)(t) is iden-

already by the back reaction at early times. However, thgjco| 1o the functionf,(t) itself, which is obtained by solving
system will evolve, and possibly thermalize, at later tlmes:Eq (A5). The functionfm(t) can again be obtained by it-
this initial period will be important for the further evolution era{tion \;ia k 9 y

of the nonequilibrium system.

f@(t)=|§n fh(t). (A8)

_ t _ _ )
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APPENDIX: PERTURBATIVE EXPANSION (1) i t , . , ,
fO0=5— | dt{exi2io(t—t)]- ).
ko JO

The mode functiondJ,(t) with the initial conditions in-
(A10)

troduced in Sec. Il satisfy the integral equation
. Integrating by parts, we obtain
uk(t)zefiwkobrf At/ Ay e t—t )V U(L"),

0

i 1
(1) - ’ "N
(AL) f(n) 2wy fodt ) M%V(t)
i 1 [t .
with +—2J dt’ exq 2i wyo(t—t') VL),
4(1)k0 0
1
Ayrelt—t) == ——O(t-t)siwot—t)]. (A2) (AL1)
kO

For the expansion of the fluctuation integr&(t), we need
We separatdJ (t) into the trivial part corresponding to the the real part off (), for which we find
casel(t) =0 and a functiorf,(t) which represents the reac-
tion to the potential by making the ansatz

Reh(t)=— V() + .
. “ “’Eo 4‘0&0
Uk(t)=e "1+ (1)]. (A3) t

4
xf dt’ cog 2m(t—t")JV(t'). (A12)

Here f | (t) satisfies then the integral equation 0
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The second term decreases at leasba$. In terms of the Dy 16002

perturbative expansion for the functiofys we can the mode 1+2 Refi/+[fi|?=1~ 552 V. (A14)
functions appearing in the fluctuation integral as ko

Similarly, the integrand of the energy density and pressure
can be expandeldL3]. As these are more divergent, the cal-
culations require more integrations by parts in order to single
out the leading powers i,y and they become more in-
Using Eq.(A12), the leading behavior of this expression is volved.

|UJ2=1+2 Ref @ + |2, (A13)
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