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Geodesics and Newton’s law in brane backgrounds

W. Mück,* K. S. Viswanathan,† and I. Volovich‡
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~Received 25 May 2000; published 23 October 2000!

In brane world models our universe is considered as a brane embedded into a higher-dimensional space. We
discuss the behavior of geodesics in the Randall-Sundrum background and point out that free massive particles
cannot stably move along the brane. The brane is repulsive, and matter will be expelled from the brane into the
extra dimension. This is undesirable, and hence we study a simple alternative model with a noncompact extra
dimension, but with an attractive brane embedded into the higher-dimensional space. We study the linearized
gravity equations and show that Newton’s gravitational law is valid on the brane also in the alternative
background.

PACS number~s!: 11.10.Kk, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

It has recently been suggested by Randall and Sund
@1# that four-dimensional gravity can arise at long distan
on a brane embedded in a five-dimensional anti–de S
space. In their model the fifth dimension is noncompact.
effective dimensional reduction occurs, because the me
perturbations admit a bound state solution that looks sim
to a four-dimensional graviton bound to the brane. Ear
work appeared in Refs.@2–4#. This interesting alternative to
compactification has been discussed in a number of re
papers@5–29#.

The metric of the Randall-Sundrum~RS! background has
the form

ds25e22kuyuhmndxmdxn1dy2, ~1!

where hmn5diag(21,1,1,1), m,n51, . . . ,4 andk.0. It
was argued in Ref.@1# that the Kaluza-Klein excitations, a
they are light, are suppressed near the brane and almos
couple from the matter fields. Moreover, it is assumed t
matter fields are trapped to the brane by a certain me
nism.

If our spacetime is the ordinary Minkowski spacetim
then there should exist trajectories for free massive part
located on the brane only. Although this is true for the me
~1!, these trajectories are not stable. In fact, the fi
dimensional trajectory of the free particle in the metric~1!
has the form~see Sec. II for details, here we takey0' ẏ0
50!

xm5x0
m1vmt, uyu5

1

2k
ln~12v2k2t2!. ~2!

For y050 exactly, the trajectory isy(t)50, because the par
ticle is pulled to each side of the brane with equal for
However, a perturbation will lead to expulsion from th
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brane following a trajectory of the form~2!. It seems this is
undesirable, even if for a very small~Planck scale! k the time
needed for the significant deviation in the fifth direction w
be rather large. Thus, in the RS background, some ot
nongravitational mechanism is needed in order to trap ma
on the brane. The simplest way to obtain an attractive br
would be to change the sign of the brane tension, altho
one might argue that this would imply other undesirable f
tures. This alternative was considered in Refs.@4,30–32#.

In the present paper, we shall study the RS backgro
and the alternative possibility, whose background metrics
given by Eq.~1!, with k.0 for the RS background, andk
,0 for the alternative background. The metric~1! is a solu-
tion to Einstein’s equation for the action

S5E d4xE dyA2g~R22L!1sE
y50

d4xA2gB, ~3!

where the cosmological constant and brane tension are

L526k2, s5212k. ~4!

We shall now give a brief outline of the rest of the pap
First, in Sec. II we study the geodesics in the two ba
grounds and find that only for the alternative backgrou
gravity provides a mechanism for the trapping of matter
the brane. Second, in Sec. III we consider the lineariz
gravity equations, which shall be used in Sec. IV to der
the Newtonian limit of gravity on the brane in both bac
grounds. We find that in both cases the gravitational pot
tial for a static point source will be;21/r , and we find an
exact formula for the corrections. In Sec. V, we give expr
sions for the graviton modes in both backgrounds. Space
modes are absent in the RS background, but our results
inconclusive for the alternative background.

II. GEODESICS

In this section, we explicitly solve the geodesic equati
in the RS and alternative backgrounds. We shall find that
the RS background, ordinary matter will be expelled fro
the brane, but in the alternative background, the brane
attractive.

Using the zeroth order terms of the connections given
8,
©2000 The American Physical Society19-1
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the Appendix, the geodesic equation takes the form

d2xm

du2 22k sgny
dxm

du

dy

du
50, ~5!

d2y

du2 1k sgnye22kyhmn

dxm

du

dxn

du
50. ~6!

We start by integrating Eq.~5!, which yields

dxm

du
5vme2kuyu, ~7!

wherevm is a constant four-vector. Equation~6! is explicitly
solved by the first integral of the geodesic equation

S dy

du D 2

1e22kyhmn

dxm

du

dxn

du
5C,

whereC is a constant. Hence, inserting Eq.~7!, we find

S dy

du D 2

1e2kuyuv25C, ~8!

wherev25vmvnhmn .
It is convenient to change the parameterization to a n

affine parametert such that

dt

du
5e2kuyu.

Then, Eq.~7! becomes~notationẋ5dx/dt!

ẋm5vm⇒xm5x0
m1vmt, ~9!

which shows that we can choose a reference frame such
t5x0, i.e., t is the time on the brane. Moreover, Eq.~8!
becomes

ẏ2e4kuyu1e2kuyuv25C, ~10!

and we can determineC from the initial data

C5 ẏ0
2e4kuy0u1v2e2kuy0u. ~11!

Before integrating Eq.~10!, we note that it depends only o
uyu, as long as we do not pass throughy50. Therefore, it is
sufficient to considery.0; replacingy with uyu at the end
will take care of the casey,0. For y.0, we can integrate
Eq. ~10! and find

AC2v2e2ky16v2kt1AC2v2e2ky0,

where we have again expressed the integration constan
the initial data. The6 sign in front of the term containingt
on the right-hand side stems from the ambiguity of takin
square root. After some simple steps involving the subst
tion of C from Eq. ~11! we obtain

e2ky02e2ky5v2k2t26u ẏ0u2ke2ky0t,
10501
-

at

by

a
-

and we can deduce from the initial data that we have
replace6u ẏ0u by 2 ẏ0 . Thus, the final result is

e2kuyu5e2kuy0u12kẏ0e2kuy0ut2v2k2t2. ~12!

The solution~12! is valid, as long asuyuÞ0.
If we hit the brane aty50, we have to match a solutio

for y.0 with a solution fory,0. However, from Eq.~6! we
see that the velocityẏ must be continuous aty50, since the
second term in that equation is finite. Thus, the brane will
deflect particles gravitationally, but we might expect th
nongravitational interactions with matter on the brane do

The interpretation of the solution~12! is rather simple: In
the RS background (k.0) ordinary matter (v2,0) is re-
pelled by the brane. A special case is a particle initially mo
ing along the brane,y05 ẏ050. Equation~12! predicts ex-
pulsion, but the particle would not know in which direction
is to go, so it will keep moving along the brane in an u
stable equilibrium. On the other hand, tachyonic partic
(v2.0) are attracted to the brane, whereas massless
ticles are not affected by its presence. Fork,0, the brane
attracts ordinary matter. This is sketched in Fig. 1.

Another interesting fact is that, for the alternative bac
ground, e2kuyu50 corresponds touyu5`. Thus, tachyonic
particles will be expelled touyu5` in finite brane time, as
will massless particles with the right initial conditions. Mor
over, there exist initial conditions for ordinary particle
which will yield uyu5` in finite brane time.

III. LINEARIZED GRAVITY

In this section, we shall study the linearized gravity equ
tions with two applications in mind: The derivation of New
ton’s law on the brane and the study of graviton mod
which will be carried out in Secs. IV and V, respectively.

FIG. 1. The solution~12! for ordinary matter,v2,0. The region
k.0 corresponds to the RS background, the regionk,0 to the
alternative background. In both cases, the brane sits ate2kuyu51.
9-2
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GEODESICS AND NEWTON’s LAW IN BRANE BACKGROUNDS PHYSICAL REVIEW D62 105019
For our purpose, we introduce a matter perturbation
the brane

dT005d~y!t00~x!, ~13!

and solve the linearized gravity equations for this source
The form~1! of the background metric suggests to use

time slicing formalism@33# for calculating the metric pertur
bations, although we do not slice with respect to time,
with respect to the transverse coordinatey. Let us first give
some useful formulas. In the time slicing formalism, we sp
up the metric tensor as

gab5S gmn nn

nm nmnm1n2D ,

gab5
1

n2 S n2gmn1nmnn 2nn

2nm 1 D , ~14!

wherea,b51, . . . ,5,x55y, andgmn(x,y) are the induced
metrics in the hypersurfaces with internal coordinatesxm.
The quantitiesn andnm are the lapse function and shift ve
tor, respectively, and are fixed to their respective backgro
values in axial gauge

nm50, n51. ~15!

Thus, we consider a metric of the form

ds25gmndxmdxn1dy2. ~16!

Then, the second fundamental form measuring the extri
curvature on the hypersurfaces is given by

Hmn5
1

2n S ]

]y
gmn2¹mnn2¹nnmD5

1

2

]

]y
gmn , ~17!

where¹m is the covariant derivative on the hypersurfac
and the second equality holds in axial gauge.

Einstein’s equation is

Rab2
1

2
gabR52gabL18pTab , ~18!

whereTab5T̄ab1dTab , andT̄ab is the background from the
brane, whose nonzero components are found from Eq.~3! as

T̄mn52
3k

4p
d~y!gmn . ~19!

One can observe from Eqs.~13! and~19! thatTa550. There-
fore, by virtue of the Gauss-Codazzi equations@33#, the nor-
mal and mixed components of Eq.~18! become

R̂1Hn
mHm

n 2H252L, ~20!

¹mH2¹nHm
n 50, ~21!
10501
n

e

t

t

d
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,

respectively, whereH5Hm
m , and R̂ is the intrinsic scalar

curvature of the hypersurfaces. The tangential componen
Eq. ~18! simply read

Rmn2
1

2
gmnR52gmnL18pTmn . ~22!

Equation~22! is the equation of motion forgmn , whereas
Eqs.~20! and ~21! are constraints.

We linearize Eqs.~20!–~22! around the background~1!,
for which purpose we use an induced metric of the form

gmn5e22kuyu~hmn1gmn!, ~23!

whereg is a small perturbation compared toh. The indices
of g shall be raised and lowered using the Lorentz metrich.
Some useful expressions for the connections and curvat
are given in the Appendix. Equations~20!–~22! take the
forms

e2kuyu~gmn
,mn2hg!13k sgnyg ,y50, ~24!

1

2
]y~g ,m2gn

m,n!50, ~25!

1

2
~gm

r,mn1gm
n,mr2hgnr2g ,nr!

2
1

2
hnr~gml

,ml2hg!1e22kuyuF2
1

2
gnr,yy

1
1

2
hnrg ,gg12k sgny~gnr,y2hnrg ,y!G58pdTnr ,

~26!

where the background has been cancelled using Eqs.~4! and
~19!.

Let us start by solving the constraints. First, from Eq.~25!
we find

gm,n
n 5g ,m1jm~x!, ~27!

where jm are functions of the brane coordinatesxm only.
Second, after substituting Eq.~27!, Eq. ~24! leads to

e2kuyujm
,m13k sgnyg ,y50. ~28!

Thus, integrating Eq.~28! yields the traceg as

g52
1

6k2 jm
,m~e2kuyu21!, ~29!

where we have used the residual gauge freedom to imp
g50 on the brane. We see from Eq.~29! that g is un-
bounded for the RS background (k.0), if jm

,mÞ0. More-
over, this observation is independent of whether we use
residual gauge freedom as indicated or not. We shall see
that we do not have the choice of settingjm50, if a matter
perturbation is present on the brane. This indicates tha
the RS background, the linear approximation is not con
9-3
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tent. However, it might be an artifact of the particular cho
of gauge. For further discussion of this problem, see R
@15,28#.

Finally, substituting Eqs.~13!, ~27!, and ~29! into the
equation of motion~26!, we obtain the equation

hgnr1]y~e22kuyugnr,y!22k sgnye22kuyugnr,y

2jn,r2jr,n1
1

3
hnrjm

,m1
1

6k2 ~e2kuyu21!jm
,mnr

1
2

3k
d~y!hnrjm

,m5216pd~y!tnr . ~30!

We can take the trace of Eq.~30! and find

jm
,m528pkt. ~31!

Thus, as indicated earlier, the four-divergencejm
,m is fixed

by the content of matter perturbation on the brane.
As the next step, we consider the discontinuity of Eq.~30!

at y50. One easily finds

216ptnr5gnr,yuy5102gnr,yuy5201
2

3k
hnrjm

,m .

~32!

However, as the perturbation is symmetric around the bra
we need only look for solutions that are even iny. Therefore,
we can consider Eq.~30! in the regiony.0, and Eqs.~32!
and ~31! provide the Neumann boundary condition

gnr,yuy510528pS tnr2
1

3
hnrt D . ~33!

Consider now Eq.~30! for y.0. First, let us choose th
vectorjm as

jm528pk
1

h
]mt, ~34!

which is consistent with the condition~31!. Then, we shall
write

gnr5
4p

3k F 1

h
t ,nr~e2ky21!12k2S hnr

1

h
t2

4

h2
t ,nrD G1ḡnr

~35!

in order to obtain from Eq.~30! the following homogeneous
equation forg̃nr :

hḡnr1]y~e22kyḡnr,y!22ke22kyḡnr,y50. ~36!

Moreover, from Eq.~29! we find that the traceg̃[0, and the
Neumann boundary condition~33! yields

ḡnr,yuy510528pS tnr2
1

3
hnrt1

1

3h
t ,nrD . ~37!

Notice that a trivial ~zero! solution to the homogeneou
equation~36! is not consistent with this boundary conditio
10501
f.

e,

In order to solve Eq.~36!, let us Fourier transform with
respect to the brane coordinates and change variablesz
5e2ky. Then, Eq.~36! becomes

S z2]z
22z]z2

p2

4k2 zD ñnr50, ~38!

whose solution can be expressed in terms of Bessel funct
@34#.

IV. NEWTON’S LAW

In order to derive Newton’s law on the brane, we have
look for a unique solution to the linearized Einstein equ
tions in the presence of a static point source on the brane
the last section, we presented the general formalism of
earized gravity. Let us now continue the solution for sta
point source. In order to obtain the Newtonian limit, we ha
to calculateg00(x,0), since the gravitational potential i
given by

V52
1

2
g00. ~39!

We need a second boundary condition for Eq.~36! in
order to obtain a unique solution. We shall use

ḡnruy5`50, ~40!

because it is applicable in both fork.0 andk,0. The more
physical conditiongnruy5`50 can be imposed only fork
,0.

For static potentials, we havep050, and thereforep2

>0 in Eq.~38!. In fact, we need only considerp2.0, as the
solution for p250 can be reconstructed as the limitp2→0.
The solution of Eq.~38! for p2.0 is

g̃nr~p,y!5cnr~p!e2kyHK2~ekyupu/uku!,
I 2~ekyupu/uku!, ~41!

where the choice between the two possible solutions is
tated by Eq.~40!. We easily see that this amounts to choo
ing the solution with theK function for the RS background
(k.0), and the solution with theI function for the alterna-
tive background.

Moreover, from Eq.~41! we find the first derivative

g̃nr,y~p,y!5upucnr~p!e3kyH 2K1~ekyupu/uku!,
I 1~ekyupu/uku!, ~42!

which, combined with the boundary condition~37!, yields
the coefficients

cnr5
8p

upu F tnr2
1

3
tS hnr2

pnpr

p2 D G
3H @K1~ upu/k!#21 for k.0,

@ I 1~ upu/uku!#21 for k,0.
~43!

Thus, inserting Eqs.~41! and~43! into Eq.~35!, we obtain
the solution for the metric perturbation
9-4
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gnr~p,y!5
4p

3k Fpnpr

p2 ~e2ky21!22k2S hnr

p2 2
4pnpr

p4 D G t
1

8p

upu F tnr2
1

3
tS hnr2

pnpr

p2 D Ge2ky

3H K2~ekyupu/k!

K1~ upu/k!
for k.0.

I 2~ekyupu/uku!
I 1~ upu/uku!

for k,0.

~44!

Let us now use a static point source,t00(p)
52pd(p0)a, wherea5M /M Pl(5)

3 , and solve forg00(x,0).
Consider first the RS background. We can use the recur
formula for modified Bessel functions

K2~z!5
2

z
K1~z!1K0~z!,

in order to separate the divergent term forupu→0 in the
Fourier integral. Then, from Eq.~44! we find

g00~x,0!52
2ka

3r
1

8ka

3r
1 lim

y→0
E d3p

~2p!3

3e2 ip•x
16pa

3upu
K0~ekyupu/k!

K1~ upu/k!

5
2ka

r
1

8a

3pr 2 lim
y→0

E
0

`

dssins
K0~ekys/kr !

K1~s/kr !
.

~45!

It is interesting to note that the inhomogeneous terms of
solution would yield Newton’s law with a wrong sign, bu
the homogeneous part, whose presence is necessary be
of the Neuman boundary condition, takes care of this. In fa
the importance of the boundary conditions for obtaining
gravity on the brane has already been pointed out in R
@35#. Moreover, we observe that the integral in Eq.~45! is
defined for anyy.0. It is for this reason that we take th
limit y→0 after the integration. The nonzeroy acts as a
regulator of the integral for larges. The second term in Eq
~45! is a correction to Newton’s law, which we shall demo
strate in a moment.

Let us consider now the alternative background. From
~44! we obtain simply

g00~x,0!5
2ukua

3r
1 lim

y→0
E d3p

~2p!3 e2 ip•x

3
16pa

3upu
I 2~ekyupu/uku!

I 1~ upu/uku!

5
2ukua

3r
1

8a

3pr 2 lim
y→0

E
0

`

dssins
I 2~ekys/ukur !

I 1~s/ukur !
.

~46!
10501
on

e

use
t,
e
f.

.

The first term in Eq.~46! represents Newton’s law, and th
second term corrections, as we shall demonstrate now.

Consider an integral of the form*0
`dssinsf(s/z,y), where

f is a differentiable and integrable function. Obviously, t
integrands in Eqs.~45! and~46! satisfy this property for any
y.0. Given the integrability off, we can rewrite the integra
as

E
0

`

dssins f~s/z,y!

5 (
k50

` E
2p

p

ds~2sins! f S p~2k11!1s

z
,yD .

~47!

At this point, we can take the limity→0, and we shall write
f (x,0)5 f (x). For largez, the argument off will change little
in one period of the sin function, and we can write

E
0

`

dssins f~s/z!'2 (
k50

` E
2p

p

dssinsF f S p~2k11!

z D
1

s

z
f 8S p~2k11!

z D G
'2 (

k50

`
2p

z
f 8S p~2k11!

z D .

Here, we observe that thez→` limit exists, namely it is just
the integral

2E
0

`

dx f8~x!5 f ~0!2 f ~`!.

For both integrands under consideration we havef (0)50
and f (`51) @for y.0 we would have the strongerf (`)
50#. Thus, we find that the second terms in Eqs.~45! and
~46! go to zero at least as fast as 1/r 2 for large r and are in
fact corrections to Newton’s law.

Finally, from Eq.~39! we obtain the gravitational poten
tial

V~r !52
ukumM

M Pl~5!
3 H 1/r 1O~1/r 2! for k.0,

1/~3r !1O~1/r 2! for k,0.
~48!

Thus, we can read off the four-dimensional Planck masse

M Pl~4!
2 5H M Pl~5!

3 /k for k.0,

3M Pl~5!
3 /uku for k,0.

~49!

Our result for the RS background is in agreement with
result given in Ref.@36#.

We would like to point out that the result~48! should be
taken with a grain of salt. On the one hand, for the RS ba
ground, the linearization is inconsistent, because of the
ponentially growing traceg. Still, we believe the result~48!
to be correct. On the other hand, for the alternative ba
ground one could also use, instead of Eq.~40!, the more
9-5
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W. MÜCK, K. S. VISWANATHAN, AND I. VOLOVICH PHYSICAL REVIEW D 62 105019
physical boundary conditiongnruy5`50. Then, one would
not obtain a leading 1/r term in the potential. Using Eq.~40!
is not entirely unmotivated: The result for the RS bac
ground is supposedly correct, and a unified treatment of b
cases was possible.

V. GRAVITON MODES

It is our objective in this section to study graviton mode
The equation of motion for gravitons in the gaugedga550 is
the homogeneous equation~36! with the boundary condition
th

e.
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10501
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.

gnr,yuy5050. ~50!

This boundary condition stems from Eq.~33! and implies
that we consider only modes which are even iny. This would
be natural for the orbifoldS1/Z2 , but in general one would
have to match a solution fory.0 with a solution fory,0.

Let us now give the graviton solutions. As we consid
only modes which are even iny, we restrict ourselves toy
>0. Using Eq.~38!, the solutions to Eq.~36! satisfying the
boundary condition~50! are
gmn~p,y!5cmn~p!H e2ky@ I 2~aeky!K1~a!1K2~aeky!I 1~a!# for p2.0,

1 for p250,

e2ky@J2~aeky!N1~a!2N2~aeky!J1~a!# for p2,0.

~51!
the
rom

is
er-
I.
y
r

and
Here, we have seta5Aup2u/uku.
Let us discuss the normalizability of these modes. For

RS background, one finds that spacelike modes (p2.0) are
not normalizable, sinceI 2 diverges aseey

for largey. On the
other hand, zerolike and timelike modes are normalizabl

On the other hand, for the alternative background thy
integral diverges in all three cases just as the volume i
gral. Thus, just as in flat space, we might assume that we
form wave packets which describe normalizable wave fu
tions. Alternatively, one might regularize integrals such
the norm of wave functions or the effective action by divi
ing by the total volume of space. We would like to lea
these points open to further research.

VI. CONCLUSIONS

In this paper, we have studied the geodesics and the N
tonian limit of linearized gravity for the Randall-Sundru
and an alternative brane background. We found that ma
will be repelled by the brane in the RS background. A sim
lar behavior was observed by Rubakovet al. @37# in a dif-
ferent context. Therefore, the RS background is classic
unstable, and it must be supplemented with a mechanism
confinement of matter. On the other hand, gravity provide
natural mechanism for the trapping of matter in the alter
tive background. It would be interesting to study a realiz
tion of the alternative background in supergravity. The
background in supergravity has been discussed in R
@8,23–26#.

Our derivation of gravity on the brane revealed the val
ity of Newton’s law to leading order in both background
but the corresponding Planck masses on the brane are d
ent. Moreover, we found exact formulas, Eqs.~45! and~46!,
for the corrections.

In the RS background there are no normalizable spa
like modes, which certainly is in favor of this backgroun
For the alternative background, all modes are nonintegra
but a thorough discussion of the confinement or nonconfi
e
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s
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ment of gravity remains an open problem. It seems that
confinement of gravity cannot be discussed separately f
the confinement of matter.
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APPENDIX

We state here some expressions for the connections
curvature up to first order in the perturbationsgmn . The only
nonzero connections for the metricgab are

Gm
nl5

1

2
~gm

n,l1gm
l,n2gnl

,m!, ~A1!

Gy
nl5k sgny gnl2

1

2
e22kuyugnl,y , ~A2!

Gn
ly5Gn

yl52k sgnydl
n1

1

2
gm

l,y . ~A3!

Moreover, we find from Eq.~17!

Hn
m52k sgnydn

m1
1

2
gm

n,y , ~A4!

and some expressions for the curvatures are (h5hmn]m]n)

R̂nr5
1

2
~gm

n,rm1gm
r,nm2g ,nr2hgnr!, ~A5!
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R̂5e2kuyu~gmn
,mn2hg!, ~A6!

Ry
nyr52k2gnr12kd~y!gnr

1e22kuyuS k sgnygnr,y2
1

2
gnr,yyD , ~A7!
r,

ch

e

. D

10501
Rmr5R̂mr1Hm
n Hnr2HHmr1Rmyr

y , ~A8!

R5R̂220k2116kd~y!15k sgnyg ,y2g ,yy .
~A9!
l.

ys.
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