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Geodesics and Newton’s law in brane backgrounds
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In brane world models our universe is considered as a brane embedded into a higher-dimensional space. We
discuss the behavior of geodesics in the Randall-Sundrum background and point out that free massive particles
cannot stably move along the brane. The brane is repulsive, and matter will be expelled from the brane into the
extra dimension. This is undesirable, and hence we study a simple alternative model with a noncompact extra
dimension, but with an attractive brane embedded into the higher-dimensional space. We study the linearized
gravity equations and show that Newton’s gravitational law is valid on the brane also in the alternative
background.

PACS numbgs): 11.10.Kk, 04.50+h, 11.25.Mj

[. INTRODUCTION brane following a trajectory of the forrg2). It seems this is
undesirable, even if for a very smé@Rlanck scalgk the time
It has recently been suggested by Randall and Sundrumeeded for the significant deviation in the fifth direction will
[1] that four-dimensional gravity can arise at long distancesde rather large. Thus, in the RS background, some other,
on a brane embedded in a five-dimensional anti—-de Sittenongravitational mechanism is needed in order to trap matter
space. In their model the fifth dimension is noncompact. Anon the brane. The simplest way to obtain an attractive brane
effective dimensional reduction occurs, because the metrizzould be to change the sign of the brane tension, although
perturbations admit a bound state solution that looks similapne might argue that this would imply other undesirable fea-
to a four-dimensional graviton bound to the brane. Earliettures. This alternative was considered in R¢4s30—33.
work appeared in Ref$2—4]. This interesting alternative to In the present paper, we shall study the RS background
compactification has been discussed in a number of rece@nd the alternative possibility, whose background metrics are
paperg5-29. given by Eq.(1), with k>0 for the RS background, arid
The metric of the Randall-Sundru(RS) background has <0 for the alternative background. The metfig is a solu-
the form tion to Einstein’s equation for the action

= @~ 2kly| v 2
ds’=e #Vly, dxdx"+dy?, @ s=fd4Xf dy\/—_g(R—zA)+of d*xV-gs, 3
y=0

where 7,,=diag(-1,1,1,1), u,»=1,...,4 andk>0. It
was argued in Ref.1] that the Kaluza-Klein excitations, as where the cosmological constant and brane tension are
they are light, are suppressed near the brane and almost de- )

couple from the matter fields. Moreover, it is assumed that A=-6k% o=-1X. 4)
matter fields are trapped to the brane by a certain mecha-

nism We shall now give a brief outline of the rest of the paper.

If our spacetime is the ordinary Minkowski spacetime First, in Sec. Il we study the geodesics in_ the two back-
then there should exist trajectories for free massive particlg:g\?;ds rzc?délsni trzit:r?;r:?srfr?rfc}??h:nt?;natilr\mle ot;arg;%r:rugg
located on the brane only. Although this is true for the metricd y P ppIng

(1), these trajectories are not stable. In fact, the five-the brane. Second, in Sec. lll we consider the linearized

dimensional trajectory of the free particle in the meids gravity equations, which shall be used in Sec. IV to derive

has the form(see Sec. Il for details, here we takg~{ the Newtonian limit of gravity on the brane in both back-
—0) ' ' 6~ Yo grounds. We find that in both cases the gravitational poten-

tial for a static point source will be- —1/r, and we find an
1 exact formula for the corrections. In Sec. V, we give expres-
Xt=xbt+or,  |y|= ﬂ|n(1_02|<2'[2)_ 2) sions for the graviton modes in both backgrounds. Spacelike
modes are absent in the RS background, but our results are

) ] inconclusive for the alternative background.
Fory,=0 exactly, the trajectory ig(t) =0, because the par-

ticle is pulled to each_ S|de_of the brane Wlth equal force. Il. GEODESICS
However, a perturbation will lead to expulsion from the
In this section, we explicitly solve the geodesic equation
in the RS and alternative backgrounds. We shall find that, in
*Electronic address: wmueck@sfu.ca the RS background, ordinary matter will be expelled from
TElectronic address: kviswana@sfu.ca the brane, but in the alternative background, the brane is
*Permanent address: Steklov Mathematical Institute, Gubkin St. &ttractive.
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the Appendix, the geodesic equation takes the form e2k|y| i
d2x* dx* dy
rra —2ksgnywﬁ=0, (5)
d?y dx* dx”
_7 —2ky - k>0
402 +ksgnye ““Vy,, d0 do 0. (6)

We start by integrating Eq5), which yields

dﬁ = p ekl 7)
de ’ 1 - -
. . . .. \\ t
wherev* is a constant four-vector. Equati@) is explicitly \
solved by the first integral of the geodesic equation
5 k<0
dy +e2ky dx~ dx”_C
do) "€ g dg '\
whereC is a constant. Hence, inserting Eg), we find N

2 FIG. 1. The solutior(12) for ordinary mattery?<0. The region

2kly|, 2 _
+e? My =C, tS) k>0 corresponds to the RS background, the rediet0 to the

dy
deo . _
alternative background. In both cases, the brane siegkit=1.

wherev?=v*v"n,,. .
It is convenient to change the parameterization to a non@nd we can deduce from the initial data that we have to

affine parametet such that replace= |yo| by —Vo. Thus, the final result is
Aty e?K¥l = e2KIvol + 2k ype2KIYolt — 1 2Kk2¢2, (12)
—=e~ W,
de The solution(12) is valid, as long asy|#0.
o If we hit the brane ay=0, we have to match a solution
Then, Eq.(7) becomegnotationk=dx/dt) for y>0 with a solution fory<0. However, from Eq(6) we
. see that the velocity must be continuous at=0, since the
B=phmy = yH 4y H X S ’ .
XF=vi=xE=xg o, ©) second term in that equation is finite. Thus, the brane will not

g?flect particles gravitationally, but we might expect that
nongravitational interactions with matter on the brane do so.
The interpretation of the solutiof12) is rather simple: In

which shows that we can choose a reference frame such th
t=x° i.e., t is the time on the brane. Moreover, E®)

becomes the RS backgroundk(>0) ordinary matter 2<0) is re-
yze4k|y\ reMly2=c, (10) pelled by the brane. A special case is_a particle in?tially mov-
ing along the braney,=y,=0. Equation(12) predicts ex-
and we can determin@ from the initial data pulsion, but the particle would not know in which direction it
is to go, so it will keep moving along the brane in an un-
C=y2e* Yol 1 2e2K¥ol, (11)  stable equilibrium. On the other hand, tachyonic particles

(v2>0) are attracted to the brane, whereas massless par-
Before integrating Eq(10), we note that it depends only on ticles are not affected by its presence. kar0, the brane
ly|, as long as we do not pass through 0. Therefore, itis  attracts ordinary matter. This is sketched in Fig. 1.

sufficient to considey>0; replacingy with |y| at the end Another interesting fact is that, for the alternative back-
will take care of the casg<0. Fory>0, we can integrate ground, e?¥Y/=0 corresponds tdy|=. Thus, tachyonic
Eg. (10) and find particles will be expelled tdy| =< in finite brane time, as

will massless particles with the right initial conditions. More-

C— 024 +y2%kt+ JC— v 2™V, over, there exist initial conditions for ordinary particles,

which will yield |y| =< in finite brane time.
where we have again expressed the integration constant by
the |n|t|a| data. Th& Sign in front of the term (-:Ontainin-g IIl. LINEARIZED GRAVITY
on the right-hand side stems from the ambiguity of taking a _ _ _ _ _
square root. After some simple steps involving the substitu- In this section, we shall study the linearized gravity equa-

tion of C from Eq.(11) we obtain tions with two applications in mind: The derivation of New-
ton’s law on the brane and the study of graviton modes,
e?Yo— V=122 + |y | 2k e? Vot which will be carried out in Secs. IV and V, respectively.
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For our purpose, we introduce a matter perturbation oiespectively, whereH=H*, andR is the intrinsic scalar

the brane curvature of the hypersurfaces. The tangential components of
Eq. (18) simply read
0Too= 6(Y)too(X), (13

and solve the linearized gravity equations for this source. (22

The form(1) of the background metric suggests to use the
time slicing formalisn{33] for calculating the metric pertur- Equation(22) is the equation of motion fog,,,, whereas
bations, although we do not slice with respect to time, butegs.(20) and(21) are constraints.
with respect to the transverse coordingte et us first give We linearize Eqs(20)—(22) around the backgrountl),
some useful formulas. In the time slicing formalism, we Sp"tfor which purpose we use an induced metric of the form

1
Ry~ EgWR= —09u,,A+87T,,.

up the metric tensor as

_ g,uv n,
Gab n, n,n“+n?)’
b 1 n2g’+n#n” —n”
9=z e 1] (14

wherea,b=1,...,5x°=y, andg,,(x,y) are the induced
metrics in the hypersurfaces with internal coordinatés

The quantitiesy andn* are the lapse function and shift vec-
tor, respectively, and are fixed to their respective background

values in axial gauge

n*=0, n=1. (15
Thus, we consider a metric of the form
ds?=g, dx“dx"+dy?. (16)

Then, the second fundamental form measuring the extrinsic

curvature on the hypersurfaces is given by

1
= 9,,—V,n,—V,n,

J
H., 2n\ 7y 9uv, (A7)

:EW
whereVM

and the second equality holds in axial gauge.
Einstein’s equation is

1

Rap— EgabR: —0apA +87Typ, (18)

whereTab=?ab+ 0T ap, and?ab is the background from the
brane, whose nonzero components are found from3as

3k
== 7 8) 8 (19

One can observe from Eq4.3) and(19) thatT,5=0. There-
fore, by virtue of the Gauss-Codazzi equati¢83], the nor-
mal and mixed components of E@.8) become

R+HAH! —H?=2A, (20)

V,H-V,H.=0, (22)

9u=€ 2M(n,,+7..), (23)

where y is a small perturbation compared #p The indices

of v shall be raised and lowered using the Lorentz mejric
Some useful expressions for the connections and curvatures
are given in the Appendix. Equation20)—(22) take the
forms

e?M(y#r ,,—Oy)+3ksgnyy,=0, (24)
1 v
5 (Y u= Y0 =0, (25
1
E ( ’yﬂp,MV+ 7MV,up_ U Yvp— 7, Vp)
1 1
=5 (Y a0+ e2"|y'[ =5 Yoy
+ E 77vp7,'yy+ 2k Sgny( Yvpy— ﬂqu,y)} = 8775Tvp ’
(26)

where the background has been cancelled using Egsand
(19.
Let us start by solving the constraints. First, from E2b)

is the covariant derivative on the hypersurfaces,we find

(27)

where ¢, are functions of the brane coordinates only.
Second, after substituting ER7), Eq. (24) leads to

Y= Yout €u(X),

e?Megr  +3ksgnyy,=0. (28)
Thus, integrating Eq(28) yields the tracey as
1
y=- g2t u(eV-1), (29)

where we have used the residual gauge freedom to impose
v=0 on the brane. We see from EQ9) that y is un-
bounded for the RS backgroun&*0), if & ,#0. More-
over, this observation is independent of whether we use the
residual gauge freedom as indicated or not. We shall see later
that we do not have the choice of settigy=0, if a matter
perturbation is present on the brane. This indicates that, in
the RS background, the linear approximation is not consis-
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tent. However, it might be an artifact of the particular choice
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In order to solve Eq(36), let us Fourier transform with

of gauge. For further discussion of this problem, see Refrespect to the brane coordinates and change variables to

[15,28.
Finally, substituting Eqgs(13), (27), and (29) into the
equation of motion26), we obtain the equation

U Yoot &y(e_ZKM '}’vp,y) -2k Sgnye_2k|y| Yvp,y

1 Loy
oo St g Mttt W(e —1)¢&" L

2
+ 3 OV mpe” = — 16T (YL, (30)
We can take the trace of E¢B0) and find
& ,=—8mkt. (31

Thus, as indicated earlier, the four-divergeri¢e, is fixed
by the content of matter perturbation on the brane.

As the next step, we consider the discontinuity of £3f)
aty=0. One easily finds

- 167Ttvp: va,yly:+0_ 7Vp,y|y: —ot ﬁ ﬁypfﬂ,u .
(32)

However, as the perturbation is symmetric around the brane,

we need only look for solutions that are everyimherefore,
we can consider Eq30) in the regiony>0, and Eqs(32)
and(31) provide the Neumann boundary condition

1
YVp,y|y:+0: _Sw(tvp_ §77upt) (33)

Consider now Eq(30) for y>0. First, let us choose the

vector é* as

1
£,=—8mk=14,t,

= (34

which is consistent with the conditiof81). Then, we shall
write

4| 1 _
=t,,(e?Y— 1)+2k2( + Y0y

(39

Yo T3k | O

1 4
nvpat D_zt'Vp

in order to obtain from Eq(30) the following homogeneous

equation fory,,
O%,,+dy(e 2y, ) —2ke 2y, =0.  (36)

Moreover, from Eq(29) we find that the trac&=0, and the
Neumann boundary conditiai@3) yields

_ 1
7up,y|y:+0:_877 tup_gnvpt—’_ﬁt,vp . (37)

Notice that a trivial (zerg solution to the homogeneous

=e’fY. Then, Eq.(36) becomes

2

p ~
2292 —20,— 222 7=0.

K (39

whose solution can be expressed in terms of Bessel functions
[34].

IV. NEWTON'S LAW

In order to derive Newton'’s law on the brane, we have to
look for a unique solution to the linearized Einstein equa-
tions in the presence of a static point source on the brane. In
the last section, we presented the general formalism of lin-
earized gravity. Let us now continue the solution for static
point source. In order to obtain the Newtonian limit, we have
to calculate yoo(x,0), since the gravitational potential is
given by

1
V=— E)’oo-

(39
We need a second boundary condition for E6) in
order to obtain a unique solution. We shall use

Fooly—=0, (40)

because it is applicable in both far-0 andk<<0. The more
physical conditionyvp|y:x=0 can be imposed only fok
<0.

For static potentials, we have,=0, and thereforep?
=0 in Eq.(39). In fact, we need only considg?>0, as the
solution forp?=0 can be reconstructed as the lip— 0.
The solution of Eq(38) for p>>0 is

2ky KZ(eky| p|/|k|),

1(e%|p|/[K|), (42)

Yw(P:Y)=C,p(P)e
where the choice between the two possible solutions is dic-
tated by Eq.(40). We easily see that this amounts to choos-
ing the solution with theK function for the RS background
(k>0), and the solution with thé function for the alterna-
tive background.

Moreover, from Eq(41) we find the first derivative

_Kl(eky|p|/|k|)v

’?Vp,y(p-Y) = | p|CVp( p)esky[ | l(eky| p|/|k|), (42)

which, combined with the boundary conditidB87), yields
the coefficients

_877 1 P.P,
ot 2

p
[Ka(lpl/k)]~t  for k>0,
kD] for k<o, 4

Thus, inserting Eq941) and(43) into Eq.(35), we obtain

equation(36) is not consistent with this boundary condition. the solution for the metric perturbation
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4m(p, pp ) Nop 4p,p, The first term in Eq(46) represents Newton's law, and the
Yup(PY) = —t (e2Y—-1)— 2k2( S ) second term corrections, as we shall demonstrate now.
Consider an integral of the forifydssinsf(s/zy), where
8 1 PoPol | oy f is a differentiable and integrable function. Obviously, the
+ Tol L= §t Tvp™ p2 e integrands in Eqs45) and(46) satisfy this property for any
. y>0. Given the integrability of, we can rewrite the integral
Ky(eYYpl|/k
2(ep|/k) for K>0. as
K([pl/k) (44) "
1,(e¥|pl/|K]) f dssinsf(s/z,y)
—_—° for k<O. 0
La([pl/[K])
w _ m(2k+1)+s
Let us now use a static point sourceyp) =k§_:0 ds(—=sins)f| —————y
=2md(po)a, Wherea=M/M3F’,|(5), and solve foryg(x,0). T
Consider first the RS background. We can use the recursion (47)
formula for modified Bessel functions ) . o )
At this point, we can take the limit— 0, and we shall write
2 f(x,0)=f(x). For largez, the argument of will change little
Ka(2)= EK1(2)+ Ko(2), in one period of the sin function, and we can write
in order to separate the divergent term f@{—0 in the fxdssinsf(s/z)~—2 f” dssins f(m
Fourier integral. Then, from Eq44) we find 0 k=0 J -
01— 2ka 8ka I d3p n §f’( 7T(2k+ 1) }
YOO(X1 )_ 3r - 3r + Im (2 )3 z z
Xe—ip<x16ﬂ-a Ko(eky|p|/k) ~-3 %f'(@)
3|p| Ka(Ipl/k) <=0
2ka o(e¥Ys/kr) Here, we observe that the- < limit exists, namely it is just
= 372 lim f dssms the integral
T ry—o 1( s/kr)
(45 —f dxf'(x)=f(0)—f().
0

It is interesting to note that the inhomogeneous terms of the
solution would yield Newton’s law with a wrong sign, but For both integrands under consideration we h&{@)=0
the homogeneous part, whose presence is necessary beca@8é f(>=1) [for y>0 we would have the strongéi(«)
of the Neuman boundary condition, takes care of this. In fact=0]- Thus, we find that the second terms in EGt5) and
the importance of the boundary conditions for obtaining the(46) go to zero at least as fast as?for larger and are in
gravity on the brane has already been pointed out in Refact corrections to Newton’s law.
[35]. Moreover, we observe that the integral in E45) is Finally, from Eq.(39) we obtain the gravitational poten-
defined for anyy>0. It is for this reason that we take the tial
limit y—0 after the integration. The nonzeyoacts as a
regulator of the integral for large The second term in Eq. V(r)=—
(45) is a correction to Newton'’s law, which we shall demon- VE PI(5)
strate in a moment.

Let us consider now the alternative background. From EqThus, we can read off the four-dimensional Planck masses as
(44) we obtain simply

|k|mM 1r+O(1k?)  for k>0,
(48)

1/(3r)+O(1/r?) for k<O.

M3 s/k  for k>0,
MBi4) 3 (49
ro(X.0)= | | i J - )36 —ipx M3,s/|k| for k<O.
yo Our result for the RS background is in agreement with the
16ma | ,(e|p|/[K|) result given in Ref[36].
3)p| |1(|p|/|k|) We would like to point out that the resul#8) should be
taken with a grain of salt. On the one hand, for the RS back-
2|k|a = 1(eYs/|k|r) ground, the linearization is inconsistent, because of the ex-
ar 3. 2)/“”; o dssins I.(SIK[T) ponentially growing tracey. Still, we believe the result48)

to be correct. On the other hand, for the alternative back-
(46) ground one could also use, instead of E4Q), the more

105019-5



W. MUCK, K. S. VISWANATHAN, AND I. VOLOVICH PHYSICAL REVIEW D 62 105019

physical boundary conditiory,,|,—..=0. Then, one would %p,y|y:o=0- (50)
not obtain a leading L/term in the potential. Using E¢40)
is not entirely unmotivated: The result for the RS back-

ground is supposedly correct, and a unified treatment of botfiS boundary condition stems from E(83) and implies
cases was possible. that we consider only modes which are evep.iithis would

be natural for the orbifol&'/Z,, but in general one would
have to match a solution fogr>0 with a solution fory<0.
Let us now give the graviton solutions. As we consider
It is our objective in this section to study graviton modes.only modes which are even iy we restrict ourselves tg
The equation of motion for gravitons in the gausg,s=01is  =0. Using Eq.(38), the solutions to Eq(36) satisfying the
the homogeneous equati@®6) with the boundary condition boundary conditio50) are

V. GRAVITON MODES

eV ,(aeY)K () +Ky(ae) 1 (a)] for p?>0,

YulPY)=C,(p)y 1 for p?=0, (51)
e[ J,(aeY)N (@) —Ny(ae)J (a)] for p?<o0.

Here, we have sat=[p?[/|K|. ment of gravity remains an open problem. It seems that the
Let us discuss the normalizability of these modes. For theonfinement of gravity cannot be discussed separately from
RS background, one finds that spacelike moq#s>0) are  the confinement of matter.

not normalizable, sinck, diverges ag® for largey. On the
other hand, zerolike and timelike modes are normalizable. ACKNOWLEDGMENTS

On the other hand, for the alternative background ythe hi h | db .
integral diverges in all three cases just as the volume inte- | NS research was partly supported by NSERC. I.V. is

gral. Thus, just as in flat space, we might assume that we Cag{ateful_to the Physi<_:s I_Department of Simon Fraser Univer-
form wave packets which describe normalizable wave funcS'Y fOr its kind hospitality. Moreover, we are grateful to I.
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the norm of wave functions or the effective action by divid- St2ge Of this work and to A. Linde and V. A. Rubakov for
ing by the total volume of space. We would like to leave tNeir critical remarks.
these points open to further research.

APPENDIX

VI. CONCLUSIONS We state here some expressions for the connections and
curvature up to first order in the perturbations, . The only

In this paper, we have studied the geodesics and the NeVonnzero connections for the metdg, are

tonian limit of linearized gravity for the Randall-Sundrum
and an alternative brane background. We found that matter 1

will be repelled by the brane in the RS backgrOl_Jnd. A simi- F”szi(yﬂv,ﬁ” Y~ Yon'™), (A1)
lar behavior was observed by Rubakewal. [37] in a dif-

ferent context. Therefore, the RS background is classically

unstable, and it must be supplemented with a mechanism for v o—k B 1 — 2Ky
confinement of matter. On the other hand, gravity provides a =K SONY G 2 €
natural mechanism for the trapping of matter in the alterna-

tive background. It would be interesting to study a realiza- 1
tion of the alternative background in supergravity. The RS I'"y=I",\=—ksgnys,+ TRAESE (A3)
background in supergravity has been discussed in Refs.

[8,23-24.

Our derivation of gravity on the brane revealed the valid-
ity of Newton’s law to leading order in both backgrounds, 1
but the corresponding Planck masses on the brane are differ- H%=—ksgnyd“+ = y*,, (A4)
ent. Moreover, we found exact formulas, E¢45) and(46), 2 '
for the corrections. )

In the RS background there are no normalizable spaced"d some expressions for the curvatures ate=(7""d,,d,)
like modes, which certainly is in favor of this background. 1
For the alternative background, all modes are nonintegrable, n T _ _
but a thorough discussion of the confinement or nonconfine- RV"_Z S T A O (A5)

‘)/v)\,y ’ (AZ)

Moreover, we find from Eq(17)
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5 _ A2k v =R v
R=e2Wl(ywr  —Oy), (AB) R,,=R,,tH/H, ,~—HH, +R. (A8)

Ryvyp: - kzgvp+ 2k5(y)gvp

R=R—20k?+16k5(y)+ 5k sgnyy y— v.yy -
(A9)

+e 20l ksgnyy,, ,— (A7)
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