PHYSICAL REVIEW D, VOLUME 62, 105018

Noncommutative geometry on a discrete periodic lattice and gauge theory
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We discuss the quantum mechanics of a particle in a magnetic field when its pagitisrrestricted to a
periodic lattice, while its momentui is restricted to a periodic dual lattice. Through these considerations we
define non-commutative geometry on the lattice. This leads to a deformation of the algebra of functions on the
lattice, such that their product involves a “diamond” product, which becomes the star product in the con-
tinuum limit. We apply these results to construct non-commutati¢® &nd UM) gauge theories, and show
that they are equivalent to a pure NI) matrix theory, wheré\N? is the number of lattice points.

PACS numbeds): 11.15.Ha, 11.25:w

[. INTRODUCTION AND RESULTS we define non-commutative gauge theory on a discrete peri-
odic lattice that has two parameters: the periodicity charac-
Recently non-commutative geometry has found applicaterized by a length. and the lattice spacing. The ratio of
tions in string and M theory in thB-field background1,2].  these is the number of steps-L/a in each direction labeled
The non-commutative geometry in question is described by &y u. In effect, this lattice is the d-dimensional discretized
deformation of the ordinary algebra of functioi{x)g(x) on  torus T9 in d-dimensions, witn steps in every direction,
R into a non-commutative albeit associative algebra, with avhich we will denote by T,,)¢. There are altogethe® lat-
star produc{?2] tice points on the discrete torus. A less uniform lattice would
have different number of steps in the various directipns
such that the total number of lattice points wouldIbe,, ,

() instead of®. In most of the paper we will concentrate on the
y=x uniform lattice for simplicity, but we will also discuss some
o ) ] interesting aspects of a non-uniform lattice in which the
6** is given in terms of a constant backgrouBdield that  ,mper of lattice points is not the same in every direction,
has even rank: but are taken equal in pairs, such thmtfor both u=1,2,

. . v andn, for both w=3,4, etc. By identifying
) )

B
g+27a’'B g—2wa’'B

i Jd 0
f(X)*g(X)=exp(§0" P W) f(x)a(y)

mv_— _ 2
(% (2ma') N=nns---nyp, ©)

(d is even we see that the positiong live on theN? points
of the periodic lattice T,,)¢. The gauge fieldd,(x) or other
functions on the lattice are defined only on thé¥espace-
time points.

We then construct a “diamond product” which is a lattice

In the limita’ —0 andgw~(a’)2, string theory is correctly
represented by non-commutative gauge theory, with

=f(B~1)»". Effectively this is the larg® limit. The indices
w label a Euclidean spate.=1, . .. d. The star product is

related to the Moyal brackefS—6]. When this product is ersion of the star product. We will be guided by a previous

used instead of the ordinary product of functions in a gaug : . .
theory, the resulting non-commutative gauge theory repreggnzt?&%?fnVtg?;ic;?]trgfdltjﬁ:d'wtgea?'Zf;iLeetMV%ﬁl ;rgi(f{fz%tent
sents string theory in a largg,,, limit, including the non- y

perturbative effects of the backgrougidield [1,2]. appl_|c_at|0n in Snlnd[8—17]. The2 flrst. step |.s to provide an
In order to further analyze non-commutative gauge®XPlicit map Aj(x) from the N” lattice pointsx* to a N
theory, a cutoff version would be useful. With this in mind XN matrix that hasN? entries. Then any functior(x*)
defined on theN? lattice points can be rewritten in terms of
a matrix f with x-independent matrix element’, 1,

*Email address: bars@physics.usc.edu =1,2,... N, as follows (matrices are denoted by the hat

"Email address: minic@physics.usc.edu symbo)

In the string theory derivation, these dimensions correspond to
the Euclidean dimensions of a D-brane along which the string back-
ground fieldB,,,, does not vanish. The fieB,,, can also be thought
of as a constant magnetic field with a potenfigl= %x”BW inter-
acting with charged pointg*(7) at the end of a string. However, . -3 . .
taken as an independent starting point, there does not seem to be T1he properties of the mafyj(x) are obtained by studying
any problem in allowing one of the dimensions to be timelike. Ourthe quantum mechanics of particles in a constant magnetic
discussion does not change if the space is purely Euclidean dield B,,, such that the particle positiong* are at then?
Minkowski. lattice points on T,)¢, while their momentap,, (d/dx* in

1 . R R
fo=gTrdeoh, fi= X Alofx). @

xe(Tpd
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continuum are onn® points on the dual lattice. The dual This comes about by considering a non-uniform lattice as

lattice (T,)¢ is similar to (T,)¢ but its lattice spacing is mea- described above. Then the(1) Abelian theory ind dimen-
sured in terms of momentum units. Then the map is given byions is described by a B) pure matrix theory(7) with N

Al (x)= N >

phe (Tl

e P expip- X)) ()

where[exp@p-X)],J is a matrix that will be given explicitly.

=n4N,- - Ny, Whereas the non-Abelian W) theory ind
dimensions can be regarded as @)4theory with two more
non-commutative discretized dimensions, with lattice steps
n(d+2)/ZEM, SO thatNM=n1n2- .. nd/zn(d+2)/2. Thus, in
the UNM) matrix theory(7), N=n.n,---,ny,, relates to

Roughly, this map is the matrix elements of a delta functiorSPace andM=nq. 5, relates to two more non-commutative

S(X—x) with X* non-commutative operators anét de-

fined only on the periodic lattice. The map contains all the

discrete dimensions that replace the internal space.
The form of the actior{7) could be related to the reduced

information about non-commutative geometry on the peri-models of gauge theori¢s8], or more precisely, to the fully

odic lattice. Using this map and the definitions in E4), the
diamond product is constructed as follo{ir:

1 . ..
fO) ¢ g(x)={Tra(x)t9),

1
-5 3
Ny 2oy

X (X,—2,)). (6)

f(y)9(z)exp(2iB*" (X, ~Y,)

reduced matrix theory version written in the form
Tr([XM,X,,]Z) [11]. However, in the present version, the
physical meaning of the matrix is quite different. Namely,

the space-time interpretation is obtained via the mdfx)
related to the factoN=n;n,- - - ,ny,, and the internal sym-
metry information is in the factav, which are different than
the spacetime—internal symmetry interpretation of the re-
duced models. Thus the existing computational technology
of reduced models and matrix models could be adapted to
the current problem provided one takes care of the physical
interpretation via the mag4) and the meaning ofN,M.

It is physically interesting to note that the sums in the dia-Some recent computations|in9,20 also seem to be related

mond product are weighted by exponentials of the flux thato our observations, but with a somewhat different spacetime
passes through the area defined by the three lattice poinfgterpretation.

x,y,z. We will show that the diamond product reduces to the  The organization of this paper is as follows: First we dis-

star product1) in the continuum limit. In this way the dia-

cuss the quantum mechanics of particles in a lattice in a

mond (or staj product is explicitly related to ordinary matrix magnetic field and show how to derive non-commutative ge-

product (g);.

ometry on the lattice from such considerations. This leads

Using this formulation we show that the non-commutativedirectly to an explicit expression for the ma”p\](x), We
U(1) gauge theory on the periodic lattice can be rewritten agpply these results to the non-commutativil)and UM)

a U(N) pure matrix theory where all spacetime positiorts

gauge theories on the lattice, and show that they are equiva-

have been converted to matrix elements by using the magent to a pure UNM) matrix theory, as in Eq(7).

The non-Abelian UM) non-commutative gauge theory on

The larger project of studying non-commutative gauge

the lattice can also be discussed in the same nonheories in this cutoff version should be worthwhile, but it is

commutative formalism by generalizing to aNJ§) matrix
theory.

The U(M) non-commutative gauge theory action on the

not pursued in the current paper.

periodic lattice is constructed by using the diamond productl. NON-COMMUTATIVE GEOMETRY ON THE LATTICE

A, (x) O A,(x) whenever gauge fields need to be multiplied

with each other, and by substituting the derivatiygA,(x)

by a suitable lattice version, but otherwise keeping the sam
general form of the Yang-Mills action. By using the map

Af(x) the U(M) lattice action is rewritten in the following

pure matrix version:

1 !
S=— X (F(0))3 O (F,,(x)%

AN? (1)

— 1 2
- ZTr([a,u. vav] )1 (7)

where thex*-independeng,, is anNM X NM matrix related

to the M XM gauge fieId(AM(x))g' in a way that will be
indicated.

It is possible to interpret the non-Abelian M() theory in
d-dimensions as an Abelian(l) theory ind+2 dimensions.

It is well known that the quantum mechanics of a particle
'gl a constant magnetic field,,, produces non-commutative
momenta[21] [K, ,K,]=iB,,. In order to map this prob-
lem to the string theory setting we define “coordinates”
XM=(B‘1)WKV which satisfy the commutation rules of
non-commutative geometiyi,2]

[X* X"]=i(B™Y)rr=igr". 8

For simplicity, we begin the discussion of the lattice version
of this setup for the special form &*" that is block diag-
onal, with 2x2 blocks along the diagonal, each of them
proportional to the Pauli matrixor-, with various proportion-
ality constants, and zero entries otherwigas always pos-
sible to rotateB*” into such a bas)s At the end we gener-
alize to an arbitrary form oB*". For the special form of*"”
non-commutativity occurs in pairs of coordinates
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i i Due to periodicity,n units of translation must give the same
[X!X?]= B [X3,X4]=B—, (9)  state. Indeed this is reflected in the property of the circular
. * matrix g
There does not seem to be anything special about a distinc- .
tion between timelike or spacelike coordinates since all signs g"=1. (16)
may be absorbed into a redefinition Bf,,. We will first o . _ o o
discuss the pairx*,X?) and later include all th&*. We will Similarly we consider diagonalizing® on a periodic lat-
then follow the construction of the 2D diamond product in tice with periodicityL and lattice spacing in the X direc-
[7] whose discussion we generalize to higher dimensions. tion such thatan=L. The eigenstate$j,) are associated
with the eigenvaluea(j,modn). In the eigenspace o€ the
translation operator by one unit is exg@Xx'B,,) and it has
similar properties t@. However, acting on the eigenspace of

. l 2 .
. SinceX*,X* do not commute, they cannot be diagonal-x1 yefined in Eq/(10), this operator is a diagonal matrix
ized simultaneously. Consider diagonalizi¥g. In the con-

tinuum the eigenvalues are on the real line. Consider a peri- NI U1 A\ _ oih o —i(j;modn)a2B

odic lattice, with periodL and lattice spacing in the X* hjl—<11|eXp(—'aX BlZ)|Jl>_5jle ! 12,
direction. The eigenstates of! are labeled agj,), j; a7
=0,1,...n—1, withn=L/a, and the eigenvalues " are

restricted to the discrete set=aj,. Furthermore there is a Taking into account the periodicity of the lattice in thé

A. Two-torus

periodicity condition direction, n powers ofh should be the identity operator for
1 . i , any state. This requires
XHj=ajalie), liatnm=[i); (10
. . . 2 27by;p
therefore the eigenvaluesd take discrete values on the circle a'Bi=— (18)

of perimeterL:

whereb, is an integer. Therefore the magnetic flaxB;,
passing through a lattice unit surfaa@ in the 1-2 plane is
quantized a®1, units of 2x/n.

It is convenient to defin@ as thenth root of the identity

xt=a(j,modn). (11)

According to Eq.(9) the operatoB;,X, acts like infinitesi-
mal translations on the eigenspaceXdf On the lattice only

finite translations make sense. Taking the commutation rules w=exp —ia’B;)=e (2m™/n =1 (19
(9) into account, the translation operator by one lattice unit is
2y. ~
exp(aByX°): The matrix elements dii can then be written in the form
(j1lexp(iaX®B1p)=(j,+1]. (12 10 0 --- 0
Its matrix elements take the form A 0w 0 - 0
h=[ 0 0 w? . i (20)
Ny Fay2 1\ _ oijmodn TS -
gji—<11|exmax 812)|J1>_5(1+j1)m0dn' (13) : : : : 0
00 -~ 0 ot

. S N 11 R
Including the periodicity condmongjl becomes the well If one diagonalizes the matrig, the result must be the ma-

known circular matrix that has also a non-trivial entry in trix A since the roles oK%, X2 can be reversed. Indeed, one

locationgy_,=1 can find the explicit unitary transformation
0 N T
= '=—— N
1 . g=0hm0", 0O el (22)
g=|: 0o o (14) .
0 1 The unitary matrixU also satisfies the periodicity property
' ’ underj—j+n thanks to the fact thab is the nth root of
o .- 0 O unity. The commutation property of these matrices is well
known:
k, units of translation along! is obtained by takingk,
powers ofg gh=hgo. (22)
i 2 “kyi1 They follow from the non-commutative properties of the co-
explik1aXB1a)—(g™); - (19 ordinates [X',X?]=i/B;, by using expgX?expX?)
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=explaxXbexpBXdexd fX%aX!]. Thus the matricesy,h The infinite space becomes relevant when the lattice spacing
capture the essence of the non-commutative geometry on tf#€s to zero on goes to infinity. If one wishes, one may
lattice. define n<n matricesX*, X? as the logarithms of the matri-
On the entire quantum space, whetbéror X? is diago-  cesh, g but these should not be identified with the operators
nal, the only operators that are meaningful are all the posX®, X2. Obviously the commutation rules in E@) are true
sible translations given by efig(k'X*—k*X*)B1) With  for the operator&?, X2 but not true for the matrices?, X2.
k,,k, integers modula. Their matrix elements are given by As n goes to infinity X!, X2 would approach the matrix
_ . . NN elements of the operatol', X2.
(jalexplia(k'X?—k?X")Byy)|j1) = wr2?(hiegky) 2
1
B. d dimensions

E({’klkz);i (23) Now we generalize the previous sectiondkaimensions.
Consider any other pair in the set of non-commuting opera-
where we have used the formula efp(®B) tors, such ax® X% The story is the same as in the previous
—expAexpBexp(—[A,B]/2) on the left hand side and then Section. The eigenspace of the operaor is labeled by
evaluated the matrix elements. |ismodn), and the eigenvalues axé=a(jzmodn). The set
It is useful to define a momentum lattice given py, ~ Of all operators that need to be considered are ipst
=ak’B,, where the lattice distance is measurediBf,and ~ +ipsX") with

the integers, ,k, are defined modulo: D3= —aBy(kmodn), pa=aBa,(k‘modn), (28)

= —aBjs(ko,modn), =aBjs(kymodn). (24 . .
P 1ok ) P2=aBulky ) @Y and with a quantization rule for the flux
This lattice is thedual latticeto the position lattice, its steps
are measured in units of momentum. Then the full set?f a2
translation operators take a more suggestive form of a plane

wave operator, or “vertex operator,” whose matrix elements
that leads to a phases,

_27Tb34 .
Bss= r— by,=integer, (29

are @ pu)il .
! 0)34:qu_ia2834):e_|(277b34/n), (w34)”=1. (30)
exp(ip ,X*) — v, = hkegkipkike?, 25 , _ NP _
Hip, X —vp gne @9 The corresponding translation matricds,,g3, Satisfy
These translations are the only meaningful operators thalsshz,=hs,0s4034 and they lead to the group algebi26)
need to be considered for the quantum mechanics of the pawith ws;4,k3,k, inserted instead ob,kq ,K,.
ticle on the non-commutative discrete torus. They have the The combined non-commutative geometry for all the op-
well known property that under matrix multiplication they erators can be treated by taking a direct product of the

form a group algebra eigenspaces of*, X3 x5, ... x41
D0y =0 s pr 0 V2 KK (26) iz - da-1)y  Xai-1=a(jzi-1modn).  (31)
2mb The remaining operators,,X,, . .. X4 cannot be simulta-
=5p+prexp< —i 2n12(k1k§_k2ki) (27 nec_)usly diagonal_ized with t_he above. Bqt in the space in
which they are diagondbbtained by applying the transfor-

o aa mation U in Eqg. (21)] theseX,; have eigenvalues that are
which is derived by using®h®=h"g?w®". _ similar to those above,;=a(j,modn).

One final remark is in order: To avoid confusion, one  The flux is quantized because of the periodicity of the
should not think ofh, g as being obtained by exponentiating |attice
matricesX', X? that arenx n matrices. This isiot how we

presented them. Rather, we have evaluated the matrix ele- ) 2mb,, _

ments of exponentials of theperators %, X2 and obtained a’B,,=— . by,~integer (32
finite nX n matrices, because we used only a discrete set of

states that represent thdattice points. We argued that only wwzexp(_iaqgw), (w,,)"=1, (33

exponentials of operator¥®, X? that correspond to finite

lattice translations are needed to discuss the lattice. Thesad the momentum lattice is defined by
exponentials clearly are finitex n matrices on the lattice, as
we have seen. For discussing the lattice, only discrete powers
of the same exponentials are used, while other functions of
the operator?, X? are never needed. Thus, whi{¢, X2

are opearators acting on an infinite Hilbert space, only ahe set of all possible lattice translations éﬂi@lpuxf‘),
finite set of that space comes into play thanks to the fact thawhich is similar to a “vertex operator” in string theory, has
only the exponentials ok®, X? enter in the lattice theory. the matrix elements

v quTbVl“ T \d
p,=ak’B,,=k an pL.e (T (34
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d
<jllj31 s ,jd_1|EX%i 21 p,uxﬂ)“ivjév ERC 1j(,jfl>
=
(35

1 N il il
— (U s a5 i1 () Ya-1
_(Vp)j1j3"'jd—l (vplpZ)jl (vpdflpd)l’d—ll (36)

In matrix notation, the set of all translation operators takes

the direct product form

Vp=vplp2®vp3p4® - ®Up p (37)

The matrice§/p satisfy the group algebra

SN - cmby,,
VoV =Vp,pexp —i N K.k, (38

- i ,
=Vpip€Xp — E&””p#py (39

which follows from Eq.(26). Under tracing one gets a Kro-

necker delta function

TrVy=N 5,,#,0, Tr(VpVy)=N 5pﬂ —pl (40

The relation(38) looks formally the same as the con-
tinuum, but in the present case it takes into account the m

mentum lattice T,,)¢ by having discrete momenta, , and

the position lattice T,,)¢ by taking discrete eigenvalues .

Only half of thex,, label the matrix elements of the matrices

(\A/p)j' where J is a label for the direct product spade
Jd—1)- For the more general lattice the rank
of these matrices isl=nyn, . ..ngy,. Both the position and
momentum lattices are periodic and this is manifest in the

=(1jads: -+

expressior(37) for V.

Although this result was derived by taking a block diag-

onal 6,,, it is easy to generalize. The final res(@9) is
valid for the general quantized antisymmetric matjx,, or
general quantized,,,

na®

0MV:E(bMV)_l' (41)

C. Map (A(x))j' from position lattice to matrix

Consider the Fourier transform of the matr&poﬂ/ that
represents all possible translations on the lattice

T . e
@oy= X (V3 —g— X! (42
pe(Tn)
1 ipH(x,— X, )\J’
=N X, @y (43)
pE(Tn)

The inverse transform igecallN=n%? or njn,- - -ny,)

PHYSICAL REVIEW D 62 105018

~ ) ~ ,e—ip“xﬂ
V3= 2 Aoy ——

d
Xu€ (Tn)

pe(T)d (49

These finite Fourier transforms are defined with both posi-
tions and momenta taken on lattices, and follow from the
completeness and orthogonality properties of the periodic
lattice functionsf(x)

exp(ip - X) ~
fp(x):T- PME(Tn)d7 XME(Tn)da (45
which are given by
eip»x efip-x’ eip-x efip’»x
=8 v, — =05, .
pe(Tpd N P xdape NN PP
(46)

These are verified by performing finite sums, e.g. the sum
over pt=—k,(2mb,/na) gives

n—-1
S Zeika(2nbia/n)isgika(2mbi/n)ig 47
ko=0 N
1l o 11l-(olt7iyn
— 2 _(wjl ]]_) 2:——__,:51‘]‘!. (48)
k2:0 n n 1_(1)]17]1 ’

%he numerator is always zero sine€=1, but the denomi-

nator also vanishes providge—j;=0, thusé; ;. is the cor-

rect answer. Likewise, in the definition (xﬁ(x))j' , by con-
centrating on any one of the sums ovpt, e.g. p'=
—k,(2mb4,/n), using Eqs(37), (23), one finds

>=

! 27b
) ﬁkzwig‘zmexp(i - 121'1k2) (49)
=~
n-1 e i
RN 1-h"((wyp)")1 ke
_ jqtke/2yky
2 (Aol g %0

The numerator is proportional to 1 sinb8=1, and it van-
ishes by usingo,= 1 whenk; is even(there is a further sum
overk,). So, the result of the sum would be zdfor fixed
evenk,) except for the fact that the matrix in the denomina-
tor also has one eigenvalue that vanishes. In fact, formally

(A(x))j' are the matrix elements of the delta functiéfx,,
—X,), with non-commutative operatorX,, and lattice
pointsx,, e (T)".

Under matrix multiplicationA (x)A(y) satisfies a closed
algebra, and yields a Kronecker delta function upon tracing

GAy] =5 S @) b mnw)

z,€(Tp)

(51)

TrA(0)A(y)=N &, (52
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Tr(A(x))=N2 8, 4. (53
These are derived by using the group algeld@), thus

elPx, gip’*y,
N N

A)A(y)=2 V¥, (54)
p.p’
eip'“XM eiplﬂyu
N N
(59

~ i
= 2 Vpﬂ,,exr{ -5 G”Vpﬂp’y)
p.p

e i(p#+p' M)z,

i
— kv /
N exp( 26 pﬂpv)

=> > A2
p.p’ 2

elPx, gip'*y,

N N

X

using the orthogonality-completeness relatigA6) to per-
form the sum ovemp, one finds Eq.(51). Also, using Eq.
(40) or (46) in Eq. (54) one derives Eq(52).

D. Diamond product

We may now define functions on the lattice, such as

gauge fieldsA(x). Since there are onlN? points on the
lattice, these functions really consist of orl§# numbers.
Therefore, it makes sense to set up a map koxaN matrix

AJ' by using the magA (x))3J’

A= Y AAX)Y, AX)=N"TrA(xA).
X#e(Tn)

(56)

All the information inA(x) on theN? lattice points is con-
tained in theN? entries ofA] . The matrixA can be viewed

as an operator acting on the quantum Hilbert space of non-

commutative geometry. To define products amongﬁtpe’t

is natural to adopt the usual product of operators in quantum
mechanics, which in this case, corresponds to ordinary ma-

trix product A,A,)] . Having defined the product, we in-
troduce the diamond product it* space as the one that is
equivalent to the matrix product via the mégb)

(A, 0A)X)=N"TrA(x)A A), (57)

AA= 2 AXOAMNAX) . (59

X, €(Tp)

This expression can be rewritten purely in term#&gfx) by
using the corresponden¢®6) and then using the formulas in
Egs.(5)), (52

PHYSICAL REVIEW D62 105018

A ) OA)=N"T X TrA(x)A(y)
y,ze (T,

xA(2)A,(y)A(2)

N1 e2iB’“’(xﬂfyﬂ)(x,ﬁz,,)
y.ze (Tp)¢

XALY)AL2).

It is physically interesting to note that the sums in the dia-
mond product are weighted by exponentials of the flux that
passes through the area defined by the three lattice points
X,Y,Z.

For the complete set of periodic functiohg(x) given in
Eq. (45) it is interesting to note their matrix map according
to Eq. (56)

(59

exp(ip - X)
N

>

(fp)3 Ay =V_p3.
X, € (Tp)®

The result of applying the diamond product on them is

exp(ip-x) explip’-x)
N N
:exp( - %euvp#pIV)—eXp(' (p; PDX 6o
i
fp(x)Ofp,(x)zexp{—anpup’v foip(X). (61

It is important to emphasize that all position$ and all
momentap* are on their respective lattices with only?
allowed values for each. The form of this result has a com-
plete parallel in the continuum limit when the positions and
momenta are continuous and the star proddgtis used
instead of the diamond produ(&9)

(62

: : i : :
e|p~x*e|p’»x:eX[{_0,uy&xay e|p~><e|p’~y
27 O
y=X

i . ,
:exr{ — EaﬂVpMp]’/)el(erp )'X_
(63

Since the plane wave=P * form a complete set of functions
in the continuum theory, this shows that the continuum limit
of the diamond product is the star product given in Eqg.

We have shown through E¢57) that the diamond prod-
uct (A, <O A,)(x) is equivalent to the finiteN XN matrix

product @,A,)3 thanks to the mapA(x))3 . Going over to

the continuum corresponds to a particular lakg@mit (there

are many possible lardgg limits sinceN=nn,- - -ng,, and
any of the factors could be large in independent wayhen

all nj=n—o are large, the star product can be associated
with the largeN limit of the diamond product. Note that in
taking the largen limit to reach the continuum, one must
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keepB,,=2mb,,n/(na)? and the productan, andnb,, sy=i[A, ], A, =[—i(P,+A,),A] (72)
finite (the number of flux line®,,, per lattice plaquette goes T ® pooR
to zero as the lattice distance vanishes and the covariance can be checked explicitly by using matrix

Jacobi identities
I1l. DISCRETE NON-COMMUTATIVE GAUGE THEORY

To construct a gauge theory we also need to define a AL (Pt A =LA LT (Pt A 1
lattice version of the derivative of fields, such &sA,(X). Next we can define the covariant field strength in position
When x* is on the lattice we will write symbolically ~space and in matrix space as the commutator of the covariant
;'?MA,,(X) Where?9M is a discrete operation that we define. Thederivatives, with the usual map relating the two
simplest way is to define it in matrix space as a commutator s n
—i[P,.,A,13 with a fixed set ofNXN matricesP,, and F () =N""Tr(F ,,A(X)) (73)
then map it tox-space using the ma(%6)

(Fo)y= 2 FL00AX) (74

9, A)=N"1Tr(=i[P, A, JA(x)) (64) "y (T
A~y - N ' d
SR A= 2 8A0G] 65 "
X, €(Tp)

F,uv(x): _Ilj[,u<> Isv]zé[,uAv](X)—f_A[,uOAv](x)
The important property of the definition is that this lattice (79
derivative is distributive when the diamond product is used, Ay e s N
. (F/LV)J :_I[(P;L+AILL)'(PV+AV)]J :_I[a;uav]J

9 (AL(X) O A\(X)) (76)

=(3ﬂAy(X))0Ax(X)+Ay(X)O (;%AA(X))- where in the last line we have used the definition for the
matrix éﬂ

Furthermorey,, is commutatives ,d,=
P, commute with each othé?,,P,=P,
immediately show

d,, if the matrices

J,
P . Thatis, one can (a,)3 =(P,+A,)j (77)

w

L L that appears everywhere. The matriéeﬁAV appear every-
3,(9,A\(X))=3,(d,A\(X)), (66)  where only in the combinatioa,,, therefore the theory is
expressed only in terms of the matEi)ﬁ.

The action for the pure (1) non-commutative gauge
theory is then written in either discrete position space or in
matrix space

by using the definitior{(64) and matrix Jacobi identities.

A. Non-commutative U(1) gauge theory

With these definitions we give the covariant derivative

applied on any functiony(x) defined on the periodic lattice 1

S Y FuL(¥)OF,,(x) (78)

) ) ==
B, (X) =, h(X)—iA ,(X) O $(X) +i(x) O AM(X).(67) AN xe (T

1 oA 1 . .
= — — _ 2
Both the function and the covariant derivative transform co- 4 y % \d Tr(FuF u) = 4Tr[aﬂ a,]%
€lIn

variantly under gauge transformations provideg(x) also (79
transforms as follows:
. To derive the last line from the first line one can use the map
0A,(x)=D ,A(x), (68) (57 for the product F,,O0F,, and then use
. . N33 dA(x)=1.
SP(X) =T A(X) O (x)—ih(x) O A(X), 69 xe(Tp)
v () 0 0x)=19(x) (x) 9 Matter, including fermions, can be added naturally both in

E — A B the lattice and the matrix formulation. The supersymmetric
OB LPONZIAX) © (D (X)) =1 (D () © A(X()7'0) version is also straightforward.

Using the map(A(x))]" each one of these equations can be B. Non-commutative UM) gauge theory
written in the equivalent matrix space f&r,AM. The cova- The U(M) gauge theory is naturally constructed by at-
riant derivative becomes the matrix commutator taching indices on the gauge ﬁeMAM(X));’ with a,a’
. oA I =1,2,... M. Then the diamond product is combined with
D)= 1=i(Put ALyl (72) matrix product(A ,(x) ¢ A#(x))g' . In the matrix version the
The transformation laws are matrix has the following indice&ﬂ;a'. This is equivalent to

105018-7
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enlarging the direct product spack=(jijs---jq_1) tO
(j1j3- - -jg—18). From the point of view of our discussion
we can interpret the additional indexas arising from two
extra non-commuting dimensions [Xg.1,Xg+2]
=i(B‘1)d+1,d+2, with their eigenvalues on the lattigg, |
=a=1.2, ... N+2)2, Wherenq,z,=M. Then we can re-
gard the UM) non-commutative gauge theory thdimen-
sions, as a () non-commutative gauge theory tht+2 di-
mensions. In the matrix version its action takes the form

1~ -0
S=— ZTr[a# ,a,] (80
where nowéﬂ is aNMXNM matrix given by
(@32 =P & + (A3 (81

Since @,)3;% is the most general matrixa(,)]% is also
the most generdlM X NM matrix. The form (5#)3]' 5‘;‘/ that
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As in the U1) case, matter fields can be easily added and
the theory can be supersymmetrized.

IV. OUTLOOK

In this paper we have discussed a discrete version of non-
commutative geometry that arises in string theory in Ehe
field background. We have presented a formalism that intro-
duced the diamond product as a lattice version of the star
product, and thus suggested a cutoff version of non-
commutative gauge theory.

One may ask what relation could one establish between
our results and some other attempt at providing a non-
commutative version of Wilson's lattice gauge theory for-
malism. In the same way that non-commutative gauge theory
in the continuum can be recast as a usual gauge theory with
an infinite number of high derivative terni&], we suspect
that our results can be rewritten as a complicated Wilsonian
type lattice action. It would be interesting to compare the 't
Hooft limits of ordinary and non-commutative Yang-Mills
on the lattice and verify their equivalence as claimei2ig|

seems to be pulled out artificially serves only to distinguishsg, the continuum.

between the space directions and the internal directions.
If we take this point of view, the (1) non-commutative

gauge field may be labeled bﬁyﬂ(x",(;) whereoq,0, are
the extra coordinates that take values atNitelattice points

The similarity to reduced models could be further ex-
plored. Wilson loop variables for non-commutative Yang-
Mills have their counterparts in the reduced Yang-Mills
theory, but now the tracing must be done over both internal

in the (o1,07) plane. This point of view was explored a long and external matrix indiceda. It would be interesting to
time ago in[7], where it was shown that the M) gauge understand the relevance of this formulation of Wilson loop
transformations at finitd! may also be regarded as discretevariables in the extrapolation of the AdS-CFT correspon-
diffeomorphism transformations of the discrete torus. As disdence in the presence of the backgro&itld, as studied in
cussed in7] these discrete area preserving transformation§23].

can be embedded in SL@&y,).
The action above is not yet a fudt-2 dimensional gauge

theory because two additional fieIdAdH(x“,E) and

Ag:o(x*, o) (or their matrix counterpartg,.; and ay, )
are missing. However, if the original &) non-

commutative gauge theory is enlarged by including two ad-

ditional scalars in the adjoint representationlbfM), then

In our version one could analyze the theory at firlite
which provides a cutoff. For a sufficiently smallthe analy-
sis can be done with the help of a computer. Also, since the
action is very simple, analytic computations may not be out
of reach.
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