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Noncommutative geometry on a discrete periodic lattice and gauge theory

Itzhak Bars* and Djordje Minic†

Caltech-USC Center for Theoretical Physics and Department of Physics and Astronomy, University of Southern California
Los Angeles, California 90089-0484

~Received 1 November 1999; published 23 October 2000!

We discuss the quantum mechanics of a particle in a magnetic field when its positionxm is restricted to a
periodic lattice, while its momentumpm is restricted to a periodic dual lattice. Through these considerations we
define non-commutative geometry on the lattice. This leads to a deformation of the algebra of functions on the
lattice, such that their product involves a ‘‘diamond’’ product, which becomes the star product in the con-
tinuum limit. We apply these results to construct non-commutative U~1! and U(M ) gauge theories, and show
that they are equivalent to a pure U(NM) matrix theory, whereN2 is the number of lattice points.

PACS number~s!: 11.15.Ha, 11.25.2w
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I. INTRODUCTION AND RESULTS

Recently non-commutative geometry has found appli
tions in string and M theory in theB-field background@1,2#.
The non-commutative geometry in question is described b
deformation of the ordinary algebra of functionsf (x)g(x) on
Rd into a non-commutative albeit associative algebra, wit
star product@2#

f ~x!* g~x!5expS i

2
umn

]

]xm

]

]ynD f ~x!g~y!U
y5x

. ~1!

umn is given in terms of a constant backgroundB field that
has even rankd:

umn52~2pa8!2S 1

g12pa8B
B

1

g22pa8B
D mn

. ~2!

In the limit a8→0 andgmn;(a8)2, string theory is correctly
represented by non-commutative gauge theory, withumn

5 f (B21)mn. Effectively this is the largeB limit. The indices
m label a Euclidean space1 m51, . . . ,d. The star product is
related to the Moyal brackets@3–6#. When this product is
used instead of the ordinary product of functions in a ga
theory, the resulting non-commutative gauge theory rep
sents string theory in a largeBmn limit, including the non-
perturbative effects of the backgroundB field @1,2#.

In order to further analyze non-commutative gau
theory, a cutoff version would be useful. With this in min

*Email address: bars@physics.usc.edu
†Email address: minic@physics.usc.edu
1In the string theory derivation, these dimensions correspon

the Euclidean dimensions of a D-brane along which the string ba
ground fieldBmn does not vanish. The fieldBmn can also be though
of as a constant magnetic field with a potentialAm5

1
2 xnBnm inter-

acting with charged pointsxm(t) at the end of a string. However
taken as an independent starting point, there does not seem
any problem in allowing one of the dimensions to be timelike. O
discussion does not change if the space is purely Euclidea
Minkowski.
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we define non-commutative gauge theory on a discrete p
odic lattice that has two parameters: the periodicity char
terized by a lengthL and the lattice spacinga. The ratio of
these is the number of stepsn5L/a in each direction labeled
by m. In effect, this lattice is the d-dimensional discretiz
torus Td in d-dimensions, withn steps in every direction
which we will denote by (Tn)d. There are altogethernd lat-
tice points on the discrete torus. A less uniform lattice wou
have different number of steps in the various directionsm,
such that the total number of lattice points would be)nm ,
instead ofnd. In most of the paper we will concentrate on th
uniform lattice for simplicity, but we will also discuss som
interesting aspects of a non-uniform lattice in which t
number of lattice points is not the same in every directio
but are taken equal in pairs, such thatn1 for both m51,2,
andn2 for both m53,4, etc. By identifying

N5n1n2•••nd/2 , ~3!

(d is even! we see that the positionsxm live on theN2 points
of the periodic lattice (Tn)d. The gauge fieldsAm(x) or other
functions on the lattice are defined only on theseN2 space-
time points.

We then construct a ‘‘diamond product’’ which is a lattic
version of the star product. We will be guided by a previo
construction that introduced the discrete Moyal bracket@7#
as a cutoff version of the Moyal bracket with a differe
application in mind@8–17#. The first step is to provide an
explicit map D̂ I

J(x) from the N2 lattice pointsxm to a N
3N matrix that hasN2 entries. Then any functionf (xm)
defined on theN2 lattice points can be rewritten in terms o
a matrix f̂ with x-independent matrix elementsf̂ I

J , I ,J
51,2, . . . ,N, as follows ~matrices are denoted by the h
symbol!

f ~x!5
1

N
Tr„D̂~x! f̂ …, f̂ I

J5 (
xP(Tn)d

D̂ I
J~x! f ~x!. ~4!

The properties of the mapD̂ I
J(x) are obtained by studying

the quantum mechanics of particles in a constant magn
field Bmn , such that the particle positionsxm are at thend

lattice points on (Tn)d, while their momentapm (]/]xm in

to
k-

be
r
or
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ITZHAK BARS AND DJORDJE MINIC PHYSICAL REVIEW D62 105018
continuum! are onnd points on the dual lattice. The dua
lattice (T̃n)d is similar to (Tn)d but its lattice spacing is mea
sured in terms of momentum units. Then the map is given

D̂ I
J~x!5

1

N (
pmP(T̃n)d

e2 ip•x@exp~ ip•X!# I
J ~5!

where@exp(ip•X)#I
J is a matrix that will be given explicitly.

Roughly, this map is the matrix elements of a delta funct
d (d)(X2x) with Xm non-commutative operators andxm de-
fined only on the periodic lattice. The map contains all t
information about non-commutative geometry on the pe
odic lattice. Using this map and the definitions in Eq.~4!, the
diamond product is constructed as follows@7#:

f ~x!Lg~x!5
1

N
Tr„D̂~x! f̂ ĝ…,

5
1

N (
y,zP(Tn)d

f ~y!g~z!exp„2iBmn~xm2ym!

3~xn2zn!…. ~6!

It is physically interesting to note that the sums in the d
mond product are weighted by exponentials of the flux t
passes through the area defined by the three lattice p
x,y,z. We will show that the diamond product reduces to t
star product~1! in the continuum limit. In this way the dia
mond~or star! product is explicitly related to ordinary matri
product (f̂ ĝ) I

J .
Using this formulation we show that the non-commutat

U~1! gauge theory on the periodic lattice can be rewritten
a U(N) pure matrix theory where all spacetime positionsxm

have been converted to matrix elements by using the m
The non-Abelian U(M ) non-commutative gauge theory o
the lattice can also be discussed in the same n
commutative formalism by generalizing to a U(NM) matrix
theory.

The U(M ) non-commutative gauge theory action on t
periodic lattice is constructed by using the diamond prod
Am(x)LAn(x) whenever gauge fields need to be multipli
with each other, and by substituting the derivative]mAn(x)
by a suitable lattice version, but otherwise keeping the sa
general form of the Yang-Mills action. By using the ma
D̂ I

J(x) the U(M ) lattice action is rewritten in the following
pure matrix version:

S5
1

4N2 (
xP(Tn)d

„Fmn~x!…a
a8L„Fmn~x!…a8

a

52
1

4
Tr~@am ,an#2!, ~7!

where thexm-independentam is anNM3NM matrix related

to the M3M gauge field„Am(x)…a
a8 in a way that will be

indicated.
It is possible to interpret the non-Abelian U(M ) theory in

d-dimensions as an Abelian U~1! theory ind12 dimensions.
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This comes about by considering a non-uniform lattice
described above. Then the U~1! Abelian theory ind dimen-
sions is described by a U(N) pure matrix theory~7! with N
5n1n2•••nd/2 , whereas the non-Abelian U(M ) theory ind
dimensions can be regarded as a U~1! theory with two more
non-commutative discretized dimensions, with lattice ste
n(d12)/2[M , so that NM5n1n2•••nd/2n(d12)/2. Thus, in
the U(NM) matrix theory ~7!, N5n1n2•••,nd/2 relates to
space andM[n(d12)/2 relates to two more non-commutativ
discrete dimensions that replace the internal space.

The form of the action~7! could be related to the reduce
models of gauge theories@18#, or more precisely, to the fully
reduced matrix theory version written in the for
Tr(@Xm ,Xn#2) @11#. However, in the present version, th
physical meaning of the matrix is quite different. Name
the space-time interpretation is obtained via the mapD̂ I

J(x)
related to the factorN5n1n2•••,nd/2 , and the internal sym-
metry information is in the factorM, which are different than
the spacetime–internal symmetry interpretation of the
duced models. Thus the existing computational technol
of reduced models and matrix models could be adapted
the current problem provided one takes care of the phys
interpretation via the map~4! and the meaning ofN,M .
Some recent computations in@19,20# also seem to be relate
to our observations, but with a somewhat different spacet
interpretation.

The organization of this paper is as follows: First we d
cuss the quantum mechanics of particles in a lattice i
magnetic field and show how to derive non-commutative
ometry on the lattice from such considerations. This lea
directly to an explicit expression for the mapD̂ I

J(x). We
apply these results to the non-commutative U~1! and U(M )
gauge theories on the lattice, and show that they are equ
lent to a pure U(NM) matrix theory, as in Eq.~7!.

The larger project of studying non-commutative gau
theories in this cutoff version should be worthwhile, but it
not pursued in the current paper.

II. NON-COMMUTATIVE GEOMETRY ON THE LATTICE

It is well known that the quantum mechanics of a partic
in a constant magnetic fieldBmn produces non-commutativ
momenta@21# @Km ,Kn#5 iBmn . In order to map this prob-
lem to the string theory setting we define ‘‘coordinate
Xm5(B21)mnKn which satisfy the commutation rules o
non-commutative geometry@1,2#

@Xm,Xn#5 i ~B21!mn[ iumn. ~8!

For simplicity, we begin the discussion of the lattice versi
of this setup for the special form ofBmn that is block diag-
onal, with 232 blocks along the diagonal, each of the
proportional to the Pauli matrixis2 with various proportion-
ality constants, and zero entries otherwise~it is always pos-
sible to rotateBmn into such a basis!. At the end we gener-
alize to an arbitrary form ofBmn. For the special form ofumn

non-commutativity occurs in pairs of coordinates
8-2
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NONCOMMUTATIVE GEOMETRY ON A DISCRETE . . . PHYSICAL REVIEW D 62 105018
@X1,X2#5
i

B12
, @X3,X4#5

i

B34
, •••. ~9!

There does not seem to be anything special about a dis
tion between timelike or spacelike coordinates since all si
may be absorbed into a redefinition ofBmn . We will first
discuss the pair (X1,X2) and later include all theXm. We will
then follow the construction of the 2D diamond product
@7# whose discussion we generalize to higher dimension

A. Two-torus

SinceX1,X2 do not commute, they cannot be diagon
ized simultaneously. Consider diagonalizingX1. In the con-
tinuum the eigenvalues are on the real line. Consider a p
odic lattice, with periodL and lattice spacinga in the X1

direction. The eigenstates ofX1 are labeled asu j 1&, j 1
50,1, . . . ,n21, with n5L/a, and the eigenvalues ofX1 are
restricted to the discrete setx15a j1. Furthermore there is a
periodicity condition

X1u j 1&5a j1u j 1&, u j 11n&5u j 1&; ~10!

therefore the eigenvaluesx1 take discrete values on the circ
of perimeterL:

x15a~ j 1modn!. ~11!

According to Eq.~9! the operatorB12X2 acts like infinitesi-
mal translations on the eigenspace ofX1. On the lattice only
finite translations make sense. Taking the commutation r
~9! into account, the translation operator by one lattice un
exp(iaB12X

2):

^ j 1uexp~ iaX2B12!5^ j 111u. ~12!

Its matrix elements take the form

ĝ
j 1

j 185^ j 1uexp~ iaX2B12!u j 18&5d
(11 j 1)modn

j 18modn
. ~13!

Including the periodicity condition,ĝ
j 1

j 18 becomes the wel

known circular matrix that has also a non-trivial entry
location ĝn21

0 51

ĝ5S 0 1 0 ••• 0

0 0 1 � A

A 0 0 � 0

0 A � � 1

1 0 ••• 0 0

D . ~14!

k1 units of translation alongX1 is obtained by takingk1

powers ofĝ

exp~ ik1aX2B12!→~ ĝk1! j 1

j 18 . ~15!
10501
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Due to periodicity,n units of translation must give the sam
state. Indeed this is reflected in the property of the circu
matrix ĝ

ĝn51. ~16!

Similarly we consider diagonalizingX2 on a periodic lat-
tice with periodicityL and lattice spacinga in the X2 direc-
tion such thatan5L. The eigenstatesu j 2& are associated
with the eigenvaluesa( j 2modn). In the eigenspace ofX2 the
translation operator by one unit is exp(2iaX1B12) and it has
similar properties toĝ. However, acting on the eigenspace
X1 defined in Eq.~10!, this operator is a diagonal matrix

ĥ
j 1

j 185^ j 1uexp~2 iaX1B12!u j 18&5d
j 1

j 18e2 i ( j 1modn)a2B12.

~17!

Taking into account the periodicity of the lattice in theX2

direction,n powers ofĥ should be the identity operator fo
any state. This requires

a2B125
2pb12

n
~18!

whereb12 is an integer. Therefore the magnetic fluxa2B12
passing through a lattice unit surfacea2 in the 1-2 plane is
quantized asb12 units of 2p/n.

It is convenient to definev as thenth root of the identity

v5exp~2 ia2B12!5e2 i (2pb12 /n), vn51. ~19!

The matrix elements ofĥ can then be written in the form

ĥ5S 1 0 0 ••• 0

0 v 0 ••• 0

0 0 v2
� A

A A � � 0

0 0 ••• 0 vn21

D . ~20!

If one diagonalizes the matrixĝ, the result must be the ma
trix ĥ since the roles ofX1,X2 can be reversed. Indeed, on
can find the explicit unitary transformation

ĝ5ÛĥÛ†, Û j
j 85

1

An
v j j 8. ~21!

The unitary matrixÛ also satisfies the periodicity propert
under j→ j 1n thanks to the fact thatv is the nth root of
unity. The commutation property of these matrices is w
known:

ĝĥ5ĥĝv. ~22!

They follow from the non-commutative properties of the c
ordinates @X1,X2#5 i /B12 by using exp(bX2)exp(aX1)
8-3
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ITZHAK BARS AND DJORDJE MINIC PHYSICAL REVIEW D62 105018
5exp(aX1)exp(bX2)exp@bX2,aX1#. Thus the matricesĝ,ĥ
capture the essence of the non-commutative geometry on
lattice.

On the entire quantum space, whetherX1 or X2 is diago-
nal, the only operators that are meaningful are all the p
sible translations given by exp„ia(k1X22k2X1)B12… with
k1 ,k2 integers modulon. Their matrix elements are given b

^ j 1uexp„ia~k1X22k2X1!B12…u j 18&5vk1k2/2~ ĥk2ĝk1! j 1

j 18

[~ v̂k1k2
! j 1

j 18 ~23!

where we have used the formula exp(A1B)
5expAexpBexp(2@A,B#/2) on the left hand side and the
evaluated the matrix elements.

It is useful to define a momentum lattice given bypm
5aknBnm where the lattice distance is measured byaB12 and
the integersk1 ,k2 are defined modulon:

p152aB12~k2modn!, p25aB12~k1modn!. ~24!

This lattice is thedual latticeto the position lattice, its step
are measured in units of momentum. Then the full set ofn2

translation operators take a more suggestive form of a p
wave operator, or ‘‘vertex operator,’’ whose matrix eleme

are (v̂pm)
j 1

j 18

exp~ ipmXm!→ v̂p5ĥk2ĝk1vk1k2/2. ~25!

These translations are the only meaningful operators
need to be considered for the quantum mechanics of the
ticle on the non-commutative discrete torus. They have
well known property that under matrix multiplication the
form a group algebra

v̂pv̂p85 v̂p1p8v
„(1/2)«mnkmkn8… ~26!

5 v̂p1p8expS 2 i
2pb12

2n
~k1k282k2k18! D ~27!

which is derived by usingĝaĥb5ĥbĝavab.
One final remark is in order: To avoid confusion, o

should not think ofh, g as being obtained by exponentiatin
matricesX1, X2 that aren3n matrices. This isnot how we
presented them. Rather, we have evaluated the matrix
ments of exponentials of theoperators X1, X2 and obtained
finite n3n matrices, because we used only a discrete se
states that represent then lattice points. We argued that onl
exponentials of operatorsX1, X2 that correspond to finite
lattice translations are needed to discuss the lattice. Th
exponentials clearly are finiten3n matrices on the lattice, a
we have seen. For discussing the lattice, only discrete pow
of the same exponentials are used, while other function
the operatorsX1, X2 are never needed. Thus, whileX1, X2

are opearators acting on an infinite Hilbert space, onl
finite set of that space comes into play thanks to the fact
only the exponentials ofX1, X2 enter in the lattice theory
10501
he

s-

ne
s

at
ar-
e

le-

of

se

rs
of

a
at

The infinite space becomes relevant when the lattice spa
goes to zero orn goes to infinity. If one wishes, one ma
define n3n matricesX̃1, X̃2 as the logarithms of the matri
cesh, g but these should not be identified with the operat
X1, X2. Obviously the commutation rules in Eq.~9! are true
for the operatorsX1, X2 but not true for the matricesX̃1, X̃2.
As n goes to infinity X̃1, X̃2 would approach the matrix
elements of the operatorsX1, X2.

B. d dimensions

Now we generalize the previous section tod-dimensions.
Consider any other pair in the set of non-commuting ope
tors, such asX3,X4. The story is the same as in the previo
section. The eigenspace of the operatorX3 is labeled by
u j 3modn&, and the eigenvalues arex35a( j 3modn). The set
of all operators that need to be considered are exp(ip3X

3

1ip4X
4) with

p352aB34~k3modn!, p45aB34~k4modn!, ~28!

and with a quantization rule for the flux

a2B345
2pb34

n
, b345 integer, ~29!

that leads to a phasev34

v345exp~2 ia2B34!5e2 i (2pb34 /n), ~v34!
n51. ~30!

The corresponding translation matricesĥ34,ĝ34 satisfy
ĝ34ĥ345ĥ34ĝ34v34 and they lead to the group algebra~26!
with v34,k3 ,k4 inserted instead ofv,k1 ,k2.

The combined non-commutative geometry for all the o
erators can be treated by taking a direct product of
eigenspaces ofX1,X3,X5, . . . ,Xd21

u j 1 , j 3 , . . . ,j d21&, x2i 215a~ j 2i 21modn!. ~31!

The remaining operatorsX2 ,X4 , . . . ,Xd cannot be simulta-
neously diagonalized with the above. But in the space
which they are diagonal@obtained by applying the transfor
mation U in Eq. ~21!# theseX2i have eigenvalues that ar
similar to those abovex2i5a( j 2imodn).

The flux is quantized because of the periodicity of t
lattice

a2Bmn5
2pbmn

n
, bmn5 integer ~32!

vmn5exp~2 ia2Bmn!, ~vmn!n51, ~33!

and the momentum lattice is defined by

pm5aknBnm5kn
2pbnm

an
, pmP~ T̃n!d. ~34!

The set of all possible lattice translations exp(i(m51
d pmXm),

which is similar to a ‘‘vertex operator’’ in string theory, ha
the matrix elements
8-4
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^ j 1 , j 3 , . . . ,j d21uexpS i (
m51

d

pmXmD u j 18 , j 38 , . . . ,j d218 &

~35!

[~V̂p! j 1 j 3••• j d21

j 18 j 38••• j d218
5~ v̂p1p2

! j 1

j 18
•••~ v̂pd21pd

! j d21

j d218
. ~36!

In matrix notation, the set of all translation operators tak
the direct product form

V̂p5 v̂p1p2
^ v̂p3p4

^ •••^ v̂pd21pd
. ~37!

The matricesV̂p satisfy the group algebra

V̂pV̂p85V̂p1p8expS 2 i
pbmn

n
kmkn8D ~38!

5V̂p1p8expS 2
i

2
umnpmpn8D ~39!

which follows from Eq.~26!. Under tracing one gets a Kro
necker delta function

Tr V̂p5N dpm,0 , Tr~V̂pV̂p8!5N dpm ,2p
m8
. ~40!

The relation~38! looks formally the same as the con
tinuum, but in the present case it takes into account the
mentum lattice (T̃n)d by having discrete momentapm , and
the position lattice (Tn)d by taking discrete eigenvaluesxm .
Only half of thexm label the matrix elements of the matrice

(V̂p)J
J8 where J is a label for the direct product spaceJ

5( j 1 , j 3 , j 5 , . . . ,j d21). For the more general lattice the ran
of these matrices isN5n1n2 . . . nd/2 . Both the position and
momentum lattices are periodic and this is manifest in
expression~37! for V̂p .

Although this result was derived by taking a block dia
onal umn , it is easy to generalize. The final result~38! is
valid for the general quantized antisymmetric matrixbmn , or
general quantizedumn

umn5
na2

4p
~bmn!21. ~41!

C. Map „D̂„x……J
J8 from position lattice to matrix

Consider the Fourier transform of the matrix (V̂p)J
J8 that

represents all possible translations on the lattice

„D̂~x!…J
J8[ (

pP(T̃n)d
~V̂p!J

J8
eipmxm

N
, xmP~Tn!d ~42!

5
1

N (
pP(T̃n)d

„eipm(xm2Xm)
…J
J8 . ~43!

The inverse transform is~recall N5nd/2 or n1n2•••nd/2)
10501
s
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e

~V̂p!J
J85 (

xmP(Tn)d
„D̂~x!…J

J8
e2 ipmxm

N
, pP~ T̃n!d. ~44!

These finite Fourier transforms are defined with both po
tions and momenta taken on lattices, and follow from t
completeness and orthogonality properties of the perio
lattice functionsf p(x)

f p~x!5
exp~ ip•x!

N
, pmP~ T̃n!d, xmP~Tn!d, ~45!

which are given by

(
pP(T̃n)d

eip•x

N

e2 ip•x8

N
5dx,x8 , (

xP(Tn)d

eip•x

N

e2 ip8•x

N
5dp,p8 .

~46!

These are verified by performing finite sums, e.g. the s
over p152k2(2pb12/na) gives

(
k250

n21
1

n
e2 ik2(2pb12 /n) j 1eik2(2pb12 /n) j 18 ~47!

5 (
k250

n21
1

n
~v j 12 j 18!k25

1

n

12~v j 12 j 18!n

12v j 12 j 18
5d j , j 8 . ~48!

The numerator is always zero sincevn51, but the denomi-
nator also vanishes providedj 12 j 1850, thusd j , j 8 is the cor-

rect answer. Likewise, in the definition of„D̂(x)…J
J8 , by con-

centrating on any one of the sums overpm, e.g. p15
2k2(2pb12/n), using Eqs.~37!, ~23!, one finds

(
k251

n21

ĥk2v12
k1k2/2expS i

2pb12

n
j 1k2D ~49!

5 (
k251

n21

„ĥ~v12!
j 11k1/2

…

k25
12ĥn

„~v12!
n
…

j 11k1/2

12ĥ~v12!
j 11k1/2

. ~50!

The numerator is proportional to 1 sinceĥn51, and it van-
ishes by usingv12

n 51 whenk1 is even~there is a further sum
over k1). So, the result of the sum would be zero~for fixed
evenk1) except for the fact that the matrix in the denomin
tor also has one eigenvalue that vanishes. In fact, form

„D̂(x)…J
J8 are the matrix elements of the delta functiond(xm

2Xm), with non-commutative operatorsXm , and lattice
pointsxmP(Tn)d.

Under matrix multiplicationD̂(x)D̂(y) satisfies a closed
algebra, and yields a Kronecker delta function upon trac

„D̂~x!D̂~y!…J
J85

1

N (
zmP(Tn)d

„D̂~z!…J
J8e2iBmn(xm2zm)(yn2zn)

~51!

Tr„D̂~x!D̂~y!…5N dx,y ~52!
8-5
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Tr„D̂~x!…5N2 dx,0 . ~53!

These are derived by using the group algebra~38!, thus

D̂~x!D̂~y!5 (
p,p8

V̂pV̂p8

eipmxm

N

eip8mym

N
, ~54!

5 (
p,p8

V̂p1p8expS 2
i

2
umnpmpn8Deipmxm

N

eip8mym

N
,

~55!

5 (
p,p8

(
z

D̂~z!
e2 i (pm1p8m)zm

N
expS 2

i

2
umnpmpn8D

3
eipmxm

N

eip8mym

N
,

using the orthogonality-completeness relations~46! to per-
form the sum overpm one finds Eq.~51!. Also, using Eq.
~40! or ~46! in Eq. ~54! one derives Eq.~52!.

D. Diamond product

We may now define functions on the lattice, such
gauge fieldsA(x). Since there are onlyN2 points on the
lattice, these functions really consist of onlyN2 numbers.
Therefore, it makes sense to set up a map to aN3N matrix

ÂJ
J8 by using the map„D̂(x)…J

J8

ÂJ
J85 (

xmP(Tn)d
A~x!„D̂~x!…J

J8 , A~x!5N21Tr„D̂~x!Â….

~56!

All the information inA(x) on theN2 lattice points is con-

tained in theN2 entries ofÂJ
J8 . The matrixÂ can be viewed

as an operator acting on the quantum Hilbert space of n
commutative geometry. To define products among theÂm it
is natural to adopt the usual product of operators in quan
mechanics, which in this case, corresponds to ordinary

trix product (ÂmÂn)J
J8 . Having defined the product, we in

troduce the diamond product inxm space as the one that
equivalent to the matrix product via the map~56!

~AmLAn!~x![N21Tr„D̂~x!ÂmÂn…, ~57!

~ÂmÂn!J
J85 (

xmP(Tn)d
Am~x!LAn~x!„D̂~x!…J

J8 . ~58!

This expression can be rewritten purely in terms ofAm(x) by
using the correspondence~56! and then using the formulas i
Eqs.~51!, ~52!
10501
s

n-

m
a-

Am~x!LAn~x!5N21 (
y,zP(Tn)d

Tr„D̂~x!D̂~y!

3D̂~z!…Am~y!An~z!

5N21 (
y,zP(Tn)d

e2iBmn(xm2ym)(xn2zn)

3Am~y!An~z!. ~59!

It is physically interesting to note that the sums in the d
mond product are weighted by exponentials of the flux t
passes through the area defined by the three lattice po
x,y,z.

For the complete set of periodic functionsf p(x) given in
Eq. ~45! it is interesting to note their matrix map accordin
to Eq. ~56!

~ f̂ p!J
J85 (

xmP(Tn)d

exp~ ip•x!

N
„D̂~x!…J

J85~V̂2p!J
J8 .

The result of applying the diamond product on them is

exp~ ip•x!

N
L

exp~ ip8•x!

N

5expS 2
i

2
umnpmpn8Dexp„i ~p1p8!•x…

N
~60!

f p~x!L f p8~x!5expS 2
i

2
umnpmpn8D f p1p8~x!. ~61!

It is important to emphasize that all positionsxm and all
momentapm are on their respective lattices with onlyN2

allowed values for each. The form of this result has a co
plete parallel in the continuum limit when the positions a
momenta are continuous and the star product~1! is used
instead of the diamond product~59!

eip•x* eip8•x5expS i

2
umn]m

x ]n
yDeip•xeip8•yU

y5x

~62!

5expS 2
i

2
umnpmpn8Dei (p1p8)•x.

~63!

Since the plane waveseip•x form a complete set of function
in the continuum theory, this shows that the continuum lim
of the diamond product is the star product given in Eq.~1!.

We have shown through Eq.~57! that the diamond prod-
uct (AmLAn)(x) is equivalent to the finiteN3N matrix

product (ÂmÂn)J
J8 thanks to the map„D̂(x)…J

J8 . Going over to
the continuum corresponds to a particular largeN limit ~there
are many possible largeN limits sinceN5n1n2•••nd/2 , and
any of the factors could be large in independent ways!. When
all ni5n→` are large, the star product can be associa
with the largeN limit of the diamond product. Note that in
taking the largen limit to reach the continuum, one mus
8-6
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keep Bmn52pbmnn/(na)2 and the productsan, and nbmn

finite ~the number of flux linesbmn per lattice plaquette goe
to zero as the lattice distance vanishes!.

III. DISCRETE NON-COMMUTATIVE GAUGE THEORY

To construct a gauge theory we also need to defin
lattice version of the derivative of fields, such as]mAn(x).
When xm is on the lattice we will write symbolically
]̂mAn(x) where]̂m is a discrete operation that we define. T
simplest way is to define it in matrix space as a commuta

2 i @ P̂m ,Ân#J
J8 with a fixed set ofN3N matricesP̂m , and

then map it tox-space using the map~56!

]̂mAn~x!5N21Tr„2 i @ P̂m ,Ân#D̂~x!… ~64!

2 i @ P̂m ,Ân#J
J85 (

xmP(Tn)d
]̂mAn~x!„D̂~x!…J

J8 . ~65!

The important property of the definition is that this latti
derivative is distributive when the diamond product is us

]̂m„An~x!LAl~x!…

5„]̂mAn~x!…LAl~x!1An~x!L„]̂mAl~x!….

Furthermore,]̂m is commutative]̂m]̂n5 ]̂n]̂m if the matrices
P̂m commute with each otherP̂mP̂n5 P̂nP̂m . That is, one can
immediately show

]̂m„]̂nAl~x!…5 ]̂n„]̂mAl~x!…, ~66!

by using the definition~64! and matrix Jacobi identities.

A. Non-commutative U„1… gauge theory

With these definitions we give the covariant derivati
applied on any functionc(x) defined on the periodic lattice

D̂mc~x![]̂mc~x!2 iAm~x!Lc~x!1 ic~x!LAm~x!.
~67!

Both the function and the covariant derivative transform
variantly under gauge transformations providedAm(x) also
transforms as follows:

dAm~x!5D̂mL~x!, ~68!

dc~x!5 iL~x!Lc~x!2 ic~x!LL~x!, ~69!

d„D̂mc~x!…5 iL~x!L„D̂mc~x!…2 i „D̂mc~x!…LL~x!.
~70!

Using the map„D̂(x)…J
J8 each one of these equations can

written in the equivalent matrix space forĉ,Âm . The cova-
riant derivative becomes the matrix commutator

D̂mc~x!→@2 i ~ P̂m1Âm!,ĉ#. ~71!

The transformation laws are
10501
a

r

,

-

dĉ5 i @L̂,ĉ#, dÂm5@2 i ~ P̂m1Âm!,L̂# ~72!

and the covariance can be checked explicitly by using ma
Jacobi identities

d@2 i ~ P̂m1Âm!,ĉ#5 i †L̂,@2 i ~ P̂m1Âm!,ĉ#‡.

Next we can define the covariant field strength in posit
space and in matrix space as the commutator of the cova
derivatives, with the usual map relating the two

Fmn~x!5N21Tr„F̂mnD̂~x!… ~73!

~ F̂mn!J
J85 (

xmP(Tn)d
Fmn~x!„D̂~x!…J

J8 ~74!

and

Fmn~x!52 iD̂ [mLD̂n]5 ]̂ [mAn]~x!1A[mLAn]~x!
~75!

~ F̂mn!J
J852 i @~ P̂m1Âm!,~ P̂n1Ân!#J

J852 i @ âm ,ân#J
J8

~76!

where in the last line we have used the definition for t
matrix âm

~ âm!J
J85~ P̂m1Âm!J

J8 ~77!

that appears everywhere. The matricesP̂n ,Ân appear every-
where only in the combinationâm , therefore the theory is
expressed only in terms of the matrixâm .

The action for the pure U~1! non-commutative gauge
theory is then written in either discrete position space or
matrix space

S5
1

4N2 (
xP(Tn)d

Fmn~x!LFmn~x! ~78!

5
1

4 (
xP(Tn)d

Tr~ F̂mnF̂mn!52
1

4
Tr@ âm ,ân#2.

~79!

To derive the last line from the first line one can use the m
~57! for the product FmnLFmn and then use
N23(xP(Tn)dD̂(x)51̂.

Matter, including fermions, can be added naturally both
the lattice and the matrix formulation. The supersymme
version is also straightforward.

B. Non-commutative U„M … gauge theory

The U(M ) gauge theory is naturally constructed by a

taching indices on the gauge fields„Am(x)…a
a8 with a,a8

51,2, . . . ,M . Then the diamond product is combined wi

matrix product„Am(x)LAm(x)…a
a8 . In the matrix version the

matrix has the following indicesÂJa
J8a8. This is equivalent to
8-7
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enlarging the direct product spaceJ5( j 1 j 3••• j d21) to
( j 1 j 3••• j d21a). From the point of view of our discussio
we can interpret the additional indexa as arising from two
extra non-commuting dimensions @Xd11 ,Xd12#
5 i (B21)d11,d12, with their eigenvalues on the latticej d11
[a51,2, . . . ,n(d12)/2, wheren(d12)/2[M . Then we can re-
gard the U(M ) non-commutative gauge theory ind dimen-
sions, as a U~1! non-commutative gauge theory ind12 di-
mensions. In the matrix version its action takes the form

S52
1

4
Tr@ âm ,ân#2 ~80!

where nowâm is a NM3NM matrix given by

~ âm!Ja
J8a85~ P̂m!J

J8da
a81~Âm!Ja

J8a8 . ~81!

Since (Âm)Ja
J8a8 is the most general matrix, (âm)Ja

J8a8 is also

the most generalNM3NM matrix. The form (P̂m)J
J8da

a8 that
seems to be pulled out artificially serves only to distingu
between the space directions and the internal directions.

If we take this point of view, the U~1! non-commutative
gauge field may be labeled byAm(xm,sW ) wheres1 ,s2 are
the extra coordinates that take values at theM2 lattice points
in the (s1 ,s2) plane. This point of view was explored a lon
time ago in@7#, where it was shown that the U(M ) gauge
transformations at finiteM may also be regarded as discre
diffeomorphism transformations of the discrete torus. As d
cussed in@7# these discrete area preserving transformati
can be embedded in SL(2,ZM).

The action above is not yet a fulld12 dimensional gauge
theory because two additional fieldsAd11(xm,sW ) and
Ad12(xm,sW ) ~or their matrix counterpartsâd11 and âd12)
are missing. However, if the original U(M ) non-
commutative gauge theory is enlarged by including two
ditional scalars in the adjoint representation ofU(M ), then
those two scalars could be interpreted as the extra s
components of the gauge field ind12 dimensions, to com-
plete it to a full U~1! non-commutative gauge theory ind
12 dimensions.
rg

as

D.

10501
h

-
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-

ce

As in the U~1! case, matter fields can be easily added a
the theory can be supersymmetrized.

IV. OUTLOOK

In this paper we have discussed a discrete version of n
commutative geometry that arises in string theory in theB
field background. We have presented a formalism that in
duced the diamond product as a lattice version of the
product, and thus suggested a cutoff version of n
commutative gauge theory.

One may ask what relation could one establish betw
our results and some other attempt at providing a n
commutative version of Wilson’s lattice gauge theory fo
malism. In the same way that non-commutative gauge the
in the continuum can be recast as a usual gauge theory
an infinite number of high derivative terms@2#, we suspect
that our results can be rewritten as a complicated Wilson
type lattice action. It would be interesting to compare the
Hooft limits of ordinary and non-commutative Yang-Mill
on the lattice and verify their equivalence as claimed in@22#
for the continuum.

The similarity to reduced models could be further e
plored. Wilson loop variables for non-commutative Yan
Mills have their counterparts in the reduced Yang-Mi
theory, but now the tracing must be done over both inter
and external matrix indicesJa. It would be interesting to
understand the relevance of this formulation of Wilson lo
variables in the extrapolation of the AdS-CFT correspo
dence in the presence of the backgroundB field, as studied in
@23#.

In our version one could analyze the theory at finiteN
which provides a cutoff. For a sufficiently smallN the analy-
sis can be done with the help of a computer. Also, since
action is very simple, analytic computations may not be
of reach.
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