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Dynamical chiral symmetry breaking on the light front. II. The Nambu –Jona-Lasinio model
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An investigation of dynamical chiral symmetry breaking on the light front is made in the Nambu–Jona-
Lasinio model with one flavor andN colors. The analysis of the model suffers from extraordinary complexity
due to the existence of a ‘‘fermionic constraint,’’ i.e., a constraint equation for the bad spinor component.
However, to solve this constraint is of special importance. In classical theory, we can exactly solve it and then
explicitly check the property of ‘‘light-front chiral transformation.’’ In quantum theory, we introduce a bilocal
formulation to solve the fermionic constraint by the 1/N expansion. Systematic 1/N expansion of the fermion
bilocal operator is realized by the boson expansion method. The leading~bilocal! fermionic constraint becomes
a gap equation for a chiral condensate and thus if we choose a nontrivial solution of the gap equation, we are
in the broken phase. As a result of the nonzero chiral condensate, we find an unusual chiral transformation of
fields and nonvanishing of the light-front chiral charge. A leading-order eigenvalue equation for a single
bosonic state is equivalent to a leading-order fermion-antifermion bound-state equation. We analytically solve
it for scalar and pseudoscalar mesons and obtain their light-cone wave functions and masses. All of the results
are entirely consistent with those of our previous analysis on the chiral Yukawa model.

PACS number~s!: 11.30.Rd, 11.15.Pg, 11.30.Qc
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I. INTRODUCTION

Our expectation that light-front~LF! formalism enables us
to relate QCD directly to the constituent quark model a
field-theoretic level@1# seriously requires a full understand
ing of dynamical chiral symmetry breaking (DxSB) on the
LF. Central to this issue is, first of all, the well-known pro
lem of how to reconcile a LF ‘‘trivial’’ vacuum with a
chirally broken vacuum having a nonzero fermion cond
sate. The secondary problem is to determine the propert
‘‘LF chiral transformation’’ which is defined differently
from the usual one. The most surprising fact of the LF ch
transformation is that it is an exact symmetry even fo
massive free fermion@2#.

In the present paper, we discuss this issue within
Nambu–Jona-Lasinio~NJL! model@3# which is a typical ex-
ample of DxSB. Previously we considered the same probl
from a different point of view@4#. Our interest was in de
scribing DxSB of the NJL model, but we actually took
roundabout way in order to apply an idea which works w
for spontaneous symmetry breaking of a scalar model,
fermionic theory. We know that the longitudinal zero mod
of scalar fields are responsible for describing spontane
symmetry breaking on the LF. Indeed, it is achieved by so
ing the ‘‘zero-mode constraints’’~i.e., constraint equation
for the longitudinal zero modes! nonperturbatively@5#. The
zero-mode constraint appears in the discretized light-c
quantization~DLCQ! approach@6#, where we set periodic

*Present address: RIKEN-BNL Research Center, BNL, Upt
NY 11973. Email address: itakura@bnl.gov

†Email address: maedan@tokyo-ct.ac.jp
0556-2821/2000/62~10!/105016~19!/$15.00 62 1050
a

-
of

l
a

e

l
a

s
us
-

e

boundary conditions for scalars in the longitudinal directi
with finite extension. Of course the NJL model has no sca
fields as fundamental degrees of freedom, but we overc
the situation by considering the chiral Yukawa model. Th
model shows DxSB in the large-N limit ( N is the number of
fermions! and goes to the NJL model in infinitely heav
mass limit of scalar and pseudoscalar bosons. We sho
that the zero-mode constraint of the scalar field correc
produces a gap equation for a chiral condensate and ca
lated masses of the scalar and pseudoscalar bosons
poles of their propagators. Therefore, in Ref.@4#, we suc-
ceeded in describingindirectly the chiral symmetry breaking
of the NJL model on the LF.

Since the very essence of the previous analysis was
existence of scalar fields, one may ask a question: How
one formulate DxSB withoutscalars? In order to answer th
question, we treat the NJL model without introducing
auxiliary field. An important key was already shown in Re
@7#. It was found that the ‘‘fermionic constraint’’ plays th
same role as that of the zero-mode constraint. Splitting
fermion field asC5c11c2 , c65L6C by using projec-
torsL65g7g6/2, we easily find that the ‘‘bad’’ componen
c2 is a dependent variable and subject to a constraint eq
tion called the ‘‘fermionic constraint.’’ In the LF NJL mode
the fermionic constraint is very complicated and it is difficu
to solve it as an operator equation. However, we will see t
to solve this equation is a crucial step for describing
broken phase and will find a close parallel between the
mionic constraint for DxSB and the zero-mode constraint fo
spontaneous symmetry breaking in scalar models. Altho
such special importance of the fermionic constraint might
restricted only to the LF NJL model and therefore most
the analysis might be model dependent, but what we

,
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eventually interested in is the physics consequences of
chiral symmetry breaking. And of course we cannot rea
the chiral symmetry breaking in QCD unless we underst
the simpler and typical example of this phenomenon. The
fore the importance of our analysis is evident.

Let us comment on other attempts for the NJL model
the LF. First of all, Heinzlet al. @8# treated the model within
the mean-field approximation and insisted on delicacy of
infrared cutoff to obtain a chiral condensate. The mean
and necessity of such a cutoff scheme was clarified in R
@9#. As mentioned above, an observation that a gap equa
for a chiral condensate emerges from the fermionic c
straint was first pointed out by one of the authors@7#. The
light-cone ~LC! wave function of a pionic state was calc
lated through the LC projection of the Bethe-Salpeter am
tude which was derived in the equal-time quantization@10#.
Bentzet al. introduced the auxiliary fields to fermion bilin
ears and solved the constraint equations for them by theN
expansion@11#. They obtained an ‘‘effective’’ Lagrangian
for the broken phase and discussed the structure functio
the pionic state. With all these studies, however, there
remains many unknowns concerning basic problems. E
cially, we still do not understand well the LF chiral transfo
mation itself. To what extent is it different from the usu
chiral symmetry? How is the chiral symmetry breaking re
ized on the LF? These fundamental problems will be
solved in the present paper.

The paper is organized as follows. The rest of this sec
is devoted to introduction of the NJL model and our notatio
In Sec. II, we discuss the complexity of the fermionic co
straint in great detail. We explicitly solve the fermionic co
straint in classical treatment and investigate properties of
chiral transformation. In Sec. III, we solve the fermionic co
straint in quantum theory by the 1/N expansion. Here we
introduce the boson expansion method in order to solve
bilocal fermionic constraint with systematic 1/N expansion.
We see the emergence of the gap equation for the ch
condensate from the fermionic constraint. We obtain
Hamiltonian with respect to the~bilocal! bosons which is
introduced by the boson expansion method. In Sec. IV, so
physics consequences of the chiral symmetry breaking
discussed. First of all, we see how the chiral symme
breaking is realized in the LF formalism. We discuss unus
chiral transformation of fields and nonconservation of
light-front chiral charge. Second, we construct the bou
state equation for mesonic states and solve it for scalar
pseudoscalar mesons. Third, we derive the partially cons
ing axial vector current~PCAC! relation. Summary and con
clusion are given in the last section. Miscellaneous top
with detailed calculation are presented in Appendixes.

Before ending this section, let us fix our model and no
tion. Since the primary purpose of our paper is to study ba
properties of the LF chiral symmetry, we consider only o
flavor case for simplicity. Thus the model we discuss is

L5C̄~ i ]”2m0!C1
g2

2
@~C̄C!21~C̄ig5C!2#. ~1.1!

Here Ca(x) (a51, . . . ,N) is a four-component spino
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with ‘‘color’’ internal symmetry U(N), which has been in-
troduced so that we can use the 1/N expansion as a nonper
turbative technique. We always work with a nonzero ba
massm0Þ0. The primary reason is that the Hamiltonia
with a massless fermion is plagued with a troublesome s
ation in 111 dimensions: As we will see, if we setm050
from the beginning, the canonical LF HamiltonianP2 of the
Gross-Neveu model vanishes altogether. Even in 311 di-
mensions, we will see that absence of the bare mass
causes an inconsistency of the results. The secondary re
is to avoid massless particles which can move in para
with x15const surface. The difficulty of describing massle
particles is intimately connected with the fact that on the L
the ~massless! Nambu-Goldstone boson becomes physica
meaningful only when we first include explicit breaking ter
and then take the vanishing limit of it@12#. The same situa-
tion was observed in the chiral Yukawa model@4#.

In practical calculation, it is convenient to introduce th
two-component representation for the gamma matrices
that the projectorsL6 are expressed as

L15S 1 0

0 0D , L25S 0 0

0 1D . ~1.2!

Then, the projected fermions have only upper or lower co
ponents:

c15L1C[221/4S c

0 D , c25L2C[221/4S 0

x
D ,

~1.3!

where we defined two-component spinorsc andx. Among
various representations which satisfy Eq.~1.2!, we choose a
representation having a similar structure to the chiral rep
sentation in 111 dimensions, i.e.,g05s1, g152 is2, g5
5g0g15s3. Explicitly, they are

g05S 0 1

1 0D , g35S 0 21

1 0 D , g i5S 2 is i 0

0 is i D ,

~1.4!

for i 51,2 and

g55S s3 0

0 2s3D . ~1.5!

Results of the chiral Gross-Neveu model in 111 dimensions
can be easily obtained if we make a replacement for the P
matricess3→1 and s i→0, and regardc and x as one-
component spinors. The explicit form of the Lagrangian
the two-component representation is given in Appendix A

In the previous work@4#, we made the longitudinal direc
tion finite in order to carefully treat the longitudinal zer
modes of the scalar fields. However, in the present analy
we work in an infinite longitudinal space. There is no need
introducing finitex2. When we take the inverse of]2 , we
6-2
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DYNAMICAL CHIRAL SYMMETRY . . . . II. . . . PHYSICAL REVIEW D 62 105016
need to specify the boundary conditions. We here follow
conventional antiperiodic boundary condition1 which is stan-
dard for free fermions:

ca~x252`,x'
i !52ca~x25`,x'

i !, ~1.6!

xa~x252`,x'
i !52xa~x25`,x'

i !. ~1.7!

So our results must always have a smooth free-field limi

II. COMPLEXITY OF THE FERMIONIC CONSTRAINT
AND THE CHIRAL SYMMETRY

It is highly complicated structure of the fermionic co
straint that makes the analysis of the LF NJL model difficu
However, we cannot know anything about LF chiral symm
try unless we confront with this complexity. Therefore in th
section, we investigate the fermionic constraint in great
tail. First of all, we classically solve the fermionic constrain
Using the explicit solution, we then discuss properties of
LF chiral transformation. Especially we show that LF chir
transformation is no longer an exact symmetry whenm0
Þ0. Finally, we consider the implication of the fermion
constraint in quantum theory.

A. Fermionic constraint and its classical solution

The fermionic constraint is immediately obtained as
Euler-Lagrange equation forx:

i ]2xa5
1

A2
~2s i] i1m0!ca2

g2

2
$ca~cb

†xb1xb
†cb!

1s3ca~cb
†s3xb2xb

†s3cb!%, ~2.1!

where summation over color and spinor indices are impli
If we want to solve this equation as an operator equation
quantum theory, we need a commutation relation betweex
with c which must be given by the Dirac brackets. Since
anticommutator$x,c% is very complicated, it seems almo
hopeless to find an exact quantum solution of it. However
a classical theory where we treat all the variables just
Grassmann numbers, the equation becomes tractable an
not difficult to solve it. Indeed, the exact solution with an
periodic boundary condition is given by~see Appendix B for
more details!

S x1a~x!

2x2a
† ~x!

D 5
1

A2
E

2`

`

dy2Gab~x2,y2,x'!

3S m0c1b~y2!2]zc2b~y2!

2]zc1b
† ~y2!1m0c2b

† ~y2!
D , ~2.2!

1For a scalar field, antiperiodic boundary condition in infinite lo
gitudinal space leads to inconsistency@12#. However, fermionic
fields are free from such troubles.
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where ]z5]12 i ]2 and the ‘‘Green function’’
Gab(x

2,y2,x') is

Gab~x2,y2,x'!5G(0)~x!F 1

2i
e~x22y2!1CGG(0)21~y!,

~2.3!

G(0)~x!5Peig2*2`
x2 A(y2)dy2

, ~2.4!

Ai jab5S c1ac1b
† c1ac2b

c2a
† c1b

† c2a
† c2b

D . ~2.5!

The integral constantC is determined so that the solutio
satisfies the antiperiodic boundary condition. In Eq.~2.4!, P
stands for the path-ordered product. Note that we easily
rive the solution for the chiral Gross-Neveu model by e
tracting the 1-1 component ofA and neglecting]z . The
result is equivalent to the solution of the Thirring mod
obtained by Domokos@13#. And also, if we take the free
fermion limit g2→0, we of course recover the free solutio
due toG(0)(x)→1 andG(x2,y2)→e(x22y2)/2i .

B. Chiral symmetry on the light front

Since the bad componentx is a constrained variable in
the LF formalism, we impose the chiral transformation on
on the good componentc1→eiug5c1 or in the two-
component representation@see Eq.~1.5!#

c→eius3
c. ~2.6!

Now we have completely solved the fermionic constraint
x, we can explicitly demonstrate its transformation prope
under the LF chiral transformation. However, before discu
ing the NJL model, it will be instructive to remind you of th
LF chiral symmetry in the free massive fermion.

As we mentioned before, themassivefree fermion is chi-
ral invariant under the transformation~2.6!. Let us see this
fact directly in the Lagrangian even though it is a litt
lengthy. It is convenient to separate the solution of the f
mionic constraintx5(A2i ]2)21(2s i] i1m0)c into mass-
independent and dependent partsx5x (0)1x (m) as

x (0)52
1

A2
s i] i

1

i ]2

c, x (m)5
m0

A2

1

i ]2

c.

Note that there is a relation betweenx (0) andx (m):

s i] ix
(m)1m0x (0)50. ~2.7!

As a result of the LF chiral transformation~2.6!, we find

x (0)→e2 ius3
x (0), ~2.8!

x (m)→eius3
x (m). ~2.9!

The free fermion Lagrangian is compactly expressed
Lfree5c†vEOM1x†vFC, where vEOM5 i ]1c21/A2(s i] i
1m0)x50 is the equation of motion forc and vFC
6-3
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K. ITAKURA AND S. MAEDAN PHYSICAL REVIEW D 62 105016
5 i ]2x2 1/A2 (2s i] i1m0)c50 is the fermionic con-
straint. The second term is zero and is invariant under the
chiral transformation. Now substitutingx5x (0)1x (m) into
the Lagrangian, the first term is decomposed into appare
invariant and~seemingly! noninvariant terms

c†vEOM5c†F i ]1c2
1

A2
~s i] ix

(0)1m0x (m)!G
1c†F2

1

A2
~s i] ix

(m)1m0x (0)!G .

The first term consists of them0-independent term and qua
dratically dependent termO(m0

2), while the second term lin-
early depends onm0. The O(m0) term changes under th
chiral transformation, but due to the relation~2.7!, it eventu-
ally vanishes and therefore the Lagrangian is invariant e
if there is a mass term. As a result, we have a conser
Noether current@2#

j 5Free
m 5C̄gmg5C2m0C̄gmg5

1

i ]2

g1c1 ,

]m j 5Free
m 50,

which of course reduces to the usual current in the mass
limit.

Now let us consider the NJL model. Decomposition ofx
is straightforward:

S x1a
(0)

2x2a
(0)†D 52

1

A2
E

2`

`

dy2Gab~x2,y2,x'!S ]zc2b

]zc1b
† D ,

~2.10!

S x1a
(m)

2x2a
(m)†D 5

m0

A2
E

2`

`

dy2Gab~x2,y2,x'!S c1b

c2b
† D .

~2.11!

Since the matrixA, and thusGab(x,y) is invariant under the
transformation~2.6!, it is easy to find thatx (0) and x (m)

transform as Eqs.~2.8! and ~2.9!. Therefore, ifm050, the
LF chiral transformation~2.6! is equivalent to the usual chi
ral transformation. The chiral current and the chiral cha
are given by

j 5
m5C̄gmg5C, ~2.12!

Q5
LF5E

2`

`

dx2d2x' j 5
1~x!

5E
2`

`

dx2d2x'c†s3c. ~2.13!

How about the massive case? As we explicitly show
above, the mass term does not prevent chiral symmetry in
free fermion case. We must bare in mind such a possib
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even in the NJL model. Thus it is worthwhile to chec
whether themassiveNJL model is invariant under the LF
chiral transformation. To see this, it is convenient to treat
Hermite Lagrangian

LHermite5
1

2
ic†]J1c2

1

2A2
@~c†s i] ix1] ix

†s ic!

1m0~c†x1x†c!#. ~2.14!

Note that this is equivalent to the free Lagrangian except
x is a solution of Eq.~2.1!. Now the apparently noninvarian
term is a term linearly depending onm0:

2
1

2A2
c†~s i] ix

(m)1m0x (0)!1H.c. ~2.15!

In the massive free fermion case, we had the same term
it eventually vanished due to Eq.~2.7!. However, in the NJL
model, it is evident from Eqs.~2.10! and ~2.11! such a rela-
tion does not hold becauseG depends onx' . Therefore, we
have verified that the massive NJL model isnot invariant
under the LF chiral transformation. If and only ifm050, the
LF chiral transformation is the symmetry of the NJL mod
and equivalent to the usual chiral transformation. This is
course not a surprising result but must be checked explic
Anyway, we do not stick to this problem anymore.

Irrespective of whether we have a mass term or not,
always use the definition for the chiral current Eq.~2.12!
which was derived for the massless fermion. In the mass
case, it is of course a conserved current]m j 5

m50, while in
the massive case, a usual relation holds

]m j 5
m52m0C̄ig5C, ~2.16!

which is derived by using the Euler-Lagrange equation
the massive fermion. Equation~2.16! is used when we dis-
cuss nonconservation of the chiral charge and the PCAC
lation in Sec. IV.

C. Implication of the fermionic constraint

So far we treated the fermionic constraint in classi
theory and obtained the exact solution~2.2!. However, this
solution does not give a nonzero condensate and the resu
Hamiltonian does not describe the broken phase. The si
tion is very similar to the previous analysis of the chir
Yukawa model@4#. The chiral Yukawa model in the DLCQ
approach has three constraint equations. We solved the
classical theory but we could not find any way to descr
the broken phase with the classical solutions. What we
nally found is that it is very important to treat the constra
equations, especially the zero-mode constraint for a sc
field, nonperturbatively in quantum theory. This fact is tr
of our present case. To obtain a nonzero condensate, we
treat the fermionic constraint as an operator equation
solve it with some nonperturbative method.

To strengthen this, let us briefly overview the procedu
in the previous work@4#. In the chiral Yukawa model, we
6-4
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DYNAMICAL CHIRAL SYMMETRY . . . . II. . . . PHYSICAL REVIEW D 62 105016
have three dependent variables: Two of them are the lo
tudinal zero modes of scalar and pseudoscalar fields

s0~x'!5~1/2L !*2L
L dx2s~x!,

p0~x'!5~1/2L !*2L
L dx2p~x!

whereL is an extension of the longitudinal directionx2P
@2L,L#, and the rest is the bad component of a ferm
c2(x). So there are three constraints:

S m2

l
2]'

2 D S s0

p0
D 5

m2

N

1

A2
E

2L

L dx2

2L
Fc1

a†S 21

ig5
D g2c2

a

1c2
a†S 21

ig5
D g1c1

a G , ~2.17!

2i ]2c2
a 5~ ig'

i ] i1m01s2 ipg5!g1c1
a ,

~2.18!

wherel5g2N in the present notation andm is a dimension-
less parameter which controls the scalar and pseudos
masses. In the infinitely heavy mass limit,m→`, we recover
the NJL model. The procedure of Ref.@4# is as follows: First,
we formally solved the fermionic constraint~2.18! and sub-
stitute the solution into the zero-mode constraints~2.17!.
Second, we solved the zero-mode constraints by 1/N expan-
sion with a fixed operator ordering and found that the lead
order of the scalar zero-mode constraint can be identi
with the gap equation. Selecting a nontrivial solution of t
gap equation, we again substitute it back to the fermio
constraint. Then we obtain the final expression for the b
componentc2 in terms of independent variables. Thus w
solved three coupled equations step by step. On the o
hand, we have only one constraint equation. The proced
in the chiral Yukawa model suggests that we will have to
almost the same procedureat oncewhen we solve the fermi-
onic constraint. Note that just the same as in the ch
Yukawa model, a perturbative solution cannot reach the b
ken phase even in quantum theory. Therefore, we natur
expect that solving the fermionic constraint~2.1! in quantum
theory using some nonperturbative method is necessary
describing the chiral symmetry breaking@7#.

III. SOLVING THE FERMIONIC CONSTRAINT
BY 1ÕN EXPANSION IN QUANTUM THEORY

As we discussed above, it is important to solve the fer
onic constraint~2.1! in quantum theory by some nonpertu
bative method. Here we solve it with a fixed operator ord
ing by using the 1/N expansion. For systematic 1/N
expansion, we introduce the bilocal formulation. We rewr
the fermionic constraint in terms of bilocal fields and expa
it following the Holstein-Primakoff-type expansion of th
boson expansion method. We always work with fixedx1.
10501
i-

n

lar

g
d

ic
d

er
re
o

l
o-
lly

or

i-

-

d

A. Quantization and the operator ordering

To solve the constraint in quantum theory, we must fi
perform the Dirac quantization for constraint systems.2 After
tedious but straightforward calculation of the Dirac bracke
we find a familiar relation for the good componentca (a
51,2)

$ca
a~x!, cb

b†~y!%x15y15dabdabd~x22y2!d (2)~x'2y'!,
~3.1!

and so on. We introduce the simplest mode expansion
x150 as in Ref.@14#:

ca
a~x!5E

2`

` d2k'

2p
E

0

` dk1

A2p
@ba

a~k!eikx1da
a†~k!e2 ikx#,

~3.2!

where kx[2k1x21k'
i x'

i . The vacuum is defined by th
annihilation operators as

ba
a~k!u0&5da

a~k!u0&50. ~3.3!

When we deal with the quantum fermionic constraint, w
have to specify the operator ordering. In many publicatio
discussing the zero-mode constraints, people often cho
the Weyl ordering with respect to both constrained and
constrained variables. However, in a previous paper@4#, we
discussed that the ideal situation was to find a ‘‘consiste
operator ordering. For example, let us consider an antic
mutator$x,c% in the NJL model. It can be evaluated in tw
different ways:~i! by using the solutionxsol5x(c) of the
fermionic constraint and the standard quantization rule~3.1!,
and ~ii ! by calculating the Dirac bracket for$x,c%. For the
case~i!, we select a specific operator ordering for the ferm
onic constraint, and the result depends on the ordering.
the case~ii !, we must also determine the ordering in th
right-hand side~rhs! of the Dirac bracket$x,c%D5 . . . .
These two results must be equivalent to each other. We h
two ambiguities of the operator ordering: those of the co
straint equation in~i! and the rhs of the Dirac bracket in~ii !.
‘‘Consistent operator ordering’’ should be imposed so th
these two quantities be identical. In other words, we de
mine the operator ordering of the rhs in the Dirac brackets
that it coincides with the direct evaluation. In the chir
Yukawa model, we could not check that the ordering
adopted was consistent or not. Again in the NJL model, t
is a very difficult task and we choose a specific opera
ordering defined by Eq.~2.1!. However, the chiral Gross
Neveu model in 111 dimensions allows us to check th
consistency of this operator ordering. This is briefly sho
in Appendix C.

2In Ref. @11#, the authors solved the constraint equations for a
iliary fields before canonical quantization was specified and gav
c number to the scalar auxiliary field in leading order of 1/N. Nev-
ertheless, the condensation in the NJL model is a quantum phen
enon and thus this procedure is not justified.
6-5
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B. Boson expansion method as 1ÕN expansion of bilocal
operators

How can we solve the ‘‘operator equation’’ Eq.~2.1! by
the 1/N expansion? It is generally difficult to count the ord
O(Nn) of an operator instead of its matrix element. What
worse, it is physically hard to justify the 1/N expansion of
the fermionic field itself. However, as was discussed in R
@15#, there is a powerful method to this problem. We c
perform a systematic 1/N expansion of operators if we intro
duce the bilocal operators and use the boson expan
method. The boson expansion method is one of the tr
tional techniques in nonrelativistic many-body problem
@16#. Originally this was invented for describing bosonic e
citations in nonbosonic systems such as collective excita
in nuclei or spin systems.

Let us rewrite the fermionic constraint~2.1! in terms of
bilocal operators. We introduce the following ‘‘color’’ sin
glet bilocal operators at equal light-front time

Mab~x,y!5 (
a51

N

ca
a†~x1,x!cb

a~x1,y!, ~3.4!

Tab~x,y!5
1

A2
(
a51

N

„ca
a†~x1,x!xb

a~x1,y!

1xb
a†~x1,y!ca

a~x1,x!…, ~3.5!

Uab~x,y!5
2 i

A2
(
a51

N

„ca
a†~x1,x!xb

a~x1,y!

2xb
a†~x1,y!ca

a~x1,x!…. ~3.6!

We define the Fourier transformation of them as

Mab~p,q!5E
2`

` d3x

~2p!3/2
E

2`

` d3y

~2p!3/2
Mab~x,y! e2 ipx2 iqy,

and so on. Note that this definition allows the longitudin
momenta to take negative values. Using these bilocal op
tors, the fermionic constraint~2.1! is equivalently rewritten
as

i
]

]y2
Tab~x,y!5

1

2
$2] i

y
„sbg

i Mag~x,y!2sgb
i Mga~y,x!…

1m0„Mab~x,y!2Mba~y,x!…%

2
g2

2
$Mag~x,y!„dgbT~y,y!1 isgb

3 U~y,y!…

2„dbgT~y,y!2 isbg
3 U~y,y!…Mga~y,x!%,

~3.7!

and
10501
f.

on
i-

n

l
a-

i 2
]

]y2
Uab~x,y!5

1

2
$2] i

y
„sbg

i Mag~x,y!1sgb
i Mga~y,x!…

1m0„Mab~x,y!1Mba~y,x!…%

2
g2

2
$Mag~x,y!„dgbT~y,y!

1 isgb
3 U~y,y!…1„dbgT~y,y!

2 isbg
3 U~y,y!…Mga~y,x!%, ~3.8!

where we have introduced quantitiesT(x,y)[Taa(x,y) and

U(x,y)[(s3)ab Uab(x,y) so that C̄C(x)5T(x,x) and

C̄ig5C(x)5U(x,x). In actual calculation, it is more conve
nient to treat equations for the operators without spinor str
ture T(x,y) andU(x,y) because they form closed equatio
~see Appendix D!. Once we solve them, we immediate
obtainTab(x,y) andUab(x,y) from the above equations.

For systematic 1/N expansion of the bilocal fermionic
constraints, one must know how to expandMab(p,q). It is
the boson expansion method, especially, the Holste
Primakoff type expansion for largeN theories, that enable
us to expandMab(p,q) asoperatorquantities:

Mab~p,q!5N(
n50

` S 1

AN
D n

mab
(n)~p,q!. ~3.9!

According to the Holstein-Primakoff expansion@Eqs.~D5!–
~D8!#, the first three terms are written in terms of biloc
bosonic variableB(p,q) as

mab
(0)~p,q!5dabd (3)~p1q!u~p1!u~2q1!, ~3.10!

mab
(1)~p,q!5Bba~q,p!u~p1!u~q1!

1Bab
† ~2p,2q!u~2p1!u~2q1!,

~3.11!

mab
(2)~p,q!5E @dk#(

g
Bag

† ~2p,k!Bbg~q,k!

3u~2p1!u~q1!2E @dk#(
g

3Bgb
† ~k,2q!Bga~k,p!u~p1!u~2q1!.

~3.12!

where

E @dq#5E
0

`

dq1E
2`

`

d2q' .

Any commutator betweenMab(p,q)’s @such as Eq.~D3!# is
correctly reproduced if one uses the following bosonic co
mutators:
6-6
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@Bab~p1 ,p2!, Bgd
† ~q1 ,q2!#

5dagdbdd (3)~p12q1!d (3)~p22q2!, ~3.13!

@Bab~p1 ,p2!, Bgd~q1 ,q2!#50 ~pi
1 ,qi

1.0!.
~3.14!

Note also that the state annihilated byB(p,q) is identified
with the original Fock vacuum:

B~p,q!u0&50. ~3.15!

More detailed discussions about the boson expansion me
applied to LF field theories are found in Ref.@15# and Ap-
pendix D of the present paper.

C. Solution to the bilocal fermionic constraint

We are ready to solve the bilocal fermionic constra
using the 1/N expansion. As we commented before, it
convenient to solve the equations forT(p,q) andU(p,q) @see
Eqs.~D1! and ~D2! in Appendix D for their explicit forms#.
Once we knowT(p,q) andU(p,q), then it is straightforward
to obtainTab(p,q) andUab(p,q).

ExpandingT(p,q) andU(p,q) as

T~p,q!5N(
n50

` S 1

AN
D n

t (n)~p,q!, ~3.16!

U~p,q!5N(
n50

` S 1

AN
D n

u(n)~p,q!, ~3.17!

and inserting them into the fermionic constraints, we find
the lowest orderO(N)

S t (0)~p,q!

u(0)~p,q!
D 5S m0

e~p1!

q1
d (3)~p1q!

0
D

2g0
2
e~p1!

q1
E

2`

` d3k

~2p!3
S t (0)~k,p1q2k!

u(0)~k,p1q2k!
D ,

~3.18!

whereg0
25g2N. Since there are no operators in these eq

tions,t (0) andu(0) arec numbers. Nonzero solutions give th

leading-order contribution tôC̄C& and ^C̄ig5C&:

^0uC̄Cu0&5NE d3p

~2p!3
f t~p!1•••, ~3.19!
10501
od

t

r

-

^0uC̄ig5Cu0&5NE d3p

~2p!3
f u~p!1•••,

~3.20!

where t (0)(p,q)5 f t(p)d (3)(p1q) and u(0)(p,q)
5 f u(p)d (3)(p1q). As Eq. ~3.18! with m050 is invariant
under the chiral rotation, we can always takeu(0)(p,q)50.
For the massive case, we also takeu(0)(p,q)50 and
t (0)(p,q)Þ0. Now let us introduce a quantityM, which cor-
responds to the dynamical mass of fermion:

M5m02g2^C̄C&. ~3.21!

Then, to obtaint (0)(p,q) is equivalent to determiningM, viz.

t (0)~p,q!52M
e~p1!

p1
d (3)~p1q!. ~3.22!

In terms ofM, the leading-order fermionic constraint~3.18!
is rewritten as

M2m0

M
5g0

2E d3p

~2p!3

e~p1!

p1
. ~3.23!

Physically this equation should be interpreted as a gap e
tion. This is clarified in the next subsection.

Similarly higher-order fermionic constraints are solv
order by order. This is because the fermionic constraints
t (n)(p,q) and u(n)(p,q) are linear equations with respect
the highest order. Then51,2 solutions are important fo
giving a nontrivial Hamiltonian and so on. More details a
discussed in Appendix D.

D. Gap equation

Now let us discuss the physics meaning of Eq.~3.23!. As
we mentioned above, this equation should be regarded
gap equation for chiral condensate. In several previous s
ies of ours, we have seen essentially the same kind of e
tions @9,7,4#. Indeed, in Ref.@7# it was pointed out that Eq
~3.23! itself is the gap equation. Also in the chiral Yukaw
model @4#, the zero-mode constraint for the scalar field r
duced to the above equation and was interpreted as a
equation. Since this identification is an indispensable step
our framework, let us again explain it within the NJL mode

First of all, consider a naive massless limitm0→0 of Eq.
~3.23!:

M S 12g0
2E d3p

~2p!3

e~p1!

p1
D 50.

Thus we find two possibilities: the first isM50 and the
second is
6-7
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12g0
2E d3p

~2p!3

e~p1!

p1
50 ~3.24!

but M is arbitrary. Of course the first case is not interest
because it corresponds to the symmetric phase. On the o
hand, the second case with nonzeroM does not immediately
mean the existence of the broken phase. Since Eq.~3.24! is
independent ofM as it is, the dynamical massM is left un-
determined, which is not a physically acceptable situati
However, this observation is not correct because the di
gent integral in Eq.~3.24! is not regularized. Indeed, we ca
identify Eq. ~3.24! with the gap equation only after we car
fully treat the infrared~IR! divergence.

To see this, let us put an IR cutoff. First consider the sa
cutoff schemes as in the equal-time formulation, such as
covariant four-momentum cutoff. We can easily translate
into a cutoff on the light-cone momentumk1 and k'

i and
obtain the correct gap equation. Indeed, in Ref.@8#, a nonco-
variant ~rotationally invariant! three-momentum cutoff wa
performed to obtain the known result. But such a cutoff
artificial as a light-front theory, and we here adopt anot
cutoff scheme,the parity invariant cutoff. Usually, it is natu-
ral and desirable to choose a cutoff so as to preserve s
metry of a system as much as possible. For the LF coo
natesx6 and x'

i , it would be natural to consider parit
transformation (x1↔x2, x'

i →2x'
i ) and two-dimensiona

rotation in the transverse plane. In the usual canonical
mulation wherex1 is treated separately, the parity invarian
is not manifest. However, we find it useful for obtaining t
gap equation. In momentum space, the parity transforma
is exchange ofk1 and k2 and replacementk'

i →2k'
i .

Therefore the parity invariant cutoff is given byk6,L and
k'

2 ,L82. Using the dispersion relation 2k1k22k'
2 5M2,

we find that the parity invariant regularization inevitably r
lates the ultraviolet~UV! and IR cutoffs:

k'
2 1M2

2L
,k1,L. ~3.25!

This also implies the planar rotational invariancek'
2 ,2L2

2M25L82. What is important here is the use of constitue
massM in the dispersion relations. Physically it correspon
to imposingself-consistency conditions. Since the IR cutoff
includesM, the rhs of Eq.~3.23! has nontrivial dependenc
on M:

M2m0

M
5

g0
2L2

4p2 H 22
M2

L2 S 11 ln
2L2

M2 D J . ~3.26!

This is the gap equation and is equivalent to that of
previous result in the chiral Yukawa model@4#. It has a non-
zero solutionMÞ0 even in them0→0 limit. The somewhat
unfamiliar equation~3.26! of the NJL model exhibits the
same property as the standard gap equations of the e
10501
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time quantization. For example, whenm050, there is a criti-
cal couplinggcr

2 52p2/L2, above whichMÞ0.
The essential and inevitable step to obtain the gap eq

tion is the inclusion of mass information as the regularizat
rather than the fact that the UV and IR cutoffs are related
each other. If we regulate the divergent integral without m
information ~e.g., introducing the UV and IR cutoffs inde
pendently!, we cannot reproduce the gap equation. The l
of mass information is closely related to the fundamen
problem of the LF formalism@17#, and the parity invariant
regularization can be considered as one of the prescript
for it. Reference@17# discussed within scalar theory thatthe
light-front quantization gives a mass-independent two-po
function~at equal LF time!, which contradicts the result from
general arguments concerning the spectral representa
We have been encountered with the same problem in
~3.23! because the integral is regarded as a naive estima

of ^C̄C&/M by using fermion with massM. And also the
origin of mass-independent result can be traced back to
mode expansion~3.2!. Even if we include the wave function
for free fermion field, we do not have any mass depende
on the mode expansion@10#.

Let us give a brief comment on the chiral Gross-Nev
model@18#. Of course the important difference of the~111!-
dimensional case is the renormalizability. Ignoring the tra
verse directions in the above calculation, we easily find
gap equation (M2m0)/M5g0

2/(2p)ln(2L2/M2) where the
parity-invariant cutoffM2/2L,k1,L was used. Though it
explicitly depends on the cutoffL and is divergent asL
→`, we can remove the divergence by coupling const
renormalization@7#.

E. Hamiltonian

Having the solution to the bilocal fermionic constraint, w
can rewrite the fermion bilinear operators in terms of t
bilocal bosons. Of special importance is the~Hermitian!
Hamiltonian, which is easily expressed byTab(p,q) and
Uab(p,q) as follows:

H5P25
1

2A2
E d3x@~c†s i] ix1] ix

†s ic!

1m0~c†x1x†c!]

5
1

4E d3p d3qd (3)~p1q!iq'
i sab

i

3@„Tab~p,q!1Tba~q,p!…

1 i „Uab~p,q!2Uba~p,q!…#

1
m0

2 E d3pd3qT~p,q!d (3)~p1q!. ~3.27!
6-8
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Apparently this Hermitian version of the Hamiltonian see
equivalent to the free Hamiltonian, but the information
interaction enters through the bad componentx. We find the
1/N expansion of the Hamiltonian

H5N(
n50

` S 1

AN
D n

h(n), ~3.28!

by substituting the solutions of the fermionic constraints in
the Hamiltonian. The zeroth-order contribution is just a
vergent constant and we discard it. The first order is stric
zero. Nontrivial contribution comes from the orderO(N0),

h(2)5E @dp#@dq#S p'
2 1M2

2p1
1

q'
2 1M2

2q1
D Bab

† ~p,q!Bab~p,q!

1
g0

2

~2p!3
E @dp#@dq#@dk#@dl#d (3)~p1q2k2 l!

3a~p11q1!@Sgd
ab~p,q;k,l!2Pgd

ab~p,q;k,l!#

3Bab
† ~p,q!Bgd~k,l!1c number, ~3.29!

wherea(p11q1) is defined by Eq.~D13! and ‘‘kernels’’ of
the interaction terms are

Sgd
ab~p,q;k,l![@S~2p!2S~2q!#ab@S~k!2S~ l!#dg ,

~3.30!

Pgd
ab~p,q;k,l![@P~2p!2P~q!#ab@P~2k!2P~ l!#dg ,

~3.31!

with

Sab~p!5S ipis i2M

2p1
D

ab

, Pab~p!5S ipis i2M

2p1
s3D

ab

.

~3.32!

As is evident from the explicit forms of the kernels~3.30!

and~3.31!, they originate from the scalar interaction (C̄C)2

and the pseudoscalar one (C̄ig5C)2, respectively. If we sub-
stitute a nontrivial ~trivial! solution of the gap equation
~3.26! into the above Hamiltonian, then it governs the d
namics of the broken~symmetric! phase. The first term o
h(2) corresponds to a free part with massM and the second
term to an interaction part. In the broken phase,M is the
dynamical mass and the Hamiltonian suggests a constit
picture.

As we mentioned before, the Hermite Hamiltonian of t
chiral Gross-Neveu model has only anm0-dependent term
Neglecting the transverse coordinates in Eq.~3.27!, we have
10501
s
f
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nt

PGN
2 5

m0

2A2
E dx2~c†x1x†c!.

Furthermore, the classical solution for the bad spinor co
ponentx is proportional tom0. Therefore the naivem0→0
limit gives just a zero Hamiltonian. However, if we solve th
gap equation and substitute the nontrivial solution into
Hamiltonian, the resulting Hamiltonian turns out to be pr
portional toM2 and survives even in the chiral limit. This i
easily seen from the Hamiltonian of the NJL model~3.29!.
The ~constituent! mass term in Eq.~3.29! comes from the
bare mass term, whose factorm0 cancels with a factor
M2/m0 in the second-order solution*d3pt (2)(p,2p). Of
course this is not reached if we setm050 from the begin-
ning. Therefore, inclusion of the bare mass term is neces
to obtain a correct~constituent! mass term of the Hamil-
tonian.

IV. PHYSICS IN THE BROKEN PHASE

By solving the fermionic constraint, we acquired the ne
essary ingredients for discussing physics consequences o

chiral symmetry breaking. Basic quantities such asC̄C,

C̄ig5C, and the null-plane chiral charge~2.13! are expressed
in terms of the bilocal bosonsBab(p,q) andBab

† (p,q) as

C̄C~x!5T~x,x!

5
N

g0
2
~m02M !1ANE d3pd3q

~2p!3
t (1)~p,q!

3ei (p1q)x1O~N0!, ~4.1!

C̄ig5C~x!5U~x,x!

5ANE d3pd3q

~2p!3
u(1)~p,q!ei (p1q)x1O~N0!,

~4.2!

Q5
LF5E d3p sab

3 :Mab~p,2p!:

5E d3p sab
3 mab

(2)~p,2p!1O~N1/2!, ~4.3!

wheret (1)(p,q) andu(1)(p,q) are given in Appendix D. Now
that these are given as functions of the bilocal bosons at
operator level, all the calculation is done with the commu
tors ~3.13! and ~3.14!.

A. Chiral transformation and nonconservation
of chiral charge

Why could we obtain a nonzero fermion condensate?
understand this, let us rewrite the fermionic constraint~2.1!
as
6-9
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i ]2xa5
1

A2
~2s i] i1m0!ca2

g2

A2
„caT~x,x!

1 is3caU~x,x!…,

and substitute Eqs.~4.1! and ~4.2! into T(x,x) and U(x,x),
respectively.3 Then the leading-order equation turns out to
equivalent to the constraint equation for a free fermion w
massM,

i ]2xa5
1

A2
~2s i] i1M !ca .

Also at the same order, the equation of motion for the go
componentc says that the fermion acquires a massM. This
means that the operator structure of the bad spinorx changes
depending on which solutions of the gap equation~3.23! is
selected. For a massive fermion, the fermion conden

^C̄C& is no longer zero even if the vacuum is trivial. On
can find an analogy between the chiral Yukawa model
the NJL model because in the chiral Yukawa model,
operator structure of the longitudinal zero modes and su
quently of the bad spinor component changes dependin
the phases.

One thing to be noted is the peculiarity of the mode e
pansion~3.2!. It is evident that the mode expansion has
mass dependence in it. This caused the problem of iden
ing the lowest fermionic constraint with the gap equatio
We had to supply mass information properly when we re
larize the IR divergence. On the other hand, such indep
dence of mass, in turn, implies that our mode expans
allows fermions withany value of mass. In other words, the
LF vacuum does not distinguish the mass of the fermi
Therefore, we can regard the vacuum for massless fermio
that for massive one. The mass of the fields is determined
the Hamiltonian. This is the reason why we can live with t
trivial vacuum while having a nonzero fermion condensa
This fact is not a limited phenomenon for our specific mo
expansion but a common one for light-front field theorie
Indeed, even if we expand a fermion field with free spin
wave functions,u(p) and v(p), we have no mass depen
dence@10#.

The fact that the operator structure changes dependin
the phases, also resolves a seeming contradiction betw
the triviality of the null-plane chiral charge and the nonze

chiral condensatê0uC̄Cu0&Þ0. In general, it is known tha
a null-plane charge always annihilates the vacuum irresp

3In the leading order, this procedure corresponds to the mean-
approximation done by Heinzlet al. @8#. They solved the fermionic
constraint by simply linearizing the interaction parts
2g2/A2ca^T(x,x)&. By evaluating the vacuum expectation valu
^T(x,x)& self-consistently with the dynamical fermion massM
5m02g2^T(x,x)&, they obtained the gap equation. If one uses
parity-invariant cutoff, the result coincides with ours.
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tive of the presence of symmetry. This can be checked
plicitly by expression~4.3!, viz.

Q5
LFu0&50. ~4.4!

However, the triviality ofQ5
LF in the presence of the chira

condensate immediately leads to a contradiction if an eq

tion @Q5
LF,C̄ig5C#522i C̄C could hold in the broken

phase. In the previous analysis of the chiral Yukawa mo
@4#, we were faced with exactly the same problem and
solved it by recognizing that in the broken phase the ch
transformation ofdependentvariables are different from the
usual one simply because their operator structure chan
This is of course true of the NJL model. First of all, as w
saw above, if we select the nontrivial solution of the g
equation, the fermion is no longer a massless fermion eve
the chiral limit. Second, we can explicitly show that th

usual transformation law@Q5
LF,C̄ig5C#522i C̄C holds

only in the symmetric phase (M50). In the broken phase a
simple calculation@up to O(N1/2)] leads to

@Q5
LF,C̄ig5C~x!#522i C̄C~x!12i

N

g0
2
~m02M !

12iANME dpdq

~2p!3
ei (p1q)xFmaa

(1)~p,q!

q1

2g0
2
e~p1!

q1
a~p11q1!

3E d3k

~2p!3

maa
(1)~k,p1q2k!

p11q12k1
G1O~N0!.

~4.5!

Even if we take the chiral limitm0→0, the extra term pro-
portional toM survives nonzero. This also implies that if w
put M50, the usual relation holds. The unusual chiral tra
formation, however, is consistent with the triviality ofQ5

LF

becausê0u@Q5
LF,C̄ig5C#u0&50.

A similar situation occurs for the Hamiltonian. Noncon
servation of the null-plane chiral charge has been pointed
by several people as a characteristic feature of the ch
symmetry breaking on the LF@19,12#. They discussed it un-
der the assumption of the PCAC relation, but we can chec
explicitly by using the broken Hamiltonian. After length
calculation, we find the commutator@Q5

LF,H# is really non-
zero and again proportional to the dynamical massM:

ld

e

6-10
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@Q5
LF,H#5M

g0
2

16p3i
E @dp#@dq#@dk#@dl#d (3)~k1 l2p2q!a~p11q1!Bab

† ~p,q!Bgd~k,l!

3F S p'
i

p1
2

q'
i

q1D sab
i S 1

k1
1

1

l 1D sdg
3 2S 1

p1
2

1

q1D dabS k'
i

k1
2

l'
i

l 1D ~s is3!dg

2S p'
i

p1
2

q'
i

q1D ~s is3!abS 2
1

k1
1

1

l 1D ddg1S 1

p1
1

1

q1D sab
3 S k'

i

k1
2

l'
i

l 1D sdg
i G1O~N2 1/2!. ~4.6!
th
d-
r

rm
th
tr

q

er
e

h

he

o

he
r

s.
to

n
m

ny
the

e
gle
bo-

us
-

Therefore, the LF chiral charge is not conserved even in
chiral limit. In our framework it would be more understan
able to mention thatthe Hamiltonian is not invariant unde
the LF chiral transformation in the broken phase. The bro-
ken phase Hamiltonian~3.29! has three terms:M indepen-
dent, linearly dependent, and quadratically dependent te
The quadratically dependent term, as well as
M-independent one, does not break the LF chiral symme
It is the term proportional to the dynamical fermion massM
which breaks the LF chiral symmetry. And also, since E
~4.6! is proportional to g0

2, the symmetry-breaking term
purely comes from the interaction.4

This result should be consistent with the current div
gence relation Eq.~2.16!. Integrating it over the space, w
have

]1Q5
LF5

1

i
@Q5

LF,H#52m0E dx2d2x'C̄ig5C. ~4.7!

Therefore, if the LF chiral charge is not conserved in t
chiral limit, the rhs must show a singular behavior

E dx2d2x'C̄ig5C}
1

m0

. ~4.8!

This can be verified directly by using the solution of t

fermionic constraint. Indeed we find that*dx2d2x'C̄ig5C
5*dp u(2)(p,2p) is proportional toM /m0 and gives ex-
actly the same result as Eq.~4.6!. The importance of such
singular behavior for making the Nambu-Goldstone bos
meaningful was stressed by Tsujimaruet al. in scalar theo-
ries @12#. Assuming the PCAC relation, they showed that t
zero mode of the Nambu-Goldstone boson has a singula
of mNG

22 wheremNG is an explicit symmetry-breaking mas
Our result~4.8! is consistent with theirs because the opera

C̄ig5C is directly related to the Nambu-Goldstone boso
Later, we will prove that the PCAC relation is derived fro
the current divergence relation~2.16!.

4For a massive free fermion, we have@Q5
LF ,H#50.
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B. LF bound-state equations for mesons and their solutions

1. Single bosonic state as a fermion-antifermion state

In our formulation with the boson expansion method, a
bosonic excited state is described by the Fock states of
bilocal bosons constructed on the trivial vacuum:

)
i

Ba ib i

† ~pi ,qi !u0&. ~4.9!

Since the Hamiltonian~3.29! is quadratic with respect to th
bilocal bosons, the first excited state is given by a sin
bosonic state. In fermionic degrees of freedom, the one
son state corresponds to the leading contribution~of 1/N ex-
pansion! of a fermion-antifermion state. To see this, let
write a mesonic state only with a ‘‘color’’ singlet fermion
antifermion Fock component:

umeson;P1,P'&5
1

AN
E

0

P1

dk1

3E
2`

`

d2k'Fab~k!ba
a†~k!db

a†~P2k!u0&,

~4.10!

where the LC wave functionFab(k) is normalized so as to
satisfy the condition

^meson;Pumeson;Q&5~2p!32P1d (3)~P2Q!,
~4.11!

or equivalently,

E
0

1

dxE d2k'

16p3
(
ab

uFab~k!u251. ~4.12!

According to the Holstein-Primakoff type expansion~D8!,
the fermion-antifermion operatorba

†db
† can be equivalently

rewritten as
6-11
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ba
a†~k!db

a†~P2k!5:M ab
22~2k,2P1k!:

5ANBab
† ~k,P2k!

2
1

2AN
E @dq#@dq8#Bgb

† ~q,P2k!

3Bad
† ~k,q8!Bgd~q,q8!1•••. ~4.13!

Therefore at the leading order of the 1/N expansion, the me
sonic state is described as a single~bilocal! boson state,

umeson;P1,P'&

5E
0

P1

dk1E
2`

`

d2k'Fab~k!Bab
† ~k,P2k!u0&

1O~N21/2!. ~4.14!

Besides this, it is evident from the normalization conditi
~4.11!, a local operatora†(P)5*d3kFab(k)Bab

† (k,P2k)
satisfies the usual bosonic commutators.

The LC wave functionFab(k) and the mass of a meso
Mmeson is determined by solving the light-front eigenvalu
equation:

h(2)umeson;P1,P'50&5
Mmeson

2

2P1
umeson;P1,P'50&,

~4.15!

where we setP'
i 50, for simplicity.

2. Scalar and pseudoscalar mesons

In the leading order of 1/N expansion, the Hamiltonian
has only quadratic terms of the bosonic operators. Theref
diagonalization of the Hamiltonian, or equivalently, solvin
the light-cone bound-state equation~4.15! is straightforward.
First of all, if one notices the orthogonal property@P(2k)
2P( l)#ab@S(k)2S( l)#ba50 wherek5(xP1,k'

i ) and l5P
2k5@(12x)P1,2k'

i #, one can easily find the spinor stru
ture for scalar (s) and pseudoscalar (p) states should be

up;P1,P'50&5P1E
0

1

dxE d2k'fp~x,k'
i !$~ ik'

i s i

1M !s3%abBab
† ~k,l!u0&, ~4.16!

us;P1,P'50&5P1E
0

1

dxE d2k'fs~x,k'
i !$ ik'

i s i

1~122x!M %abBab
† ~k,l!u0&. ~4.17!

These two states are orthogonal to each other. Some
nonstandard spinor structure of the mesonic states is du
our specific choice of the mode expansion Eq.~3.2! and the
representation forg matrices Eq.~1.4!. For example, if one

rewrites the pseudoscalar fieldC̄ig5C in terms of the bilocal
bosons, one finds the same spinor structure as tha
10501
e,

at
to

of

Eq. ~4.16!. Note also that $g5(g'
i k'

i 1M )%ab5$( ik'
i s i

1M )s3%ab for a,b51,2 in our two-component represent
tion for theg matrices.

Spinor independent parts of the LC wave functio
fp,s(x,k'

i ) are given as solutions of the following integr
equations:

mp
2 fp~x,k'

i !5
k'

2 1M2

x~12x!
fp~x,k'

i !2
g0

2a

~2p!3

1

x~12x!

3E
0

1

dyE d2l'
l'
2 1M2

y~12y!
fp~y,l'

i !, ~4.18!

ms
2fs~x,k'

i !5
k'

2 1M2

x~12x!
fs~x,k'

i !2
g0

2a

~2p!3

1

x~12x!

3E
0

1

dyE d2l'
l'
2 1~122y!2M2

y~12y!
fs~y,l'

i !.

~4.19!

Here the factora5a(P1) defined by Eq.~D13! is given as
a result of the gap equation,

a5S m0

M
1

2g0
2

~2p!3
E d2q'E

0

1dx

x D 21

. ~4.20!

Since these integral equations are separable ones, solu
are easily found

fp~x,k'
i !52Cp

g0
2

~2p!3

M

m0

1

x~12x!2~k'
2 1M2!/mp

2
,

~4.21!

fs~x,k'
i !52Cs

g0
2

~2p!3

M

m0
S ms

224M2

ms
2 D

3
1

x~12x!2~k'
2 1M2!/ms

2
, ~4.22!

where Cp and Cs are constants Cp,s

5*0
1dx*d2k'fp,s(x,k'

i ).
Equations formp andms are derived from the normaliza

tion condition for the LC wave functions, viz.

15g0
2

M

m0
E

0

1

dxE d2k'

~2p!3

mp
2

k'
2 1M22mp

2 x~12x!
,

~4.23!

15g0
2

M

m0
E

0

1

dxE d2k'

~2p!3

ms
224M2

k'
2 1M22ms

2x~12x!
.

~4.24!
6-12
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These are exactly equivalent to the corresponding equat
in the previous work on the chiral Yukawa model@4#, where
we obtained them by calculating pole masses of the sc
and pseudoscalar bosons. If one uses the same cutoff sc
~extended parity-invariant cutoff! as in Ref.@4#:

k'
2 1M2

x
1

k'
2 1M2

12x
,2L2, ~4.25!

the pseudoscalar mass for small bare massm0 is

mp
2 5

m0N

g0
2M

Zp1O~m0
2!, ~4.26!

where a cutoff dependent factor

Zp5
1

N F 1

8p2
lnS 11A122M2/L2

12A122M2/L2D 2
A122M2/L2

4p2 G21

~4.27!

is related to normalization of a pseudoscalar state@see Eq.
~4.35!#. Clearly mp vanishes in the chiral limitm0→0 and
the pseudoscalar state is identified with the Nam
Goldstone boson. In Eq.~4.18!, the first term corresponds t
a kinetic energy part of the fermion and antifermion with t
constituent massM and the second term, a potential ener
part. The masslessness of the pseudoscalar state in the
limit is realized by the exact cancellation between the kine
energy and the potential energy. Indeed, if we integrate
~4.18! over x andk'

i , we find

mp
2 E

0

1

dxE d2k'fp~x,k'
i !

5S 12

2g0
2E

0

1dx

x
E d2q'

~2p!3

m0

M
12g0

2E
0

1dx

x
E d2q'

~2p!3

D
3E

0

1

dyE d2l'
l'
2 1M2

y~12y!
fp~y,l'

i !→0 ~m0→0!.

~4.28!

Therefore,mp50 is fulfilled in the chiral limit even though
the fermion has the constituent mass.

On the other hand, the squared mass of the scalar stat
small m0 is

ms
254M21O~m0!. ~4.29!

At a first glance, the resultms52M in the chiral limit seems
to suggest a static picture of a fermion and an antifermi
but actually the mass of the scalar meson comes from a
of the potential energy. The kinetic energy cancels with
rest of the potential energy.
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Equations ~4.21! and ~4.22! have the same functiona
form with respect to the variablesx and k'

i . However, the
difference betweenmp and ms greatly affects the shape o
the LC wave functions. This is most remarkable in the chi
limit: As m0→0, Eq. ~4.21! becomes independent ofx:

fp~x,k'
i !→2 iANAZp

1

k'
2 1M2

, ~4.30!

where the constant Cp was evaluated as Cp→
2 i (2p)3(NZp)21/2. On the other hand, Eq.~4.22! shows a
narrow peak atx51/2. Therefore, the pseudoscalar state i
highly collective state, while the scalar state shows an
proximate constituent picture.

Now let us compare our result Eq.~4.21! with those of the
literature@10,11#. First of all, equivalence with the result o
Ref. @11# is easily verified. As we commented before, t
unfamiliar spinor structure in Eq.~4.16! is due to our specific
choice of the mode expansion and the representation for
g matrices. If one uses the following mode expansion for
good component of the fermion:

c1~x!5(
l
E

2`

` d2k'

2p
E

0

` dk1

A2pk1
@ b̃~k,l!u1~k,l!eikx

1d̃†~k,l!v1~k,l!e2 ikx#,

one can obtain the same spinor structure as that of Ref.@11#.
Of course the two LC wavefunctions should coincide w
each other for observable quantities. Indeed, both g
the same ~quark! distribution function q(x)
5*d2k' /(2p)3(a,buFab(k)u2.

On the other hand, the result of Ref.@10# seems different
from ours Eq.~4.21!. The possible origin of the discrepanc
might be attributed to the following two points. First of a
the author of Ref.@10# considered the Melosh transformatio
@22# which relates the LF spinor and the usual spinor in
equal-time quantization. Such nonstatic spin effects migh
important when we discuss phenomenological aspects
light mesons~for example, see Ref.@23#!. However, even if
we take it into account, it is hard to see the coinciden
Secondary, but most importantly, he derived the pion
wave function by projecting the Bethe-Salpeter amplitude
the equal LC time plane. Though this procedure should g
the same result as that of the LF bound-state equation a
as we are considering only the ladder (1/N leading! contri-
bution, equivalence of the two is a highly nontrivial proble
in our complicated analysis.

C. The Gell-Mann–Oakes–Renner and PCAC relations

Now that we have the LC wave function for the pseud
scalar meson, it is straightforward to obtain the decay c
stant f p :

iPm f p5^0u j 5
m~0!up;P&. ~4.31!
6-13
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For actual calculation, it is safer and easier to treat the p
component. If we use the extended parity-invariant cut
the result is

f p52MZp
21/21O~N0!. ~4.32!

Together with the pseudoscalar mass~4.26! in the chiral
limit, we find the Gell-Mann–Oakes–Renner relation,

mp
2 f p

2 524m0S 2
NM

g0
2 D 524m0^0uC̄Cu0&. ~4.33!

The PCAC relation is also checked by using the st
up;P&. If we normalize the pseudoscalar fieldpn(x)

}C̄(x) ig5C(x) as

^0upn~0!up;P&51, ~4.34!

we find thatZp
21/2 given in Eq.~4.27! is the normalization

factor

pn~x!5Zp
21/2g2C̄~x!ig5C~x!, ~4.35!

where we have used the gap equation. Therefore, we arriv
the PCAC relation

]m j 5
m52m0C̄~x!ig5C~x!5mp

2 f ppn~x!. ~4.36!

Note that the decay constant~4.32! and the normalization
factor ~4.35! are equivalent to the previous results@Eqs.
~5.25! and ~5.28! in Ref. @4## in the infinitely heavy mass
limit of bosonsm→`.

D. Symmetric phase

Here we consider the symmetric phase in the chiral li
m050. Wheng0

2,gcr
2 52p2/L2, the gap equation~3.26! has

only a trivial solutionM50. A quantity which should be
zero in the broken phase is now estimated as

12g0
2E d3k

~2p!3

e~k1!

k1
512

g0
2

gcr
2

Þ0. ~4.37!

Subsequently the factora defined by Eq.~D13! is different
from that of the broken phase@Eq. ~4.20!#,

a21[asym
21 512

g0
2

gcr
2

1
2g0

2

~2p!3
E

0

1dx

x
E d2q' . ~4.38!

Then, both of the LF bound-state equations for the scalar
pseudoscalar states are given by
10501
s
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msym
2 fsym~x,k'

i !5
k'

2

x~12x!
fsym~x,k'

i !

2
g0

2asym

~2p!3

1

x~12x!
E

0

1

dyE d2l'

3
l'
2

y~12y!
fsym~y,l'

i !. ~4.39!

The solution to the bound-state equation is

fsym~x,k'
i !52Csym

g0
2

~2p!3 S 12
g0

2

gcr
2 D 21

3
1

x~12x!2k'
2 /msym

2
, ~4.40!

whereCsym is a normalization constant andmsym5mp5ms

is given as a solution of the equation

1

g0
2

2
1

gcr
2

5E
0

1

dxE d2k'

~2p!3

msym
2

k'
2 2msym

2 x~12x!
. ~4.41!

Again this is equal to the previous result of the chir
Yukawa model withm2→` @Eq. ~5.26! in Ref. @4## and
therefore if we use the same cutoff as before, we obtain
same result formsym. Moreover, though the above calcula
tion was intended only tog0

2,gcr
2 case, if we increase the

coupling constant over its critical valuegcr
2 , we find a nega-

tive solutionmsym
2 ,0. This implies that the symmetric solu

tion causes instability wheng0
2.gcr

2 and thus we must choos
the broken solution.

V. SUMMARY AND CONCLUSION

We have investigated a description of DxSB on the LF in
the NJL model. The importance of solving the fermion
constraint for the bad spinor component was greatly stres
in analogy with the zero-mode constraint of scalar mode
The exact classical solution enabled us to check the pro
ties of the LF chiral transformation. Though the chiral tran
formation is differently introduced on the LF, we finall
found the equivalence to the usual chiral transformation.

For a description of DxSB of LF NJL model, it was very
important to solve the fermionic constraint nonperturbativ
in quantum treatment. To do so, we introduced a bilo
formulation and solved the bilocal fermionic constraint wi
a fixed operator ordering by the 1/N expansion. Systematic
1/N expansion of the fermion bilocal operator is realized
the boson expansion method as the Holstein-Primakoff
pansion. The leading bilocal fermionic constraint was ide
tified with the gap equation for the chiral condensate after
took care of the infrared divergence. If we choose a n
trivial solution of the gap equation, we have a Hamiltonian
the broken phase but with a trivial vacuum.

The physical role of the fermionic constraint in the L
6-14
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NJL model is very similar to that of the zero-mode constra
for scalar models. We have seen a close parallel betw
these two constraints. Especially it should be noted that
gap equation came from the longitudinal zero mode of
bilocal fermionic constraint.

It is very natural that we can reach the broken phase
solving the quantum fermionic constraint by 1/N expansion
because the fermionic constraint is originally a part of
Euler-Lagrange equation and thus must include relevant
formation of dynamics. What we did is very similar to th
usual mean-field approximation for the Euler-Lagran
equations. Indeed the leading order in the 1/N expansion
corresponds to the mean-field approximation. However,
way of solving the fermionic constraint with the boson e
pansion method can easily go beyond the mean-field le
Such a higher-order calculation enabled us to derive a cor
broken Hamiltonian and to show the divergent behavior
the ~spatial integration of! pseudoscalar field.

Independence of mass from the mode expansion has
desirable and undesirable aspects. The inclusion of cor
mass dependence into the IR divergent integral was requ
when we identify the lowest fermionic constraint with th
gap equation. This is the point we must always take i
account. On the other hand, the Fock vacuum is defined
dependent of the value of mass. Due to this fact, it is eno
to have only one vacuum, namely, the Fock vacuum eve
the chirally broken phase. This is the favorable aspect. H
ever, the cost of such a simple vacuum was payed by,
example, unusual chiral transformation of fields such

@Q5
LF,C̄ig5C#Þ22i C̄C and nonvanishing of the LF chira

charge@Q5
LF,H#Þ0 in the broken phase. We found that bo

effects are proportional to the dynamical fermion massM.
We also insisted the necessity of a bare mass term w
accurately produced the constituent mass term. Although
special role of the fermionic constraint might be restricted
the LF NJL model, the unusual chiral transformation and
nonconservation of the chiral charge are general feature
the chiral symmetry breaking on the LF. This is because t
are natural consequences of the coexistence of the c
symmetry breaking and the Fock vacuum.

The leading-order eigenvalue equation for a sin
bosonic state is equivalent to the leading-order fermi
antifermion bound-state equation. The bound-state equat
were solved analytically for scalar and pseudoscalar mes
and we obtained their light-cone wave functions and mas
The meson masses, the decay constant, and so on were
consistent with those of our previous analysis on the ch
Yukawa model. The leading-order calculation was limit
only to two-body sector~fermion and antifermion!. If we
consider the higher-order Hamiltonian such ash(3) or h(4),
we will be able to discuss four- or six-body sectors. In oth
words, since we have bosonic meson states, we can ex
the Fock space in terms of the mesonic degrees of freed
Then, for example, we will be able to discuss the mixing
scalar state and two pseudoscalar fields (p-p mixing with
s).
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APPENDIX A: CONVENTIONS

We follow the Kogut-Soper convention@20#. First of all,
the light-front coordinates are defined as

x65
1

A2
~x06x3!, x'

i 5xi ~ i 51,2!, ~A1!

where we treatx1 as ‘‘time.’’ The spatial coordinatesx2

andx' are called the longitudinal and transverse directio
respectively. Derivatives in terms ofx6 are defined by]6

5]/]x6. It is useful to introduce projection operatorsL6

defined by

L65
1

2
g7g65

1

A2
g0g6. ~A2!

IndeedL6 satisfy the projection propertiesL6
2 5L6 , L1

1L251, etc. Splitting the fermion field by the projectors

Ca5c1
a 1c2

a , c6
a [L6Ca, ~A3!

we find that for any fermion on the LF, thec2 component is
a dependent degree of freedom.c1 and c2 are called the
‘‘good component’’ and the ‘‘bad component,’’ respectivel

As was noted in the text, for practical calculation, we u
the two-component representation for the gamma matri
The two-component representation is characterized by a
cific form of the projectors~1.2!. Then the projected fermi-
ons c6 have only two components. There are many pos
bilities which realize Eq.~1.2!. For example, a specific
representation

g05S 0 2 i

i 0 D , g35S 0 i

i 0D , g i5S 2 is i 0

0 is i D ~A4!

is used in Ref.@21#. In this paper, however, we choose
representation~1.4! from which it is easy to extract informa
tion of the ~111!-dimensional results. Two-component sp
norsc andx are defined by Eq.~1.3!. Results of the chiral
Gross-Neveu model can be easily obtained if we mak
replacement for the Pauli matricess3→1 and s i→0, and
regardc andx as one-component spinors.

Using this representation, the Lagrangian density of
NJL model is written as
6-15
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L5 ic†]1c1 ix†]2x2
1

A2
~c†s i] ix2x†s i] ic!

2
m0

A2
~c†x1x†c!1

g2

4

3$~c†x1x†c!22~c†s3x2x†s3c!2%. ~A5!

APPENDIX B: CLASSICAL SOLUTIONS TO THE
FERMIONIC CONSTRAINTS

To solve the fermionic constraintsclassicallymeans that
we treat all the fermion fields~both good and bad compo
nents! as Grassmann numbers and neglect all thec numbers
which will emerge in quantum theory under the exchange
variables.

Before discussing a complicated equation of the N
model, it would be better to go first with the chiral Gros
Neveu model. We solve the fermionic constraint of the ch
Gross-Neveu model with the antiperiodic boundary con
tion:

$ i ]21g2a~x2!%x5
m0

A2
c, ~B1!

xa~x252`!52xa~x25`!, ~B2!

where we used a matrix notation with a matrixaab(x
2)

[ca(x2)cb
†(x2). The solution to this equation is given by

x~x2!5E
2`

`

dy2GGN~x2,y2!
m0

A2
c~y2!, ~B3!

whereGGN(x2,y2) is the Green function satisfying

$ i ]2
x 1g2a~x2!%GGN~x2,y2!5d~x22y2!, ~B4!

GGN~x252`,y2!52GGN~x25`,y2!.
~B5!

Due to Eq.~B5!, the solution of course satisfies the antipe
odic boundary condition. Equation~B4! is solved as

GGN~x2,y2!5GGN
(0)~x2!F 1

2i
e~x22y2!1CGGGN

(0)21~y2!,

~B6!

GGN
(0)~x2!5Peig2*2`

x2
a(y2)dy2

, ~B7!

C52
1

2i

GGN
(0)~`!2GGN

(0)~2`!

GGN
(0)~`!1GGN

(0)~2`!
, ~B8!

where GGN
(0)(x2) is a solution of a homogeneous equati

$ i ]2
x 1g2a(x2)%GGN

(0)(x2)50 and the integral constantC
has been determined so thatGGN(x2,y2) satisfies the anti-
10501
f
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l
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periodic boundary condition. WhenN51, the solution~B3!
is equivalent to Domokos’ solution to the Thirring model o
the light front @13#.

In two dimensions, the LF chiral transformation is n
distinguishable with theU(1) transformation. Indeed, th
‘‘LF chiral transformation’’ on the good component isc
→eiuc and equivalent to theU(1) transformation. And also
the solution~B3! implies that the bad component rotates ju
the same way as the good componentx→eiux.

Next let us turn to the NJL model. If we explicitly write
all the indices, the fermionic constraint~2.1! is

i ]2S x1a

x2a
D 5

1

A2
S m0c1a2]zc2a

2] z̄c1a1m0c2a
D

2g2S c1ac1b
† x1b2c1ac2bx2b

†

c2ac2b
† x2b2c2ac1bx1b

† D , ~B9!

where]z5]12 i ]2 and ] z̄5]11 i ]2. Since the equation for
x1 ~or x2) includesx1 andx2

† ~or x2 andx1
†), it is useful to

introduce a constraint equation for2x2
† instead ofx2. Then

we have a more tractable equation

i ]2S x1a

2x2a
† D 5

1

A2
S m0c1a2]zc2a

2]zc1a
† 1m0c2a

† D
2g2S c1ac1b

† c1ac2b

c2a
† c1b

† c2a
† c2bD S x1b

2x2b
† D .

~B10!

As in the ~111!-dimensional case, the solution is immed
ately given if we find the Green functionG(x2,y2,x')
which satisfies

$ i ]2
x 1g2A~x2!%G~x2,y2,x'!5d~x22y2!, ~B11!

with a matrix Ai jab(x) defined by Eq.~2.5!. The result is
very similar to the two-dimensional result and is given
Eqs.~2.2! and ~2.3! in the text.

APPENDIX C: PROBLEM OF OPERATOR ORDERING

Here we consider the problem of operator ordering with
the chiral Gross-Neveu model withN51. Following the
standard procedure, the Dirac brackets are calculated as

$c~x!,c†~y!%D52 id~x22y2!, ~C1!

$x~x!,c†~y!%D52 iGGN~x,y!S m0

A2
2g2c†~y!x~y!D ,

~C2!

$x~x!,c~y!%D52 iGGN~x,y!g2cx~y!, ~C3!
6-16
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where GGN(x,y) is the Green function~B6! for the N51
case. To quantize the system we simply replace the D
bracket$A,B%D by the anticommutation relation2 i $A,B%.
This procedure has the ambiguity of the operator orderin

The operator ordering we took for the fermionic co
straint ~2.1! in the NJL model corresponds to the followin
one in the chiral Gross-Neveu model:

i ]2x1g2cc†x5
m0

A2
c. ~C4!

We can easily find its quantum solution due to
@cc†(x),cc†(y)#50. The solution is

xsol~x2!5E
2`

`

dy2GGN~x,y!
m0

A2
c~y!, ~C5!

whereG is again the Green function~B6! with N51.
Now let us consider the consistency for the anticommu

tor $x,c†%. It can be calculated two different ways:~i! from
the solutionxsol of the fermionic constraint, and~ii ! from the
Dirac bracket~C2!. We fix the operator ordering of the fer
mionic constraint by Eq.~C4! and check whether the Dira
bracket can produce the same anticommutator or not.

Instead of the anticommutator itself, we present here
calculation of a quantityiD 2

x $x(x),c†(y)% where iD 2
x

5 i ]21g2cc†. Using the solution~C5!, we have
10501
c

.

-

e

iD 2
x $xsol~x!,c†~y!%5d~x22y2!S m0

A2
2g2c†x D .

~C6!

On the other hand, if we take the simplest ordering in the
of the Dirac bracket~C2!, we obtain

iD 2
x $x~x!,c†~y!%5 iD 2

x GGN~x,y!S m0

A2
2g2c†x~y!D

5d~x22y2!S m0

A2
2g2c†x~y!D .

~C7!

This is identical with the result~C6!. Therefore we find our
ordering Eq.~C4! is consistent with the anticommutation re
lation

$x~x!,c†~y!%5GGN~x,y!S m0

A2
2g2c†x D . ~C8!

Of course if we take other operator ordering, the two resu
do not coincide. We expect that even in the NJL model,
can select the rhs of the Dirac brackets so that they coin
with the direct result with the ordering defined by Eq.~2.1!.
,

ebra:
APPENDIX D: BILOCAL FERMIONIC CONSTRAINTS AND THEIR SOLUTIONS
BY THE BOSON EXPANSION METHOD

It is tractable to solve the equations forT(x,y) andU(x,y) rather thanTab(x,y) andUab(x,y). In momentum representation
the fermionic constraints forT andU are

q1T~p,q!5
1

2
~2 iq'

i s i1m0!ab„Mab~p,q!2Mab~q,p!…2
g2

2
E d3p8d3q8

~2p!3
$Mab~p,q2p82q8!„dabT~p8,q8!

1sab
3 iU~p8,q8!…2„dabT~p8,q8!2sab

3 i U~p8,q8!…Mab~q2p82q8,p!%, ~D1!

1iU~p,q!5
1

2
@$s3~2 iq'

i s i1m0!%abMab~p,q!1$~2 iq'
i s i1m0!s3%abMab~q,p!#2

g2

2
E d3p8d3q8

~2p!3

3$Mab~p,q2p82q8!„sab
3 T~p8,q8!1dabiU~p8,q8!…1„sab

3 T~p8,q8!2dabiU~p8,q8!…Mab~q2p82q8,p!%.

~D2!

In place of the quantization condition~3.1!, the system with bilocal operators can be characterized by the following alg

@ :Mab~p1 ,p2!:, :Mgd~q1 ,q2!:#5:Mad~p1 ,q2!:dbgd (3)~p21q1!2:Mgb~q1 ,p2!:dadd (3)~p11q2!

1Ndaddbgd (3)~p11q2!d (3)~p21q1!„u~p1
1!u~p2

1!u~2q1
1!u~2q2

1!

2u~2p1
1!u~2p2

1!u~q1
1!u~q2

1!…, ~D3!

where the normal order ofM was defined with respect to the Fock vacuum~3.3!

:M ab
12~p,q!:u0&5:M ab

21~p,q!:u0&5:M ab
11~p,q!:u0&50. ~D4!

The upper indices stand for signs of the longitudinal momenta.
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The complicated structure of the algebra for the bilo
operators which originates from the fermion statistics,
greatly reduced if one introduces the boson expans
method. We can represent the operators :M: in terms of
bilocal boson operatorsB(p,q) of orderO(N0) so that they
fulfill the original algebra~D3!. Since the algebra has
bosonic feature in the large-N limit,

@ :M ab
11~p1 ,p2!:, :M gd

22~q1 ,q2!:#

→Ndaddbgd (3)~p11q2!d (3)~p21q1!,

it would be better to choose a representation which satis
this.5 The Holstein-Primakoff-type expansion satisfies the
quirement.

Physically this procedure corresponds to extracting pu
bosonic degrees of freedom from a fermion-antifermion s
tem, i.e., a mesonic system. The power of the boson exp
sion method in the light-front field theories was first demo
strated by one of the authors@15#. He applied the Holstein-
Primakoff type expansion to~111!-dimensional QCD and
derived an effective Hamiltonian for mesons as local bos
whose masses are given by the ’t Hooft equation. Using
effective Hamiltonian, we can in principle study, say, sc
tering of mesons asqq̄ bound states.

Since the essential structure of the algebra~D3! is deter-
mined only by the longitudinal momentum, it is straightfo
ward to apply the Holstein-Primakoff expansion discussed
Ref. @15# to four-dimensional fermionic theories. Indeed t
operators :M: are represented as follows:

:M ab
21~p1 ,p2!:5E @dq#(

g
Bag

† ~2p1 ,q!Bbg~p2 ,q!

[Aba~p2 ,2p1!, ~D5!

:M ab
12~p1 ,p2!:52E @dq#(

g
Bgb

† ~q,2p2!Bga~q,p1!,

~D6!

:M ab
11~p1 ,p2!:5E @dq#(

g
~AN2A!bg~p2 ,q!Bga~q,p1!,

~D7!

5Actually there are many possibilities to express Eq.~D3! in terms
of bosonic operators, corresponding to various ‘‘local expansio
of the Grassmannian manifold of the bilocal operators.
rk
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:M ab
22~p1 ,p2!:5E @dq#(

g
Bgb

† ~q,2p2!

3~AN2A!ga~q,2p1!. ~D8!

These give the 1/N expansion ofMab(p,q). The first few
terms are shown in the text@Eqs.~3.10!–~3.12!#.

If we expand the bilocal operatorsT(p,q), U(p,q), and
Mab(p,q), the equation for ordern can be written in a com-
pact form:

S t (n)~p,q!

u(n)~p,q!
D 5S F (n)~p,q!

G(n)~p,q!
D

2g0
2
e~p1!

q1
E

2`

` d3k

~2p!3 S t (n)~k,p1q2k!

u(n)~k,p1q2k!D ,

~D9!

where quantitiesF (n)(p,q) andG(n)(p,q) are generally com-
plicated functions of bilocal operators except for the low
order @see Eq.~3.18!#. For example,F (1) andG(1) are

F (1)~p,q!5
1

2q1
~2 iq'

i s i1M !ab@mab
(1)~p,q!2mab

(1)~q,p!#,

~D10!

G(1)~p,q!5
2 i

2q1
@$s3~2 iq'

i s i1M !%abmab
(1)~p,q!

1$~2 iq'
i s i1M !s3%abmab

(1)~q,p!#, ~D11!

wheremab
(1)(p,q) is given by the boson expansion method E

~3.11!. Since all of the orders of the operators are less than,
we can solve this equation order by order. The solution
this integral equation is

S t (n)~p,q!

u(n)~p,q!
D 5S F (n)~p,q!

G(n)~p,q!
D 2g0

2 e~p1!

q1
a~p11q1!

3E
2`

` d3k8

~2p!3 S F (n)~k8,p1q2k8!

G(n)~k8,p1q2k8!
D ,

~D12!

where

a~P1!5S 11g0
2E

2`

` d3k

~2p!3

e~k1!

P12k1D 21

. ~D13!

The quantitiest (2)(p,q) andu(2)(p,q) are necessary for ob
taining a correct Hamiltonian of the system.

’’
ys.
.
.
e
,

@1# K. Wilson et al., Phys. Rev. D49, 6720~1994!.
@2# D. Mustaki, ‘‘Chiral Symmetry and the Constituent Qua

Model: A Null-Plane Point of View,’’ hep-ph/9404206.
@3# Y. Nambu and G. Jona-Lasinio, Phys. Rev.122, 345 ~1961!.
@4# K. Itakura and S. Maedan, Phys. Rev. D61, 045009~2000!.
@5# T. Heinzl, S. Krusche, S. Simburger, and E. Werner, Z. Ph
C 56, 415 ~1992!; T. Heinzl, C. Stern, E. Werner, and B
Zellermann,ibid. 72, 353 ~1996!; D.G. Robertson, Phys. Rev
D 47, 2549 ~1993!; C.M. Bender, S. Pinsky, and B. van d
Sande,ibid. 48, 816 ~1993!; S. Pinsky and B. van de Sande
6-18



R.

g.

’’

D

s,

DYNAMICAL CHIRAL SYMMETRY . . . . II. . . . PHYSICAL REVIEW D 62 105016
ibid. 49, 2001 ~1994!; S. Pinsky, B. van de Sande, and J.
Hiller, ibid. 51, 726 ~1995!.

@6# T. Maskawa and K. Yamawaki, Prog. Theor. Phys.56, 270
~1976!; H.C. Pauli and S.J. Brodsky, Phys. Rev. D32, 1993
~1985!; 32, 2001~1985!.

@7# K. Itakura, Ph.D. thesis, University of Tokyo, 1996; Pro
Theor. Phys.98, 527 ~1997!.

@8# T. Heinzl et al., Z. Phys. A334, 215 ~1989!.
@9# K. Itakura and S. Maedan, Prog. Theor. Phys.97, 635 ~1997!.

@10# T. Heinzl, ‘‘Light-Cone Dynamics of Particles and Fields,
hep-th/9812190.

@11# W. Bentzet al., Nucl. Phys.A651, 143 ~1999!.
@12# Y. Kim, S. Tsujimaru, and K. Yamawaki, Phys. Rev. Lett.74,

4771 ~1995!; S. Tsujimaru and K. Yamawaki, Phys. Rev.
57, 4942~1998!.

@13# G. Domokos, ‘‘Introduction to the Characteristic Initial Value
Problem in Quantum Field Theory,’’ Lectures in Theoretical
Physics, Vol. XIV A ~Colorado Associated University Pres
10501
Boulder, Colorado!.
@14# H. Leutwyler, Nucl. Phys.B76, 413 ~1974!.
@15# K. Itakura, Phys. Rev. D54, 2853~1996!.
@16# For example, P. Ring and P. Schuck,The Nuclear Many-Body

Problem~Springer-Verlag, Berlin, 1980!.
@17# N. Nakanishi and K. Yamawaki, Nucl. Phys.B122, 15 ~1977!.
@18# D.J. Gross and A. Neveu, Phys. Rev. D10, 3235~1975!.
@19# J. Jersak and J. Stern, Nucl. Phys.B7, 413 ~1968!; A. Casher,

S.H. Noskowicz, and L. Susskind,ibid. B32, 75 ~1971!; M.
Ida, Prog. Theor. Phys.51, 1521~1974!.

@20# S.J. Brodsky, H.C. Pauli, and S.S. Pinsky, Phys. Rep.301, 299
~1998!.

@21# W.-M. Zhang and A. Harindranath, Phys. Rev. D48, 4881
~1993!.

@22# H.J. Melosh, Phys. Rev. D9, 1095~1974!.
@23# Z. Dziembowski and L. Mankiewicz, Phys. Rev. Lett.58, 2175

~1987!.
6-19


