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Dynamical chiral symmetry breaking on the light front. Il. The Nambu —Jona-Lasinio model
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An investigation of dynamical chiral symmetry breaking on the light front is made in the Nambu-Jona-
Lasinio model with one flavor and colors. The analysis of the model suffers from extraordinary complexity
due to the existence of a “fermionic constraint,” i.e., a constraint equation for the bad spinor component.
However, to solve this constraint is of special importance. In classical theory, we can exactly solve it and then
explicitly check the property of “light-front chiral transformation.” In quantum theory, we introduce a bhilocal
formulation to solve the fermionic constraint by théNléxpansion. SystematicN/expansion of the fermion
bilocal operator is realized by the boson expansion method. The ledliogal) fermionic constraint becomes
a gap equation for a chiral condensate and thus if we choose a nontrivial solution of the gap equation, we are
in the broken phase. As a result of the nonzero chiral condensate, we find an unusual chiral transformation of
fields and nonvanishing of the light-front chiral charge. A leading-order eigenvalue equation for a single
bosonic state is equivalent to a leading-order fermion-antifermion bound-state equation. We analytically solve
it for scalar and pseudoscalar mesons and obtain their light-cone wave functions and masses. All of the results
are entirely consistent with those of our previous analysis on the chiral Yukawa model.

PACS numbsefs): 11.30.Rd, 11.15.Pg, 11.30.Qc

[. INTRODUCTION boundary conditions for scalars in the longitudinal direction
with finite extension. Of course the NJL model has no scalar
Our expectation that light-frorft. F) formalism enables us fields as fundamental degrees of freedom, but we overcame
to relate QCD directly to the constituent quark model at athe situation by considering the chiral Yukawa model. This
field-theoretic leve[1] seriously requires a full understand- model shows RSB in the largeN limit (N is the number of
ing of dynamical chiral symmetry breaking {I3B) on the fermiong and goes to the NJL model in infinitely heavy
LF. Central to this issue is, first of all, the well-known prob- mass limit of scalar and pseudoscalar bosons. We showed
lem of how to reconcile a LF “trivial” vacuum with a that the zero-mode constraint of the scalar field correctly
chirally broken vacuum having a nonzero fermion conden{produces a gap equation for a chiral condensate and calcu-
sate. The secondary problem is to determine the property dated masses of the scalar and pseudoscalar bosons from
“LF chiral transformation” which is defined differently poles of their propagators. Therefore, in Ref], we suc-
from the usual one. The most surprising fact of the LF chiralceeded in describingpdirectly the chiral symmetry breaking
transformation is that it is an exact symmetry even for aof the NJL model on the LF.
massive free fermiof2]. Since the very essence of the previous analysis was the
In the present paper, we discuss this issue within thexistence of scalar fields, one may ask a question: How can
Nambu—Jona-LasinitNJL) model[3] which is a typical ex- one formulate [ySB withoutscalars? In order to answer the
ample of DySB. Previously we considered the same problemrguestion, we treat the NJL model without introducing an
from a different point of view[4]. Our interest was in de- aukxiliary field. An important key was already shown in Ref.
scribing DySB of the NJL model, but we actually took a [7]. It was found that the “fermionic constraint” plays the
roundabout way in order to apply an idea which works wellsame role as that of the zero-mode constraint. Splitting the
for spontaneous symmetry breaking of a scalar model, to &rmion field asV =, +¢_, &.=A.V by using projec-
fermionic theory. We know that the longitudinal zero modestors A . =y* y*/2, we easily find that the “bad” component
of scalar fields are responsible for describing spontaneoug_ is a dependent variable and subject to a constraint equa-
symmetry breaking on the LF. Indeed, it is achieved by solvtion called the “fermionic constraint.” In the LF NJL model,
ing the “zero-mode constraints{(i.e., constraint equations the fermionic constraint is very complicated and it is difficult
for the longitudinal zero modésonperturbativelyf{5]. The  to solve it as an operator equation. However, we will see that
zero-mode constraint appears in the discretized light-cong solve this equation is a crucial step for describing the
quantization(DLCQ) approach[6], where we set periodic broken phase and will find a close parallel between the fer-
mionic constraint for ' SB and the zero-mode constraint for
spontaneous symmetry breaking in scalar models. Although
*Present address: RIKEN-BNL Research Center, BNL, Uptonsuch special importance of the fermionic constraint might be
NY 11973. Email address: itakura@bnl.gov restricted only to the LF NJL model and therefore most of
"Email address: maedan@tokyo-ct.ac.jp the analysis might be model dependent, but what we are
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eventually interested in is the physics consequences of theith “color” internal symmetry U(N), which has been in-
chiral symmetry breaking. And of course we cannot reachroduced so that we can use théll¢xpansion as a nonper-
the chiral symmetry breaking in QCD unless we understandurbative technique. We always work with a nonzero bare
the simpler and typical example of this phenomenon. Theremassmy#0. The primary reason is that the Hamiltonian
fore the importance of our analysis is evident. with a massless fermion is plagued with a troublesome situ-
Let us comment on other attempts for the NJL model oration in 1+1 dimensions: As we will see, if we sety=0
the LF. First of all, Heinzkt al.[8] treated the model within  from the beginning, the canonical LF HamiltoniBn of the
the mean-field approximation and insisted on delicacy of theSross-Neveu model vanishes altogether. Even 41 3i-
infrared cutoff to obtain a chiral condensate. The meaningnensions, we will see that absence of the bare mass term
and necessity of such a cutoff scheme was clarified in Refcauses an inconsistency of the results. The secondary reason
[9]. As mentioned above, an observation that a gap equatiois to avoid massless particles which can move in parallel
for a chiral condensate emerges from the fermionic conwith x* =const surface. The difficulty of describing massless
straint was first pointed out by one of the authfré The  particles is intimately connected with the fact that on the LF,
light-cone (LC) wave function of a pionic state was calcu- the (masslessNambu-Goldstone boson becomes physically
lated through the LC projection of the Bethe-Salpeter amplimeaningful only when we first include explicit breaking term
tude which was derived in the equal-time quantizafib@].  and then take the vanishing limit of[it2]. The same situa-
Bentzet al. introduced the auxiliary fields to fermion bilin- tion was observed in the chiral Yukawa modé].
ears and solved the constraint equations for them by te 1/ In practical calculation, it is convenient to introduce the
expansion[11]. They obtained an “effective” Lagrangian two-component representation for the gamma matrices so
for the broken phase and discussed the structure function @fiat the projectors\ .. are expressed as
the pionic state. With all these studies, however, there still
remains many unknowns concerning basic problems. Espe- 10 0 0
cially, we still do not understand well the LF chiral transfor- A+:< ) , A=( ) . 1.2
mation itself. To what extent is it different from the usual 00 0 1
chiral symmetry? How is the chiral symmetry breaking real-
ized on the LF? These fundamental problems will be re-Then, the projected fermions have only upper or lower com-
solved in the present paper. ponents:
The paper is organized as follows. The rest of this section
is devoted to introduction of the NJL model and our notation. W 0
In Sec. Il, we discuss the complexity of the fermionic con- ¢+=A+‘1’52_1/4( O)’ ¢=A‘1’52_1/4( )
straint in great detail. We explicitly solve the fermionic con- X
straint in classical treatment and investigate properties of LF
chiral transformation. In Sec. I, we solve the fermionic con-
straint in quantum theory by the Nl/expansion. Here we
introduce the boson expansion method in order to solve th . ) S ;
bilocal fermionic constraint with systematicNL/expansion. representation having a similar st(r)uctulre tol the _chzlral repre-
We see the emergence of the gap equation for the chirdS"tiaton in ¥1 dimensions, .e.y"=o", y'=—i0% ¥s
condensate from the fermionic constraint. We obtain the ¥ ¥ — ¢ - Explicitly, they are
Hamiltonian with respect to thébilocal) bosons which is o
introduced by the boson expansion method. In Sec. IV, some , (0 1 , (0 —1 . [—id 0
physics consequences of the chiral symmetry breaking are ¥ ~{1 o) Y " \1 o /" 77| 0o o)
discussed. First of all, we see how the chiral symmetry (1.4
breaking is realized in the LF formalism. We discuss unusual ’
chiral transformation of fields and nonconservation of theg,. ;i -1 2 ang
light-front chiral charge. Second, we construct the bound- '
state equation for mesonic states and solve it for scalar and 3
pseudoscalar mesons. Third, we derive the partially conserv- _ (1.5
ing axial vector currentPCAC) relation. Summary and con- 5 lo —o3) '
clusion are given in the last section. Miscellaneous topics

with detailed calculation are presented in Appendixes. Results of the chiral Gross-Neveu model i 1L dimensions
Before ending this section, let us fix our model and nota-can pe easily obtained if we make a replacement for the Pauli
tion. Since the primary purpose of our paper is to study basignatrices e3—1 and o' —0, and regardy and y as one-
properties of the LF chiral symmetry, we consider only onecomponent spinors. The explicit form of the Lagrangian in
flavor case for simplicity. Thus the model we discuss is  the two-component representation is given in Appendix A.
o In the previous work4], we made the longitudinal direc-
Ty T2 1 (D 2 tion finite in order to carefully treat the longitudinal zero
L_\If(|/9—m0)\1f+3[(\lﬂy) (Vv (1D modes of the scalar fields. Ho)\//vever, in the p?esent analysis,
we work in an infinite longitudinal space. There is no need of
Here ¥3(x) (a=1, ...,N) is a four-component spinor introducing finitex . When we take the inverse of., we

1.3

where we defined two-component spingrsaand y. Among
yarious representations which satisfy E#.2), we choose a
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need to specify the boundary conditions. We here follow thevhere d,=d,—id, and the “Green function”
conventional antiperiodic boundary condittamhich is stan- G p(x ",y ,x,) is
dard for free fermions:

1
Pa(x~=—00, X1 )= — hy(x " =00,x), (1.6) Gab(x,y,xi):G(o)(x)[Ee(x—y)+C}G(°)1(y),
: , (2.3
Xa(X™ ==X )= = xa(X~ =% X]). 1.7) .
GO(x)=Pe9/ Ay Iy (2.4)

So our results must always have a smooth free-field limit.

AR ¢1a¢2b) ‘ 25

Il. COMPLEXITY OF THE FERMIONIC CONSTRAINT ‘A'Jab ( ‘ﬁ;a‘[{b ‘p;awa
AND THE CHIRAL SYMMETRY

The integral constan€ is determined so that the solution
satisfies the antiperiodic boundary condition. In Ey4), P
stands for the path-ordered product. Note that we easily de-
rive the solution for the chiral Gross-Neveu model by ex-
tracting the 1-1 component oft and neglectingd,. The
result is equivalent to the solution of the Thirring model

It is highly complicated structure of the fermionic con-
straint that makes the analysis of the LF NJL model difficult.
However, we cannot know anything about LF chiral symme
try unless we confront with this complexity. Therefore in this
section, we investigate the fermionic constraint in great de

tall_. First of aII,_V\_/e clas§|cally solve th_e fermionic constraint. | o.heq by Domoko$13]. And also, if we take the free
Usmg_the explicit SOIF'“O”’ we then discuss properties Of_ th‘ﬁ‘ermion limit g2—0, we of course recover the free solution
LF chiral transformation. Especially we show that LF chiral due t0GO(x)—1 a'ndG(x* Y )X —y )2
transformation is no longer an exact symmetry whag ' '
#0. Finally, we consider the implication of the fermionic 5. Chiral ; the liaht front
constraint in quantum theory. - Lhiral symmetry on the fight fron

Since the bad componenpt is a constrained variable in
A. Eermionic constraint and its classical solution the LF formalism, we impose the chiral transformation only

o o ] ) on the good components,—e'?%y, or in the two-
The fermionic constraint is immediately obtained as thecomponent representatigsee Eq(1.5)]

Euler-Lagrange equation foy:

Yy, 2.6
; 1 i 9° + t
'ana:?( —a'di+mMg) ha— E{l//a( Xt Xp¥n) Now we have completely solved the fermionic constraint for
2 X, we can explicitly demonstrate its transformation property
+ a3 wgasz_xgas%)}, 2.1) under the LF chiral transformation. However, before discuss-

ing the NJL model, it will be instructive to remind you of the

. . . .. LF chiral symmetry in the free massive fermion.
where summation over color and spinor indices are implied. . ; . :
As we mentioned before, theassiveree fermion is chi-

If we want to solve this equation as an operator equation in li : der th f 436 L hi
uantum theory, we need a commutation relation between fal invariant under the trans _ormatlc( 9. Let us see this
\?vith which mljst be given by the Dirac brackets. Since th fact directly in the Lagrangian even though it is a little

. 4 9 y ; . ) engthy. It is convenient to separate the solution of the fer-
anticommutatof x,} is very complicated, it seems almost mionic constrainty=(2id_) (o' d; + Mg) ¢ into mass-
hopeless to find an exact quantum solution of it. However, innde endent andXde endeﬁt ,SU (0')+ ‘()m) as
a classical theory where we treat all the variables just af'cep P P X X

Grassmann numbers, the equation becomes tractable and it is

not difficult to solve it. Indeed, the exact solution with anti- Y O=— iaiﬁiiw, X(m)zﬁ i ‘
periodic boundary condition is given lfgee Appendix B for J2o e J2 id-
more details
Note that there is a relation betwegff and y(™:
Xli(x) ) — i dy™ Gap(X .Y ,X,) U'ﬂiX(m)-I— moX(O)ZO. 2.7
= X2a(X) \/E —oo

As a result of the LF chiral transformatid@.6), we find
( Motrin(Y ™) = dzban(y ™)

- |, (2.2 (0)_, g=i60°,(0) >8
oy ) Fmoukey ) Z2 XO—e 107y 2.8

X(m)*)ei0a'3X(m). (2.9
IFor a scalar field, antiperiodic boundary condition in infinite lon- The free fermion Lagrangian is compactly expressed as
gitudinal space leads to inconsistengd?]. However, fermionic  Lgee= P ogont x orc, Where wgou=id, y—112(c'9,

fields are free from such troubles. +my)x=0 is the equation of motion fory and wgc
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=id_x— 12 (—c'9,+mp)y=0 is the fermionic con- even in the NJL model. Thus it is worthwhile to check
straint. The second term is zero and is invariant under the L®hether themassiveNJL model is invariant under the LF
chiral transformation. Now substituting= x{©+ (™ into  chiral transformation. To see this, it is convenient to treat the

the Lagrangian, the first term is decomposed into apparentlijermite Lagrangian
invariant and(seemingly noninvariant terms

1 - 1 ) .
ﬁHermiteZEi ‘ﬂTa+ = _\/—[( 'ﬂTUI dix+ ‘%XTO'I )
Plogow=y' 2V2

1
19— ﬁ(Ui 3 x' 9+ mox ™)
+mo(¢ x+xT)l. (2.14

Note that this is equivalent to the free Lagrangian except that
x is a solution of Eq(2.1). Now the apparently noninvariant
term is a term linearly depending any:

The first term consists of they-independent term and qua-
dratically dependent terr@(mg), while the second term lin-
early depends om,. The O(my) term changes under the
chiral transformation, but due to the relati¢h?7), it eventu-

ally vanishes and therefore the Lagrangian is invariant evefl, ine massive free fermion case, we had the same term but

if there is a mass term. As a result, we have a conserveg eventually vanished due to E€R.7). However, in the NJL

Noether current2] model, it is evident from Eq92.10 and(2.11) such a rela-

tion does not hold becauggdepends orx, . Therefore, we

have verified that the massive NJL modelnist invariant

under the LF chiral transformation. If and onlynif,=0, the

LF chiral transformation is the symmetry of the NJL model
) rre= 0, and equivalent to the usual chiral transformation. This is of

course not a surprising result but must be checked explicitly.
which of course reduces to the usual current in the massleggnyway, we do not stick to this problem anymore.

+ T

1
—E(U'ﬁix(m)ﬂLmoX(o))

1 _
- ;5 (o9, x ™+ mox(?) +H.c. (2.19

_ _ 1
6rre= Uy ysW— mo‘I’J’”YsF AR/

limit. Irrespective of whether we have a mass term or not, we
Now let us consider the NJL model. Decompositiomof always use the definition for the chiral current E§.12
is straightforward: which was derived for the massless fermion. In the massless
case, it is of course a conserved currépfs=0, while in
X(lg) 1 (= I2¥20 the massive case, a usual relation holds
=——f dy‘Gab(X‘.y‘,xL)< i ) ’
N ot -
(210 (9Mj 5= 2m0‘I’I ’}/5\1’, (216)
(m) which is derived by using the Euler-Lagrange equation for
Xia' | EJ”’ dv-G - o the massive fermion. Equatioi2.16) is used when we dis-
_X(Z';‘)T N \/E e Y Gap(x .y .x,) l/be : cuss nonconservation of the chiral charge and the PCAC re-
(2.12) lation in Sec. IV.
Since the matrix4, and thusG,,(x,Y) is invariant under the C. Implication of the fermionic constraint

transformation(2.6), it is easy to find thaty(®) and y(™
transform as Eqs(2.8) and (2.9). Therefore, ifmy=0, the
LF chiral transformation{2.6) is equivalent to the usual chi-
ral transformation. The chiral current and the chiral charg
are given by

So far we treated the fermionic constraint in classical
theory and obtained the exact solutith2). However, this
solution does not give a nonzero condensate and the resulting
SHamiltonian does not describe the broken phase. The situa-
tion is very similar to the previous analysis of the chiral
Yukawa model[4]. The chiral Yukawa model in the DLCQ

jE=¥y sV, (212 approach has three constraint equations. We solved them in
classical theory but we could not find any way to describe
LF_ [ qvm2y i+ the broken phase with the classical solutions. What we fi-
5 = dx d“x, jz (X) / o . .
—w nally found is that it is very important to treat the constraint

equations, especially the zero-mode constraint for a scalar
_ f“ dx-d2x, ¢ o3y, 2.13 field, nonperturbatively in ql_Jantum theory. This fact is true
o of our present case. To obtain a nonzero condensate, we must
treat the fermionic constraint as an operator equation and
How about the massive case? As we explicitly showedsolve it with some nonperturbative method.
above, the mass term does not prevent chiral symmetry in the To strengthen this, let us briefly overview the procedure
free fermion case. We must bare in mind such a possibilityn the previous work4]. In the chiral Yukawa model, we
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have three dependent variables: Two of them are the longi- A. Quantization and the operator ordering

tudinal zero modes of scalar and pseudoscalar fields To solve the constraint in quantum theory, we must first

_ L - perform the Dirac quantization for constraint systémsdter
o(Xy) = (M) = dx o (x), tedious but straightforward calculation of the Dirac brackets,
we find a familiar relation for the good componefif («

mo(x )= (1/2L)["  dx™ m(x) =12)

, _ S {0300, P (Y)}xr 2yt = Sapdand(X~ =y ) 8Px, ~y,),
wherelL is an extension of the longitudinal direction e 3.0
[—L,L], and the rest is the bad component of a fermion
¥_(X). So there are three constraints: and so on. We introduce the simplest mode expansion at

x*=0 as in Ref[14]:
2 2 -
M o po 1 orLodx -1 ~ d2 dkt
T_‘ﬁ)(wo TN T(i )“”a s | T [ e aiige
0 \/5 -L Ys @ —w2m Jo \/; @ @
_ (3.2
+y?| )fwi : (217 .
1Ys where kx=—k*x~+Kk| x| . The vacuum is defined by the

annihilation operators as

2io_ a__ (i oo _ + ,a
10 1,0— (|7L(7|+m0+0' I7775)7 l//+’(21& bi(k)|0>=di(k)|0)=0 (33)

When we deal with the quantum fermionic constraint, we
where\ =g°N in the present notation and is a dimension-  have to specify the operator ordering. In many publications
less parameter which controls the scalar and pseudoscalgfscussing the zero-mode constraints, people often choose
masses. In the infinitely heavy mass limit;—<, we recover  the Weyl ordering with respect to both constrained and un-
the NJL model. The procedure of Re4] is as follows: First,  constrained variables. However, in a previous pdgérwe
we formally solved the fermionic constraif@.18 and sub-  discussed that the ideal situation was to find a “consistent”
stitute the solution into the zero-mode constraif@sl?).  operator ordering. For example, let us consider an anticom-
Second, we solved the zero-mode constraints byedpan-  mutator{y,} in the NJL model. It can be evaluated in two
sion with a fixed operator ordering and found that the leadingjifferent ways:(i) by using the solutionys,= x(#) of the
order of the scalar zero-mode constraint can be identifieéermionic constraint and the standard quantization (8l8),
with the gap equation. Selecting a nontrivial solution of theand (ii) by calculating the Dirac bracket fdry,}. For the
gap equation, we again substitute it back to the fermioniGase(i), we select a specific operator ordering for the fermi-
constraint. Then we obtain the final expression for the bagnic constraint, and the result depends on the ordering. For
componentys_ in terms of independent variables. Thus wethe case(ii), we must also determine the ordering in the
solved three coupled equations step by step. On the othejght-hand side(rhs) of the Dirac bracket{y,ylp= . ...
hand, we have only one constraint equation. The procedurghese two results must be equivalent to each other. We have
in the chiral Yukawa model suggests that we will have to doyo ambiguities of the operator ordering: those of the con-
almost the same proceduseoncewhen we solve the fermi-  straint equation ii) and the rhs of the Dirac bracket ).
onic constraint. Note that jUSt the same as in the ChiraI‘COnsistent Operator ordering” should be imposed so that
Yukawa model, a perturbative solution cannot reach the broghese two quantities be identical. In other words, we deter-
ken phase even in quantum theory. Therefore, we naturallyhine the operator ordering of the rhs in the Dirac brackets so
expect that solving the fermionic constra(@tl) in quantum  that it coincides with the direct evaluation. In the chiral
theory using some nonperturbative method is necessary fofykawa model, we could not check that the ordering we
describing the chiral symmetry breakifig]. adopted was consistent or not. Again in the NJL model, this
is a very difficult task and we choose a specific operator
ordering defined by Eq(2.1). However, the chiral Gross-
Neveu model in 1 dimensions allows us to check the
consistency of this operator ordering. This is briefly shown

As we discussed above, it is important to solve the fermiin Appendix C.
onic constraint2.1) in quantum theory by some nonpertur-
bative method. Here we solve it with a fixed operator order-
ing by using the M expansion. For systematic N/ 2In Ref.[11], the authors solved the constraint equations for aux-
expansion, we introduce the bilocal formulation. We rewriteijiary fields before canonical quantization was specified and gave a
the fermionic constraint in terms of bilocal fields and expandc number to the scalar auxiliary field in leading order dfl LINev-
it following the Holstein-Primakoff-type expansion of the ertheless, the condensation in the NJL model is a quantum phenom-
boson expansion method. We always work with fixed enon and thus this procedure is not justified.

Ill. SOLVING THE FERMIONIC CONSTRAINT
BY /N EXPANSION IN QUANTUM THEORY
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B. Boson expansion method as/lMl expansion of bilocal

J 1
operators i2—— Uy p(X,y) = S 1 A0y May () 07 s Moy (yX)
How can we solve the “operator equation” E.1) by ay

the 1N expansion? It is generally difficult to count the order
O(N") of an operator instead of its matrix element. What is Mo (Mag(xy) + My X))}
worse, it is physically hard to justify the N/expansion of g2
the fermionic field itself. However, as was discussed in Ref. - E{Mm(X,Y)(%ﬁﬂy,Y)
[15], there is a powerful method to this problem. We can
perform a systematic W/ expansion of operators if we intro-_ +i aiﬁu(y,y))+ (95,7(y,y)
duce the bilocal operators and use the boson expansion
method. The boson expansion method is one of the tradi- —i 03, UYY)IM,a(y,X)}, (3.9

tional techniques in nonrelativistic many-body problems
[16]. Originally this was invented for describing bosonic ex- where we have introduced quantitiggx,y)=7,,(x,y) and
citations in nonbosonic systems such as collective eXCitatiOD{(x,y)5(03)a3uaﬁ(x,y) so that \I_/\I,(X):T(X’X) and
in nuclei or spin systems. —

Let us rewrite the fermionic constrai2.1) in terms of
bilocal operators. We introduce the following “color” sin-
glet bilocal operators at equal light-front time

Wi ysW(X)=U(x,X). In actual calculation, it is more conve-

nient to treat equations for the operators without spinor struc-

ture 7(x,y) andU(x,y) because they form closed equations

(see Appendix D Once we solve them, we immediately
N obtain7,4(x,y) andi4,z(x,y) from the above equations.

Map(xy)= 2, YT (T ) PR Ly), (3.4 For systematic M expansion of the bilocal fermionic
a=1 constraints, one must know how to expand,z(p,q). It is

the boson expansion method, especially, the Holstein-

1 N Primakoff type expansion for largd theories, that enables
q—aﬁ(x,y):T > (¢§T(X+,X)XZ(X+,V) us to expandM,z(p,q) asoperatorquantities:
2 a=1
0 1 n
+x3 (x" Y YR X)), (3.5 Mas(p, ) =N, (—) 1(p,q). (3.9
n=0 \/N
- N
—i . . . .
Uy, 5(X,y)=— at(y+ ) xa(xT, According to the Holstein-Primakoff expansipgs. (D5)—
g(%Y) \/E azl W IXpxTY) (D8)], the first three terms are written in terms of bilocal

: . bosonic variablB(p,q) as
=X (X P(XT ). (3.9
1P, =3, (p+a)o(pT)0(—q"), (3.10

We define the Fourier transformation of them as

1S (p.a)=Bg.(a.p o(pT)o(a")

= d% * d3y o t + +
Maﬁ(p,q)=f f Mep(xy) e P9, +Bup(—p =) O(—p")O(—q"),
,30(2,”.)3/2 700(277.)3/2 (311)
and so on. Note that this definition allows the longitudinal
momenta to take negative values. Using these bilocal opera- /Lf}(p,q)=f [dk]E Bfw(—p, K)Bg,(0,k)
tors, the fermionic constrair®.1) is equivalently rewritten Y
as
xo(=phoa’)- [ 1A S
9 1 _ _ !
i;%B(X,Y): E{—&iy((f'ﬁy/\/lay(X,Y)—O"YﬁMW(V,X)) X Bl ok, —q)B,.(k,p) 8(pT)6(—q™).

(3.12
+Mo(M o 5(X,Y) = Mg,(y,X))}

g2 where
- ;{me,y)(éwﬂy,ywia";ﬁwy,y» . .
- | tda= "ot [ e,
— (8, 20y,Y) — 1075, U(Y,Y)) M0 (V,X) ],
(3.7 Any commutator between,,4(p,q)’s [such as Eq(D3)] is

correctly reproduced if one uses the following bosonic com-
and mutators:
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d®p

)3

[Bup(P1.P2), Bls(ar,00)]
= 80y0550(p1— ) 8P (p— ), (3.13

(O ¥iy5¥[0)=N [ —fy(m+-

T

(3.20

314 Wwhere  tO(p.g=f(p)s(p+q)  and  u(p,q)
=f,(p) 8 (p+0q). As Eq. (3.18 with my=0 is invariant
under the chiral rotation, we can always tak®(p,q)=0.
For the massive case, we also také)(p,g)=0 and
t©(p,q)#0. Now let us introduce a quantityl, which cor-
responds to the dynamical mass of fermion:

[Bus(P1.P2), B,s(dr,02)1=0 (p;.q;">0).

Note also that the state annihilated Byp,q) is identified
with the original Fock vacuum:

B(p,q)|0)=0. (3.15

N | M =mo—g%( W), (3.20
More detailed discussions about the boson expansion method
applied to LF field theories are found in R¢L5] and Ap-

pendix D of the present paper Then, to obtairt®)(p,q) is equivalent to determinini, viz.

i
C. Solution to the bilocal fermionic constraint

tO(p,aq)=-M P s®)(p+q). (3.22

We are ready to solve the bilocal fermionic constraint p*
using the 1IN expansion. As we commented before, it is
convenient to solve the equations ff{ip,q) andi/(p,q) [see  |n terms ofM, the leading-order fermionic constraifg.18
Egs.(D1) and(D2) in Appendix D for their explicit form§ s rewritten as
Once we knowZ(p,q) andU(p,q), then it is straightforward
to obtain7,4(p,q) andi,z(p,q).

ExpandingZ(p,q) andi/(p,q) as M-my Zf d°p e(p) (3.23
. ' Mo ame pt |
1
= | t(m
7.9 ano ( \/ﬁ) tHp.a), (316 Physically this equation should be interpreted as a gap equa-

tion. This is clarified in the next subsection.
Similarly higher-order fermionic constraints are solved
o 1\" order by order. This is because the fermionic constraints for
Up,g=N> (_> uM(p,g), (3.17 t™(p,q) andu™(p,q) are linear equations with respect to
n=0 N the highest order. Th@=1,2 solutions are important for
giving a nontrivial Hamiltonian and so on. More details are

. . . . . ) discussed in Appendix D.
and inserting them into the fermionic constraints, we find for PP

the lowest orde®(N) D. Gap equation
Now let us discuss the physics meaning of E323. As

- we mentioned above, this equation should be regarded as a

e(p”)
(0)
t(p.9) _| Mo— 5 (p+a) gap equation for chiral condensate. In several previous stud-
u©@(p,q) q ies of ours, we have seen essentially the same kind of equa-
0 tions[9,7,4]. Indeed, in Ref[7] it was pointed out that Eq.

. 5 (3.23 itself is the gap equation. Also in the chiral Yukawa

LE€pT) (= dk tO(k,p+g—k) model [4], the zero-mode constraint for the scalar field re-
Y% q° J-=2m)? uO(k,p+g-k)/’ duced to the above equation and was interpreted as a gap

equation. Since this identification is an indispensable step for
(3.18 our framework, let us again explain it within the NJL model.
First of all, consider a naive massless limig— 0 of Eq.

whereg(%:gzN. Since there are no operators in these equa£3‘23:
tions, t(©) andu(® arec numbers. Nonzero solutions give the

leading-order contribution t¢¥¥) and(WiysW¥): M 1_gZJ' d°p €(p+)) o
em pt
_ d3
<O|\P\If|0)=Nf fup)+---, (3.19  Thus we find two possibilities: the first is1=0 and the
(2m)3 second is

105016-7



K. ITAKURA AND S. MAEDAN PHYSICAL REVIEW D 62 105016

d3p e(p?) time quantization. For example, whemy=0, there is a criti-
1_gc2)f -0 (3.24  cal couplinggZ=2m?% A2, above whichM #0.
2m)® p* The essential and inevitable step to obtain the gap equa-

tion is the inclusion of mass information as the regularization

but M is arbitrary. Of course the first case is not interestingrather than the fact that the UV and IR cutoffs are related to
because it corresponds to the symmetric phase. On the otheach other. If we regulate the divergent integral without mass
hand, the second case with nonz&taloes not immediately information (e.g., introducing the UV and IR cutoffs inde-
mean the existence of the broken phase. Since(E84 is  pendently, we cannot reproduce the gap equation. The loss
independent oM as it is, the dynamical masd is left un-  of mass information is closely related to the fundamental
determined, which is not a physically acceptable situationproblem of the LF formalismi17], and the parity invariant
However, this observation is not correct because the diverregularization can be considered as one of the prescriptions
gent integral in Eq(3.24) is not regularized. Indeed, we can for it. Referencg17] discussed within scalar theory ththie
identify Eq.(3.24) with the gap equation only after we care- light-front quantization gives a mass-independent two-point
fully treat the infraredIR) divergence. function(at equal LF timg which contradicts the result from

To see this, let us put an IR cutoff. First consider the samgeneral arguments concerning the spectral representation.
cutoff schemes as in the equal-time formulation, such as th#&/e have been encountered with the same problem in Eq.
covariant four-momentum cutoff. We can easily translate it(3. 23) because the integral is regarded as a naive estimation

into a cutoff on the light-cone momentukt andk, and  of (¥W)/M by using fermion with mas#1. And also the
obtain the correct gap equation. Indeed, in R&f, a nonco-  origin of mass-independent result can be traced back to the
variant (rotationally invariant three-momentum cutoff was mode expansiol3.2). Even if we include the wave function
performed to obtain the known result. But such a cutoff isfor free fermion field, we do not have any mass dependence
artificial as a light-front theory, and we here adopt anotheon the mode expansidri.0].

cutoff schemethe parity invariant cutoffUsually, it is natu- Let us give a brief comment on the chiral Gross-Neveu
ral and desirable to choose a cutoff so as to preserve syninodel[18]. Of course the important difference of ttiet 1)-
metry of a system as much as possible. For the LF coordidimensional case is the renormalizability. Ignoring the trans-
natesx~ and X , it would be natural to consider parity verse directions in the above calculation, we easily find the
transformation X" «<x~, x|, ——x|) and two-dimensional gap equation N1 —mg)/M = g?/(27)In(2A%M?) where the
rotation in the transverse plane. In the usual canonical forparity-invariant cutoffM?/2A <k* <A was used. Though it
mulation wherex™ is treated separately, the parity invarianceexplicitly depends on the cutofA and is divergent as\

is not manifest. However, we find it useful for obtaining the —«, we can remove the divergence by coupling constant
gap equation. In momentum space, the parity transformat|or13norma||zat|or[7]

is exchange ofk* and k™ and replacemenk| — —k! .

Therefore the parity invariant cutoff is given by <A and

k?<A’2. Using the dispersion relationk2 k™ —k?=M?, E. Hamiltonian
we find that the parity invariant regularization inevitably re-  Having the solution to the bilocal fermionic constraint, we
lates the ultravioletUV) and IR cutoffs: can rewrite the fermion bilinear operators in terms of the

bilocal bosons. Of special importance is tlidermitian
Hamiltonian, which is easily expressed 1%,4(p,q) and

k?+M?2
- <kT<A. (3.25 U, 5(p,0) as follows:

1
H:sz_J»d?’X T i(9_ + 9. |
This also implies the planar rotational invarianice<2A? 2.2 Liadx+axtay)

—M?=A"2. What is important here is the use of constituent
massM in the dispersion relations. Physically it corresponds

to imposingself-consistency conditionSince the IR cutoff +mo(Tx+xT)]
includesM, the rhs of Eq(3.23 has nontrivial dependence
on M:
1f o
= | d® d®qs®(p+q)ig) o,
M-m, giA2[ M2 202 g) O P TATTPTAIAL Oap
M = 5 2——2 1+In—2 . (326)
amt LA X[(Top(P )+ TpalAP))
This is the gap equation and is equivalent to that of the i Uap(P, D)~ Usa(p,0))]

previous result in the chiral Yukawa moddl]. It has a non-

zero solutionM # 0 even in theny,— 0 limit. The somewhat

unfamiliar equation(3.26 of the NJL model exhibits the +@f 343 3)(pt

same property as the standard gap equations of the equal- 2 dpd qT(p,@) 5 (p+ ). (327
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Apparently this Hermitian version of the Hamiltonian seems
equivalent to the free Hamiltonian, but the information of

interaction enters through the bad componen¥e find the
1/N expansion of the Hamiltonian

o 1 n
H=N>, (—) h(, (3.29
n=0

N

PHYSICAL REVIEW D 62 105016

Ps =ﬂf dx (¢"x+x"y)
GN 2\/5 .

Furthermore, the classical solution for the bad spinor com-
ponenty is proportional tomy. Therefore the naiveny—0
limit gives just a zero Hamiltonian. However, if we solve the
gap equation and substitute the nontrivial solution into the
Hamiltonian, the resulting Hamiltonian turns out to be pro-
portional toM? and survives even in the chiral limit. This is

by substituting the solutions of the fermionic constraints intogasijly seen from the Hamiltonian of the NJL mod@I29.

the Hamiltonian. The zeroth-order contribution is just a di-The (constituent mass term in Eq(3.29 comes from the
vergent constant and we discard it. The first order is strictlyyare mass term. whose facton, cancels with a factor

zero. Nontrivial contribution comes from the ord8(N°),

pi+M? qf+M?
+
2p* 2q"

h<2>=f [dp][dq] Bl 4(P.0)Bs(p.0)

+

95
| tapitdarrakians® e+ o-k-n
(2m)°

Xa(p*+q")[T55(p,0:k D)~ T155(p. gk, 1]
X Bl 4(p,a)B,s(k,))+c number, (3.29

wherea(p*+q™) is defined by Eq(D13) and “kernels” of
the interaction terms are

258k, D =[S(—p) = S(— ] apgl S(K) = S(D]sy,

(3.30
25(p,q: k. D=[P(—p) = P(D) gl P(—K) = P(1) 15,
(3.3)
with
ip'o'—M ip'o'—M
Sa’ﬁ(p): —+ ) Paﬁ(p): —+0-3
2p" ) 2p s
(3.32

As is evident from the explicit forms of the kerne(3.30
and(3.31), they originate from the scalar interactiow¥)?

and the pseudoscalar on#i(ys¥)?, respectively. If we sub-

M?/m, in the second-order solutiofid®pt®)(p,—p). Of
course this is not reached if we say=0 from the begin-
ning. Therefore, inclusion of the bare mass term is necessary
to obtain a correc{constituent mass term of the Hamil-
tonian.

IV. PHYSICS IN THE BROKEN PHASE

By solving the fermionic constraint, we acquired the nec-
essary ingredients for discussing physics consequences of the
chiral symmetry breaking. Basic quantities such &Y,

WiysW, and the null-plane chiral charg@2.13 are expressed
in terms of the bilocal bosorB,4(p,q) and BZB(p,q) as

WW(x)=T(x,X)
N dpd3q
= —(me—M)+ N
gé( ’ f (2m)3
x ' (PradX4+ O(NO),

t(p,a)
4.1)

Wi ysW(X) =U(X,X)
3~A3

dpd-q
=N
\/—f (2m)3

uB(p,q)e' PP+ O(N?),

(4.2
EF=J d®p 035 Mp(p,—p):
= f &p oul(p—p+ONY?, (4.3

wheret™®(p,q) andu®(p,q) are given in Appendix D. Now

stitute a nontrivial (trivial) solution of the gap equation 4 these are given as functions of the bilocal bosons at the

(3.26 into the above Hamiltonian, then it governs the dy-gherator level, all the calculation is done with the commuta-
namics of the brokerisymmetrig phase. The first term of tors (3.13 and(3.14).

h(® corresponds to a free part with magsand the second

term to an interaction part. In the broken phabk,s the

dynamical mass and the Hamiltonian suggests a constituent

picture.

As we mentioned before, the Hermite Hamiltonian of the
chiral Gross-Neveu model has only am-dependent term.
Neglecting the transverse coordinates in E327), we have

A. Chiral transformation and nonconservation
of chiral charge

Why could we obtain a nonzero fermion condensate? To
understand this, let us rewrite the fermionic constréint)
as
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1 g2 tive of the presence of symmetry. This can be checked ex-
i9_Xa= E( — o'+ mg) ha— —= (P T(X,X) plicitly by expression(4.3), viz.

V2
+iaS P U(x,Xx)),
Qslo)y=0. (4.4
and substitute Eq94.1) and (4.2) into 7(x,x) and(x,X),
respectively’ Then the leading-order equation turns out to be

equivalent to the constraint equation for a free fermion with o o _
massM, However, the triviality ofQg in the presence of the chiral

condensate immediately leads to a contradiction if an equa-

1 , tion [QgE,Wiys¥]=—2iWV¥ could hold in the broken
10 _Xa=—F=(—0'd+M)i,. phase. In the previous analysis of the chiral Yukawa model
\/E [4], we were faced with exactly the same problem and re-
solved it by recognizing that in the broken phase the chiral
Also at the same order, the equation of motion for the goodransformation oflependenvariables are different from the
component)y says that the fermion acquires a maésThis  ysual one simply because their operator structure changes.
means that the operator structure of the bad spincianges  Thjs is of course true of the NJL model. First of all, as we
depending on which solutions of the gap equati823 is  saw above, if we select the nontrivial solution of the gap
selected. For a massive fermion, the fermion condensatgqyyation, the fermion is no longer a massless fermion even in

(W¥) is no longer zero even if the vacuum is trivial. One the chiral limit. Second, we can explicitly show that the
can find an analogy betwgen the chiral Yukawa model and,q ;41 transformation Iav\[ngF,q_,i yeW]= — 21w holds
the NJL model because in the chiral Yukawa model, theOnly in the symmetric phaseM(=0). In the broken phase a
operator structure of the longitudinal zero modes and subses—im le calculatiorfup to O(NY3)] leads to
quently of the bad spinor component changes depending on P P
the phases.

One thing to be noted is the peculiarity of the mode ex-
pansion(3.2). It is evident that the mode expansion has no o o N
mass dependence in it. This caused the problem of identifyf QL™ , Wi ysW(x)]= — 2i W (x) + 2i — (my—M)
ing the lowest fermionic constraint with the gap equation. gg
We had to supply mass information properly when we regu-
larize the IR divergence. On the other hand, such indepen- dpdg
dence of mass, in turn, implies that our mode expansion +2i\/ﬁl\/|f gl(prax
allows fermions withany value of masdn other words, the (2m)?
LF vacuum does not distinguish the mass of the fermion.
Therefore, we can regard the vacuum for massless fermion as 5 e(p’)
that for massive one. The mass of the fields is determined by ~%
the Hamiltonian. This is the reason why we can live with the q
trivial vacuum while having a nonzero fermion condensate. Bk 1Ok, p+q—K)
This fact is not a limited phenomenon for our specific mode XJ PaalKPT0 + O(NO)
expansion but a common one for light-front field theories. (2m)® pr+q —k* '
Indeed, even if we expand a fermion field with free spinor
wave functions,u(p) andv(p), we have no mass depen- (4.5
dence[10].

The fact that the operator structure changes depending on
the phases, also resolves a seeming contradiction betweé&ven if we take the chiral limitng—0, the extra term pro-
the triviality of the null-plane chiral charge and the nonzeroportional toM survives nonzero. This also implies that if we

chiral condensaté0|¥¥|0)+0. In general, it is known that PUtM =0, the usual relation holds. The unusual chiral LtFrans-
a null-plane charge always annihilates the vacuum irrespedormation, however, is consistent with the triviality Qfs
because0|[ Qs", Wi ys¥]|0)=0.
A similar situation occurs for the Hamiltonian. Noncon-

3In the leading order, this procedure corresponds to the mean-fie§ervation of the null-plane chiral Ch?‘fge has been pointed _OUt
approximation done by Heingt al. [8]. They solved the fermionic PY Several people as a characteristic feature of the chiral
constraint by simply linearizing the interaction parts asSymmetry breaking on the LA9,12. They discussed it un-
—g2/\2y,(T(x,x)). By evaluating the vacuum expectation value d€r thg assumption of the PCAC rela_tlon,. but we can check it
(T(x,X)) self-consistently with the dynamical fermion mass  €xplicitly by using the broken Hamiltonian. After lengthy
=my— g% 7(x,x)), they obtained the gap equation. If one uses thecalculation, we find the commutatpQs™,H] is really non-
parity-invariant cutoff, the result coincides with ours. zero and again proportional to the dynamical mislss

1 (p,9)
q+

a(p™+q")
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[Qs,H]= M—f [dp][da][dK][dI] 6P (k+I—p—aa(p®+a")BL4(p,0)B,s(k )

p. 9| (1 1 1 1 Kool
3= Sl (- i oo

(K
| i i)

Therefore, the LF chiral charge is not conserved even in the B. LF bound-state equations for mesons and their solutions

chiral limit. In our framework it would be more understand-

able to mention thathe Hamiltonian is not invariant under

the LF chiral transformation in the broken phasghe bro- In our formulation with the boson expansion method, any

ken phase Hamiltoniafi3.29 has three termsM indepen-  bosonic excited state is described by the Fock states of the

dent, linearly dependent, and quadratically dependent termbilocal bosons constructed on the trivial vacuum:

The quadratically dependent term, as well as the

M-independent one, does not break the LF chiral symmetry.

It is the term proportional to the dynamical fermion mas H Bzﬂ_(pi ,0)]0). (4.9

which breaks the LF chiral symmetry. And also, since Eq. i o

(4.6) is proportional to g(z,, the symmetry-breaking term

purely comes from the interactidn. Since the Hamiltoniar3.29 is quadratic with respect to the

This result should be consistent with the current diver-pjlocal bosons, the first excited state is given by a single

gence relation Eq(2.16). Integrating it over the space, we hosonic state. In fermionic degrees of freedom, the one bo-

have son state corresponds to the leading contribut@l/N ex-
pansion of a fermion-antifermion state. To see this, let us
write a mesonic state only with a “color” singlet fermion-

1 — : :
5+QEF:T[QEF:H]:2mOJ dx~d?x, ¥iys¥. (4.7)  antifermion Fock component:

+O(N™Y?), (4.6)

1. Single bosonic state as a fermion-antifermion state

1 +
Therefore, if the LF chiral charge is not conserved in the|mesonp+,PL):—fp dk*
chiral limit, the rhs must show a singular behavior N-0

f L 1 xf d?k, ®*A(k)b2' (k)d3 (P—k)|0),
dx~d?x, Wi ysWo — . (4.8 -
Mo (4.10

ThIS can be Verified direCt|y by USing the Solution of the Where the LC wave functio@aﬁ(k) is norma”zed SO as to
fermionic constraint. Indeed we find thftix d?x, Wiys¥  satisfy the condition

=[dp u®(p,—p) is proportional toM/m, and gives ex-

actly the same result as E@}.6). The importance of such mesonPlmesonO) = (2m)32P* s3)(P—

singular behavior for making the Nambu-Goldstone boson { Pl Q)=(2m) (P=Q), (4.11
meaningful was stressed by Tsujimagtial. in scalar theo-

ries[12]. Assuming the PCAC relation, they showed that the

zero mode of the Nambu-Goldstone boson has a singularit9" €quivalently,

of m,\IG wheremyg is an explicit symmetry-breaking mass.

Our result(4.8) is consistent with theirs because the operator d2k,
Wiys¥ is directly related to the Nambu-Goldstone boson. f de — > [0P(k)[?=1 (4.12
Later, we will prove that the PCAC relation is derived from 16m° ap

the current divergence relatid@.16).

According to the Holstein-Primakoff type expansi@ng),
the fermion-antifermion operatds’,dj;, can be equivalently
“4For a massive free fermion, we hay@:™,H]=0. rewritten as
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b3 (k)d3'(P—k)=:M ;5 (—k,—P+k):
= INB! 4(k,P—k)
1 f .
——=| [dalldq’]B,4(q,P—k)
2\/ﬁ B

(4.13

Therefore at the leading order of theNléxpansion, the me-
sonic state is described as a singddocal) boson state,

X B! 5(k,q)B,s(q,q )+ - -

|mesonP*,P,)
P+ o
=f0 dk*ﬁ d?k, dF(k)B] 4(k,P—k)|0)

+O(N~Y2), (4.14

Besides this, it is evident from the normalization condition

(4.11), a local operatora’(P) = [d*kd*F(k)B 4(k,P—K)
satisfies the usual bosonic commutators.

The LC wave functiond*?(k) and the mass of a meson

PHYSICAL REVIEW D 62 105016

Eq. (4.16. Note also that{ys(y\ K, +M)},z={(ik\ o
+ M)a3}aﬁ for @, 4=1,2 in our two-component representa-
tion for the y matrices.

Spinor independent parts of the LC wave functions
¢ -(X,K|) are given as solutions of the following integral
equations:

k?+M?2  ghe 1
MoK )= T XK~
12 +M?2 ,
x [y [ a1, o(yll), (418
2 i ki‘f’Mz gza 1
m,;(i’a(x,kﬂzx(l—_x)(f) SXK)— 2m? X(1—%)

1 12+ (1—2y)?M? _
2 i
< Jay[ @ s,

(4.19

M mesoniS determined by solving the light-front eigenvalue Here the factor=a(P™) defined by Eq(D13) is given as

equation:

MZ
h(2)|mesonP+,Pl:0>: LjOW meSOI’]PJr,PL :O>,
2P

(4.195

where we seP! =0, for simplicity.

2. Scalar and pseudoscalar mesons

In the leading order of N expansion, the Hamiltonian
has only quadratic terms of the bosonic operators. Therefore,
diagonalization of the Hamiltonian, or equivalently, solving

the light-cone bound-state equati@hlH is straightforward.
First of all, if one notices the orthogonal propeft(—Kk)
—P() 10l S(K) = S(1)15,=0 wherek=(xP" k| ) andl=P

—k=[(1—x)P",—K! ], one can easily find the spinor struc-

ture for scalar ¢) and pseudoscalarr) states should be
1 . .
|7T;P+,PL=0)=P+J dxf d?k, ¢(x,K)H{(iK, o
0

+M)od, 4B 5(k.[0), (4.16

1 . .
|O-;P+'PJ':0>:P+J0 dxf dsz¢a(X’kL){ileO'

+(1-2x)M} 4Bl 4(k,D[0).  (4.17)

These two states are orthogonal to each other. Somewhat

a result of the gap equation,

oo %)

Since these integral equations are separable ones, solutions
are easily found

290
M (277

mo

(4.20

a=

gz M 1

(x,K)=—C,_ — ,
Pl (27)% Mo x(1—x)— (k% +M?)/m2

(4.21)
i 95 M [mZ—4am?
d)rr(x!k ):_C(r -
- (2m)3 M|  m2
1
X , (4.22

X(1—x)— (k* +M?)/m2

where C_ and C

= [odx[ A%k, ¢ o(X,K.).
Equations fom, andm,, are derived from the normaliza-
tion condition for the LC wave functions, viz.

1= g— dxf

are

g

constants C_ ,

d?k, m?2

w

(27)% K2+ M2—m2x(1—X)
(4.23

nonstandard spinor structure of the mesonic states is due to

our specific choice of the mode expansion E22) and the
representation foy matrices Eq(1.4). For example, if one

rewrites the pseudoscalar field ysV in terms of the bilocal

bosons, one finds the same spinor structure as that of

mZ—4M?

f f(277)3k2+M2 m2x(1— X)
(4.24
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These are exactly equivalent to the corresponding equations Equations(4.21) and (4.22 have the same functional
in the previous work on the chiral Yukawa modél, where  form with respect to the variablesand k' . However, the
we obtained them by calculating pole masses of the scalafifference betweemn_ andm, greatly affects the shape of
and pseudoscalar bosons. If one uses the same cutoff schethe LC wave functions. This is most remarkable in the chiral

(extended parity-invariant cutgfas in Ref.[4]: limit: As my— 0, Eq.(4.21) becomes independent rf
k2+M?2  k2+M?
+ 2A2, (4.25 . 1
X 1-x (XK )— o (4.30
M

the pseudoscalar mass for small bare nmagss

moN where the constantC, was evaluated asC,—

m2 = Z.+0(md), (4.2 —i(2m)%(NZ,) Y2 On the other hand, Eq4.22 shows a
g oM narrow peak ak=1/2. Therefore, the pseudoscalar state is a
highly collective state, while the scalar state shows an ap-
where a cutoff dependent factor proximate constituent picture.

Now let us compare our result E@.21) with those of the

1] 1 1+V1-2MZA2\  J1—-2M?% A2 -t literature[10,11]. First of all, equivalence with the result of
Z.=— —2In — |~ 5 Ref. [11] is easily verified. As we commented before, the
N|87? |1-Vi-2MZA 4 unfamiliar spinor structure in E@4.16) is due to our specific

(427 choice of the mode expansion and the representation for the
v matrices. If one uses the following mode expansion for the

is related to normalization of a pseudoscalar sfage Eq. good component of the fermion:

(4.39]. Clearly m_ vanishes in the chiral limitnp—0 and
the pseudoscalar state is identified with the Nambu-
Goldstone boson. In E@4.18), the first term corresponds to d2kl » dk*
a kinetic energy part of the fermion and antifermion with the ~ #+(X)= 2 f [b(k Mu(k\)e'
constituent masM and the second term, a potential energy V2
part. The masslessness of the pseudoscalar state in the chiral
limit is realized by the exact cancellation between the kinetic
energy and the potential energy. Indeed, if we integrate Eq.
(4.18 overx andk' , we find one can obtain the same spinor structure as that of[REf.
Of course the two LC wavefunctions should coincide with
5 [t s i each other for observable quantities. Indeed, both give
f dxf a7k, da(x.ky) the same (quark distribution  function q(x)
= [ A2k, /(27)%% 4, gl D p(K) |2
1dx [ d2g On the other hand, the result of Rg10] seems different
f f - from ours Eq.(4.21). The possible origin of the discrepancy
(21)3 might be attributed to the following two points. First of all,
=| 1- the author of Ref[10] considered the Melosh transformation
1dx ¢ d?q, [22] which relates the LF spinor and the usual spinor in the
~ +2 f f 3 equal-time quantization. Such nonstatic spin effects might be
(2m) important when we discuss phenomenological aspects of
| +M?2 light mesongfor example, see Ref23]). However, even if
J' dyf dzh—¢w(y,|1)—>0 (My—0). we take it into account, it is hard to see the coincidence.
(1-y) Secondary, but most importantly, he derived the pion LC
(4.28 wave function by projecting the Bethe-Salpeter amplitude on
the equal LC time plane. Though this procedure should give
Thereforem_=0 is fulfilled in the chiral limit even though the same result as that of the LF bound-state equation as far

+d (kN (kN)e ',

the fermion has the constituent mass. as we are considering only the ladderN1leading contri-
On the other hand, the squared mass of the scalar state fBHtion, equivalence of the two is a highly nontrivial problem
smallmg is in our complicated analysis.
m2=4M2+O(my). (4.29

C. The Gell-Mann—Oakes-Renner and PCAC relations

At a first glance, the resuth,=2M in the chiral limit seems Now that we have the LC wave function for the pseudo-
to suggest a static picture of a fermion and an antifermionscalar meson, it is straightforward to obtain the decay con-
but actually the mass of the scalar meson comes from a pastantf .

of the potential energy. The kinetic energy cancels with the ) _

rest of the potential energy. iP#f.=(0[j§(0)|m;P). (4.3)
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For actual calculation, it is safer and easier to treat the plus k2
component. If we use the extended parity-invariant cutoff, Sym¢sym(x K)=—— Dsym( X, K))
the result is X(1=x)
o
f,=2MZ_ 12+ O(NO). (4.32 _ 9oasm f f d?l,
(2ar)% X(1—x)
Together with the pseudoscalar mags26) in the chiral |2
limit, we find the Gell-Mann—Oakes—Renner relation, ——— byl Y, |L) (4.39
y( 1-y)
- NM — The solution to the bound-state equation is
mZfs=—4my| — — | = —4my(0|¥¥|0). (4.33
% 9 A
¢sym(x kl sym—3 1- _2
The PCAC relation is also checked by using the state (27) Yer
|7;P). If we normalize the pseudoscalar fiele,(x) 1
=W (x)iysW(x) as X , (4.40

(0| my(0)|m;P)=1, (4.34

we find thatZ_ Y2 given in Eq.(4.27) is the normalization
factor

() =25 220 (X)i y5 W (x), (4.39

X(1=x)—K?/mg,p,

whereCgp,, is @ normalization constant amds,,=m_=m,
is given as a solution of the equation

2 2
dok, Msym

__: f j(zw)3 k? —mZ,x(1— x)

. (4.40)

Again this is equal to the previous result of the chiral

where we have used the gap equation. Therefore, we arrive Jtlkawa model withu?—e [Eq. (5.26 in Ref. [4]] and

the PCAC relation

3,i=2meW(x)i ysW(x)=m (4.36

fmn(X).

Note that the decay constaft.32 and the normalization
factor (4.35 are equivalent to the previous resu[t&gs.
(5.25 and (5.28 in Ref. [4]] in the infinitely heavy mass
limit of bosonsu— .

D. Symmetric phase

therefore if we use the same cutoff as before, we obtain the
same result fomgy,. Moreover though the above calcula-
tion was intended only t@0< gCr case, if we increase the
coupling constant over its critical vaILg%,, we find a nega-
tive solut|onmsym<0 This |mpI|es that the symmetric solu-
tion causes instability whegg> g2 and thus we must choose
the broken solution.

V. SUMMARY AND CONCLUSION

We have investigated a description of5B on the LF in
the NJL model. The importance of solving the fermionic

Here we consider the symmetric phase in the chiral limitconstraint for the bad spinor component was greatly stressed

mo=0. Wheng3<g2=2m?/A?, the gap equatiof8.26) has
only a trivial solutionM=0. A quantity which should be
zero in the broken phase is now estimated as

a3k e(k* 2
1 Zf €( ): Y 437

1-—#0.
(2m)® k" 95

Subsequently the factar defined by Eq(D13) is different
from that of the broken phagé&qg. (4.20],

gS 295 (dx
f f d’q, . (4.38

gé (2m)3J0

in analogy with the zero-mode constraint of scalar models.
The exact classical solution enabled us to check the proper-
ties of the LF chiral transformation. Though the chiral trans-
formation is differently introduced on the LF, we finally
found the equivalence to the usual chiral transformation.
For a description of pSB of LF NJL model, it was very
important to solve the fermionic constraint nonperturbatively
in quantum treatment. To do so, we introduced a bilocal
formulation and solved the bilocal fermionic constraint with
a fixed operator ordering by theN/expansion. Systematic
1/N expansion of the fermion bilocal operator is realized by
the boson expansion method as the Holstein-Primakoff ex-
pansion. The leading bilocal fermionic constraint was iden-
tified with the gap equation for the chiral condensate after we
took care of the infrared divergence. If we choose a non-
trivial solution of the gap equation, we have a Hamiltonian in

Then, both of the LF bound-state equations for the scalar anthe broken phase but with a trivial vacuum.

pseudoscalar states are given by

The physical role of the fermionic constraint in the LF
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NJL model is very similar to that of the zero-mode constraintfor helpful discussions at the very early stage of this work
for scalar models. We have seen a close parallel betweesnd to K. Yazaki and K. Yamawaki for their useful com-
these two constraints. Especially it should be noted that thenents. He is also grateful to T. Hatsuda and H. Toki for their
gap equation came from the longitudinal zero mode of th%ncouragement and interest in our work.
bilocal fermionic constraint.

It is very natural that we can reach the broken phase by
solving the quantum fermionic constraint byNléxpansion APPENDIX A: CONVENTIONS
because the fermionic constraint is originally a part of the
Euler-Lagrange equation and thus must include relevant in- We follow the Kogut-Soper conventidi20]. First of all,
formation of dynamics. What we did is very similar to the the light-front coordinates are defined as
usual mean-field approximation for the Euler-Lagrange
equations. Indeed the leading order in thé&l xpansion
corresponds to the mean-field approximation. However, our , ‘
way of solving the fermionic constraint with the boson ex- x*=—=x=x%), xi=x (i=12), (A1)
pansion method can easily go beyond the mean-field level. 2
Such a higher-order calculation enabled us to derive a correct

broken Hamiltonian and to show the divergent behavior of 4 - . . _
the (spatial integration ofpseudoscalar field. where we treak™ as “time.” The spatial coordinateg

Independence of mass from the mode expansion has bof'dx, are called the longitudinal and transverse directions,
desirable and undesirable aspects. The inclusion of correégspectively. Derivatives in terms of are defined by..
mass dependence into the IR divergent integral was required d/dx™. It is useful to introduce projection operatofs.
when we identify the lowest fermionic constraint with the defined by
gap equation. This is the point we must always take into
account. On the other hand, the Fock vacuum is defined in-
dependent of the value of mass. Due to this fact, it is enough 1
to have only one vacuum, namely, the Fock vacuum even in A==y y =—+"". (A2)
the chirally broken phase. This is the favorable aspect. How- 2 \/E
ever, the cost of such a simple vacuum was payed by, for
example, unusual chiral transformation of fields such as

; . I . IndeedA . satisfy the projection propertie§>=A., A,
[Q&F, Wiys W]+ — 2i ¥V and nonvanishing of the LF chiral o o A =
charge[QgF,H]io in the broken phase. We found that both +A_=1, etc. Splitting the fermion field by the projectors as
effects are proportional to the dynamical fermion maks
We also insisted the necessity of a bare mass term which WA= g2+ R a_ A qpa A3
accurately produced the constituent mass term. Although the SRR & - (A3)
special role of the fermionic constraint might be restricted to
the LF NJL model, the unusual chiral transformation and th&ye find that for any fermion on the LF, the. component is
nonconservation of the chiral charge are general features dependent degree of freedon, anél _ are called the
the chiral symmetry breaking on the LF. This is because they,qqq component” and the “bad component,” respectively.
are natural consequences of the coexistence of the chira? As was noted in the text, for practical calculation, we use
symmetry breaking and the Fock vacuum. . the two-component representation for the gamma matrices.

The leading-order eigenvalue equation for a singlerpe yyo-component representation is characterized by a spe-
bosonic state is equivalent to the leading-order fermionzific form of the projectorg1.2). Then the projected fermi-

antifermion bound-state equation. The bound-state equations,q 4. have only two components. There are many possi-
were solved analytically for scalar and pseudoscalar mesofsijiiies which realize Eq.(1.2. For example, a specific
and we obtained their light-cone wave functions and masse$q asentation ’
The meson masses, the decay constant, and so on were fairl
consistent with those of our previous analysis on the chiral
Yukawa model. The leading-order calculation was limited 0 —i 0 i [—iot 0

only to two-body sector(fermion and antifermion If we y°=(. ) y =( ) y'z( ,) (A4)
consider the higher-order Hamiltonian suchté® or h®, 0 0

we will be able to discuss four- or six-body sectors. In other

words, since we have bosonic meson states, we can expad sed in Ref[21]. In this paper, however, we choose a
the Fock space in terms of the mesonic degrees of freedome asentatioii.4) from which it is easy to extract informa-
Then, for example, we will be able to discuss the mixing Ofijon of the (1-+1)-dimensional results. Two-component spi-
scalar state and two pseudoscalar fields# mixing with nors ¢ and y are defined by Eqi1.3). Results of the chiral
o). Gross-Neveu model can be easily obtained if we make a
ACKNOWLEDGMENTS replacement for the Pauli matrices—1 and ¢'—0, and
regardys and y as one-component spinors.

The authors acknowledge W. Bentz for discussions on the Using this representation, the Lagrangian density of the

cutoff schemes. K.I. is thankful to K. Harada and T. HeinzI NJL model is written as
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1 periodic boundary condition. Whed= 1, the solution(B3)

L=iyto y+ixto_x— —=t oo x—xTo'o,4) is equivalent to Domokos’ solution to the Thirring model on
the light front[13].

In two dimensions, the LF chiral transformation is not

2 distinguishable with theJ(1) transformation. Indeed, the

- T('//TXJFXTWJFZ “LF_ chiral transformation” on the good component i
2 e'’y and equivalent to thel (1) transformation. And also,
X{('x+x" 2= (o3 x—xTap)?}. (A5) the solution(B3) implies that the bad component rotates just

the same way as the good compongnrte'’y.
Next let us turn to the NJL model. If we explicitly write

APPENDIX B: CLASSICAL SOLUTIONS TO THE all the indices, the fermionic constrai(®.1) is

FERMIONIC CONSTRAINTS

To solve the fermionic constraintdassicallymeans that X1a 1 [ Moihra—dz¢2q
we treat all the fermion fieldgboth good and bad compo- id_ =— _
nent$ as Grassmann numbers and neglect allaimeimbers Xzal 2\~ d21at Movza
which will emerge in quantum theory under the exchange of
variables. gemnq y g YralipX 16~ Y1alobX
Before discussing a complicated equation of the NJL YaalihpXan— YaalinXip | ° (B9)
model, it would be better to go first with the chiral Gross-

Neveu model. We solve the fermionic constraint of the chiral
Gross-Neveu model with the antiperiodic boundary condi-Whered,=d;—id, andd,= o+ id,. Since the equation for
tion: x1 (or x,) includesy; and x} (or x, anXm) it is useful to

introduce a constraint equation fery} instead ofy,. Then

Mo we have a more tractable equation
{iﬁ7+92a<x*)}x=ﬁ ¥, (B1)
Xia | 1 ( m0¢1a_3z¢2a)
Xa(X™=—00)=— y (X =), (B2) - _X;a \/E _azlﬂJlra_l_mO‘pZa
where we used a matrix notation with a mateax,(x ) Yrally,  Yrathon Y
=,(X 7)1 (x7). The solution to this equation is given by Tt i "
Va b ' Yaatio  Yaathan |\ — 1)
N L (B10)
x(X7)= 1 dy Gen(X 7,y )ﬁ'ﬂ(y )s (B3)
As in the (1+1)-dimensional case, the solution is immedi-
whereGg\(x~,y ") is the Green function satisfying ately given if we find the Green functio®(x",y",X,)

which satisfies
{ig* +ga(x )}Gen(X ",y )=d8(x"—y7), (B4)
{id* +g2A(X)IG(X ",y ,x,)=8(x"—y7), (B11)
Gon(XT ==,y )=—Ggn(X =%,y7).
(BS)  with a matrix Ajj.p(x) defined by Eq.(2.5). The result is

: - .. very similar to the two-dimensional result and is given by
Due to Eq.(B5), the solution of course satisfies the antiperi- Egs.(2.2) and(2.3) in the text.

odic boundary condition. EquatiaiB4) is solved as

1 01 APPENDIX C: PROBLEM OF OPERATOR ORDERING
S my)+C G Yy,

Gan(X 7,y ) =G0 (x~
on(X Y ) =Gen(x ) Here we consider the problem of operator ordering within
(B6) the chiral Gross-Neveu model witN=1. Following the

standard procedure, the Dirac brackets are calculated as

(0)(X )=Pg9 2% Lay )dy” 7 (B7)
(), 9" (Mlo=—i8x"—y7), (CY
1 GRY(=) -GG —)
STy ) ' B8 i Mo _ 2
I GgR() +Gar(—=) {x(x),¢"(y)}p=—iGan(X,y) E_g P y)xy) |,
where G(x7) is a solution of a homogeneous equation (C2)
{ia§+gza(x‘)}Gg)R,(x‘)=0 and the integral constar®
has been determined so thagy(x~,y ) satisfies the anti- (), (Y)}p=—iGan(X,Y)G2ux(Y), (C3
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where Gg\(X,Y) is the Green functior(B6) for the N=1 Mo

case. To quantize the system we simply replace the Dirac iDX{XSO,(X),(/,T(y)}Zg(X_y)(__92¢TX)_
bracket{A,B}p by the anticommutation relatiori{A,B}. 2

This procedure has the ambiguity of the operator ordering. (Co)

The operator ordering we took for the fermionic con- ) ) o
straint (2.1) in the NJL model corresponds to the following On the other hand, if we take the simplest ordering in the rhs

one in the chiral Gross-Neveu model: of the Dirac bracke{C2), we obtain
; Mo DX t T Mo 5 4
i0_x+guTx=—u. (C4) iIDZ{x(x), " (Y)}=IDZGen(X,Y)| —=— 94 x(Y)
V2 V2
We can easily find its quantum solution due to R LU T ;
[t (X), ¥ (y)]=0. The solution is =o(X"—y") E—g gix(y) |-

(C7)

This is identical with the resuliC6). Therefore we find our

whereG is again the Green functiofB6) with N=1. Ic;lrtciig;mg Eq.(C4) is consistent with the anticommutation re-

Now let us consider the consistency for the anticommuta-
tor {x,4'}. It can be calculated two different way@) from
the solutiony, of the fermionic constraint, an) from the t —
Dirac bracket(C2). We fix the operator ordering of the fer- 0.7 GGN(X’y)<
mionic constraint by Eq(C4) and check whether the Dirac
bracket can produce the same anticommutator or not. Of course if we take other operator ordering, the two results
Instead of the anticommutator itself, we present here thelo not coincide. We expect that even in the NJL model, we
calculation of a quantityiD* {x(x),"(y)} where iD* can select the rhs of the Dirac brackets so that they coincide
=ig_+g%yy’. Using the solutior(C5), we have with the direct result with the ordering defined by Ef.1).

o mg
Yo X )= f@dyGGN(XJ)ﬁlJI(y), (s)

Mo

24" 1. (C9
\/5 gi/lx)

APPENDIX D: BILOCAL FERMIONIC CONSTRAINTS AND THEIR SOLUTIONS
BY THE BOSON EXPANSION METHOD

It is tractable to solve the equations ffx,y) andi/(x,y) rather tharZ,z(x,y) andif,g(x,y). In momentum representation,
the fermionic constraints faf andi{ are

1 o g2 d3pld3q/
q"7(p,a) = 5 (—iq} o'+ M) o s(M (P, d) = Mp(a,P)) — —f A Map(p.a=p' =) (apT(P'.q")
2 2 (2m)3
o UP A~ (8,570 Q) — oogi UP'.G)Ms(d—p —a',p)}, (D1)
+ 1 3 P | A 3 gz dgp’dgq,
q IU(p,q)=§[{U (—ig) o'+ mg)}sMap(p,@) +{(—ig) o'+ my)o }agMag(q,p)]—E W
o
XM p(P,q=P =) (035 TIP' 0" ) + Sagild(p',0))+ (00 sT(P,0') = Sagilh(P' .0 ) Mp(ad—p — 0", P}
(D2)
In place of the quantization conditid.1), the system with bilocal operators can be characterized by the following algebra:
[:Mpg(P1.P2):, :Myﬁ(erqZ):]::Maﬁ(plan):5ﬁy5(3)(p2+ql)_:My,B(qlva):5&55(3)(p1+q2)
+NB8,4585,03 (p1+ap) 8P (po+ 1) (0(p1 ) B(p; ) 6(—d7) 6(—a5)
—6(—p1)6(—p;)6(a;)6(ay)), (D3)
where the normal order of1 was defined with respect to the Fock vacu(Br3)
M 5 (P,0):]0)=:M 5 (p,0):|0)=:M .5 (p,q):|0)=0. (D4)

The upper indices stand for signs of the longitudinal momenta.
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The complicated structure of the algebra for the bilocal ‘
operators which originates from the fermion statistics, is:M 4z (pl1p2)::J [da]> B,s(d, —pP2)
greatly reduced if one introduces the boson expansion 7
method. We can represent the operatokd::in terms of X(‘/N—A)ya(q,—pl)- (D8)
bilocal boson operatoB(p,q) of order O(N°) so that they ) ) .
fulfill the original algebra(D3). Since the algebra has a These give the N expansion oiM,4(p,q). The first few
bosonic feature in the largs-limit, terms are shown in th(_a tekEgs.(3.10—(3.12].
If we expand the bilocal operatofgp,q), U(p,q), and
it __ M 5(p,0), the equation for ordem can be written in a com-
[M 5 (P1.P2):, M5 (G1,02):] pact form:

N8, 58,0 (P1+ ) V(P + ), t"(p,q) ) ‘( F(n)(p'q))

. . . _u™pg/ 6™ (pa

it would be better to choose a representation which satisfies

this® The Holstein-Primakoff-type expansion satisfies the re- , e(pt) (= d3k t(k,p+g-k)

quirement. _ _ —Go— f_m 3 u™W(k,p+g—k) |
Physically this procedure corresponds to extracting purely q (2m)

bosonic degrees of freedom from a fermion-antifermion sys- (D9)

tem, i.e., a mesonic system. The power of the boson expan-

sion method in the light-front field theories was first demon-where quantitie& ™ (p,q) andG(p,q) are generally com-

strated by one of the authof$5]. He applied the Holstein- plicated functions of bilocal operators except for the lowest

Primakoff type expansion té1+1)-dimensional QCD and order[see Eq(3.18]. For exampleF*) andG™) are

derived an effective Hamiltonian for mesons as local bosons

whosg masses are given by thg 't I-_quft equation. Using the,:(l)(p,q)= %(—iqigr”rM)aﬁ[u(alg(p,q)—uilg(q,p)],

effective Hamiltonian, we can in principle study, say, scat- 2q

tering of mesons agq bound states. (D10)
Since the essential structure of the algetd8) is deter-

mined only by the longitudinal momentum, it is straightfor- GW(p,q) =

C[{os(—igl o'+ M)}ope8(p,0)

ward to apply the Holstein-Primakoff expansion discussed in 2q
Ref. [15] to four-dimensional fermionic theories. Indeed the i )
operators M: are represented as follows: +H{(=igqL o'+ M)ostapuas(ap)], (D1Y

whereu{})(p,q) is given by the boson expansion method Eq.
R L t o, (3.11. Since all of the orders of the operators are less than
Mg (pl'p2)'_f [dq]Zy Bay(~P1.0)Bg, (P2, Q) we can solve this equation order by order. The solution of
this integral equation is

(t(“)(p,q)>:(F‘”)(p,q))_ ,e(ph) (0 +0)
up,g )\ cO(p,q) % q- - b

(D6) = d% (F(”)(k’,erq—k’))
Xj-m (2m)3\ G (K ,p+q-k')/’
(D12)

EAﬁa( P2, — pl)! (DS)

M ;,g(plva):: _f [dQ]Ey B;ﬁ(q!_pz)Bya(qvpl)v

M ;IBJr(plva)::f [dQ]Ey ( VN_A)B'y(Dqu)Bya(qvpl):

D7) where

pt)= —
(P e (2m)3 Pk

o 3k k+ -1
1+g§f d g) . (D13

SActually there are many possibilities to express &) in terms
of bosonic operators, corresponding to various “local expansions’The quantities®(p,q) andu‘®(p,q) are necessary for ob-

of the Grassmannian manifold of the bilocal operators. taining a correct Hamiltonian of the system.
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