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Brane world: Disappearing massive matter
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In a brane(domain wal) scenario with infinite extra dimensions and localized gravity, bulk fermions and
scalars often have bound states with a zero four-dimensional mass. In this way, massless matter residing on the
brane may be obtained. We consider what happens when one tries to introduce a small, but nonvanishing mass
to these matter fields. We find that the discrete zero modes turn into quasilocalized states with a finite
four-dimensional mass and finite width. The latter is due to tunneling of massive matter into extra dimensions.
We argue that this phenomenon is generic to fields that can have bulk modes. We also point out that, in
theories meant to describe massive scalars, the four-dimensional scalar potential has, in fact, a power-law
behavior at large distances.

PACS numbd(s): 11.10.Kk

I. INTRODUCTION AND SUMMARY as gravitons: there exist a localized zero mode, and a Kaluza-
Klein continuum of arbitrarily light states weakly interacting
It was suggested a long time aph2] that localization of ~ with matter residing on the brane. Finally, the original
particles on a defect in a higher-dimensional space may serveechanism of the localization of massless fermions on a do-
as an alternative to standard Kaluza-Klein compactificationmain wall[1,11] works, in a range of parameters, in curved
The simplest example of such a defect is a domain wall irspace(1) as well[10].
4+ 1 dimensions. In the domain wall scenario, the extra di- In order to serve as a prototype for any realistic model,
mension is infinite, with the observed four-dimensional fieldsthe brane construction has to be supplemented with a mecha-
being zero modes of bulk fields in the domain wall back-nism of mass generation for the four-dimensional fields. In
ground. These zero modes are localized around the domathe usual Kaluza-Klein scenario this can be done merely by
wall and thus behave, at low energies, as four-dimensionaidding a small mass term to the higher-dimensional action.
massless fields. An explicit field theoretic realization of theAs we will see shortly, this apparently innocent step has
localization scenario in theories without gravity was straight-nontrivial consequences in the domain wall case. The point
forward in the case of scalars and fermigag localization  is that even in the presence of an explicit bulk mass term, the
of gauge bosons is much more diffic{i]. operator which determines the modasd corresponding ei-
An interesting recent development concerns the gravitagenvalues, i.e., masses of four-dimensional particiésays
tional sectof4] (see Refs[5-7] for extension to six dimen- has a continuous spectrum starting from zero. Indeed, con-
siong. With fine-tuning between #negativé bulk cosmo- sider the case of a free five-dimensional massive scalar field
logical constant andpositive brane tension, a thin-brane described by the action
solution to the five-dimensional Einstein equations exists
which has flat four-dimensional hypersurfaces S:f dzd“x\/—_g(%gab&a(ﬁab(b— %szﬁz , )
ds’=a*(z) n,,dx*dx"—dZ. )
where the metrig?® is given by Eq.(1). The field equation
in this background reads
A== Kel). [~ 02+ 4ksgN(2)d, + w2~ e ] g(z,p)=0,  (3)
and the parametét is determined by the five-dimensional
Planck mass and bulk cosmological constant. It has beewhere m2=p"pM is the four-dimensional mass. Clearly, at
found that the gravitational field perturbations about thelarge|z| the bulk mass termu? is negligible as compared to
background (1) have a localized zero mode, a four- the termm?e??l, so Eq.(3) reduces to one witlu=0. Since
dimensional graviton. Although continuum modes are arbithe continuum eigenvalues are determined by the lige-
trarily light in this case, their interactions with matter on the asymptotics which is not affected by the bulk mass terfn
brane are suppressed. As a result, gravity experienced byg. (3) has the same continuum spectrum as the equation
matter residing on the brane is effectively four dimensionalwith =0, i.e., the continuum spectrum starts from zero
at distances >k ! [4,8,9. Obviously, there is no zero mode at#0. The above
It has also been showi0,9] that massless bulk scalars in argument shows that there are no true localized modes with
the Randall-Sundrum backgrou) have similar properties nonzero four-dimensional mass either (there are no true
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bound states embedded in the continywifhis property is  Alternatively, one calculates the Feynman propagator be-

generic to fields that can have bulk modes: by using a scalinyveen two points on the brane: if there exists a metastable

argument, bulk mass terms are suppressed by a faé(a) state, this propagator has a pole at a complex value of the

as compared t@?, hence they become irrelevant at large mass. The two ways should of course lead to consistent re-

distances from the wall. We will see this explicitly in the sults.

case of fermions as well. Let us note in passing that the Let us begin with applying the first method to scalars. We

phenomenon we are discussing persists also when the masgsh to show that the mode equation, E8), has a complex

terms are introduced on the brane itgsly, when the effec- eigenvalue when the radiation boundary conditions are im-

tive action contains an additional ternf d*xdzs(z)[  posed(see Ref[9]) atz— *+. To the left and to the right of

—(1/2)V(—g) '2¢?] due to some dynamics on the brine the brane, the splutions to EE) which satisfy the radiation
The question of whether the domain wall scenario is at alPoundary conditions are

capable of incorporating objects which, to a certain approxi-

mation, behave as four-dimensional particles of small, but f(z<0)=c e—2sz(1)(Te—kz

nonvanishing mass arises. In this paper we give an affirma- ! "1k

tive answer in both scalar and fermion cases. We will see,

however, that these four-dimensional particles are meta-

stable. In other words, we show that at small enough

guasilocalized modes exist whose widthis much smaller

than their four-dimensional mass. These quasilocalized whereH{"(x) is the Hankel function and

modes are metastable states that decay into the continuum

modes. From the point of view of four-dimensional observer, [ w?

the quasilocalized modes correspond to massive particles v= 4+k_'

that propagate in three spatial dimensions for some time, and

then literally disappeafinto the fifth dimension The eigenvalues are determined by matching these solutions
Quasilocalized scalars and fermions are similar toatz=0. The continuity requires that =c,. The first deriva-

quasilocalized gravitongl2—-14 that emerge in a class of tive should also be continuous, as is clear from &,

models[15,12 with flat largez asymptotics of the five-

m
f(z>0)=c,e?**H 9)( ?ekz) : €)

dimensional space-time. Unlike the latter, the models we 3,f(+0)—3,f(—0)=0.
consider need not contain potentially dangerfl4,16—18 S ] )
dynamical branes of negative tension. The latter condition implies the equation for the eigenvalue

The suppression of the width depends on the mecha- ™
nism of the localization of particles on the wall. We find that

in the scalar mode(l2), the width is suppressed with respect mHM, (m/k) o0 )
to the massn by a factor (n/k)? at smallm/k. In the case of KHD(m/k) e

fermions the suppression factor has more complicated form Y

and is exponential in a range of parameters. Let us consider the cage<k, and search for solutions with

Yet another manifestation of the continuum starting fromm<k. In this regime one writes
zero m is a power-law behavior of the four-dimensional
propagator in the mfra_red. In the scala_r case this corresponds H(Vl—)l(m/k) N, ;(m/k) 3, 4(mik)
to a power-law potential between static sources at large dis- D =N (/K —i N Tk +eet,
tances (in a model meant to describe massive four-  H, (m/k) »(M/k) v—1(M/K)

dimensional particles We will explicitly calculate this po-
tential in Sec. II. where dots denote terms suppressed by at least one power of

m/k, and we keep the contribution that is imaginary at real
m. Plugging this expression into E¢) and expanding the
Il. SCALAR FIELD Bessel functions at small argument one finds

There are several ways to see that an effective four- m=my—il’
dimensional theory contains a massive metastable particle.
The easiest way is to directly find a complex eigenvaluewith
from the equation which determines the mass speciimn
(3) in the case of scalafsAs in ordinary qguantum mechan- 2

2— _
ics, this complex eigenvalue appears when one imposes the Mo= 2’ (6)
radiation (outgoing wave boundary condition'sat z— =+ oo,
F _ o mo 2 7
my 16\ k ™

!In the brane-world context, this approach was used in Ref, ) o ) _
for calculating the lifetime of quasilocalized gravitons in models of Thus, there exists a quasidiscrete level with the width sup-
the type of Refs[15,12. pressed by k)2,
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It is instructive to reproduce this result in terms of the where
scalar propagatoA(z,z’,p?) (by four-dimensional Lorentz
invariance, the latter depends only pA=p*p,). The pole A — N, 1(m/k) — (v—2)(K/m)N,(m/k)
of the propagator at certajp=m? corresponds to a particle m o J,_1(m/k)—(v—2)(k/im)J, (m/k) °
with the four-dimensional mags. In the case when one of _ ) )
the arguments is located on the brane, the propagator ft relatively large distances;>k™*, only modes withm

straightforward to find from Eq(4) <k are relevant. Assuming again thatck, we find
(P 2 (v+)I(v—1) [ m\2~2¥
A(z,0p%)=c(p)e*HD| 1 el |, A= 0¥ |

where the radiation boundary conditions are imposed, and

X
c(p) is determined by the normalization condition

k 2
1—2(v—2)(v—1)<a) },
aZA(Zvoip2)|Z=O:1' 2 1/m -3 8

¢m(0)*? %l 1¥az

The propagator has a particularly simple form when both m

arguments are on the brane so the scalar potenti&®) takes the following form:

8 8qlq2 € ' n 3 1

Comparing Eq(8) with Eq. (5) one finds that the propagator There are two competing contributions to this integral. The

has the pole at the complex valuegsfwhich corresponds to  first one comes from the region whekg, are small, i.e., the

the unstable massive particle with the mass and width givefast factor in the integrand of Eq10) is peaked. It is

by Eqgs.(6) and (7). straightforward to check that this region corresponds exactly
Finally, let us consider the static potential between twoto the resonancé6), (7) described above. The resonance

sources on the brane, which is induced by the scalar excontribution to the potential is equal to

change. The potential receives contributions from all modes

pHE (p/k)
kHSP(p/k)

A(0,0p%) =

and is given by the following integral: 8.0, € M (mg| 3 o
'S gven by wing fmedr ViedN) == ——| | 27T =diak ——.
e~ mr )
V(f)=CI1CI2J ; dm(0)dm, (9 As one might have expected, this is the usual Yukawa po-

tential with the massn, (extra factork accounts for the
whereq; andq, are the charges of the sources atg(z) difference in the mass dimensions of charges in five and four
are the eigenmodes of E@3) which are even under the dimensiong
reflectionz— — z. These eigenmodes are normalized with the  The second contribution comes from the light modes with
measure expf{2k|Z) [10,9], m<pu. It is suppressed by the large factor Jr(l\zm)

o (ku)*/m®. Explicitly,

f dze P ¢(2) by (2) = S(m—m"). . %J e 11
ore finds light(1) = 2 /7 kmt m= quzk—mg iz
m m m We see that almost massless modes lead to power-law be-
d(Z) =\ /ﬂe%IZ\ and, EeKIZI +bm|\|v<?ek|2> , havior at larger. The resulting potential

V(r)=V,edr)+ Vign(r)
where the coefficienta,, andb, are determined by the nor- © ot
malization condition is dominated by the power-like contribution at distances
=2m, L In(k/my).
a2 +b2=1 o Indmy)

and the boundary condition on the brane lll. FERMIONS

p l,0=0 Fermion fields are not localized on the positive tension
26m(2)]z-0=0. brane by gravitational interactions or{l§0]. Hence, one in-
vokes the localization mechanism of Reff$1,1]. The sim-

The solution to these equations can be written in the form X ) .
plest setup is as follows. One considers a domain wall

A 1 formed by some scalar field. This scalar field has a double-
am=— AL bn= , WeI_I potential with two degerjerate vacuayat = v; the do-
VI+AGL 1+AG main wall separates the regign=—v atz<0 from the re-
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gion y=v at z>0. A fermion field which has a Yukawa (yp)

coupling to the scalagy 'y has an exact zero mode in the T\PL_&Z‘PR_(QXTﬁ'““TZ)\I’R:O'
domain wall background. This zero mode is topological and (13
its existence does not depend on the details of the profile of
the scalar filed across the wall. Therefore, it also exists foAfter eliminatingV g one obtains a second order equation for
the infinitely thin wall, which is the case we consider in what ¥V ,
follows.

For a given sign of the Yukawa couplirgg the zero mode
has a certain chirality. Since the four-dimensional fermion
mass term requires both chiralities, it can only be introduced
in mo_dels with two bulk fer_mlon fleld_s which have_ opposite _ (92X2+M2)}\PL:0- (14)
couplings to the scalay. It is convenient to organize these
spinors into one field

m> o a a’ ,
?'F‘?z"‘gaz_g(g)(Tﬁ'MTz)_gX T1

Again, the explicit mass termghe terms involvinggy and
¥ w) are negligible at largéz| as compared ton?/a?, and
‘1’=< ) continuum indeed starts at zeno
V2 We solve Eq(14) separately to the left and to the right of
the brane, and then match the solutions. To the right of the

where ; and i, are four-component spinors living in five brane one haa—exp(—k2), so Eq.(14) reads

dimensions. B
In the presence of the Yukawa interactiggV 73¥, the [M2e22+ 92— ka,+K(gu 1+ 1) — (g2 2+ u?) ¥ =0.
fields ¢/, and i, have left and right zero modes, respectively. ‘ (15)

Mixing between these two modes that eventually gives rise

to four-dimensional mass, is introduced by adding a termt is convenient to introduce eigenvectors of the matrix
wW W, It is convenient to bring both these terms to the(9u 1+ 1 72). Let us defineM anda in such a way that
off-diagonal form by a globaSU(2) rotation. The resulting ) -
fermion action reads Qutin=Me*.

Then these eigenvectors are
e—ia/2

with the eigenvalues= M.
It is now straightforward to obtain a general solution to
Eqg. (15 that obeys the radiation boundary conditionszat

1
57"DM+ Y59, —Ox(2) 11— u7o | ¥ =0. (1)  — -+,

S= f dzd™x\gW (i Y2V + gx i+ ur) W,

whereV, is the spinor covariant derivative with respect to
the five-dimensional metrig,,. The Dirac equation which
follows from this action in the background) has the form

In the thin-wall limit one hagyx(z)=gv sgnz. ¥ (z>0)=¢ek?? %

Equation (11) determines the fermion modes. At=0

and gv>k/2 [10], there exist two fermion zero modes of
: S . : m

opposite chirality and continuous spectrum starting from +d(>)H(1)<_ekZ)\p(_>)}¢ ,

zero. It is straightfroward to see that@at-0 the zero modes "1k P

disappear, whereas the continuous spectrum still starts from

zero. This is precisely the same situation as in the scalafNer

case.

In order to see that there is a metastable massive state, let V.=
us find the complex eigenvalue at which there exists a solu- B
tion to Eq.(11) with the radiation boundary conditions im-
posed az— *o. It is convenient to separate the spinbr
into the left and right components

1 k
cm| Tt

e

=~ Z

1
5

¢ andd®™) are two yet undetermined coefficients, apigl
is az-independent left spinor.
The solution to the left of the brane is obtained in a simi-

Ys¥  r==V | Rr. lar way,
In terms of ¥ r Eq. (11) translates into a set of coupled W, (z<0)=e k72 C(<)H(V1)(Tekz)\p(+<)
equations Il
— m
(?;p)‘IfR+ ﬂzq,L_(gXTl+M72)\I,L:0, (12) +d(<)H$}1)<Ee_kZ)\P(_<) lpp,
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where r Mo 2gv/k—1 T
glal2 my (ﬁ) [T (gu/k+1/2)]?
‘I’(f): -+ ialz)
—e Hence, the suppression of the width depends nontrivially on

all parameters and may become very strong.

In the opposite casg>k (but still x<<gv, which implies
also gv>k), one makes use of the approximation of the
Bessel function by means of tangents, and obtains

are eigenvectors of the matrix-(Qu 7+ 75).

The fermion wave function has to obey matching condi-
tions atz=0. These are the requirements of continuitylqf
and Vg across the brane,

Y r(—0)=" g(+0). (16 Mo= s
Continuity of the left components requires r 1( mO)ZM/kl -
ye) +d™) =exp(i @) (yc! =) +d(9), 17) M 212M '
ye) = d™) = exp( —i ) (e —d(), whereM = \/(gv)%+ u2. In this case the suppression of the

(18) width is always exponentially strong. One can show that at
pu>k, the width is exponentially suppressed also for

where we have introduced the notation ~gu,
H, (m/k
- v, (M) Loc ~2(M/k)(B~tanhg) _M_M
y= . e , coshB=—=—.
H, (m/k) Mg Mo Mg
To obtain the second set of relations betweshandd’s, It is clear why the time fermions spend on the brane is large
one notices that, because of Ef2), continuity of ¥’ across  at smallk. At gv>k, continuum modes witlp?~mj3 barely
the brane is equivalent to continuity of penetrate the potential barrier extending from the brane to
the largez region. The would-be localized mode, on the
IV = (QxTitpr) WL . other hand, is narrow iz direction[ Az~ (gv) ~1]. Hence,

. . . . the overlap between continuum modes and would-be local-
Making use of the properties of Hankel functions, we obtain; e mode is small, and the lifetime of the metastable state is
large. This feature is absent in the scalar case considered in
Sec. I, where both the potential barrier and the spatial extent
of the would-be localized mode are governed by one and the
(20) same paramete.

Peculiar features of massive matter in brane world have
The determinant of the syste(@7)—(20) vanishes provided bee:'n found in this paper in field thepry framework. It re-
that y obeys either of the four equations mains to be understood Whether_5|m|lar phenomena are
present in D-brane theory. In particular one may wonder
y=*tanal2), y==cotlal2). whether massive matter carrying gauge charges may disap-
pear into extra dimensions. One may worry that this would
At small u/gv (i.e., small «), the relevant solution isy contradict three-dimensional Gauss’ law; however, the issue
=tan(a/2). This equation determines the complex eigen-becomes not so obvious if one recalls that the gravitational

valuem. Explicitly, the eigenvalue equation pt<gv reads analog of Gauss’ law does not prevent massive particles to
escape from the brarfd9]. We hope to return to this and

¢ —ydH =explia)(— S+ yd()), (19

¢+ ydH =exp( —ia)(—cS—yd ().

HD(mik) other related issues in future.
o B
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