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Brane world: Disappearing massive matter
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In a brane~domain wall! scenario with infinite extra dimensions and localized gravity, bulk fermions and
scalars often have bound states with a zero four-dimensional mass. In this way, massless matter residing on the
brane may be obtained. We consider what happens when one tries to introduce a small, but nonvanishing mass
to these matter fields. We find that the discrete zero modes turn into quasilocalized states with a finite
four-dimensional mass and finite width. The latter is due to tunneling of massive matter into extra dimensions.
We argue that this phenomenon is generic to fields that can have bulk modes. We also point out that, in
theories meant to describe massive scalars, the four-dimensional scalar potential has, in fact, a power-law
behavior at large distances.

PACS number~s!: 11.10.Kk
er
on
l i
d
ld
k
a

n
he
ht

ita

e
ist

al
e
th
r-
b

he

na

in

za-
g
al
do-
d

el,
cha-
In
by

ion.
as

oint
the

-

on-
field

at

-

tion

with
I. INTRODUCTION AND SUMMARY

It was suggested a long time ago@1,2# that localization of
particles on a defect in a higher-dimensional space may s
as an alternative to standard Kaluza-Klein compactificati
The simplest example of such a defect is a domain wal
411 dimensions. In the domain wall scenario, the extra
mension is infinite, with the observed four-dimensional fie
being zero modes of bulk fields in the domain wall bac
ground. These zero modes are localized around the dom
wall and thus behave, at low energies, as four-dimensio
massless fields. An explicit field theoretic realization of t
localization scenario in theories without gravity was straig
forward in the case of scalars and fermions@1#; localization
of gauge bosons is much more difficult@3#.

An interesting recent development concerns the grav
tional sector@4# ~see Refs.@5–7# for extension to six dimen-
sions!. With fine-tuning between a~negative! bulk cosmo-
logical constant and~positive! brane tension, a thin-bran
solution to the five-dimensional Einstein equations ex
which has flat four-dimensional hypersurfaces

ds25a2~z!hmndxmdxn2dz2. ~1!

Here

a~z!5exp~2kuzu!,

and the parameterk is determined by the five-dimension
Planck mass and bulk cosmological constant. It has b
found that the gravitational field perturbations about
background ~1! have a localized zero mode, a fou
dimensional graviton. Although continuum modes are ar
trarily light in this case, their interactions with matter on t
brane are suppressed. As a result, gravity experienced
matter residing on the brane is effectively four dimensio
at distancesr @k21 @4,8,9#.

It has also been shown@10,9# that massless bulk scalars
the Randall-Sundrum background~1! have similar properties
0556-2821/2000/62~10!/105011~6!/$15.00 62 1050
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as gravitons: there exist a localized zero mode, and a Kalu
Klein continuum of arbitrarily light states weakly interactin
with matter residing on the brane. Finally, the origin
mechanism of the localization of massless fermions on a
main wall @1,11# works, in a range of parameters, in curve
space~1! as well @10#.

In order to serve as a prototype for any realistic mod
the brane construction has to be supplemented with a me
nism of mass generation for the four-dimensional fields.
the usual Kaluza-Klein scenario this can be done merely
adding a small mass term to the higher-dimensional act
As we will see shortly, this apparently innocent step h
nontrivial consequences in the domain wall case. The p
is that even in the presence of an explicit bulk mass term,
operator which determines the modes~and corresponding ei
genvalues, i.e., masses of four-dimensional particles! always
has a continuous spectrum starting from zero. Indeed, c
sider the case of a free five-dimensional massive scalar
described by the action

S5E dzd4xA2gS 1

2
gab]af]bf2

1

2
m2f2D , ~2!

where the metricgab is given by Eq.~1!. The field equation
in this background reads

@2]z
214k sgn~z!]z1m22m2e2kuzu#f~z,p!50, ~3!

wherem25pmpm is the four-dimensional mass. Clearly,
largeuzu the bulk mass termm2 is negligible as compared to
the termm2e2kuzu, so Eq.~3! reduces to one withm50. Since
the continuum eigenvalues are determined by the largeuzu
asymptotics which is not affected by the bulk mass termm2,
Eq. ~3! has the same continuum spectrum as the equa
with m50, i.e., the continuum spectrum starts from zerom.

Obviously, there is no zero mode atmÞ0. The above
argument shows that there are no true localized modes
nonzero four-dimensional massm either ~there are no true
©2000 The American Physical Society11-1
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bound states embedded in the continuum!. This property is
generic to fields that can have bulk modes: by using a sca
argument, bulk mass terms are suppressed by a factora2(z)
as compared top2, hence they become irrelevant at lar
distances from the wall. We will see this explicitly in th
case of fermions as well. Let us note in passing that
phenomenon we are discussing persists also when the
terms are introduced on the brane itself„say, when the effec-
tive action contains an additional term* d4xdzd(z)@

2(1/2)A(2ḡ)m82f2# due to some dynamics on the brane….
The question of whether the domain wall scenario is at

capable of incorporating objects which, to a certain appro
mation, behave as four-dimensional particles of small,
nonvanishing mass arises. In this paper we give an affir
tive answer in both scalar and fermion cases. We will s
however, that these four-dimensional particles are m
stable. In other words, we show that at small enoughm,
quasilocalized modes exist whose widthG is much smaller
than their four-dimensional massm. These quasilocalized
modes are metastable states that decay into the contin
modes. From the point of view of four-dimensional observ
the quasilocalized modes correspond to massive part
that propagate in three spatial dimensions for some time,
then literally disappear~into the fifth dimension!.

Quasilocalized scalars and fermions are similar
quasilocalized gravitons@12–14# that emerge in a class o
models @15,12# with flat large-z asymptotics of the five-
dimensional space-time. Unlike the latter, the models
consider need not contain potentially dangerous@14,16–18#
dynamical branes of negative tension.

The suppression of the widthG depends on the mecha
nism of the localization of particles on the wall. We find th
in the scalar model~2!, the width is suppressed with respe
to the massm by a factor (m/k)2 at smallm/k. In the case of
fermions the suppression factor has more complicated f
and is exponential in a range of parameters.

Yet another manifestation of the continuum starting fro
zero m is a power-law behavior of the four-dimension
propagator in the infrared. In the scalar case this correspo
to a power-law potential between static sources at large
tances ~in a model meant to describe massive fou
dimensional particles!. We will explicitly calculate this po-
tential in Sec. II.

II. SCALAR FIELD

There are several ways to see that an effective fo
dimensional theory contains a massive metastable part
The easiest way is to directly find a complex eigenva
from the equation which determines the mass spectrum@Eq.
~3! in the case of scalars#. As in ordinary quantum mechan
ics, this complex eigenvalue appears when one imposes
radiation~outgoing wave! boundary conditions1 at z→6`.

1In the brane-world context, this approach was used in Ref.@14#
for calculating the lifetime of quasilocalized gravitons in models
the type of Refs.@15,12#.
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Alternatively, one calculates the Feynman propagator
tween two points on the brane: if there exists a metasta
state, this propagator has a pole at a complex value of
mass. The two ways should of course lead to consisten
sults.

Let us begin with applying the first method to scalars. W
wish to show that the mode equation, Eq.~3!, has a complex
eigenvalue when the radiation boundary conditions are
posed~see Ref.@9#! at z→6`. To the left and to the right of
the brane, the solutions to Eq.~3! which satisfy the radiation
boundary conditions are

f ~z,0!5c1e22kzHn
(1)S m

k
e2kzD ,

f ~z.0!5c2e2kzHn
(1)S m

k
ekzD , ~4!

whereHn
(1)(x) is the Hankel function and

n5A41
m2

k2 .

The eigenvalues are determined by matching these solut
at z50. The continuity requires thatc15c2. The first deriva-
tive should also be continuous, as is clear from Eq.~3!,

]zf ~10!2]zf ~20!50.

The latter condition implies the equation for the eigenva
m,

mHn21
(1) ~m/k!

kHn
(1)~m/k!

122n50. ~5!

Let us consider the casem!k, and search for solutions with
m!k. In this regime one writes

Hn21
(1) ~m/k!

Hn
(1)~m/k!

5
Nn21~m/k!

Nn~m/k! H 12 i
Jn21~m/k!

Nn21~m/k!
1•••J ,

where dots denote terms suppressed by at least one pow
m/k, and we keep the contribution that is imaginary at re
m. Plugging this expression into Eq.~5! and expanding the
Bessel functions at small argument one finds

m5m02 iG

with

m0
25

m2

2
, ~6!

G

m0
5

p

16S m0

k D 2

. ~7!

Thus, there exists a quasidiscrete level with the width s
pressed by (m/k)2.

f

1-2
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BRANE WORLD: DISAPPEARING MASSIVE MATTER PHYSICAL REVIEW D62 105011
It is instructive to reproduce this result in terms of t
scalar propagatorD(z,z8,p2) ~by four-dimensional Lorentz
invariance, the latter depends only onp25pmpm). The pole
of the propagator at certainp25m2 corresponds to a particl
with the four-dimensional massm. In the case when one o
the arguments is located on the brane, the propagato
straightforward to find from Eq.~4!

D~z,0,p2!5c~p!e2kuzuHn
(1)S p

k
ekuzu D ,

where the radiation boundary conditions are imposed,
c(p) is determined by the normalization condition

]zD~z,0,p2!uz5051.

The propagator has a particularly simple form when b
arguments are on the brane

D~0,0,p2!5F pHn21
(1) ~p/k!

kHn
(1)~p/k!

122nG21

. ~8!

Comparing Eq.~8! with Eq. ~5! one finds that the propagato
has the pole at the complex value ofp2 which corresponds to
the unstable massive particle with the mass and width gi
by Eqs.~6! and ~7!.

Finally, let us consider the static potential between t
sources on the brane, which is induced by the scalar
change. The potential receives contributions from all mo
and is given by the following integral:

V~r !5q1q2E e2mr

r
fm

2 ~0!dm, ~9!

whereq1 and q2 are the charges of the sources andfm(z)
are the eigenmodes of Eq.~3! which are even under th
reflectionz→2z. These eigenmodes are normalized with t
measure exp(22kuzu) @10,9#,

E dze22kuzufm~z!fm8~z!5d~m2m8!.

One finds

fm~z!5Am

2k
e2kuzuFamJnS m

k
ekuzu D1bmNnS m

k
ekuzu D G ,

where the coefficientsam andbm are determined by the nor
malization condition

am
2 1bm

2 51

and the boundary condition on the brane

]zfm~z!uz5050.

The solution to these equations can be written in the for

am52
Am

A11Am
2

, bm5
1

A11Am
2

,
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where

Am5
Nn21~m/k!2~n22!~k/m!Nn~m/k!

Jn21~m/k!2~n22!~k/m!Jn~m/k!
.

At relatively large distances,r @k21, only modes withm
!k are relevant. Assuming again thatm!k, we find

Am'
2G~n11!G~n21!

p~n12! S m

2kD 222n

3F122~n22!~n21!S k

mD 2G ,
fm

2 ~0!'
1

p2 S m

k D 23 8

11Am
2 ,

so the scalar potential~9! takes the following form:

V~r !5
8q1q2

p2 E e2mr

r S m

k D 23 1

11Am
2 dm. ~10!

There are two competing contributions to this integral. T
first one comes from the region whereAm are small, i.e., the
last factor in the integrand of Eq.~10! is peaked. It is
straightforward to check that this region corresponds exa
to the resonance~6!, ~7! described above. The resonan
contribution to the potential is equal to

Vres~r !5
8q1q2

p2

e2m0r

r S m0

k D 23

2pG5q1q2k
e2m0r

r
.

As one might have expected, this is the usual Yukawa
tential with the massm0 ~extra factork accounts for the
difference in the mass dimensions of charges in five and f
dimensions!.

The second contribution comes from the light modes w
m!m. It is suppressed by the large factor (11Am

2 )
}(km)4/m8. Explicitly,

Vlight~r !5
q1q2

2 E e2mr

r

m5

km0
4 dm560q1q2

1

km0
4

1

r 7
.

We see that almost massless modes lead to power-law
havior at larger. The resulting potential

V~r !5Vres~r !1Vlight~r !

is dominated by the power-like contribution at distancesr
*2m0

21 ln(k/m0).

III. FERMIONS

Fermion fields are not localized on the positive tens
brane by gravitational interactions only@10#. Hence, one in-
vokes the localization mechanism of Refs.@11,1#. The sim-
plest setup is as follows. One considers a domain w
formed by some scalar fieldx. This scalar field has a double
well potential with two degenerate vacua atx56v; the do-
main wall separates the regionx52v at z,0 from the re-
1-3
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gion x5v at z.0. A fermion field which has a Yukawa
coupling to the scalargxc̄c has an exact zero mode in th
domain wall background. This zero mode is topological a
its existence does not depend on the details of the profil
the scalar filed across the wall. Therefore, it also exists
the infinitely thin wall, which is the case we consider in wh
follows.

For a given sign of the Yukawa couplingg, the zero mode
has a certain chirality. Since the four-dimensional ferm
mass term requires both chiralities, it can only be introdu
in models with two bulk fermion fields which have oppos
couplings to the scalarx. It is convenient to organize thes
spinors into one field

C5S c1

c2
D ,

wherec1 and c2 are four-component spinors living in fiv
dimensions.

In the presence of the Yukawa interactiongxC̄t3C, the
fieldsc1 andc2 have left and right zero modes, respective
Mixing between these two modes that eventually gives
to four-dimensional mass, is introduced by adding a te
mC̄t1C. It is convenient to bring both these terms to t
off-diagonal form by a globalSU(2) rotation. The resulting
fermion action reads

S5E dzd4xAgC̄~ iga¹a1gxt11mt2!C,

where¹a is the spinor covariant derivative with respect
the five-dimensional metricgab . The Dirac equation which
follows from this action in the background~1! has the form

F1

a
gmpm1g5]z2gx~z!t12mt2GC50. ~11!

In the thin-wall limit one hasgx(z)5gv sgnz.
Equation ~11! determines the fermion modes. Atm50

and gv.k/2 @10#, there exist two fermion zero modes o
opposite chirality and continuous spectrum starting fr
zero. It is straightfroward to see that atm.0 the zero modes
disappear, whereas the continuous spectrum still starts f
zero. This is precisely the same situation as in the sc
case.

In order to see that there is a metastable massive stat
us find the complex eigenvalue at which there exists a s
tion to Eq. ~11! with the radiation boundary conditions im
posed atz→6`. It is convenient to separate the spinorC
into the left and right components

g5CL,R56CL,R .

In terms of CL,R Eq. ~11! translates into a set of couple
equations

~gp!

a
CR1]zCL2~gxt11mt2!CL50, ~12!
10501
d
of
r

t

n
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.
e

m
ar

let
u-

~gp!

a
CL2]zCR2~gxt11mt2!CR50.

~13!

After eliminatingCR one obtains a second order equation
CL ,

Fm2

a2 1]z
21

a8

a
]z2

a8

a
~gxt11mt2!2gx8t1

2~g2x21m2!GCL50. ~14!

Again, the explicit mass terms~the terms involvinggx and
m) are negligible at largeuzu as compared tom2/a2, and
continuum indeed starts at zerom.

We solve Eq.~14! separately to the left and to the right o
the brane, and then match the solutions. To the right of
brane one hasa5exp(2kz), so Eq.~14! reads

@m2e2kz1]z
22k]z1k~gvt11mt2!2~g2v21m2!#CL50.

~15!

It is convenient to introduce eigenvectors of the mat
(gvt11mt2). Let us defineM anda in such a way that

gv1 im5Meia.

Then these eigenvectors are

C6
(.)5S e2 ia/2

6eia/2D
with the eigenvalues6M .

It is now straightforward to obtain a general solution
Eq. ~15! that obeys the radiation boundary conditions az
→1`,

CL~z.0!5ekz/2Fc(.)Hn1

(1)S m

k
ekzDC1

(.)

1d(.)Hn2

(1)S m

k
ekzDC2

(.)Gcp ,

where

n65
M

k
7

1

2
,

c(.) andd(.) are two yet undetermined coefficients, andcp
is a z-independent left spinor.

The solution to the left of the brane is obtained in a sim
lar way,

CL~z,0!5e2kz/2Fc(,)Hn1

(1)S m

k
e2kzDC1

(,)

1d(,)Hn2

(1)S m

k
e2kzDC2

(,)Gcp ,
1-4



di

ai

n

nc

on

he

e
t at

rge

to
e

cal-
e is
d in

tent
the

ave
e-
are
er

sap-
uld
sue
nal
s to

ov
et-
rk

by
o.

ian
The
un-

BRANE WORLD: DISAPPEARING MASSIVE MATTER PHYSICAL REVIEW D62 105011
where

C6
(,)5S eia/2

6e2 ia/2D
are eigenvectors of the matrix (2gvt11t2).

The fermion wave function has to obey matching con
tions atz50. These are the requirements of continuity ofCL
andCR across the brane,

CL,R~20!5CL,R~10!. ~16!

Continuity of the left components requires

gc(.)1d(.)5exp~ ia!~gc(,)1d(,)!, ~17!

gc(.)2d(.)5exp~2 ia!~gc(,)2d(,)!,
~18!

where we have introduced the notation

g[
Hn1

~m/k!

Hn2
~m/k!

.

To obtain the second set of relations betweenc’s and d’s,
one notices that, because of Eq.~12!, continuity ofCR across
the brane is equivalent to continuity of

]zCL2~gxt11mt2!CL .

Making use of the properties of Hankel functions, we obt

c(.)2gd(.)5exp~ ia!~2c(,)1gd(,)!, ~19!

c(.)1gd(.)5exp~2 ia!~2c(,)2gd(,)!.
~20!

The determinant of the system~17!–~20! vanishes provided
that g obeys either of the four equations

g56tan~a/2!, g56cot~a/2!.

At small m/gv ~i.e., small a), the relevant solution isg
5tan(a/2). This equation determines the complex eige
valuem. Explicitly, the eigenvalue equation atm!gv reads

Hn1

(1)~m/k!

Hn2

(1)~m/k!
5

m

2gv
.

The simplest case to consider is whenm is the smallest pa-
rameter, i.e.,m!k. In this case one expands the Bessel fu
tions at small values of the argument and obtains

m5m02 iG

with

m05S 12
k

2gv Dm,
10501
-

n

-

-

G

m0
5S m0

2k D 2gv/k21 p

@G~gv/k11/2!#2 .

Hence, the suppression of the width depends nontrivially
all parameters and may become very strong.

In the opposite casem@k ~but still m!gv, which implies
also gv@k), one makes use of the approximation of t
Bessel function by means of tangents, and obtains

m05m,

G

m0
5

1

2 S m0

2M D 2M /k21

e2M /k,

whereM5A(gv)21m2. In this case the suppression of th
width is always exponentially strong. One can show tha
m@k, the width is exponentially suppressed also form
;gv,

G

m0
}e22(M /k)(b2tanhb), coshb5

M

m
5

M

m0
.

It is clear why the time fermions spend on the brane is la
at smallk. At gv@k, continuum modes withp2;m0

2 barely
penetrate the potential barrier extending from the brane
the large-z region. The would-be localized mode, on th
other hand, is narrow inz direction @Dz;(gv)21#. Hence,
the overlap between continuum modes and would-be lo
ized mode is small, and the lifetime of the metastable stat
large. This feature is absent in the scalar case considere
Sec. II, where both the potential barrier and the spatial ex
of the would-be localized mode are governed by one and
same parameterk.

Peculiar features of massive matter in brane world h
been found in this paper in field theory framework. It r
mains to be understood whether similar phenomena
present in D-brane theory. In particular one may wond
whether massive matter carrying gauge charges may di
pear into extra dimensions. One may worry that this wo
contradict three-dimensional Gauss’ law; however, the is
becomes not so obvious if one recalls that the gravitatio
analog of Gauss’ law does not prevent massive particle
escape from the brane@19#. We hope to return to this and
other related issues in future.
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