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Brane cosmologies without orbifolds
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We study the dynamics of branes in configurations where~1! the brane is the edge of a single anti–de Sitter
~AdS! space and~2! the brane is the surface of a vacuum bubble expanding into a Schwarzschild or AdS-
Schwarzschild bulk. In both cases we find solutions that resemble the standard Robertson-Walker cosmologies,
although, in the latter, the evolution can be controlled by a mass parameter in the bulk metric. We also include
a term in the brane action for the scalar curvature. This term adds a contribution to the low-energy theory of
gravity which does not need to affect the cosmology, but which is necessary for the surface of the vacuum
bubble to recover four-dimensional gravity.

PACS number~s!: 11.10.Kk, 04.50.1h, 98.80.Cq
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I. INTRODUCTION

A remarkable feature in certain theories with more th
the observed 311 dimensions is that while these extra d
mensions can extend infinitely, the geometry of the b
space-time nevertheless is able to confine gravity to a th
dimensional surface within the larger space. Randall
Sundrum~RS! @1# first showed that by attaching two sem
infinite slices of (411)-dimensional anti–de Sitter spac
(AdS5) along a three-dimensional hypersurface, or ‘‘thre
brane,’’ with orbifold conditions about this three-bran
gravity behaves as though it is confined to its vicinity. Th
three-brane is identified with our universe. In addition
reproducing ordinary Newtonian gravity, any success
model should also be able to produce a realistic cosmolog
evolution for the three-brane. The dynamical evolution of
brane is determined by Einstein’s equations for the combi
bulk and brane system, but these equations might not
duce the familiar Robertson-Walker cosmology along
brane. Viewed locally, near the brane the surrounding b
introduces a new element into the field equations for gra
on the brane through a term for the change in the extrin
curvature across the brane, as originally derived by Israel@2#.
While generalizations of the original RS orbifold@1# have
been shown to admit the usual open, flat, and clo
Robertson-Walker cosmologies@3#, we shall examine more
asymmetric geometries for which the AdS curvature leng
on opposite sides of the brane are not necessarily equal
shall treat in detail the case of a finite and spherical region
AdS space, including the case of a vacuum bubble that
pands in an asymptotically flat (411)-dimensional space.

Most previous studies@3–5# of the dynamics of a brane
have only included a surface tension term and a Lagran
for the matter fields, which generally includes all the sta
dard model fields, in the brane action. Yet without a mo
fundamental description of the physics that produces
brane, these terms should represent only the leading pi
of an effective action@6# that could include higher-orde
terms in a derivative expansion, such as a term for the sc
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curvature on the brane,R, and higher powers of curvatur
tensors on the brane, such asR2 and RabRab. Such terms
generically are suppressed by extra powers of the AdS
vature length scalel, so at distances much larger thanl we
expect that these higher-order terms in the brane action
be neglected. However, at least one fine-tuning is typica
made to obtain a vanishing cosmological constant on
brane by canceling the brane tension against a contribu
from the bulk. After this fine-tuning is made, a scalar curv
ture term on the brane can be naturally of the same orde
the terms that remain in the field equations for gravity on
brane. The importance of such a term increases when
consider universes very different from the original Randa
Sundrum scenario. For a vacuum bubble in a asymptotic
flat bulk, this term is the sole source for four-dimension
gravity.

A brane action that contains powers of the brane cur
ture tensors has also been used in the context of the A
conformal field theory~CFT! correspondence@7# to regular-
ize the action of a bulk AdSn11 space which diverges whe
the radius of the AdSn11 space becomes infinite@8–10#. Un-
like the effective field theory description of the brane actio
the requirement that the total action of the theory—the s
of the brane action and the bulk action—be finite in this lim
precisely fixes the coefficients of the terms in the brane
tion. The coefficient of the brane tension gives the us
cancellation of the cosmological constant on the brane; h
ever, we find that for the specific coefficient of the sca
curvature term on the brane, the brane curvature term can
the leading-order effects coming from the bulk gravity.
light of the AdS/CFT correspondence, this result might
anticipated since the bulk gravitational theory is conjectu
to be equivalent to a conformal quantum field theory
without gravity—on the surface.

In the next section, we derive the equations of motion
a bulk AdSn11 space in which a hypersurface is embedd
In Sec. III these equations are used to study a dynamic b
on which the induced metric takes the standard Roberts
Walker form. The general equations for a nonorbifolded g
ometry including the effects of a scalar curvature term in
brane action are found. Since these equations are difficu
solve exactly, in Sec. IV four we neglect the scalar curvat
term and focus on the expansion of a vacuum bubble in
asymptotically flat (411)-dimensional space-time. In Se
V we include the scalar curvature in the brane action a
©2000 The American Physical Society09-1
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HAEL COLLINS AND BOB HOLDOM PHYSICAL REVIEW D 62 105009
study its effects when the brane is the edge of a single A
space. Finally, we consider its effect on the vacuum bub
before concluding in Sec. VI.

II. ACTION FOR AdS n¿1 WITH A BOUNDARY

We would like to derive the form of Einstein’s equation
on an n-dimensional hypersurface embedded in
(n11)-dimensional bulk space-time. Later, we restrict o
selves to the interesting case wheren54. To be general, we
shall treat the bulk space-time as two regionsM1 andM2 ,
separated by the hypersurfaceB. Note that these bulk region
do not need to have the same metric on either side of
brane, but only need to satisfy the Israel conditions deri
below. Since the boundary corresponds to the observed
verse, we include an action on the brane containing, in a
tion to a surface tension term, a term for the scalar curva
on the brane plus the contributions from matter and ga
fields confined to the brane. At each point on the brane,
define a spacelike unit normal,Na5Na(x), to the surface
that satisfiesgabNaNb51. Heregab is the bulk metric and
the indicesa, b run over all the bulk coordinates. The bu
metric induces a metric on the brane,

hab5gab2NaNb ; ~2.1!

while the bulk metric can be discontinuous across the bra
the induced metric on the brane should be the same whe
calculated with the bulk metric for either region.

Combining all of these ingredients, the total action is t
sum of the actions for the two bulk regions,1

S15
1

16pG E
M1

dn11xA2gFR1
n~n21!

l 1
2 G

2
1

8pG E
B
dnxA2hK~1!,

S25
1

16pG E
M2

dn11xA2gFR1
n~n21!

l 2
2 G

2
1

8pG E
B
dnxA2hK~2!, ~2.2!

and that of the boundary,

Ssurf5
1

16pG E
B
dnxA2hF2

2~n21!

l

s

sc
1b

l

n22
R

116pGLfields1¯G . ~2.3!

HereG is the bulk Newton’s constant andK is the trace of
the extrinsic curvatureKab , defined by

1Our convention for the sign of the Riemann tensor is2Ra
bcd

[]dGbc
a 2]cGbd

a 1Ged
a Gbc

e 2Gec
a Gbd

e .
10500
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Kab5ha
c¹cNb . ~2.4!

s, R, andLfields represent the brane tension, the scalar c
vature of theinducedmetric, and the Lagrangian of field
confined to the brane. We normalize the brane tension w
respect to a critical tension,2 sc53/8pGl, as will be useful
later, and we allow the two bulk regions to have potentia
different curvature lengthsl 1 or l 2 . This action is a gener-
alization of that which appears in@9# and @10#. From the
vantage of writing an effective theory on the brane@6#, we
simply include theA2hR term as the next-to-leading term
in the brane action in powers of derivatives. The coefficie
of this term,bl/(n22), is determined by some underlyin
theory, so we leave it unspecified.

Varying the total action yields the usual Einstein equ
tions in the bulk,

Rab2
1

2
Rab5

n~n21!

l 1,2
2 gab , ~2.5!

where the appropriate AdS length is chosen for each reg
plus the following equation for the surface:

DKab2habDK52
n21

l

s

sc
hab2b

l

n22 FRab2
1

2
RhabG

18pGTab1¯ , ~2.6!

whereDKab[Kab
(2)2Kab

(1) , Tab is the energy-momentum ten
sor for the fields confined to the brane,

Tab[habLfields12
dLfields

dhab , ~2.7!

andRab is the Ricci tensor for the induced metric. Contrac
ing both sides of Eq.~2.6! with hab and solving forDK
5habDKab gives the Israel condition

DKab5
1

l

s

sc
hab2b

l

n22 FRab2
1

2~n21!
RhabG

18pGFTab2
1

n21
Tc

chabG1¯ , ~2.8!

which describes the effect of the presence of the bulk spa
time on the brane Einstein equations through the appear
of the extrinsic curvature term. A similar equation, althou
without the term arising from varying the scalar curvature
the brane action, has appeared in earlier studies of dom
walls in four @11,19#, five @3,4#, and an arbitrary number o
dimensions@20#. This term might seem unimportant at di
tances much larger thanl, since it contains two more power
of l compared to the term with the brane tension. Howev
the contributions fromA2hR can be of the same order a
the difference between the brane tension andDKab , once the
brane tension has been finely tuned.

2Note that since we are considering more general geometries
the orbifolds of@3#, it is convenient to define the critical tension t
be half that of the RS universe.
9-2
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BRANE COSMOLOGIES WITHOUT ORBIFOLDS PHYSICAL REVIEW D62 105009
For comparison, in the original RS orbifold we only in
clude the first term on the right-hand side of Eq.~2.8! and the
extrinsic curvatures from the two sides are equal and op
site, Kab[Kab

(1)52Kab
(2) . The bulk AdS5 space givesKab

52hab / l , which yields the usual fine-tuning condition@1#
for the brane tension,s52sc .

III. COSMOLOGY ON THE BOUNDARY

We shall now setn54 and examine some specific sol
tions of the field equations for gravity on a three-brane
tween two (411)-dimensional regions with negative cosm
logical constants. The metrics for the interiorr ,R(t) and
exterior r .R(t) regions with respect to the brane can
written in the AdS5-Schwarzschild form@12#:

ds2u int52u~r !dt21@u~r !#21dr21r 2dV3
2,

u~r !5
r 2

l 1
2 1k2

m1

r 2 ,

ds2uext52v~r !dt21@v~r !#21dr21r 2dV3
2,

v~r !5
r 2

l 2
2 1k2

m2

r 2 . ~3.1!

An AdS5 bulk corresponds to settingm15m250. We have
included the2m1,2/r 2 terms in the metric since they ca
have an important effect on the brane cosmology. Their p
ence leads to black-hole horizons at some distance into
bulk whose masses are determined bym1 andm2 @12,13#.

We shall frequently refer to thek51 case, for which the
brane is a three-sphere and a closed Robertson-Walker
mology results, but we shall leavek in the expressions with
the understanding that flat or open cosmologies can be
tained by settingk50 or 21, respectively:

dV3
2[H dx21sin2 x~du21sin2 u df2!, k51,

l 22~dx21dy21dz2!, k50,

dx21sinh2 x~du21sin2 u df2!, k521

.

~3.2!

We are looking for dynamical solutions, so we let t
position of the brane be given by

~ t,r ,x,u,f!5„T~t!,R~t!,x,u,f…, ~3.3!

wheret is the proper time for an observer at rest with resp
to the brane. The normal to the brane is then

Na5~2Ṙ,Ṫ,0,0,0!, ~3.4!

with an overdot denoting differentiation with respect tot.
Since the normal has unit length,gabNaNb51, we can ex-
pressṪ in terms ofṘ,

Ṫ5
@Ṙ21u~r !#1/2

u~r !
, ~3.5!
10500
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in the interior and withu(r ) replaced byv(r ) in the exterior
bulk. With the normal in this form we find that the induce
metric on the brane is already in the standard Roberts
Walker form; the metric induced from the interior bulk me
ric is

ds252u~r !dt21@u~r !#21dr21R2dV3
2

52u~r !$Ṫ22@u~r !#22Ṙ2%dt21R2dV3
2

52dt21R2~t!dV3
2[hmndxmdxn, ~3.6!

wherem, n run over the coordinates on the brane. The ex
rior region produces exactly the same induced metric.

In terms of the coordinate system defined by Eq.~3.6!, the
interior contribution to the extrinsic curvature is

Kmn
~1!dxmdxn52

1

u„R~t!…Ṫ
F R̈1

1

2

]u

]R
Gdt2

1u„R~t!…ṪR dV3
2, ~3.7!

with the exterior region contributing an analogous express
with u„R(t)… replaced withv„R(t)….

Let us consider the matter on the brane to be distribu
as an isotropic perfect fluid, of densityr and pressurep, for
which the energy-momentum tensor is

Tm
n 5diag~2r,p,p,p!. ~3.8!

In this case, the spatial components of Eq.~2.8! together with
Eq. ~3.5! yield

AṘ21u~R!6AṘ21v~R!5
R

l

s

sc
2

bl

2R
@Ṙ21k#

1
8pG

3
Rr1¯ . ~3.9!

The temporal component of Eq.~2.8! does not give an inde
pendent equation once we have imposed the conservatio
energy on the brane@3,4#, which demands that

d

dt
~rR3!52p

d

dt
R3. ~3.10!

The choice of the relative sign between the extrinsic cur
ture terms in Eq.~3.9! depends on the geometry of the bu
AdS5 space that surrounds the brane. In the original RS u
verse, the orbifold is made of two slices of AdS5 space at-
tached so that the warp factor—ther 2/ l 2 in the AdS metric
~3.1!—decreases as we move further from the brane in ei
direction. Thus, for the orbifold geometry, the plus sign
chosen. When the warp factor behaves differently on op
site sides of the brane, as for a brane simply embedded
single bulk AdS5 space, the minus sign is used.

For no scalar curvature term,b50, the Israel condition
~3.9! can be rewritten so that the evolution ofR(t) is deter-
mined by a potential,
9-3
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1

2
Ṙ21V~R!52

1

2
k, ~3.11!

where

V~R!52
1

8

R2

l 2 H ~s1r!2

sc
2 22S l 2

l 1
2 1

l 2

l 2
2D 1

sc
2

~s1r!2

3S l 2

l 1
2 2

l 2

l 2
2D 2J 2

1

4

1

R2 H m11m22
sc

2

~s1r!2

3~m12m2!S l 2

l 1
2 2

l 2

l 2
2D J 2

1

8

sc
2

~s1r!2

l 2~m12m2!2

R6 .

~3.12!

A similar potential is implicit in @3#. For R@ l and for a
generic tension, this potential does not produce a stan
Robertson-Walker cosmology. However, when the bra
tension is tuned to

s56scU l

l 1
6

l

l 2
U, ~3.13!

the leadingR2/ l 2, r-independent term drops out of the p
tential. The appropriate signs in Eq.~3.13! depend on the
behavior of the AdS space on either side of the brane.

The simplest example of a system that produces a real
cosmology is an AdS5 space that terminates on an ‘‘edge
the universe’’ three-brane, in the spirit of@14#, with only a
tension term in the brane action. This closely resembles
usual orbifold geometry@3# except that here the critical ten
sion, s5sc , is half of that needed for the orbifold. Forl 1
5 l , l 2→` andm15m, m250, the potential~3.12! becomes

V~R!52
1

2

R2

l 2

1

sc
2 @~s1r!22sc

2#2
m

2R2 . ~3.14!

Making the fine-tuning of the brane tension to its critic
value,

Ṙ21k5
R2

l 2

2r

sc
1

R2

l 2

r2

sc
2 1

m

R2 5
16pG

3l
rR21

m

R2 1¯ .

~3.15!

Here we have inserted the definition ofsc and assumed
r/sc!1. For the standard Robertson-Walker universe,
dynamical equation that determinesR(t) is

Ṙ21k5
8pG4

3
rR2, ~3.16!

where G4 is the (311)-dimensional Newton’s constan
Thus identifying G452G/ l , we recover the familiar cos
mologies on the brane driven by the energy density on
brane, as long asm is not too large. A similar result wa
found in this edge of the universe picture in@15#.
10500
rd
e
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e

IV. VACUUM BUBBLE

When a bubble nucleates in a region having a vacu
energy higher than that in the bubble’s interior, the bub
will expand or contract depending upon the surface tens
of the bubble and the difference in the bulk vacuum energ
A simple example of this behavior occurs when a bubble
AdS5 space is surrounded by an asymptotically flat regi
The three-brane here is the surface of this bubble. The
pose of this section is to introduce this bubble as an exam
of an acceptable brane cosmology that is driven by one of
mass parameters in the bulk metric in a relatively sim
setting. One obvious difficulty—that the model does not p
duce a 4D Newton’s law—can be removed by adding a s
lar curvature term to the brane action. Yet we shall first stu
the cosmology without this term since in this limit we ca
solve the behavior exactly and shall find that it is maintain
when the brane curvature term is included.

For a bubble in a flat vacuum, the metrics for the inter
and exterior regions are then respectively given by

u~R!5
r 2

l 2 1k2
m1

r 2 , v~R!5k2
m2

r 2 . ~4.1!

Since l 2→`, we have setl 15 l without loss of generality.
Then the cosmological evolution is determined by the fu
tion

V~R!5
1

8

R2

l 2 H 22
~s1r!2

sc
2 2

sc
2

~s1r!2J 2
1

4

1

R2

3H m11m22
sc

2~m12m2!

~s1r!2 J 2
1

8

sc
2l 2~m12m2!2

~s1r!2R6 .

~4.2!

Again, this potential does not to lead to a standa
Robertson-Walker cosmology on the brane unless we ses
5sc . Expanding in the limit where the matter density
small compared to this critical tension, we have

V~R!52
1

2

m2

R22
1

8

l 2~m22m1!2

R6 1¯1
1

2

r

sc

3S m22m1

R2 1
1

2

l 2~m22m1!2

R6 1¯ D2
1

2

r2

sc
2

3S R2

l 2 1
3

2

m22m1

R2 1
3

4

l ~m22m1!2

R6 1¯ D1¯ .

~4.3!

The potential for the vacuum bubble~4.3! does not con-
tain arR2 term, since the same fine-tuning that removes
cosmological constant from the brane also eliminates suc
term. However, in the limit in whichR(t)@ l and r!sc ,
the leading term that determines the cosmology on the
face of the expanding bubble is

Ṙ21k5
m2

R2 1¯ . ~4.4!
9-4
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BRANE COSMOLOGIES WITHOUT ORBIFOLDS PHYSICAL REVIEW D62 105009
Although this equation seems quite different from Eq.~3.16!,
the time dependence of its solution is exactly the same as
a radiation-dominated universe in whichr}R24. Notice that
if we do not want ther2R2 term to dominate, we should onl
consider sufficiently late times in the evolution when

r

sc
!

l

R
. ~4.5!

V. EFFECTS OF THE SCALAR CURVATURE
IN THE BRANE ACTION

A. Edge of the universe

We now study the effects of including a scalar curvatu
term for the induced metric in the brane action,bÞ0. We
first consider a bulk AdS5 space that terminates on a thre
brane. The Israel equation~3.9! in this case contains only
one extrinsic curvature term

2@Ṙ21u~R!#1/25
R

l

s1r

sc
2b

l

2R
@Ṙ21k#. ~5.1!

Solving for Ṙ21k, we obtain the potential

V~R!52
R2

b2l 2 F11b
s1r

sc

6A11b212b
s1r

sc
2b2

ml2

R4 G . ~5.2!

At the critical brane tension, for the lower sign and assum
that we can expand the square root, we find that

V~R!52
1

11b

R2

l 2

r

sc
2

1

2~11b!

m

R22
1

2~11b!3

R2

l 2

r2

sc
2

1¯ . ~5.3!

This time instead of Eq.~3.15! we have

Ṙ21k5
1

~11b! S 16pG

3l
rR21

m

R2D1¯ . ~5.4!

We obtain the standard Robertson-Walker evolution on
brane if we identify the four-dimensional Newton’s consta
with

G45
1

11b

2

l
G. ~5.5!

We obtain the same result if we calculate theG4 by con-
sidering variations about the background metric and then
tegrating over the extra dimension, as described in@16# and
@1#. Since a nonzerom is not needed to produce the standa
cosmology~5.3!, we set it to zero while determiningG4 . It
is also convenient, rather than working with the coordina
of Eq. ~3.1!, to define a new radial coordinate through
10500
or

e

g

e
t

-

s

e2r/ l5
r 2

l 2 11. ~5.6!

The AdS5 metric then becomes

ds252e2r/ ldt21
e2r/ l

e2r/ l21
dr21~e2r/ l21!l 2 dV3

2.

~5.7!

In the limit r@ l , this metric reduces to the simpler form

ds2'e2r/ l~2dt21 l 2 dV3
2!1dr2. ~5.8!

If we replace the metric on the brane2dt21 l 2 dV3
2 with a

metric ḡmn(xl)dxmdxn that only depends on the coordinat
on the brane, then we find that the 5D scalar curvature
related to the 4D scalar curvature by

R552
20

l 2 1e22r/ l R̄41¯ . ~5.9!

Integrating over the AdS5 region gives then the following
term in the effective action:

1

16pG4
E

B
d4xA2hR̄4[

1

16pG E
B
d4xA2h

l

2
R̄4 .

~5.10!

Combining this effective brane curvature induced by t
bulk zero mode with that included in the brane action giv

Seff5
1

16pG E
B
d4xA2h

l

2
~R̄41bR!1¯ , ~5.11!

so that the effective four-dimensional Newton constant g
renormalized by the factor 1/(11b). From the vantage of an
effective field theory on the brane, for whichb is determined
by some unknown higher-energy theory, this result sho
that we recover Newtonian gravity on the brane and at
same time the ability to generate a standard cosmolog
behavior on the brane, as long asb.21. For comparison, in
the standard orbifold picture, withs52sc , the effective
Newton constant on the brane is

G45
1

21b

2

l
G. ~5.12!

For the special choiceb521 whens5sc , our effective
action on the brane corresponds to the first two terms in
brane counterterm action of@9# and @10# which regularizes
the bulk AdS action. The AdS/CFT conjecture@7# suggests
that for this action, the theory of gravity in the AdS bulk
equivalent to a conformal field theory on the boundary, wi
out gravity. Indeed, we find that for physical values for t
matter density (r>0) and for a positive mass parameter
the AdS-Schwarzschild metric (m>0), we do not recover a
realistic cosmological evolution on the brane. Forb521
and s5sc , the Israel equation~3.9! yields a complex po-
tential for Ṙ21k,
9-5
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V~R!5
R2

l 2 F r

sc
6A22

r

sc
2

ml2

R4 G , ~5.13!

so we no longer obtain the ordinary cosmological solutio

B. Vacuum bubble

When a brane is embedded between arbitrary bulk A
Schwarzschild spaces and a scalar curvature term is inclu
in the brane action, the Israel equation~3.9! is a quartic poly-
nomial in (Ṙ21k) which becomes tractable only for speci
space-time geometries or in theR@ l limit. Returning to the
case of a vacuum bubble expanding into an asymptotic
flat region, withu(r ) and v(r ) as in Eq.~4.1!, we find the
following leading behavior in thel /R!1 limit:

V~R!'2
1

2

m

R22
1

8

l 2

R2

m2

R4 ~b11!21
1

2

m

R2

r

sc
~b11!1¯

2
1

2

r2

sc
2 S R2

l 2 1
3

2

m

R2 ~b11!21¯ D1¯ . ~5.14!

Here, for simplicity, we have setm25m andm150. Notice
that the presence of a brane curvature term has not gene
a rR2 term. Therefore we still require that the cosmology
driven by them/R2 term in order to obtain the same tim
evolution as in a radiation-dominated universe. For the n
b-dependent terms not to overwhelm them/R2 term, we
must imposebr/sc!1. Comparing with the condition al
ready imposed by Eq.~4.5!—that them/R2 term and not the
r2R2 term should drive the cosmology—we see that we c
accommodate abl up to cosmological scales without impo
ing any new constraint.

A curvature term in the brane action plays a crucial role
the vacuum bubble scenario since it produces a 4D Newt
law for distances along the brane smaller thanbl @17#. A
similar result is also found in@18# for a brane embedded wit
a flat bulk on both sides. As we just have seen,bl can be
large without affecting the cosmology. One unpleasant f
ture of this example is that while the correct Newton’s law
obtained, the effective 4D Einstein equation contains a te
for a scalar graviton@17#.

As a more realistic variation, consider a vacuum bub
that expands into another AdS5-Schwarzschild region, rathe
than a flat bulk. Unlike the standard Randall-Sundrum p
ture, we shall let the second AdS lengthl 2 have a large
macroscopic size, but which is yet much smaller than
length associated with the brane curvature:l 1 ,l ! l 2!bl. The
leading behavior of the cosmology~3.9! for this universe is
then governed by

V~R!52
1

2

1

b

l 2

l 1

m2

R22
1

2

1

b

m1

R2 1¯2
r

sc

3S 1

b

R2

l 2 2
1

b2

l 2

l

R2

l 2 1¯ D1
r2

sc
2 S 3

2

1

b

l 1

l

R2

l 2 1¯ D
1¯ . ~5.15!
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Unlike Eq. ~5.14!, therR2 term is again present:

Ṙ21k5
8pG

3

2

bl
rR21

1

b

l 2

l 1

m2

R2 1¯ . ~5.16!

Provided m2 is not too large, we recover a standa
Robertson-Walker cosmology with an effective 4D Ne
ton’s constant,G452G/bl. What has happened for thi
bubble is that above the AdS lengths we expect that the b
space produces an effectively 4D theory of gravity@16#.
Since we have assumed thatl 1 ,l 2!bl, when we probe dis-
tances belowl 1 ,l 2 we do not observe the extra dimensions
the bulk space since we are in the regime in which the ef
of the brane curvature term dominates. This argumen
borne out in@17# where it is shown that the effective theor
of gravity on the surface is governed by a 4D Einstein eq
tion at all scales whenl 1 ,l 2!bl.

VI. CONCLUSIONS

We have found that, in general, the inclusion of a sca
curvature term in the brane action still allows us to find t
standard Robertson-Walker cosmologies for the evolution
the brane. This standard behavior emerges once the siz
the universe has grown large in comparison to the A
length of the bulk space and provided that the usual fi
tuning of the effective cosmological constant on the brane
zero has been made. When the AdS lengths are small,
presence of this brane scalar curvature term simply act
renormalize the effective Newton’s constant on the brane
the case of an ‘‘end of the universe’’ brane, the brane cur
ture does not affect the cosmology, except whenb521.

We have explored physically intuitive brane universes
which the bulk does not have an orbifold symmetry. In t
case of a vacuum bubble expanding into an asymptotic
flat space, we encountered an intriguing example of a sys
in which the existence of the bulk is crucial for the corre
cosmological evolution since therR2 term that usually pro-
duces a Robertson-Walker cosmology is absent. Instead
cosmology, which has the same time dependence a
radiation-dominated universe, is driven by a mass term in
bulk Schwarzschild metric. A scalar curvature in the bra
action plays a more important role here since it provides
only possible source for 4D gravity up to a scalar gravito
We also examined a variation in which the bubble lies b
tween two regions with potentially very different cosmolog
cal constants. For such a bubble, it is possible to recov
completely standard Robertson-Walker cosmology with
constraining the bulk AdS lengths to be below a millime
scale, provided that the brane curvature term is sufficien
strong. These examples should encourage the search
novel extra-dimensional models in which the bulk effects
not small corrections to the standard cosmology, but rat
drive its evolution.
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