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Interaction of magnetic monopoles and domain walls
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~Received 28 September 1999; published 17 October 2000!

We study the interaction of magnetic monopoles and domain walls in a model with SU(5)3Z2 symmetry by
numerically evolving the field equations. We find that the monopoles unwind and dissipate their magnetic
energy on collision with domain walls within which the full SU~5! symmetry is restored.

PACS number~s!: 11.27.1d, 11.30.Er, 12.60.Cn, 14.80.Hv
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The interactions of topological defects can have a p
found effect on the outcome of phase transitions. The sca
of a network of domain walls and strings, and a distributi
of magnetic monopoles, crucially depends on how the
fects interact among themselves and with each other. T
far attention has focused on the interactions of walls w
walls, strings with strings, and monopoles with monopol
The cosmological importance of the interactions of walls a
monopoles was highlighted in Ref.@1# and it is this problem
that we study in the present paper.

Earlier work on the interaction of solitons and doma
walls ~phase boundaries! has been carried out in the follow
ing contexts:~i! mutual interaction of domain walls@2#, ~ii !
He3 A-B phase boundaries and vortices@3#, ~iii ! Skyrmions
and domain walls@4#, and~iv! global monopoles and embed
ded domain walls in an O~3! linear s model @5#. Here we
will numerically study the interaction of gauged SU~5!
monopoles with a Z2 domain wall. This is quite distinct from
the earlier work since it looks at magnetic monopoles wh
necessarily include gauge fields. It is also the most relev
problem for the cosmological consequences of grand uni
theories@1#.

The SU~5! model we consider is given by the Lagrangi

L52
1

4
Xmn

a Xamn1
1

2
~DmFa!22V~F!, ~1!

where F is an SU~5! adjoint scalar field, Xmn
a (a

51, . . .,24) are the gauge field strengths and the covar
derivative is defined by

DmFa5]mFa2 ie@Xm ,F#a ~2!

and the group generators are normalized by Tr(TaTb)
5dab/2. The potentialV(F) is the most general quartic po
tential but we exclude the cubic term inF so as to obtain the
extra Z2 symmetry underF→2F:

V~F!52m2TrF21h~TrF2!21lTrF4. ~3!

The parameters of the potential are chosen so that^F&
5hdiag(2,23,2,2,23)/(2A15) with h5m/Al8 andl85h
17l/30. With this vacuum expectation value, the SU~5!
symmetry is spontaneously broken to SU(3)3SU(2)
3U(1). Thedesired constraints on the parameters arel,l8
.0.

The magnetic monopoles in this model were discussed
Dokos and Tomaras@6# except that also included the effec
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of a scalar field in the fundamental representation of SU~5!.
Here we do not have such a field. Yet the basic construc
of @6# goes through and the fundamental monopole is ess
tially an SU~2! monopole embedded in the full theory. Th
monopole solution has the following form:

FM[ (
a51

3

FaTa1F4T41F5T5, ~4!

where the subscriptM denotes the monopole field configu
ration,

Ta5
1

2
diag~sa,0,0,0!, T45

1

2A3
~0,0,1,1,22!,

T55
1

2A15
~23,23,2,2,2!,

sa being the Pauli spin matrices,

Fa5P~r !xa, F45M ~r !, F55N~r !, ~5!

where r 5Ax21y21z2 is the spherical radial coordinate
The ansatz for the gauge fields for the monopole is

Wi
a5e i j

a xj

er2
„12K~r !… ~a51,2,3!,

Wi
b50 ~bÞ1,2,3!. ~6!

In the case when the potential vanishes@the Bogomolnyi-
Prasad-Sommerfield~BPS! case@7,8# #, the exact solution is
known @9#:

P~r !5
1

er2 S Cr

tanh~Cr !
21D , K~r !5

Cr

sinh~Cr !
, ~7!

M ~r !5
2

A3

C

e
, N~r !5A 1

15

C

e
. ~8!

In the non-BPS case, the profile functionsP(r ), K(r ),
M (r ) andN(r ) need to be found numerically. We find the
by using a relaxation procedure with the BPS solution se
ing as the initial guess.
©2000 The American Physical Society05-1
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Depending on the parameters in the potential, it is p
sible to have different stable domain wall solutions. The d
main wall across whichF→2F is stable to diagonal per
turbations provided@1#

2
3

20
.

h

l
.2

7

30
. ~9!

At the center of this wall,F must necessarily vanish and s
the full SU~5! symmetry is restored at the center of this wa
Certain components ofF do not vanish at the center of th
domain wall solutions in this model for other values of p
rameters. In these walls, only a subgroup of the full SU~5!
symmetry is restored in the center. We will only study t
interaction of monopoles with walls in whichF50 at the
center in this paper. The interactions of other types of w
and monopoles will be discussed separately.

The solution for the domain wall located in thexy plane is

FDW5
h

2A15
tanh~sz!~2,23,2,2,23!, ~10!

wheres5hAl8/2.
When the monopole and the domain wall are very

from each other, the joint field configuration is given by t
product ansatz:

F5tanh„gs~z2z0!…FM , ~11!

wherev is the velocity of the domain wall in the negativez
direction, g51/A12v2 is the Lorentz factor andz0 is the
position of the wall. HereFM denotes the monopole solutio
in Eq. ~4!. The gauge fields are unaffected by the presenc
the wall and are still given by Eq.~6!. In addition, the time
derivative of the scalar field is also given by the produ
ansatz:

Ḟ5gsv sech2„gs~z2z0!…FM. ~12!

Equations~11! and ~12! specify the initial (t50) condi-
tions for the scalar field for a wall approaching a monop
with velocity v. The initial scalar and gauge field profil
functionsP, M, N, andK ~in the non-BPS case! are found by
numerical relaxation. The field dynamics is described by
equations of motion following from the Lagrangian in E
~1!. At first sight, there are 24 components ofF and 96
components of the gauge fields that need to be evolv
However, it is not hard to check that all the dynamics occ
in an SU~2! subgroup of the original SU~5!. This then re-
duces the dynamical fields to a triplet of SU~2! and two other
fields~i.e. a total of 5 scalar fields! and 334512 gauge field
components. Choosing the temporal gauge (W0

a50) reduces
the number of gauge field components to 9.

Further reduction of the problem occurs since the ini
conditions are axially symmetric and the evolution equatio
preserve this symmetry. The angular dependence in cylin
cal coordinates can easily be imposed on the scalar field.
the gauge fields it can be extracted by using the fact that
covariant derivatives of the scalar field must vanish at la
10500
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distances from the monopole. This then leads to the follo
ing ansatz for the 5 scalar and 9 gauge fields:

F15 f 1x, F25 f 1y, F35 f 2z

F45 f 3 , F55 f 4

Wx
15 f 5xy, Wy

15 f 5y22 f 6 , Wz
15 f 7y

Wx
252 f 5x21 f 6 , Wy

252 f 5xy, Wz
252 f 7x

Wx
352 f 8y, Wy

35 f 8x, Wz
350,

where the f i ( i 51, . . . ,8) are functions only of t, r
5Ax21y2 andz. We have explicitly checked that this ansa
is preserved by the evolution equations. So now the prob
is reduced to one in 8 real functions of time and two spa
coordinates.

An attempt to numerically solve the 8 equations of moti
directly in cylindrical coordinates failed due to numeric
instabilities that developed within the time scale of the sim
lation. An analysis showed that the problem was due to la
numerical errors in evaluating the derivatives in cylindric
coordinates. This shortcoming of using cylindrical~and
spherical! coordinates in numerical work is well-recognize
and the authors of@10# have proposed a solution that w
have successfully implemented. The idea is to solve
problem, not in two spatial dimensions like therz-plane, but
to solve it in a thin three dimensional slab whose central s
is taken to lie in the xz-plane and with only 3 lattice spacin
along the y direction. Then Cartesian coordinates can
used to solve the equations of motion in they50 plane, thus
minimizing numerical errors. On theyÞ0 lattice sites the
fields are evaluated by using the axial symmetry of the pr
lem. This scheme improved the numerical stability of o
staggered leapfrog code dramatically and allowed us to
serve the monopole and wall for a sufficiently long durati
without the development of numerical instabilities.

We have evolved the initial wall and monopole config
ration with several velocities. The numerical results of t
simulation with v50.8, h52l/5, l50.5 and h51 are
given in the figures~see Figs. 1, 2, and 3! and clearly show
that the energy of the monopole dissipates after the pas
of the wall (m5hAl8 ande can be scaled out of the prob
lem!. The final snapshot shows that the energy in the sc
field is located entirely on the wall and the magnetic ene
is along and behind the wall.

When the domain wall moves close to the monopole
latter is pulled toward the wall. This signals the presence
an attractive force between the two defects. Such a forc
expected from energy considerations@1# and has been ob
served in the O~3! linear s model studied in@5#.

We have estimated the time it takes for the monopole
be destroyed as a function of different wall velocities. T
topological winding density of the monopole is a delta fun
tion in space, while the topological winding is a discre
number and so these quantities cannot be used to esti
the dissolution time. Instead, the magnetic energy den
provides us with a continuously varying quantity that we c
5-2
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track in the simulations.~The scalar energy is not suitab
since both the wall and the monopole contribute.! We have
chosen a cylindrical volume around the monopole with a
along thez axis and computed the magnetic energy with
this volume as a function of time. This gives us the rate
which the magnetic energy escapes the cylindrical volu
surrounding the monopole. There are two stages in the
solution process—first the monopole gets absorbed by
wall and then the magnetic energy starts spreading in
direction along the wall. The time taken for the monopole
be absorbed by the wall is measured from when the co
overlap~corresponding to a sharp drop in the magnetic
ergy and a sharp rise in the electric energy! to when the
magnetic energy starts moving together with the wall in thz
direction but spreading along the wall. In our simulations,
observe that the absorption time is approximately equa
the width of the wall in the monopole rest frame, that
tabs;(gs)21. During the second stage the remaining ma
netic energy is confined to the wall and is escaping the

FIG. 1. The first panel shows the potential energy density in
xz plane for the magnetic monopole and domain wall whereh
52l/5, l50.5 and the wall velocity is 0.8c. The second pane
shows the corresponding magnetic energy density~proportional to
Ba
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inder as it travels along the wall. In the rest frame of the w
the duration of the second step is independent of the w
velocity but takes longer in the initial rest frame of th
monopole by a factor that is well-accounted for by time
lation.

At high wall velocities, Lorentz contraction results in th
wall appearing to be much ‘‘thinner’’ than the monopol
We have tried velocities as high asv50.99 and have not
observed any qualitative alterations from the dynamics
lower velocites except for the obvious time dilation of th
propagation of the excitations along the wall.

The above results have not changed as we varied the
rameters in the potential within the range in which aF→2F
domain wall solution is stable. To better understand this
dependence of the dynamics on the parameters let us e
ine the parameter space itself and the characteristic le
scales that are involved. The stability of the domain wall
determined by the ratioh/l. The value ofh sets the funda-
mental time and length scales of the simulation and can
used to adjust the lattice grid spacing to the ‘‘widths’’ of th
defects. There are three relevant length scales in the prob
the sizes of the scalar and vector cores of the monopoler S
and r V , and the thickness of the domain wall,r DW . These

e FIG. 2. As in Fig. 1 at an intermediate time step.
5-3
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are the sizes of the regions in which the fields deviate
nificantly from their asymptotic values. We can estimater S ,
r V andr DW numerically by finding the distance at which th
corresponding fields become an exponent closer to their

FIG. 3. As in Fig. 1 at the final time step.
86
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spective asymptotic values. From dimensional agrumentr S
and r V are approximately inversely proportional to th
masses of the scalar and vector bosons making up the m
pole, mS5hAl8 and mV5A5/12 eh. The thickness of the
domain wall is given bys215h21A2/l8. The interaction
between the monopole and the wall depends on the rela
values ofr S and r DW . The dimensional arguments giver S
;r DW while numerically we findr S,r DW for all values of
h/l that lead to stable domain walls@see Eq.~9!# and l
P@0.01,100#. For sufficiently high values ofl it is possible
to have the vector width of the monopole to be larger th
the domain wall width, i.e.r V.r DW.r S . Our simulations
show that the walls still sweep the monopoles. We will stu
the many different kinds of domain walls that can occur
the model and their interactions with monopoles separat

As is clear from Fig. 3, the final state of the wall is di
ferent from that of the initial wall. The destruction of th
monopole has left a residue of scalar and magnetic exc
tions on the domain wall that are propagating along and
hind the wall.

The dissolution of magnetic monopoles by domain wa
implies that the number density of magnetic monopoles w
fall off faster than if there were no domain walls. The co
mology of such a system of walls and monopoles has b
discussed in@1# where it was argued that such interactio
might resolve the cosmological monopole over-abunda
problem. Similar interactions between strings and dom
walls would affect the cosmological implications of cosm
strings. The numerical techniques presented here can als
used to study the interactions of walls and~global! mono-
poles or vortices in other systems.
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