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Interaction of magnetic monopoles and domain walls
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We study the interaction of magnetic monopoles and domain walls in a model with SZEgymmetry by
numerically evolving the field equations. We find that the monopoles unwind and dissipate their magnetic
energy on collision with domain walls within which the full $8) symmetry is restored.

PACS numbgs): 11.27+d, 11.30.Er, 12.60.Cn, 14.80.Hv

The interactions of topological defects can have a proof a scalar field in the fundamental representation ofSU
found effect on the outcome of phase transitions. The scalinglere we do not have such a field. Yet the basic construction
of a network of domain walls and strings, and a distributionof [6] goes through and the fundamental monopole is essen-
of magnetic monopoles, crucially depends on how the detially an SU2) monopole embedded in the full theory. The
fects interact among themselves and with each other. Thumonopole solution has the following form:
far attention has focused on the interactions of walls with
walls, strings with strings, and monopoles with monopoles. A et s
The cosmological importance of the interactions of walls and ‘I’Mzgl QT+ DT+ DT, 4
monopoles was highlighted in R¢fl] and it is this problem -
that we study in the present paper.

Earlier work on the interaction of solitons and domain
walls (phase boundarighas been carried out in the follow-
ing contexts:(i) mutual interaction of domain wallg], (ii) 1 1
He® A-B phase boundaries and vorticks], (i) Skyrmions Té=_diag ¢2,0,0,0, T*=——=(0,0,1,1-2),
and domain wall$4], and(iv) global monopoles and embed- 2 243
ded domain walls in an @) linear & model[5]. Here we
will numerically study the interaction of gauged &Y 5 1
monopoles with a Zdomain wall. This is quite distinct from T =2—\/1—5(— 3,-3,22,,
the earlier work since it looks at magnetic monopoles which
necessarily include gauge fields. It is also the most releygnta being the Pauli spin matrices,
problem for the cosmological consequences of grand unified

theorieS[l]. - - . - Pa= P(r)Xa, (D4:M(r), (I)SIN(I'), (5)
The SU5) model we consider is given by the Lagrangian

where r = x?+y?+7? is the spherical radial coordinate.

3

where the subscript! denotes the monopole field configu-
ration,

1 1 . .
[=— ZXZVX""’”wLE(DM(Da)Z—V(dD), (1)  The ansatz for the gauge fields for the monopole is
i
where ® is an SU5) adjoint scalar field, X5, (a Wa= Eaijx_z(l_ K(r)) (a=1,2,3),
=1,...,24) are the gauge field strengths and the covariant er

derivative is defined by
R . . WP=0 (b#1,2,3. (6)
D,®%=4,P%—ie[X,,P] (2
In the case when the potential vanisitee Bogomolnyi-

and the group generators are normalized by T]T() Prasad-Sommerfiel(BPS case[7,8] |, the exact solution is
= Jap/2. The potentiaV/(®) is the most general quartic po- |0\ [9]: ®BPS (7.8,

tential but we exclude the cubic termdn so as to obtain the
extra Z symmetry unde — — ®:

1 r Cr

V(@)= — m2Trd 2+ h(Trd2)2+ \Trd*, 3) P(N=253 tanr{Cr)_l)' K= Snern @
The parameters of the potential are chosen so {dat
= pdiag(2-3,2,2— 3)/(2y15) with p=m/ X\’ and\’=h M= =S Ni= \ﬁE ®
+7\/30. With this vacuum expectation value, the (SU J3 e’ 15e°
symmetry is spontaneously broken to SUKIU(2)
X U(1). Thedesired constraints on the parametersane’ In the non-BPS case, the profile functioR¢r), K(r),
>0. M(r) andN(r) need to be found numerically. We find them

The magnetic monopoles in this model were discussed by using a relaxation procedure with the BPS solution serv-
Dokos and Tomaral6] except that also included the effects ing as the initial guess.
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Depending on the parameters in the potential, it is poseistances from the monopole. This then leads to the follow-
sible to have different stable domain wall solutions. The do-ing ansatz for the 5 scalar and 9 gauge fields:
main wall across whichb — —® is stable to diagonal per-
turbations provided1] O =f1x, @r=f1y, P3=fyz

3
20

h 7 O, =fy, Dc=f
>X>_§)' ) 4=13 5=14
Wi = fsxy, W)l,:fsyz_fesy W=ty

At the center of this wall® must necessarily vanish and so

the full SU5) symmetry is restored at the center of this wall. W2=—fox?+fg, W§= —fexy, W2=—f,x

Certain components ¢ do not vanish at the center of the

domain wall solutions in this model for other values of pa- W3=—fgy, W§:f8x, Wi=0,

rameters. In these walls, only a subgroup of the full(U

symmetry is restored in the center. We will only study thewhere the f; (i=1,...,8) arefunctions only oft, p
interaction of monopoles with walls in whicl=0 at the = /x?+y? andz We have explicitly checked that this ansatz
center in this paper. The interactions of other types of wallss preserved by the evolution equations. So now the problem
and monopoles will be discussed separately. is reduced to one in 8 real functions of time and two spatial

The solution for the domain wall located in tkgplane is  coordinates.

An attempt to numerically solve the 8 equations of motion
_nm _ _ directly in cylindrical coordinates failed due to numerical
CDDW_Z\/E-, tanf(02)(2,~3,2,2-3), 10 instabilies that developed within the time scale of the simu-
lation. An analysis showed that the problem was due to large
whereo= ﬂm- numerical errors in evaluating the derivatives in cylindrical
When the monopole and the domain wall are very farcoordinates. This shortcoming of using cylindricend
from each other, the joint field configuration is given by thespherical coordinates in numerical work is well-recognized
product ansatz: and the authors of10] have proposed a solution that we
have successfully implemented. The idea is to solve the
d=tanh(yo(z—zy)) Py, (11 problem, not in two spatial dimensions like the-plane, but
to solve it in a thin three dimensional slab whose central slice
whereu is the velocity of the domain wall in the negatize is taken to lie in the xz-plane and with only 3 lattice spacings
direction, y=1/\/1—v? is the Lorentz factor and, is the along the y direction. Then Cartesian coordinates can be
position of the wall. Herab,, denotes the monopole solution used to solve the equations of motion in the0 plane, thus
in Eq. (4). The gauge fields are unaffected by the presence ahinimizing numerical errors. On thg+0 lattice sites the
the wall and are still given by Ed6). In addition, the time fields are evaluated by using the axial symmetry of the prob-
derivative of the scalar field is also given by the productlem. This scheme improved the numerical stability of our
ansatz: staggered leapfrog code dramatically and allowed us to ob-
serve the monopole and wall for a sufficiently long duration
= yov secB(yo(z—2z9)) D y. (12 without the development of numerical instabilities.
We have evolved the initial wall and monopole configu-
Equations(11) and(12) specify the initial (=0) condi-  ration with several velocities. The numerical results of the
tions for the scalar field for a wall approaching a monopolesimulation with v =0.8, h=—\/5, A=0.5 and =1 are
with velocity v. The initial scalar and gauge field profile given in the figuregsee Figs. 1, 2, and)&nd clearly show
functionsP, M, N, andK (in the non-BPS cageare found by that the energy of the monopole dissipates after the passage
numerical relaxation. The field dynamics is described by thevf the wall (m= 7\” ande can be scaled out of the prob-
equations of motion following from the Lagrangian in Eq. lem). The final snapshot shows that the energy in the scalar
(1). At first sight, there are 24 components @f and 96 field is located entirely on the wall and the magnetic energy
components of the gauge fields that need to be evolveds along and behind the wall.
However, it is not hard to check that all the dynamics occurs  When the domain wall moves close to the monopole the
in an SU2) subgroup of the original S@B). This then re- latter is pulled toward the wall. This signals the presence of
duces the dynamical fields to a triplet of &Yand two other an attractive force between the two defects. Such a force is
fields(i.e. a total of 5 scalar fieldsand 3x4=12 gauge field expected from energy consideratiofi§ and has been ob-
components. Choosing the temporal gaud§+ 0) reduces served in the @) linear o model studied irf5].
the number of gauge field components to 9. We have estimated the time it takes for the monopole to
Further reduction of the problem occurs since the initialbe destroyed as a function of different wall velocities. The
conditions are axially symmetric and the evolution equationgopological winding density of the monopole is a delta func-
preserve this symmetry. The angular dependence in cylindriion in space, while the topological winding is a discrete
cal coordinates can easily be imposed on the scalar field. Fewumber and so these quantities cannot be used to estimate
the gauge fields it can be extracted by using the fact that théhe dissolution time. Instead, the magnetic energy density
covariant derivatives of the scalar field must vanish at larggrovides us with a continuously varying quantity that we can
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FIG. 1. The first panel shows the potential energy density in the FIG. 2. As in Fig. 1 at an intermediate time step.
xz plane for the magnetic monopole and domain wall whiere
=—\/5, A=0.5 and the wall velocity is 08 The second panel inder as it travels along the wall. In the rest frame of the wall
shows the corresponding magnetic energy der(gitgportional to  the duration of the second step is independent of the wall
B3%). velocity but takes longer in the initial rest frame of the
monopole by a factor that is well-accounted for by time di-
track in the simulations(The scalar energy is not suitable lation.
since both the wall and the monopole contribui®e have At high wall velocities, Lorentz contraction results in the
chosen a cylindrical volume around the monopole with axiswall appearing to be much “thinner” than the monopole.
along thez axis and computed the magnetic energy withinWe have tried velocities as high as=0.99 and have not
this volume as a function of time. This gives us the rate abbserved any qualitative alterations from the dynamics at
which the magnetic energy escapes the cylindrical voluméower velocites except for the obvious time dilation of the
surrounding the monopole. There are two stages in the diggropagation of the excitations along the wall.
solution process—first the monopole gets absorbed by the The above results have not changed as we varied the pa-
wall and then the magnetic energy starts spreading in theameters in the potential within the range in whictha> —®
direction along the wall. The time taken for the monopole todomain wall solution is stable. To better understand this in-
be absorbed by the wall is measured from when the coredependence of the dynamics on the parameters let us exam-
overlap (corresponding to a sharp drop in the magnetic enine the parameter space itself and the characteristic length
ergy and a sharp rise in the electric engrgy when the scales that are involved. The stability of the domain wall is
magnetic energy starts moving together with the wall inzhe determined by the ratib/\. The value ofy sets the funda-
direction but spreading along the wall. In our simulations, wemental time and length scales of the simulation and can be
observe that the absorption time is approximately equal tased to adjust the lattice grid spacing to the “widths” of the
the width of the wall in the monopole rest frame, that isdefects. There are three relevant length scales in the problem:
taps~ (yo) 1. During the second stage the remaining mag-the sizes of the scalar and vector cores of the monopgle,
netic energy is confined to the wall and is escaping the cylandr,,, and the thickness of the domain wal,,,. These
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spective asymptotic values. From dimensional agrumests
and ry are approximately inversely proportional to the
masses of the scalar and vector bosons making up the mono-
pole, ms= A’ andmy=/5/12 ey. The thickness of the
domain wall is given byo~*=#5"1J2/\". The interaction
between the monopole and the wall depends on the relative
values ofrg andrpy. The dimensional arguments give
~rpw While numerically we findrs<rpyy, for all values of

h/\ that lead to stable domain wal[see Eq.(9)] and A
€[0.01,10Q. For sufficiently high values oX it is possible

to have the vector width of the monopole to be larger than
the domain wall width, i.ery>rpw>rg. Our simulations
show that the walls still sweep the monopoles. We will study
the many different kinds of domain walls that can occur in
the model and their interactions with monopoles separately.

As is clear from Fig. 3, the final state of the wall is dif-
ferent from that of the initial wall. The destruction of the
monopole has left a residue of scalar and magnetic excita-
tions on the domain wall that are propagating along and be-
hind the wall.

The dissolution of magnetic monopoles by domain walls
implies that the number density of magnetic monopoles will
fall off faster than if there were no domain walls. The cos-
mology of such a system of walls and monopoles has been
discussed if1] where it was argued that such interactions
might resolve the cosmological monopole over-abundance
problem. Similar interactions between strings and domain
walls would affect the cosmological implications of cosmic
strings. The numerical techniques presented here can also be
used to study the interactions of walls afglobal) mono-
poles or vortices in other systems.
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