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Nambu-Goldstone mechanism at finite temperature in the imaginary-time and real-time formalism
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and Department of Physics, Graduate School, Academia Sinica, Beijing 100039, China†

~Received 11 June 2000; published 16 October 2000!

In the imaginary-time formalism of thermal field theory, and also in the real-time formalism, but by means
of some redefined physical propagators for scalar bound states by diagonalization of four-point function
matrices, we reexamine the Nambu-Goldstone mechanism of electroweak symmetry breaking in a one-
generation fermion condensate scheme, based on the Schwinger-Dyson equation in the fermion bubble diagram
approximation, and compare the obtained results. We have reached the conclusion that in both formalisms the
Goldstone theorem of spontaneous electroweak symmetry breaking is rigorously true for the case of mass-
degenerate two flavors of fermions and only approximately valid at low energy scales for the mass-
nondegenerate case, in spite of the existence of some differences between the two formalisms in the imaginary
parts of the denominators of the propagators for scalar bound states. When the two flavors of fermions have
unequal nonzero masses, the induced possible fluctuation effect for the Higgs particle is negligible if the
momentum cutoff in the zero temperature loops is large enough. All the results show physical equivalence of
the two formalisms in the present discussed problems.

PACS number~s!: 14.80.Mz, 11.10.Wx, 11.30.Qc, 12.15.2y
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I. INTRODUCTION

In the research on spontaneous symmetry breaking a
nite temperature@1–6#, in addition to the central problem o
the phase transition and critical behavior of a system,
theoretical exploration of the Nambu-Goldstone mechan
@7,8# at finite temperature is certainly quite significant for
deeper understanding of spontaneous symmetry brea
@9–11#. When symmetry breaking is induced dynamically
fermion condensates, the Nambu–Jona-Lasinio~NJL! model
with four-fermion interactions may be a simple and phy
cally clear laboratory for this research@8#. The key point of
such research lies in verifying the existence of the Nam
Goldstone bosons as products of spontaneous symm
breaking, i.e., determining the masses of relevant scalar
pseudoscalar bound states consisting of fermions and an
mions. For the sake of examining the mass-difference ef
of constituent fermions in a bound state, we prefer
Schwinger-Dyson equation approach of the Green functi
to the auxiliary scalar field method which was extensiv
used in research on models of the NJL form@6#.

Based on the above strategy, we have researched
Nambu-Goldstone mechanism at finite temperature in
real-time formalism of thermal field theory in two models
the NJL form@10,11#. It was shown that the Goldstone the
rem is true rigorously if the constituent fermions of a bou
state have the same masses, otherwise it is only valid
proximately at low energy scales. The mass difference
tween the fermions and the antifermions in a bound s
could lead to that the Higgs boson has doubled masses
some would-be Goldstone bosons will no longer be mass
rigorously. However, it should be indicated that in obtaini

*Electronic address: zhoubr@163bj.com
†Mailing address.
0556-2821/2000/62~10!/105004~16!/$15.00 62 1050
fi-

e
m

ng

-

-
try
nd
er-
ct
e
s

the
e

p-
e-
te
nd
ss

the above results we have used a special definition of
propagators for relative scalar bound states. Although
effects induced by the mass difference of the fermions
negligible when the momentum cutoff is very large, we s
want to know if the above results represent general con
sions of a thermal field theory, or if some of them are on
due to the use of the special definition of the propagators
scalar bound states in the real-time formalism there.

To clarify this problem, in this paper, based on the sa
strategy as above, we will reexamine the Nambu-Goldst
mechanism at finite temperature first in the imaginary-ti
formalism of thermal field theory and then also in the re
time formalism but by means of some redefined physi
propagators for scalar bound states@12#. We will again take
the one-generation fermion condensate scheme of e
troweak symmetry breaking and work by the Schwing
Dyson equation in the fermion bubble diagram approxim
tion.

The paper is arranged as follows. In Sec. II we give
Lagrangian of the model and the gap equation at finite te
perature in the imaginary-time formalism. In Sec. III we w
first calculate the Matsubara propagator for a scalar bo
state, then continue analytically for the energy of the bou
state from discrete frequency to physical values and de
mine the physical mass of the scalar bound state. In Secs
and V the same procedure will be applied to pseudosc
and charged-scalar bound states. In Sec. VI we will der
the redefined physical propagators for scalar bound state
the real-time formalism and compare the results obtaine
the two formalisms. Finally in Sec. VII our conclusion
follow.

II. GAP EQUATION IN IMAGINARY-TIME FORMALISM

In the one-generation fermion condensate scheme of e
troweak symmetry breaking, the one generation ofQ fermi-
©2000 The American Physical Society04-1
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BANG-RONG ZHOU PHYSICAL REVIEW D 62 105004
ons form a SUL(2)3UY(1) doublet (U,D) and are assigned
in the representationR of the color group SUc(3) with the
dimensiondQ(R). The symmetry breaking is induced by th
effective four-fermion Lagrangian among theQ fermions be-
low some high momentum scaleL @12#

L4F5L 4F
S 1L 4F

P 1L 4F
C , ~2.1!

where the neutral scalar couplings

L 4F
S 5

1

4 (
Q,Q8

gQ8Q~Q̄8Q8!~Q̄Q!, ~2.2!

with

gQ8Q5gQ8Q8
1/2 gQQ

1/2 , Q,Q85U,D, ~2.3!

the neutral pseudoscalar couplings

L 4F
P 5

1

4 (
Q,Q8

gQ8Q
8 ~Q̄8ig5Q8!Q̄ig5Q), ~2.4!

with

gQ8Q
8 5~21! I

Q8
3

2I Q
3
gQ8Q , Q,Q85U,D, ~2.5!

and the denotationI Q
3 being the third component of the wea

isospin of theQ fermions, and the charged scalar couplin

L 4F
C 5

G

2
~D̄G1U !~ŪG2D !, ~2.6!

with

G65
1

A2
@cosw2sinw6~cosw1sinw!g5#,

G5gUU1gDD , cos2w5gUU /G, sin2w5gDD /G.
~2.7!

L4F can also be expressed by@13#

L4F5
G

4
@~fS

0!21~fP
0 !212f1f2#, ~2.8!

where

fS
05cosw~ŪU !1sinw~D̄D !,

fP
0 5cosw~Ūig5U !2sinw~D̄ig5D !,

f25~ŪG2D !, f15~D̄G1U ! ~2.9!

are, respectively, the configurations of the physical neu
scalar, neutral pseudoscalar, and charged scalar bound s
In the imaginary-time~Euclidean! field theory, we will use
the conventional time-space coordinate (t5 i t , xY ), the four-
momentum

p̄5~ p̄0,p̄i !5~ ip0,pi ! ~2.10!
10500
al
tes.

and theg-matrices in spinor space

ḡ05 ig0, ḡ i5g i , g55 ig0g1g2g35ḡ0ḡ1ḡ2ḡ3

~2.11!

which submit to the anticommutation relations

$ḡm,ḡn%522dmn, $ḡm,g5%50, ~2.12!

where gm(m50,1,2,3) are the ordinaryg-matrices in the
real-time~Minkowski! field theory. In this way, the propaga
tor in the momentum space for theQ fermion with massmQ
and chemical potentialmQ will be expressed by

mQ2 ł̄ Q

~vn1 imQ!21 lY21mQ
2

5SQ~2 ivn1mQ ,lY!,

vn5
~2n11!p

T
,

ł̄ Q5ḡm l̄ Q
m ,

l̄ Q
m5~vn1 imQ ,lY! ~2.13!

and the Feynman rule, for example, corresponding to
four-fermion couplings inL 4F

S , will be gQ8Q/2.
The derivation of the gap equation is similar to that ma

in the real-time formalism@11#, the main change is to replac
the integral of the loop energy by the sum of Matsuba
frequency. Therefore when assuming the thermal expecta
value(Q5U,DgQQ^Q̄Q&TÞ0 we will obtain the mass of the
Q fermion

mQ~T,m![mQ52
1

2
gQQ

1/2 (
Q85U,D

gQ8Q8
1/2 ^Q̄8Q8&T ,

~2.14!

which will lead to the relation

mQ /gQQ
1/2 5mQ8 /gQ8Q8

1/2 ~2.15!

and the gap equation at finite temperatureT,

15 (
Q5U,D

gQQI Q , ~2.16!

with

I Q52
1

2mQ
^Q̄Q&T

5
dQ~R!

2mQ
E d3l

~2p!3
T (

n52`

`
tr~mQ2 ł̄ Q!

~vn1 imQ!21 lY21mQ
2

52dQ~R!E d3l

~2p!3
T (

n52`

`
1

~vn1 imQ!21vQl
2

,

~2.17!
4-2
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vQl
2 5 lY21mQ

2 . ~2.18!

To find the frequency sum here and later, we define the F
rier transform@14#

1

~vn1 imQ!21vQl
2

5E
0

b

dte2 ivntD̃~t,vQl ,mQ!,

~2.19!

with b51/T and the inverse formula

D̃~t,vQl ,mQ!5T (
n52`

`

eivnt
1

~vn1 imQ!21vQl
2

.

~2.20!

The D̃(t,vQl ,mQ) in Eq. ~2.20! obeys the antiperiodicity
condition

D̃~t,vQl ,mQ!52D̃~t2b,vQl ,mQ! ~2.21!

and can be calculated by the formula

D̃~t,vQl ,mQ!5
i

4pEC1øC2

dz f~z!tan
b

2
~z2 imQ!,

f ~z!5ei (z2 imQ)t
1

z21vQl
2

, ~2.22!

where C1 and C2 represent the integral paths2`1 i (mQ
2«)→1`1 i (mQ2«) and 1`1 i (mQ1«)→2`1 i (mQ
1«) respectively in complexz plane. The result is

D̃~t,vQl ,mQ!5
1

2vQl
$@12n~vQl2mQ!#e2(vQl2mQ)t

2n~vQl1mQ!e(vQl1mQ)t%, ~2.23!

where the denotations

n~vQl6mQ!51/@eb(vQl6mQ)11# ~2.24!

has been used. Obviously, it can be obtained from E
~2.20! and ~2.23! that

T (
n52`

`
1

~vn1 imQ!21vQl
2

5D̃~t50,vQl ,mQ!

5
1

2vQl
@12n~vQl2mQ!2n~vQl1mQ!#

5E
2`

` dl0

2p F i

l 022vQl
2 1 i«

22pd~ l 022vQl
2 !

3sin2u~ l 0,mQ!G , ~2.25!
10500
u-

s.

with the definition

sin2u~ l 0,mQ!5
u~ l 0!

exp@b~ l 02mQ!#11

1
u~2 l 0!

exp@b~2 l 01mQ!#11
. ~2.26!

Substituting Eq.~2.25! into Eq. ~2.17!, we can express the
gap equation~2.16! by

15 (
Q5U,D

gQQ2dQ~R!E d4l

~2p!4

3F i

l 22mQ
2 1 i«

22pd~ l 22mQ
2 !sin2u~ l 0,mQ!G ,

~2.27!

which is precisely the expression of the gap equation in
real-time formalism@11#. It should be indicated that suc
identity of the gap equation in the two formalisms depen
on the fact that the equation comes from the two-point Gr
function and is determined by the loops bounded by a sin
fermion propagator. Equation~2.16! or ~2.27!, as has been
shown@15#, could be satisfied only at the temperatureT be-
low the electroweak symmetry restoration temperatureTc .
Therefore, in the following discussions we will always a
sumeT,Tc with the gap equation being obeyed.

III. SCALAR BOUND STATE IN THE IMAGINARY-TIME
FORMALISM

Since a bound state is formed by the four-fermion int
actions, its propagator must correspond to a four-point a
putated Green function. Thus in the imaginary-time form
ism, the propagator for a scalar bound state can be calcul
by means of the four-point amputated functio

GS
Q8Q(2 iVm , pY ) for the transition from (Q̄Q) to (Q̄8Q8),

where

Vm5
2pm

T
, m50,61,62, . . . ~3.1!

represent the Matsubara frequency of the scalar bound
andpY is its three dimension momentum. Based on the sc
four-fermion couplingsL 4F

S in Eq. ~2.2!, in the fermion

bubble diagram approximation,GS
Q8Q(2 iVm ,pY ) must obey

the algebraic equations

GS
Q8Q9~2 iVm ,pY !@dQ9Q2NQ9~2 iVm ,pY !gQ9Q#5gQ8Q/2,

~3.2!

where 2NQ(2 iVm ,pY ) is the contribution of theQ fermion
loop with scalar coupling vertices and
4-3
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NQ~2 iVm ,pY !52
dQ~R!

2 E d3l

~2p!3
T

3 (
n52`

`

tr SQ~2 ivn1mQ ,lY!

3SQ~2 ivn2 iVm1mQ ,lY1pY !. ~3.3!

Equations~3.2! have the solutions

GS
Q8Q~2 iVm ,pY !5

gQ8Q

2D~2 iVm ,pY !
, ~3.4!
10500
where

D~2 iVm ,pY !512 (
Q5U,D

gQQNQ~2 iVm ,pY !. ~3.5!

The propagator for the scalar bound statefS
0 shown in Eq.

~2.9! becomes

G
I

fS
0

~2 iVm ,pY !5G/2D~2 iVm ,pY !. ~3.6!

By means of Eqs.~2.13!, ~2.12! and ~3.3!, we find
NQ~2 iVm ,pY !5I Q12dQ~R!E d3l

~2p!3
T(

n

2~Vm
2 1pY 2!22mQ

2 2~vn1 imQ!Vm2 lY•pY

@~vn1 imQ!21 lY21mQ
2 #@~vn1Vm1 imQ!21~ lY1pY !21mQ

2 #
. ~3.7!

From Lorentz invariance, in the imaginary-time formalism,G
I

fS
0

(2 iVm , pY ) should be a function of2(Vm
2 1pY 2), thus must

obey the constraint

G
I

fS
0

~2 iVm ,pY !5G
I

fS
0

~1 iVm ,2pY !5G
I

fS
0

~2 iV2m ,2pY !. ~3.8!

From Eqs.~3.6! and ~3.5!, the same constraint onNQ(2 iVm ,pY ) is implied and this will lead to the equality

E d3lT(
n

2~vn1 imQ!Vm2 lY•pY

@~vn1 imQ!21 lY21mQ
2 #@~vn1Vm1 imQ!21~ lY1pY !21mQ

2 #

5E d3lT(
n

~Vm
2 1pY 2!/2

@~vn1 imQ!21 lY21mQ
2 #@~vn1Vm1 imQ!21~ lY1pY !21mQ

2 #
. ~3.9!

As a result, we obtain

NQ~2 iVm ,pY !5I Q2
1

2
~Vm

2 1pY 214mQ
2 !KQ

T ~2 iVm ,pY !, ~3.10!

where

KQ
T ~2 iVm ,pY !52dQ~R!E d3l

~2p!3
AQ~2 iVm ,pY ,lY!, ~3.11!

AQ~2 iVm ,pY ,lY!5T(
n

1

~vn1 imQ!21vQl
2

1

~vn1Vm1 imQ!21vQl1p
2

, ~3.12!

vQl1p
2 5~ lY1pY !21mQ

2 . ~3.13!

By means of Eqs.~2.19!, ~2.23! and the formula

T(
n

eivn(t2t8)5d~t2t8!, ~3.14!

we can find out the frequency sum~3.12! and obtain
4-4
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AQ~2 iVm ,pY ,lY!5E
0

b

dte2 iVmtD̃~t,vQl ,2mQ!D̃~t,vQl1p ,mQ!5
1

4vQlvQl1p
H 12n~vQl1mQ!2n~vQl1p2mQ!

iVm1vQl1vQl1p

1
n~vQl1mQ!2n~vQl1p1mQ!

iVm1vQl2vQl1p
2

n~vQl2mQ!2n~vQl1p2mQ!

iVm2vQl1vQl1p
2

12n~vQl2mQ!2n~vQl1p1mQ!

iVm2vQl2vQl1p
J ,

~3.15!

where exp(2iVmb)51 has been used. Substituting Eq.~3.10! into Eqs.~3.5! and~3.6! and considering the gap equation~2.16!,
we obtain the propagator for scalar bound statefS

0 in the imaginary-time formalism

G
I

fS
0

~2 iVm ,pY !52GY (
Q

gQQ~2Vm
2 2pY 224mQ

2 !KQ
T ~2 iVm ,pY !. ~3.16!

The imaginary-time propagatorG
I

fS
0

(2 iVm , pY ) is defined at discrete values2 iVm(m50,61,62, . . . ) in theimaginary axis
on the complex energyp0 plane. The analytic continuation to physical real values of energy can be made by the repla
@14#

2 iVm→p01 i«p0, «501 . ~3.17!

This means that one can rotate the integral path from the imaginary axis on the complexp0 plane clockwise to the real axi
without meeting any singularities. As will be seen later, all the results derived from Eq.~3.17! will at least automatically
reproduce the expressions of the causal propagators obtained in usual zero temperature field theory whenT50, and this fact
justifies the continuation. Under the analytic continuation~3.17!, we will have the substitutions

2~Vm
2 1pY 2!→p022pY 21 i«5p21 i«, ~3.18!

AQ~2 iVm ,pY ,lY!→AQ~p0,pY ,lY!5AQ~p,lY!, ~3.19!

where

AQ~p,lY!5
1

4vQlvQl1p
H 12n~vQl1mQ!2n~vQl1p2mQ!

2p01vQl1vQl1p2 i«
1

n~vQl1mQ!2n~vQl1p1mQ!

2p01vQl2vQl1p2 i«h~vQl2vQl1p!

2
n~vQl2mQ!2n~vQl1p2mQ!

2p02vQl1vQl1p1 i«h~vQl2vQl1p!
2

12n~vQl2mQ!2n~vQl1p1mQ!

2p02vQl2vQl1p1 i«
J , ~3.20!

with the definition

h~vQl2vQl1p!5H 1 if vQl.vQl1p ,

21 if vQl,vQl1p ,
~3.21!

and, from Eq.~3.11!,

KQ
T ~2 iVm ,pY !→KQ

T ~p!52dQ~R!E d3l

~2p!3
AQ~p,lY!. ~3.22!

For making a comparison between the results obtained in the imaginary-time and in the real-time formalism, we may
AQ(p, lY! into an integral representation. In fact, by the formula

1

X1 i«
5

X

X21«2
2 ipd~X! ~3.23!

and the definition~2.26!, we can write
105004-5
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AQ~p,lY!5E dl0

2p

2 i

@ l 02
2vQl

2 1 i«#@~ l 01p0!22vQl1p
2 1 i«#

1E dl0H d~ l 02
2vQl

2 !

~ l 01p0!22vQl1p
2 1 i«

sin2u~ l 0,mQ!1
d@~ l 01p0!22vQl1p

2 #

l 02
2vQl

2 1 i«
sin2u~ l 01p0,mQ!J

1 i2pE dl0@u~ l 0!u~ l 01p0!1u~2 l 0!u~2 l 02p0!#d~ l 022vQl
2 !d@~ l 01p0!22vQl1p

2 #sin2u~ l 0,mQ!. ~3.24!
ca
ns

n

e

Applying Eqs. ~3.18!, ~3.22! and ~3.24! to Eq. ~3.16! and
considering the existence of a factori in a four-point func-
tion after the analytic continuation we obtain the physi
propagator for the scalar bound statefS

0 :

G
I

fS
0

~p![ iG
I

fS
0

~2 iVm→p01 i«p0,pY !

52 iGY (
Q

gQQ~p224mQ
2 1 i«!KQ

T ~p!,

~3.25!

where

KQ
T ~p!5KQ~p!1HQ~p!2 iSQ

I ~p!. ~3.26!

In Eq. ~3.26! the functions

KQ~p!522dQ~R!

3E id4l

~2p!4

1

~ l 22mQ
2 1 i«!@~ l 1p!22mQ

2 1 i«#

5
dQ~R!

8p2 E
0

1

dxS ln
L21MQ

2

MQ
2

2
L2

L21MQ
2 D ,

MQ
2 5mQ

2 2p2x~12x!, ~3.27!

with the four-dimension Euclidean momentum cutoffL,

HQ~p!54pdQ~R!E d4l

~2p!4

3H ~ l 1p!22mQ
2

@~ l 1p!22mQ
2 #21«2

1~p→2p!J
3d~ l 22mQ

2 !sin2u~ l 0,mQ!, ~3.28!

and

SQ
I ~p!54p2dQ~R!E d4l

~2p!4
d~ l 22mQ

2 !d@~ l 1p!22mQ
2 #

3@12u~ l 0!u~ l 01p0!2u~2 l 0!u~2 l 02p0!#

3@sin2u~ l 0,mQ!1sin2u~ l 01p0,mQ!#. ~3.29!
10500
l

When deriving the expression~3.29!, we have used the

equalitySQ
I (p)5SQ

I (2p) coming from the equalityG
I

fS
0

(p)

5G
I

fS
0

(2p). It should be indicated that the expressio
~3.26! –~3.29! for KQ

T (p) are true for bothvQl.vQl1p and
vQl,vQl1p in Eq. ~3.20! of AQ(p,lY!. By means of the rela-
tion

gQQ /G5mQ
2 Y (

Q
mQ

2 ~3.30!

derived from Eq.~2.15!, we obtain

G
I

fS
0

~p!52 i(
Q

mQ
2 Y (

Q
~p224mQ

2 1 i«!mQ
2 KQ

T ~p!

52 i(
Q

mQ
2 Y (

Q
~p224mQ

2 1 i«!mQ
2

3@KQ~p!1HQ~p!2 iSQ
I ~p!#. ~3.31!

It is indicated that the term containingSQ
I (p) in Eq. ~3.31!

will make the pole ofGfS
0
(p) possibly become complex. In

addition, KQ(p) in Eq. ~3.27! can also be complex whe
p2.4mQ

2 . DenoteKQ(p)5KQr(p)2 iK Qi with KQi.0 and
let

(
Q

mQ
2 KQr~p!5kr , (

Q
mQ

2 KQi~p!5ki ,

(
Q

mQ
2 HQ~p!5h, (

Q
mQ

2 SQ
I ~p!5sI ,

(
Q

mQ
4 KQr~p!5 k̃r , (

Q
mQ

4 KQi~p!5 k̃i ,

(
Q

mQ
4 HQ~p!5h̃, (

Q
mQ

4 SQ
I ~p!5 s̃I .

~3.32!

We can obtain from Eq.~3.31! the equation to determine th
mass offS

0

mf
S
0

2
5p254

k̃r1h̃2 i ~ k̃i1 s̃I !

kr1h2 i ~ki1sI !
. ~3.33!
4-6
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In the special case when only single-flavorQ fermions exist
~e.g. in the top-quark condensate scheme@16#! or all the Q
fermions are mass degenerate, we will have the realmf

S
0

2

5p254mQ
2 . In the other cases, the solution ofp2 ~or sayp0)

will be complex. Denotep05pr
01 ipi

0 , then Eq.~3.33! will
become

~pr
01 ipi

0!22pY 25@a~p!1 ib~p!#up25m
FS

0
2 , ~3.34!

with

a~p!54
~kr1h!~ k̃r1h̃!1~ki1sI !~ k̃i1 s̃I !

~kr1h!21~ki1sI !2
,

b~p!5
~ k̃r1h̃!~ki1sI !2~kr1h!~ k̃i1 s̃I !

~kr1h!21~ki1sI !2
. ~3.35!

It is easy to find from Eq.~3.35! that b(p)[0 for the cases
with both single-flavor and mass-degenerateQ fermions and
b(p) could be very small if the momentum cutoffL in the
KQ(p) is very large. Thus we can define the squared mas
fS

0 by the solution of the real part of Eq.~3.34!, i.e.

mf
S
0

2
5pr

25a~pr !

54
~kr1h!~ k̃r1h̃!1~ki1sI !~ k̃i1 s̃I !

~kr1h!21~ki1sI !2 U
p5pr

. ~3.36!

SinceKQr(p) andHQ(p) is real and positive@11#, and based
on the expression~3.29!, the same is true toSQ

I (p); we can
deduce the mass inequalities from Eq.~3.36!

2~mQ!min<mf
S
0<2~mQ!max, ~3.37!

where (mQ)min and (mQ)max are respectively the minima
and the maximal mass of theQ fermions. When 0ÞmU
ÞmDÞ0, only the signs of inequality are left in Eq.~3.37!.
In this case, if we setmD5amU (a.0), then the numerato
of b(p) in Eq. ~3.35! will become (a22a4)mU

6 @(KUr

1HU)(KDi1SD
I )2(KDr1HD)(KUi1SU

I )#. Considering the
inequalities in Eq. ~3.37! and that the imaginary part
KQi(p)50 and SQ

I (p)50 when p2,4mQ
2 , we can obtain

that whethera,1 (mD,mU) or a.1 (mD.mU) always
have b(p).0. This means thatp0 will contain a positive
imaginary part

pi
0.

b~pr !

2pr
0

, ~3.38!

hence the amplitude associated with the scalar bound
fS

0 will get a growth factor exp(pi
0t). In other words, owing

to the mass difference between massiveU and D fermions,
the scalar bound statefS

0 will encounter some effect of fluc
tuation. It should be mentioned that such amplitude grow
factor of fS

0 always exists in the case with unequal nonze
10500
of

te

h
o

masses of the two flavors of fermions in a one-genera
fermion condensate model even if we let the temperaturT
→0. At finite temperature, it is only modified by therm
effect and displays itself more plainly. However, such flu
tuation effect of fS

0 is physically completely negligible
considering thatb(pr) will be extremely small if the momen
tum cutoff L in the zero temperature loops is larg
enough and thatfS

0 generally has a finite decay life in a re
model.

IV. NEUTRAL PSEUDOSCALAR BOUND
STATE IN THE IMAGINARY-TIME FORMALISM

The propagator for a neutral pseudoscalar bound state
be calculated by the four-point amputated Green functi

GP
Q8Q(2 iVm , pY ) for the transition from (Q̄ig5Q) to

(Q8̄ig5Q8). Based on the pseudoscalar four-fermion co
pling L 4F

P @Eq. ~2.4!#, in the fermion bubble diagram ap

proximation,GP
Q8Q(2 iVm ,pY! will obey the algebraic equa

tions

GP
Q8Q9~2 iVm ,pY !@dQ9Q2NQ95~2 iVm ,pY !gQ9Q

8 #5gQ8Q
8 /2,

~4.1!

where 2NQ5(2 iVm ,pY ! is the contribution of theQ fermion
loop with pseudoscalar coupling vertices and

NQ5~2 iVm ,pY !52
dQ~R!

2 E d3l

~2p!3
T

3 (
n52`

`

tr@ ig5SQ~2 ivn1mQ ,lY!

3 ig5SQ~2 ivn2 iVm1mQ ,lY1pY !#.

~4.2!

Similar to Eqs.~3.2!, Eqs.~4.1! have the solutions

GP
Q8Q~2 iVm ,pY !5

gQ8Q
8

2D8~2 iVm ,pY !
, ~4.3!

with

D8~2 iVm ,pY !512 (
Q5U,D

gQQNQ5~2 iVm ,pY !. ~4.4!

The propagator in the imaginary-time formalism for th
pseudoscalar bound statefP

0 shown in Eq.~2.9! is

G
I

fP
0

~2 iVm ,pY !5G/2D8~2 iVm ,pY !. ~4.5!

By means of Eqs.~2.13!, ~2.12! and ~4.2!, we find
4-7
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NQ5~2 iVm ,pY !5I Q12dQ~R!E d3l

~2p!3
T(

n

2~Vm
2 1pY 2!2~vn1 imQ!Vm2 lY•pY

@~vn1 imQ!21 lY21mQ
2 #@~vn1Vm1 imQ!21~ lY1pY !21mQ

2 #

5I Q2
1

2
~Vm

2 1pY 2!KQ
T ~2 iVm ,pY !, ~4.6!
in

-
fer-

ar
d

r-
where Eq.~3.9! has been used. Substituting Eq.~4.6! into
Eqs.~4.4! and~4.5! and considering the gap equation~2.16!,
we obtain

G
I

fP
0

~2 iVm ,pY !52G/~2Vm
2 2pY 2!(

Q
gQQKQ

T ~2 iVm ,pY !.

~4.7!

Then, by the analytic continuation to physical real energyp0

similar to that made forG
I

fS
0

(2 iVm ,pY !, we obtain the physi-
cal propagator for pseudoscalar bound statefP

0 :

G
I

fP
0

~p!52 iG/~p21 i«!(
Q

gQQKQ
T ~p!

52 i(
Q

mQ
2 /~p21 i«!(

Q
mQ

2 KQ
T ~p!, ~4.8!

where Eq.~3.30! has been used andKQ
T (p) is still given by

Eqs. ~3.26!–~3.29!. The expression~4.8! indicates that

G
I

fP
0

(p) has a single pole atp250; thus fP
0 is a massless

neutral pseudoscalar Goldstone boson. In addition, s
when p250, HQ(p)50 and SQ

I (p)50 in KQ
T (p), we also

have

G
I

fP
0

~p!52 i(
Q

mQ
2 /~p21 i«!(

Q
mQ

2 KQ~p!, if p2→0,

~4.9!
10500
ce

which has the same form as the propagator forfP
0 at T50,

except thatmQ now implies the dynamical mass of theQ
fermions at temperatureT @13#. These results are indepen
dent of the mass difference between the two flavors of
mions.

V. CHARGED SCALAR BOUND STATES IN THE
IMAGINARY-TIME FORMALISM

By Eq. ~2.9!, the configuration of the charged scal
bound state isf25(ŪG2D); thus the four-point amputate
function for the transition from (ŪG2D) to (D̄G1U) will
simply correspond to the propagator forf2 ~as well as its
hermitian conjugatef1). Based onL 4F

C in Eq. ~2.6!, the

imaginary-time propagatorG I
f2

(2 iVm ,pY ! for f2 obeys the
algebraic equation

G I
f2

~2 iVm ,pY !5
G

2
1GL~2 iVm ,pY !G I

f2

~2 iVm ,pY !,

~5.1!

from which we find

G I
f2

~2 iVm ,pY !5G/2@12GL~2 iVm ,pY !#, ~5.2!

where 2L(2 iVm , pY ) represents the contribution of the fe
mion loops bounded by aU fermion and aD fermion propa-
gator with aG1 and aG2 coupling vertex, i.e. we have
GL~2 iVm ,pY !5G
dQ~R!

2 E d3l

~2p!3
T(

n

2tr@G2~mU2 ł̄ U!G1~mD2 ł̄ D2p”̄ !#

@~vn1 imU!21 lY21mU
2 #@~vn1Vm1 imD!21~ lY1pY !21mD

2 #
, ~5.3!

with

p̄5~Vm ,pY !. ~5.4!

The trace in Eq.~5.3! can be expressed by

a52tr@G2~mU2 ł̄ U!G1~mD2 ł̄ D2p”̄ !#54 l̄ U•~ l̄ D1 p̄!18
mU

2 mD
2

mU
2 1mD

2
,

where we have used Eqs.~2.7! and ~3.30!. It can be further written by either

a[aU54$~vn1Vm1 imD!21~ lY1pY !21mD
2

2@vn1 imU1Vm1 i ~mD2mU!#@Vm1 i ~mD2mU!#2~ lY1pY !•pY 1mD
2 ~mU

2 2mD
2 !/~mU

2 1mD
2 !% ~5.5!
4-8
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or

a[aD54$~vn1 imU!21 lY21mU
2 1~vn1 imU!@Vm1 i ~mD2mU!#1 lY•pY 1mU

2 ~mD
2 2mU

2 !/~mU
2 1mD

2 !%. ~5.6!

From these expressions we obtain

GL~2 iVm ,pY !5
dQ~R!

2 E d3l

~2p!3
T(

n

gUUaU1gDDaD

@~vn1 imU!21 lY21mU
2 #@~vn1Vm1 imD!21~ lY1pY !21mD

2 #
~5.7!

5 (
Q5U,D

gQQI Q12dQ~R!E d3l

~2p!3
T

3(
n

~gDD2gUU!$~vn1 imU!@Vm1 i ~mD2mU!#%1 lY•pY 2gUU$@Vm1 i ~mD2mU!#21pY 2%

@~vn1 imU!21 lY21mU
2 #@~vn1Vm1 imD!21~ lY1pY !21mD

2 #
, ~5.8!

where the result coming from Eq.~3.30!

gUUmD
2 2gDDmU

2 50 ~5.9!

has been used. Substituting Eq.~5.8! into Eq. ~5.2! and considering the gap equation~2.16!, we obtain

G I
f2

~2 iVm ,pY !52G/4dQ~R!E d3l

~2p!3
„$~gDD2gUU!imU~Vm1 imD2 imU1 lY•pY !2gUU@~Vm1 imD2 imU!21pY 2#%

3Ac~2 iVm ,pY ,lY!1~gDD2gUU!~Vm1 imD2 imU!Bc~2 iVm ,pY ,lY!…, ~5.10!

where the Matsubara frequency sums

Ac~2 iVm ,pY ,lY!5T(
n

1

@~vn1 imU!21vUl
2 #@~vn1Vm1 imD!21vDl 1p

2 #
, ~5.11!

Bc~2 iVm ,pY ,lY!5T(
n

vn

@~vn1 imU!21vUl
2 #@~vn1Vm1 imD!21vDl 1p

2 #
. ~5.12!

By means of a similar method to calculateAQ(2 iVm , pY ,lY) in Eq. ~3.12!, we can express

Ac~2 iVm ,pY ,lY!5E
0

b

dte2 iVmtD̃~t,vUl ,2mU!D̃~t,vDl 1p ,mD!, ~5.13!

Bc~2 iVm ,pY ,lY!5 i E
0

b

dte2 iVmtF ]

]t
D̃~t,vUl ,2mU!G D̃~t,vDl 1p ,mD!

52 imUAc~2 iVm ,pY ,lY!1Dc~2 iVm ,pY ,lY!, ~5.14!

with the results

Ac~2 iVm ,pY ,lY!

Dc~2 iVm ,pY ,lY!
J 5

2 ivUl

1 J 1

4vUlvDl 1p
F12n~vUl1mU!2n~vDl 1p2mD!

iVm2~mD2mU!1vUl1vDl 1p
1

n~vUl1mU!2n~vDl 1p1mD!

iVm2~mD2mU!1vUl2vDl 1p

7
n~vUl2mU!2n~vDl 1p2mD!

iVm2~mD2mU!2vUl1vDl 1p
7

12n~vUl2mU!2n~vDl 1p1mD!

iVm2~mD2mU!2vUl2vDl 1p
G . ~5.15!

In the derivation of Eq.~5.14! we have used the antiperiodicity condition~2.21! of D̃(t,vQl ,mQ).
For analytic continuation of the definition region of the propagator forf2 from 2 iVm to the real axis ofp0, we will make

the replacement

2 iVm1mD2mU→p01 i«p0, «501 , ~5.16!
105004-9
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considering that the charged scalar bound statef25(ŪG2D) composed of theU antifermions and theD fermions may have
the chemical potentialmD2mU . Correspondingly, we will have the following substitutions:

Ac~2 iVm ,pY ,lY!→Ac~p,lY!, Dc~2 iVm ,pY ,lY!→Dc~p,lY!. ~5.17!

For the purpose of making a comparison between the results in the imaginary-time formalism and in the real-time for
we will expressAc(p,lY! andDc(p,lY! respectively by an integral over the reall 0. In this way, it is found that

Ac~p,lY!5E dl0

2p
Ãc~p,l 0,lY!, ~5.18!

Dc~p,lY!5E dl0

2p
i l 0Ãc~p,l 0,lY!, ~5.19!

where

Ãc~p,l 0,lY!5
2 i

~ l 22mU
2 1 i«!@~ l 1p!22mD

2 1 i«#
12p

d~ l 22mU
2 !

~ l 1p!22mD
2 1 i«

sin2u~ l 0,mU!

12p
d@~ l 1p!22mD

2 #

l 22mU
2 1 i«

sin2u~ l 01p0,mD!1 i4p2d~ l 22mU
2 !d@~ l 1p!22mD

2 #

3@u~ l 0!u~ l 01p0!1u~2 l 0!u~2 l 02p0!#@u~vUl2vDl 1p!sin2u~ l 0,mU!1u~vDl 1p2vUl !sin2u~ l 01p0,mD!#.

~5.20!

By means of Eqs.~5.10!, ~5.14! and~5.16!–~5.19!, we can analytically continue the imaginary-time propagator forf2 to the
physical propagator, i.e.,

iG I
f2

~2 iVm ,pY !→Gf2
~p!, ~5.21!

with

G I
f2

~p!52 iG/4dQ~R!E d3l

~2p!3
$@~gDD2gUU!lY•pY 1gUU~p21 i«!#Ac~p,lY!1~gDD2gUU!ip0Dc~p,lY!%

52 iG/4dQ~R!E d4l

~2p!4
@~gUU2gDD!l •p1gUU~p21 i«!#Ãc~p,l 0,lY!

52 i(
Q

mQ
2 /4dQ~R!E d4l

~2p!4
@~mU

2 2mD
2 !l •p1mU

2 ~p21 i«!#Ãc~p,l 0,lY!, ~5.22!

where Eq.~3.30! has been used once again. Substituting Eq.~5.20! into Eq. ~5.22! and using the formula~3.23!, we finally
obtain the physical propagator for the charged scalar bound statef2

G I
f2

~p!52 i /$~p21 i«!@KUD~p!1HUD~p!#1EUD~p!2 i ~p22M̄2!SUD
I ~p!%, ~5.23!

where

M̄25~mU
2 2mD

2 !2/~mU
2 1mD

2 !, ~5.24!

KUD~p!5
dQ~R!

4p2 E
0

1

dx
mU

2 ~12x!1mD
2 x

mU
2 1mD

2 F ln
L21MUD

2 ~p!

MUD
2 ~p!

2
L2

L21MUD
2 ~p!

G ,

MUD
2 ~p!5mU

2 ~12x!1mD
2 x2p2x~12x!, ~5.25!
105004-10
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HUD~p!54pdQ~R!E d4l

~2p!4 H ~ l 1p!22mD
2

@~ l 1p!22mD
2 #21«2

d~ l 22mU
2 !sin2u~ l 0,mU!1~p→2p,mU↔mD ,mU↔mD!J , ~5.26!

EUD~p!54pdQ~R!
mU

2 2mD
2

mU
2 1mD

2 E d4l

~2p!4

3H @~ l 1p!22mU
2 #@~ l 1p!22mD

2 #

@~ l 1p!22mD
2 #21«2

d~ l 22mU
2 !sin2u~ l 0,mU!2~p→2p,mU↔mD ,mU↔mD!J , ~5.27!

SUD
I ~p!54p2dQ~R!E d4l

~2p!4
d~ l 22mU

2 !d@~ l 1p!22mD
2 #$sin2u~ l 0,mU!1sin2u~ l 01p0,mD!

22@u~ l 0!u~ l 01p0!1u~2 l 0!u~2 l 02p0!#@u~vUl2vDl 1p!sin2u~ l 0,mU!1u~vDl 1p2vUl !sin2u~ l 01p0,mD!#%.

~5.28!
ar
ge
e
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,
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As for the key question under what conditionf7 could be
massless bound states, we can answer it in two cases.

~1! mU5mD5mQ . For the mass-degenerateU andD fer-
mions, we will haveKUD(p)5KQ(p), HUD(p)5HQ(p),
SUD

I (p)5SQ
I (p), EUD(p)50, andM̄250, thus

G I
f2

~p!52 i /~p21 i«!@KQ~p!1HQ~p!2 iSQ
I ~p!#.

~5.29!

Equation ~5.29! implies that p250 is the single pole
of Gf2

(p) hence f2 and f1 are both massless scal
bound states and can be identified with the char
Nambu-Goldstone bosons. As was indicated in S
III, when p→0, no pinch singularity could emerge from
SQ

I (p).
~2! mUÞmD . For the mass-nondegenerateU and D fer-

mions, we will haveEUDÞ0 and M̄2Þ0, thus the pole of

G I
f2

(p) will be determined by the equation

p252
EUD~p!1 iM̄ 2SUD

I ~p!

KUD~p!1HUD~p!2 iSUD
I ~p!

. ~5.30!

Hence, the masses off2 and f1 at finite temperature are
not equal to zeros. However, as long as the momentum

off L in KUD(p) is large enough, the single pole ofG I
f2

(p)
could still be approximately atp250. On the other hand
when p250 andp05upY u→0, bothEUD(p) and SUD

I (p) in
the numerator of the right-hand side of Eq.~5.30! approach
zero. Therefore, at low energy scales it is still possible t
f2 and f1 are considered as approximate massless bo
states and identified with the charged Nambu-Goldst
bosons.
10500
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VI. PHYSICAL PROPAGATORS FOR SCALAR BOUND
STATES IN THE REAL-TIME FORMALISM

The propagators for scalar bound states in
real-time formalism were discussed in Ref.@11#. However,

the propagators are defined there byGB
Q81Q1(p) (B5S,P)

and Gf2
11 (p) respectively for neutral scalar, pseudosca

and charged scalar bound states which are the four-p
amputated functions for the transition between the phys
field configurations, e.g., (Q̄Q)(1) and (Q̄8Q8)(1) etc.
These definitions can give the main physical featu
of the bound states including their masses but also lead s
extra result, e.g. a neutral scalar bound statefS

0 could have
double masses due thermal fluctuation. In addition,
resulting expressions of the propagators forfS

0 , fP
0 and

f7 have quite explicit difference with Eqs.~3.31!, ~4.8!
and ~5.23! obtained here in the imaginary-time formalism
For seeking a closer correspondence between the phy
propagators for the above scalar bound states in the real-
and the imaginary-time formalism, following Ref.@12#,
we will redefine the physical propagators forfS

0 , fP
0 andf7

by diagonalization of corresponding matrix propagato
These matrix propagators have in fact been obtained
Ref. @11#.

First let us deal with the case of the neutral scalar bou
state. By Eqs.~3.3! and ~3.7! in Ref. @11#, the matrix of the
four-point amputated functions for the transition fro
(Q̄Q)(a) and (Q̄8Q8)(b) can be expressed by

GS
Q8bQa~p!5

gQ8Q

G
GfS

0ba~p!, Q8,Q5U,D, b,a51,2,

~6.1!

whereGfS
0ba(p) (b,a51,2) is the matrix propagator for th

neutral scalar bound statefS
0 given in Eq.~2.9!, its explicit

form is
4-11
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S GfS
011~p! GfS

012~p!

GfS
021~p! GfS

022~p!
D 5

2 i (QmQ
2

@p2~k1h!24~ k̃1h̃!#21~p2s24s̃!22~p2r 24r̃ !2

3S ~p22 i«!~k1h1 is!24~ k̃1h̃1 i s̃! 2 i ~p2r 24r̃ !

2 i ~p2r 24r̃ ! 2~p21 i«!~k1h2 is!14~ k̃1h̃2 i s̃!
D . ~6.2!
n

t

e

e

i-
for-

n
re-
ry

e
the
the
ans

al
In Eq. ~6.2! the denotationsk, h, k̃ andh̃ have been given by
Eq. ~3.32! and

s5(
Q

mQ
2 SQ~p!, r 5(

Q
mQ

2 RQ~p!,

s̃5(
Q

mQ
4 SQ~p!, r̃ 5(

Q
mQ

4 RQ~p!, ~6.3!

whereKQ(p) and HQ(p) are expressed by Eqs.~3.27! and
~3.28! and

SQ~p!54p2dQ~R!E d4l

~2p!4
d~ l 22mQ

2 !d@~ l 1p!22mQ
2 #

3@sin2u~ l 01p0,mQ!cos2u~ l 0,mQ!

1cos2u~ l 01p0,mQ!sin2u~ l 0,mQ!#, ~6.4!

and

RQ~p!52p2dQ~R!E d4l

~2p!4
d~ l 22mQ

2 !

3d@~ l 1p!22mQ
2 #sin 2u~ l 0,mQ!

3sin 2u~ l 01p0,mQ!, ~6.5!

with sin2u(l0,mQ) given by Eq.~2.26!. In deriving Eq.~6.2!,
the gap equation~2.27! in the real-time formalism has bee

used. The matrixGfS
0ba(p) (b,a51,2) can be diagonalized

by a thermal matrixMS , i.e.,

S GfS
011~p! GfS

012~p!

GfS
021~p! GfS

022~p!D
5MS

21S G
R

fS
0

~p! 0

0 G
R

fS
0*

~p!D MS
21 , ~6.6!

where

MS5S coshuS sinhuS

sinhuS coshuSD , ~6.7!

with
10500
coshuS5
1

A2
S S

AS22R2
11D 1/2

,

sinhuS5
1

A2
S S

AS22R2
21D 1/2

, ~6.8!

and

S5p2s24s̃, R5p2r 24r̃ . ~6.9!

We indicate that sinceSQ(p)6RQ(p)>0 @11# and
SQ(p)5RQ(p)50 when p2,4mQ

2 , it can be deduced tha
S22R25(QmQ

2 (p224mQ
2 ) (SQ1RQ) (Q8mQ8

2 (p224mQ8
2 )

3(SQ82RQ8)>0 no matter what valuep2 could take.

G
R

fS
0

(p) in Eq. ~6.6! will be identified with the physical
propagator forfS

0 in the real-time formalism and has th
expression

G
R

fS
0

~p!52 i(
Q

mQ
2 /$@~p21 i«!@k1h2 isA12R2/S2#

24@ k̃1h̃2 i s̃A12R2/S2#%. ~6.10!

On the other hand, by means of Eq.~3.32!, G
I

fS
0

(p) in Eq.
~3.31! can be written as

G
I

fS
0

~p!52 i(
Q

mQ
2 /@~p21 i«!~k1h2 isI !24~ k̃1h̃2 i s̃I !#.

~6.11!

Comparing Eq.~6.10! with Eq. ~6.11!, we find that the physi-
cal propagators forfS

0 in the two formalisms now have quit
similar form, except that the replacementssA12R2/S2→sI

ands̃A12R2/S2→ s̃I in the imaginary parts of their denom
nators must be made when transiting from the real-time
malism to the imaginary-time formalism. It has been know
for some time that for an amputated Green function, the
sults calculated in the two formalisms of thermal field theo
have generally some difference@17#. In present case, we not
that the difference appears only in imaginary parts of
denominators of the propagators which does not affect
main physical conclusions from the propagators. This me
that all the conclusions of the mass offS

0 deduced from

G
I

fS
0

(p) in Sec. III remain valid forG
R

fS
0

(p), including that
the possible fluctuation effect of the amplitude offS

0 is also
kept qualitatively. In particular, by redefining the physic
4-12
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propagatorG
R

fS
0

(p) for fS
0 by diagonalization of the corre

sponding matrix propagator, we no longer meet the proble
of doubling of mf

S
0 originated from the definition of the

propagator forfS
0 by GfS

011(p). We also point out that the

imaginary parts of the denominators of bothG
R

fS
0

(p) and

G
I

fS
0

(p) may be identical and equal to zero if 0<p2

,4(mQ)min
2 , where (mQ)min is the smallest mass of theQ

fermions. In that case, we have realk and k̃, and s5 s̃5r

5 r̃ 50 thusS5R50 andsI5 s̃I50 because thed-function
product factord( l 22mQ

2 )d@( l 1p)22mQ
2 # in the integrand

of each SQ(p) and RQ(p) will become zero if 0<p2

,4mQ
2 . In the other case the imaginary parts of the deno

nators ofG
R

fS
0

(p) andG
I

fS
0

(p) will generally differ. We note
that, different from the case of the gap equation, the app
ance of such a difference here is related to the fact that
are dealing with the four-point amputated functions wh
are determined by the loops bounded by two fermion pro
gators. The difference could be technically attributed to
different order of analytic continuation of a Green functi
for discrete Matsubara frequencies in the two formalis
@12#. But it is more possible@18# that appearance of th
difference is due to that we are calculating different fun

tions e.g.G
I

fS
0

(p) andG
R

fS
0

(p) in the two formalisms. How-
ever, it should be pointed out that at present the two form
isms of thermal field theory are not usedas usual, by the
terminology in Ref.@18#. First, in the imaginary-time formal

ism, owing to the analytic continuation~3.17! used,G
I

fS
0

(p)
is now a time-ordered, i.e., physical propagator, not a

tarded one. Thus it is not difficult to understand whyG
I

fS
0

(p)

and G
R

fS
0

(p) may have almost identical expressions exc
the imaginary parts in their denominators. Next, we note t
in the fermion bubble approximation, the amputated fo
10500
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r-
e

-
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s

-

l-

-

t
t

-

point functions induced by the four-fermion interactions a
essentially determined by one fermion loops, and the ca
lations of them may formally be reduced the ones of us
two-point functions, but the former is rather different fro
the latter. This is because we are dealing with problem of
scalar bound states whose propagators correspond to
pure amputated functions without external particle legs.
this case, the thermal matrixMS @Eqs.~6.7! and~6.8!# which
diagonalizes the amputated four-point functions mat
~6.6! in the real-time formalism is different from the therm
matrix of a free scalar particle and can only be considered
an ‘‘effective’’ one in the case of bound states. Obvious
some more work is needed before any definite relation

tweenG
I

fS
0

(p) and G
R

fS
0

(p) is found, for instance, by som
more formal calculations. At present, it seems to be prem
ture for us to be able to make a judgment on which circu
stances of proper function should be considered. Hence
alternative and more realistic way to treat such differen
between the two formalisms is to compare the results
tained by respectively using the propagators in the two f
malisms in the same physical problem and examine whe
the difference indeed gives some physically unequal desc
tion or not.

Next we turn to the case of pseudoscalar bound s
mode and make similar discussions. By means of Eqs.~4.3!
and ~4.4!, the matrix of the four-point amputated function
for the transition from (Q̄ig5Q)(a) to (Q̄8ig5Q8)(b) can be
expressed by@11#

GP
Q8bQa~p!5

g8Q8Q

G
GfP

0 ba~p!, Q8,Q5U,D, b,a51,2,

~6.12!

whereGfP
0 ba(p) (b,a51,2) is the matrix propagator for th

neutral pseudoscalar bound statefP
0 in Eq. ~2.9! and has the

following explicit expression:
S GfP
0 11~p! GfP

0 12~p!

GfP
0 21~p! GfP

0 22~p!D 5
2 i (QmQ

2

@~p2!21«2#@~k1h!21s22r 2#
S ~p22 i«!~k1h1 is! 2 ip2r

2 ip2r 2~p21 i«!~k1h2 is!D .

~6.13!

The matrixGfP
0 ba(p) (b,a51,2) can be diagonalized by a thermal matrixM P , i.e.,

S GfP
0 11~p! GfP

0 12~p!

GfP
0 21~p! GfP

0 22~p!D 5M P
21S G

R

fP
0

~p! 0

0 G
R

fP
0 *

~p!
D M P

21 , ~6.14!

where

M P5S coshuP sinhuP

sinhuP coshuP
D , ~6.15!

with
4-13
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coshuP5
1

A2
S s

As22r 2
11D 1/2

, sinhus5
1

A2
S s

As22r 2
21D 1/2

. ~6.16!

Here we again haves22r 2>0 due toSQ(p)6RQ(p)>0 @11#. The physical propagator forfP
0 in the real-time formalism will

become

G
R

fP
0

~p!52 i(
Q

mQ
2 /~p21 i«!@k1h2 isA12r 2/s2#. ~6.17!

It can be compared withG
I

fP
0

(p), the propagator forfP
0 in the imaginary-time formalism which, by Eqs.~4.8!, ~3.26! and

~3.23!, will have the expression

G
I

fP
0

~p!52 i(
Q

mQ
2 /~p21 i«!~k1h2 isI !. ~6.18!

We see thatG
R

fP
0

(p) andG
I

fP
0

(p) have very similar expressions except that in the imaginary parts of their denominato

replacementsA12r 2/s2→sI must be made when transiting from the real-time formalism to the imaginary-time forma

Such difference does not change the main physical conclusion reached fromG
R

fP
0

(p) or G
I

fP
0

(p): fP
0 is a massless neutra

pseudoscalar particle and can be identified with a Nambu-Goldstone boson of electroweak symmetry breaking. We

that when 0<p2,4(mQ)min
2 , G

R

fP
0

(p) andG
I

fP
0

(p) will be real and identical sinces5r 5sI50 in this case. In particular, whe
p2→0, both have the same form as the propagator forfP

0 at T50.
Lastly we apply the parallel discussions to the charged scalar bound state mode. By Eqs.~5.3! and ~5.4! in Ref. @11#, the

matrix of the four-point amputated functions for the transition from (ŪG2D)(a) to (D̄G1U)(b) is just the matrix propagato
Gf2

ba (b,a51,2) for f25(ŪG2D) and its elements can be expressed as follows:

Gf2
11

~p!52 i
~p22 i«!@KUD~p!1HUD~p!1 iSUD~p!#1EUD~p!2 iM̄ 2SUD~p!

$p2@KUD~p!1HUD~p!#1EUD~p!%21~p22M̄2!2@SUD
2 ~p!2RUD

2 ~p!#
5@Gf2

22
~p!#* ,

Gf2
12

~p!5
2eb(mU2mD)/2~p22M̄2!RUD~p!

$p2@KUD~p!1HUD~p!#1EUD~p!%21~p22M̄2!2@SUD
2 ~p!2RUD

2 ~p!#
5eb(mU2mD)Gf2

21
~p!,

~6.19!

whereM̄2, KUD(p), HUD(p) andEUD(p) have been given by Eqs.~5.24!–~5.27!, respectively, and by Eqs.~5.11! and~5.12!
in Ref. @11#, we have

SUD~p!54p2dQ~R!E d4l

~2p!4
d~ l 22mU

2 !d@~ l 1p!22mD
2 #

3$sin2u~ l 0,mU!cos2u~ l 01p0,mD!1cos2u~ l 0,mU!sin2u~ l 01p0,mD!%, ~6.20!

RUD~p!52p2dQ~R!E d4l

~2p!4
d~ l 22mU

2 !d@~ l 1p!22mD
2 #sin 2u~ l 0,mU!sin 2u~ l 01p0,mD!.

~6.21!

By means of a thermal matrixMC , the matrixGf2
ba (b,a51,2) can be diagonalized, i.e.,

S Gf2
11 Gf2

12

Gf2
21 Gf2

22 D 5MC
21S GR

f2

~p! 0

0 GR
f2* ~p!

D MC
21 , ~6.22!

where

MC5S coshuC easinhuC

e2asinhuC coshuC
D , ~6.23!
105004-14
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with

a5b~mU2mD!/2, coshuC5
1

A2
F SUD~p!

ASUD
2 ~p!2RUD

2 ~p!
11G 1/2

, sinhuC5
1

A2
F SUD

ASUD
2 ~p!2RUD

2 ~p!
21G 1/2

. ~6.24!
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It is easy from Eqs.~6.20! and ~6.21! to verify that

SUD~p!6RUD~p!54p2dQ~R!

3E d4l

~2p!4
d~ l 22mU

2 !d@~ l 1p!22mD
2 #

3sin2@u~ l 0,mU!6u~ l 01p0,mD!#>0. ~6.25!

Thus we must haveSUD
2 (p)2RUD

2 (p)>0. GR
f2

(p) in Eq.
~6.22! is now defined as the physical propagator forf2 in
the real-time formalism and can be expressed by

GR
f2

~p!52 i /$~p21 i«!@KUD~p!1HUD~p!#1EUD~p!

2 i ~p22M̄2!ASUD
2 ~p!2RUD

2 ~p!%. ~6.26!

It has very similar form toG I
f2

(p) in Eq. ~5.23!, the propa-
gator for f2 in the imaginary-time formalism, but for th

transitionGR
f2

(p)→G I
f2

(p) we must make the replaceme
ASUD

2 (p)2RUD
2 (p)→SUD

I (p) in the imaginary parts of thei
denominators. Obviously, all the conclusions coming fro

GR
f2

(p) will be the same as those fromG I
f2

(p) in Sec. V.
When mU5mD5mQ and mU5mD5mQ , we will have
EUD5M̄250, KUD5KQ , HUD5HQ , SUD5SQ , and RUD
5RQ , thus we get

GR
f2

~p!52 i /~p21 i«!@KQ~p!1HQ~p!

2 iASQ
2 ~p!2RQ

2 ~p!#, ~6.27!

which has an identical form toG
R

fP
0

(p) in this case. The
thermal matrix element

coshuC5
1

A2
@SQ~p!/ASQ

2 ~p!2RQ
2 ~p!11#1/2

will also coincide with coshuP . In addition, it can be proven
that

d~ l 22mU
2 !d@~ l 1p!22mD

2 #50,

when

~mU2mD!2<p2,~mU1mD!2. ~6.28!

ThusSUD(p), RUD(p) andSUD
I (p) are all equal to zero and

these will makeGR
f2

(p) and G I
f2

(p) become identical in
this case.
10500
VII. CONCLUSIONS

In the imaginary-time formalism of thermal field theor
we have reexamined the Nambu-Goldstone mechanism
electroweak symmetry breaking at finite temperature in
one-generation fermion condensate scheme and comp
the results with those obtained in the real-time formali
through some redefined physical propagators for sc
bound states. By means of the Schwinger-Dyson equatio
the fermion bubble diagram approximation, it is obtain
that the propagators for scalar bound states have very sim
forms in the two formalisms, except that the imaginary pa
of the denominators of the propagators have some dif
ences when the momenta squared of the bound states
within some given ranges. However, these differences do
change the common essential conclusions reached in the
formalisms. These conclusions are as follows.

~1! When the two flavors of the one generation of ferm
ons are mass-degenerate, at the temperatureT below the
symmetry restoration temperatureTc , one may obtain a
composite Higgs bosonfS

0 with mass 2mQ , a composite
neutral pseudoscalar Nambu-Goldstone bosonfP

0 and two
composite charged Nambu-Goldstone bosonsf2 and f1.
Thus the Goldstone theorem representing the spontan
breaking of electroweak groupSUL(2)3UY(1)→UQ(1) is
valid rigorously in this case.

~2! When one of the two flavors of fermions is massle
we can obtain the samefS

0 and fP
0 as those in~1!, but the

charged scalar bound statesf2 and f1 will no longer be
rigorously massless and they could be considered appr
mately massless only if the momentum cutoffL is very large
and the considered energy scales are low. This means
the Goldstone theorem at finite temperature is only appro
mately valid at low energy scales.

~3! When the two flavors of fermions have unequal no
zero masses, besides the conclusions in~2! remaining valid,
it seems that we will meet the possible fluctuation effect
the Higgs boson’s amplitude originated from the imagina
part of its propagator’s pole. However, it has been argu
that such effect is compeletely negligible, if the momentu
cutoff L is sufficiently large.

The above conclusions imply that, as far as the discus
Nambu-Goldstone mechanism in this model is concern
the two formalisms of thermal field theory give a physica
equivalent description. In particular, by the redefinition
physical propagators in the real-time formalism, the ex
result of the Higgs boson mass being doubled which or
nates from the definition of physical propagator offS

0 by 11
element of its matrix propagator has automatically dis
peared.

Our calculations also show that the gap equation, wh
4-15
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comes from two-point amputated functions and is de
mined by the loops bounded by a single fermion propaga
is identical in the two formalisms without the need for an
lytic continuation. However, the propagator for scalar bou
states, when defined by four-point amputated functions
calculated in the fermion bubble diagram approximation
determined by the loops bounded by two fermion propa
tors, which could have some differences in the imagin
parts of their denominators in the two formalisms. Such d
ferences have close relation to the introduction of the gh
fields to cancel the pinch singularities in the real-time f
malism and it seems that they could technically be attribu
to a different order of analytic continuation for the discre
Matsubara frequencies in the two formalisms@12#. However,
a greater possibility is that such differences reflect that
are calculating different functions in the two formalism
,

ld

.
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This problem needs to be researched further, especially
the bound state propagators being involved. Before any d
nite relation between the propagators in the two formalis
is found, we may still respectively use the propagators in
two formalisms in the same physical problem and comp
the results obtained, as has been done in this paper. Altho
the differences between the propagators do not predict
actual different physical effect in the model discussed he
whether, where and how they could do that is an interes
problem deserving of further research.
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