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Nambu-Goldstone mechanism at finite temperature in the imaginary-time and real-time formalism
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In the imaginary-time formalism of thermal field theory, and also in the real-time formalism, but by means
of some redefined physical propagators for scalar bound states by diagonalization of four-point function
matrices, we reexamine the Nambu-Goldstone mechanism of electroweak symmetry breaking in a one-
generation fermion condensate scheme, based on the Schwinger-Dyson equation in the fermion bubble diagram
approximation, and compare the obtained results. We have reached the conclusion that in both formalisms the
Goldstone theorem of spontaneous electroweak symmetry breaking is rigorously true for the case of mass-
degenerate two flavors of fermions and only approximately valid at low energy scales for the mass-
nondegenerate case, in spite of the existence of some differences between the two formalisms in the imaginary
parts of the denominators of the propagators for scalar bound states. When the two flavors of fermions have
unequal nonzero masses, the induced possible fluctuation effect for the Higgs particle is negligible if the
momentum cutoff in the zero temperature loops is large enough. All the results show physical equivalence of
the two formalisms in the present discussed problems.

PACS numbgs): 14.80.Mz, 11.10.Wx, 11.30.Qc, 12.15¢

[. INTRODUCTION the above results we have used a special definition of the
propagators for relative scalar bound states. Although the
In the research on spontaneous symmetry breaking at fgffects induced by the mass difference of the fermions are
nite temperatur¢1—6), in addition to the central problem of negligible when the momentum cutoff is very large, we still
the phase transition and critical behavior of a system, th&vant to know if the above results represent general conclu-
theoretical exploration of the Nambu-Goldstone mechanisngions of a thermal field theory, or if some of them are only
[7,8] at finite temperature is certainly quite significant for adue to the use of the special definition of the propagators for
deeper understanding of spontaneous symmetry breakirﬁj’)a'al’ bound states in the real-time formalism there.
[9—11]. When symmetry breaking is induced dynamically by ~ To clarify this problem, in this paper, based on the same
fermion condensates, the Nambu—Jona-LagiNi#L) model ~ Strategy as above, we will reexamine the Nambu-Goldstone
with four-fermion interactions may be a simp|e and physi-mechanism at finite temperature first in the imaginary-time
ca”y clear |aborat0ry for this researta]_ The key point of formalism of thermal field theory and then also in the real-
such research lies in verifying the existence of the Nambutime formalism but by means of some redefined physical
Goldstone bosons as products of spontaneous symmetBfopagators for scalar bound stafég]. We will again take
breaking, i.e., determining the masses of relevant scalar arfffieé one-generation fermion condensate scheme of elec-
pseudoscalar bound states consisting of fermions and antifeffoweak symmetry breaking and work by the Schwinger-
mions. For the sake of examining the mass-difference effedpyson equation in the fermion bubble diagram approxima-
of constituent fermions in a bound state, we prefer thellon.
Schwinger-Dyson equation approach of the Green functions The paper is arranged as follows. In Sec. Il we give the
to the auxiliary scalar field method which was extensivelyLagrangian of the model and the gap equation at finite tem-
used in research on models of the NJL folr®j. perature in the imaginary-time formalism. In Sec. Ill we will
Based on the above strategy, we have researched tfigst calculate the Matsubara propagator for a scalar bound
Nambu-Goldstone mechanism at finite temperature in thétate, then continue analytically for the energy of the bound
real-time formalism of thermal field theory in two models of state from discrete frequency to physical values and deter-
the NJL form[10,11]. It was shown that the Goldstone theo- Mine the physical mass of the scalar bound state. In Secs. IV
rem is true rigorously if the constituent fermions of a boundand V the same procedure will be applied to pseudoscalar
state have the same masses, otherwise it is 0n|y valid a@.nd Charged—scalar bound states. In Sec. VI we will derive
proximately at low energy scales. The mass difference bethe redefined physical propagators for scalar bound states in
tween the fermions and the antifermions in a bound statéhe real-time formalism and compare the results obtained in
could lead to that the Higgs boson has doubled masses afide two formalisms. Finally in Sec. VII our conclusions
some would-be Goldstone bosons will no longer be massledg!low.
rigorously. However, it should be indicated that in obtaining

Il. GAP EQUATION IN IMAGINARY-TIME FORMALISM

*Electronic address: zhoubr@2163bj.com In the one-generation fermion condensate scheme of elec-
"Mailing address. troweak symmetry breaking, the one generatioQdermi-
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ons form a SY(2)x Uy(1) doublet U,D) and are assigned and they-matrices in spinor space

in the representatioR of the color group SL(3) with the _ .

dimensiondq(R). The symmetry breaking is induced by the Y=i7" Y=9, ys=iyyty?yi=y0y1y%yR
effective four-fermion Lagrangian among tQefermions be- (2.1

low some high momentum scale [12 . . . . .
9 [12] which submit to the anticommutation relations

Lap=L3+ L+ LS, (2.2 _ _
{y*y"t=-28"" {y*,¥s}=0, (2.12

where y*(1=0,1,2,3) are the ordinary-matrices in the
— . real-time(Minkowski) field theory. In this way, the propaga-
4 QEQ, 900(R'QN(QQ), (2.2 tor in the momentum space for tig@fermion with massng
’ and chemical potentigk, will be expressed by

where the neutral scalar couplings

with
Joo=02 g2 Q.Q'=U,D 2.3 mQ_*QA =So(—iwp+u N
Qe Jeqdeer o ' (0 tipg)2+12+md norenn
the neutral pseudoscalar couplings
2n+1)m
1 ! 7 N~ wn: 1
£5=7 2 95oQ17Q)QI%Q), (24 T
Q.Q’ —
to=y"1%
with v¥lq,
— . -
0ho=(~D'o %900, QQ'=UD, (29 o= (nting.) (213

and the Feynman rule, for example, corresponding to the
four-fermion couplings ianF, will be gqro/2.
The derivation of the gap equation is similar to that made

and the denotatioré being the third component of the weak
isospin of theQ fermions, and the charged scalar couplings

G _ . in the real-time formalisnh11], the main change is to replace
§F=E(DF+U)(UF*D), (2.6  the integral of the loop energy by the sum of Matsubara
frequency. Therefore when assuming the thermal expectation
with valueZq_y, DgQQ<QQ)T¢O we will obtain the mass of the
Q fermion
1
I *=—[cosp—sing*(cose+sing)ys], _
V2 mo(T, w)=mg= gé’é > 950 (QQ)r,
Q'=U,D
G=guu+0op. CoSe=0gyy/G, sife=gpp/G. (2.14
@7 which will lead to the relation
L4r can also be expressed p3] 1 2
L4F:Z[(¢g)2+(¢g)2+2¢+¢_]' (2.8)  and the gap equation at finite temperatiive
where 1:Q:2U o gQQIQ ) (2.16
$2=cose(UU)+sing(DD),
with
¢p=Ccose(UiysU) —sing(DiysD), .
_ lo==5—(QQ)r
¢ =(UT' D), ¢"=(DI'*U) (2.9 2mq
3 *° T
are, respectively, the configurations of the physical neutral _do(R) (a7 tr(mQ—ig)
scalar, neutral pseudoscalar, and charged scalar bound states. 2mq J (27)% n=w (oq+ipg)?+12+ mé
In the imaginary-time(Euclidean field theory, we will use
the conventional time-space coordinate=(t, x), the four- ry R)f - 1
momentum al (2 )3 0 (wntipg)? +le
p=(p°%p)=(ip%p" (210 (217
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2 _ |2 2

(2.18

To find the frequency sum here and later, we define the Fou-

rier transform[14]

1 fﬁ S
- = | dre”'"“"A(1,0q),1q),
(0n+ipg)’+wd Jo
(2.19

with 8=1/T and the inverse formula

1

Z(T,(UQ“/.LQ):T E ei“’nT " .
n=-—o (wn+|MQ)2+w(2)|

(2.20

The Z(T,wQ,,,u,Q) in Eg. (2.20 obeys the antiperiodicity

condition

A(7, 00/, 10) = —A(7— B, 0q1, o) (2.21)

and can be calculated by the formula

- i B _
A(T,0q), ) = ELluczdzf(z)tani(z—mQ),

f(z):ei(zfi,u.Q)T

(2.22

Zz+ w2Q| ,
where C, and C, represent the integral pathse+i(uq

—g)—+o+i(ug—e) and +o+i(ugte)——*+i(ug
+¢&) respectively in complex plane. The result is

~ 1
A(T,0q) ) = %{[1_n(le_MQ)]e_(le_”Q)T

—N(wg+ pg)eler#7, (2.23
where the denotations
N(wg* po) = 1[ePl@a=rd + 1] (2.24)
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with the definition

| 0(1°)
Sirt0(1%, uo) =
e B pg 1
6(—19)

. 2.2
R FE R

Substituting Eq.(2.25 into Eqg. (2.17), we can express the
gap equatior(2.16 by

d*l

—2m8(12=mg)sinf0(1°, ug) |,

12—m&+ie
(2.27)

which is precisely the expression of the gap equation in the
real-time formalism[11]. It should be indicated that such
identity of the gap equation in the two formalisms depends
on the fact that the equation comes from the two-point Green
function and is determined by the loops bounded by a single
fermion propagator. Equatiof2.16 or (2.27), as has been
shown[15], could be satisfied only at the temperatiiree-

low the electroweak symmetry restoration temperaflige
Therefore, in the following discussions we will always as-
sumeT<T,. with the gap equation being obeyed.

Ill. SCALAR BOUND STATE IN THE IMAGINARY-TIME
FORMALISM

Since a bound state is formed by the four-fermion inter-
actions, its propagator must correspond to a four-point am-
putated Green function. Thus in the imaginary-time formal-
ism, the propagator for a scalar bound state can be calculated
by means of the four-point amputated functions
r'(-iQ,,, p) for the transition from QQ) to (Q'Q’),
where

has been used. Obviously, it can be obtained from Egs.

(2.20 and(2.23 that

©

1

n=—x (wn+|MQ)2+ w2Q|

:Z(’T: O,(l)Q| ,/.LQ)

1
=m[l—n(wQFMQ)—n(le"'MQ)]
_J'w dl°
I

X sit6(1%, wo)

i
—2mw3(1°%= )

192w +ie

; (2.295

2mm
Q,=———, m=0,*x1,+2, ...

m= (3.0

represent the Matsubara frequency of the scalar bound state
andp is its three dimension momentum. Based on the scalar
four-fermion couplings 3¢ in Eg. (2.2), in the fermion
bubble diagram approximatiol,S 9(—i€),,,p) must obey

the algebraic equations

MY i0n. Pl oaraNo (10 PSel=00cl2,
3.2

where Z\IQ(—iQm,ﬁ) is the contribution of the& fermion
loop with scalar coupling vertices and
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dQ(R) d3| where
(2m)3

NQ(_iQmiﬁ):
. A(—mm,5>=1—Q§UDgQQNQ(—mm,m. (3.5
> tr So(—i@n+ po,l) ’

. The propagator for the scalar bound sta;t%shown in Eq.
X So(—iwn—iQn+ug,l+p). (3.3 (2.9 becomes

Equations(3.2) have the solutions o R R
T/S(=iQm,p)=G/2A(=iQp,P). (3.6

' . - Jq’
reO(—i0p p)= o, (3.4 _
2A(—=iQm,p) By means of Eqs(2.13), (2.12 and(3.3), we find

s —(Q2+p%) —2md— (0 +ipg) Qm—1-P
2m* T [(0p+ipg)®+ 12+ mll(ont Qpting) >+ (1+p)2+my]

No(—iQm, p)—|Q+2dQ(R)f (3.7

From Lorentz invariance, in the imaginary-time formahsPr‘fS( iQ.,, p) should be a function of—(Q2 +p?), thus must
obey the constraint

#2 - 2 ~ #2 ~
I/S(=iQpn,P)=TS(+i1Qp,—P)=TS(—iQ_n,—P). (3.9

From Egs.(3.6) and(3.5), the same constraint an(—iQm,ﬁ) is implied and this will lead to the equality

f d3IT2 — (0 +ipQ)Qn—1-p
N [(wntipg) +|2+mQ][(wn+Q +|MQ)2+(I+p)2+mQ]
Q2+p?)/2
:stlTE _ " 2( m*P7) - T > (3.9
n [(optipg) -+l +mQ][(wn+Qm+l,uQ) +(I+p) +mQ]
As a result, we obtain
; S\ L o2,z 2\kT(—i0. B
No(—iQm,P)=lg— 5 (Rt P2 +4mRKG(~ Q. P), (3.10
where
- d? ~ -
Ké(—iﬂm,p)=2dQ<R)f SAQ(—i1Q,pD), (3.11)
(2)
1 1
Ao(—iQ,p. )= TE (3.12
Q " (wn-}—l,uQ) +wQ| (w0, +Qp, +|,LLQ) +wQ|+p
Wby p=(I+p)2+m3. (3.13
By means of Eqs(2.19), (2.23 and the formula
TE eiw”(T_T/)zé(T_ 7.’), (314)
n

we can find out the frequency suf8.12) and obtain
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1 1-n(wqit+ ug) —N(wgi+p— 1q)
4(1)Q|£!)Q|+p iQm+ C!)Q|+ (1)Q|+p

.= B o~ ~
AQ(_iQmapvl): jo dTe_'Q’“TA(ﬂwm 1_/~’LQ)A(vaQI+puuQ):

N N(wgit ug) ~N(wqi+ptug)  Nwqi—ug) ~Nwqi+p—#g) 1 N(wgi— o) —N(wqi+pt ug)
iQm+wQ|—wQ|+p iQm—wQ|+wQ|+p iQm—wQ|—wQ|+p

(3.19

where expiQ),,8)=1 has been used. Substituting E8.10 into Eqgs.(3.5) and(3.6) and considering the gap equati¢hl16),
we obtain the propagator for scalar bound stagein the imaginary-time formalism

F,d’g(—iﬂm,ﬁ)Z—G/ % Jool — Q25— P> 4mQKG(—iQp,P). (3.16

0
The imaginary-time propagatdi‘rl‘l’s(—iﬂm, p) is defined at discrete valuesiQ,,(m=0,=1,+2, ...) in theimaginary axis
on the complex energg® plane. The analytic continuation to physical real values of energy can be made by the replacement
[14]

—iQn—p°+iep®, e=0,. (3.17

This means that one can rotate the integral path from the imaginary axis on the cefigine clockwise to the real axis
without meeting any singularities. As will be seen later, all the results derived fronf3ELy) will at least automatically
reproduce the expressions of the causal propagators obtained in usual zero temperature field thedryQyteemd this fact
justifies the continuation. Under the analytic continuati®ri?), we will have the substitutions

—(Qh+p?)—p2-p?tie=p’tie, (3.18
Ag(— Q.. —Ag(p%p.1) =Ag(p.D), (3.19
where
A(pil) = 1 1-n(wg+ po) —N(wgi+p— Lq) N N(wqi+ 1) —N(wg+p+ 1o)
Q\M /™ . B
4wQ|a)Q|+p —p0+ wQ|+wQ|+p_|8 —p0+wQ|—wQ|+p—|s77(wQ|—wQ|+p)
N(wgi— o) —N(wg+p— KQ) B 1-n(wg— o) —N(wgi+pT Ko) (3.20
_po_wQ|+wQ|+p+i877(wQ|_wQ|+p) _po_wQ|_wQ|+p+i8 ’
with the definition
1 if wQI>wQI+pv

ﬂ(wQI_wQH—p)_( 1 i wg<wonp. (3.21)

and, from Eq.(3.11),

ddl
(2m)®

Kg(—iQm,ﬁ)aKg(p)ZZdQ(R)f Ag(p.l). (3.22

For making a comparison between the results obtained in the imaginary-time and in the real-time formalism, we may change
Aq(p,]) into an integral representation. In fact, by the formula

1

mZm—iw5(X) (3.23

and the definition2.26), we can write

105004-5



BANG-RONG ZHOU

PHYSICAL REVIEW D 62 105004

AQ(p,|):fE [|02—wé|+i8][(|

A d.o[“

+i27-rf dI°6(1°) 6(1°+p°) + 6(— 1% 6(—1°

2_ 2
P Wl ot s

Applying Egs. (3.18, (3.22 and (3.24 to Eq. (3.16 and
considering the existence of a factoin a four-point func-

tion after the analytic continuation we obtain the physical

propagator for the scalar bound stai%:
VRN SR 0, 0=
IS(p)=il' S(=iQn—p +iep”,p)

—|G/E ool P?—4ma+ie)KE(p),
(3.25

where

Ko(P)=Ko(p)+Hg(p)—iSu(p). (3.26
In Eq. (3.26 the functions
Ko(p)=—2do(R)

f id4 1
X

(2m)* (12=md+ie)[(1+p)2—mg+ie]
_do(R)

872

AZ+ME A2
2 A2, M2

M5=mj—p>x(1-x), (3.27

with the four-dimension Euclidean momentum cutaff

Ho(p)=4mdo(R) f

(2m)*
(I+p)*—md
I[(I +p)2-mi]%+e? *p==p)
X 8(12=mg)sirf (1%, uo), (3.29
and
So(p)=4m —mg) (1 +p)>—mg]

X[1-6(1°)6(1%+p°%) — 6(—1°)6(—1°—p%)]
X[sint0(1°, wq) +sirto(1°+ p°, o) 1. (3.29

sito(1%, o) +

2 .
04 po)z_le+p+|8]

1%+ p%)?— wd ]
10°

2 . S|n20(|0+ pO:MQ)
—le-Hs

P)18(1°2= w) SL(1%+ p°)2— wB, IsiPa(1% o). (3.24

When deriving the expressio(B.29, we have used the
equahtyS'Q(p) SQ( p) coming from the equaht)Fd’S(p)

=T, S( p). It should be indicated that the expressions
(3. 2@ —(3.29 for K§ o(p) are true for bothwg>wgq+, and

wq<wqpin Eq. (3 20 of Aq(p, I) By means of the rela-
tion

gQQ/G=mé/ EQ: m3 (3.30

derived from Eq«(2.15, we obtain

Fd’s ——|Z mQ/E (p2—4m3+ie)m3Ky(p)

:_i% mg/ % (p?—4md+ie)mj

X[Ko(p)+Hg(p)—iSq(p)]. (3.3

It is indicated that the term contamw@b(p) in Eq. (3.3)

will make the pole oﬂ“¢5(p) possibly become complex. In
add|t|on Kq(p) in Eqg. (3.27 can also be complex when
p >4mQ DenoteKg(p) =Kqr(p) —iK g with Kgi>0 and
let

% m3Kor(p) =k, % m3Koi(p)=ki,

% maHqo(p)=h, % maSe(p)=s',
% moKor(p) =k, % moKoi(p) =k;
% mgHo(p)=H, % mySu(p) =S

(3.32

We can obtain from Eq3.31) the equation to determine the
mass of$2

2, Ke+h—i(k+s)

m = :4 3.3
P ik .33

+sh)
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In the special case when only single-flav@ifermions exist masses of the two flavors of fermions in a one-generation
(e.g. in the top-quark condensate schdib@]) or all theQ  fermion condensate model even if we let the temperature

fermions are mass degenerate, we will have the mi@] —0. At finite temperature, it is only modified by thermal
effect and displays itself more plainly. However, such fluc-

tuation effect of ¢g is physically completely negligible
considering thab(p,) will be extremely small if the momen-
tum cutoff A in the zero temperature loops is large
(3.34 enough and thaf;g generally has a finite decay life in a real

=p?=4m3. In the other cases, the solutionw¥ (or saypo)
will be complex. Denotepo—pr+|p, , then Eq.(3.33 will
become

(pr+ip?)?=p*=[a(p) +ib(p)][p2-n?,.

model.
with
IV. NEUTRAL PSEUDOSCALAR BOUND
(k +h)(k +h)+(k +d )(k +S) STATE IN THE IMAGINARY-TIME FORMALISM
a(p)= (k,+h)2+ (k;+ 8?2 ' The propagator for a neutral pseudoscalar bound state can
be calculated by the four-point amputated Green functions
(K +7) (ki +8)— (k,+h)(k +3) IS’ ?(—iQ,,, p) for the transition from QiysQ) to
b(p)= (K, +h)2+ (k+ 82 . (839 (Q'iysQ"). Based on the pseudoscalar four-fermion cou-
r I

pling £5- [Eq. (2.4)], in the fermion bubble diagram ap-

It is easy to find from Eq(3.35 thatb(p)=0 for the cases proximation,I'S ®(—i€,,,p) will obey the algebraic equa-
with both single-flavor and mass-degener@téermions and  tions
b(p) could be very small if the momentum cutoff in the

g(p) is very large. Thus we can define the squared mass of

2 by the solution of the real part of E¢3.34), i.e. (=10, [gro~Nors(—12m.P)dgro) = 9g1o/2

(4. l)

mZo=p?=a(p;) L _— .
S where Ngs(—iQn,p) is the contribution of the fermion
_4(kr+h)(~k,+ﬁ)+(ki+s')(~ki +3) 036 loop with pseudoscalar coupling vertices and
(k,+h)2+ (kj+s')? ' '

P=p; R do(R d3l
Nos(—i Q2. p) =~ Q( )
SinceKq,(p) andHq(p) is real and posmvéll] and based (2m)®
on the expressiof3.29, the same is true tSQ(p) we can )
deduce the mass inequalities from E8.36) X E trli y5So( —iwa+ ug.l)
n=—x

2(Mo) min=M4o<2(m , 3.3 -~

( Q)mln ¢S ( Q)max ( 7) ><i75SQ(—iwn—iQm+,uQ,|+p)].

where (Mg)min @and (Mg) max are respectively the minimal (4.2

and the maximal mass of th® fermions. When & my

#mp#0, only the signs of inequality are left in E(.37.  similar to Eqs.(3.2), Egs.(4.1) have the solutions

In this case, if we sahp=amy (a>0), then the numerator

of b(p) in Eq. (3.39 will become @>—a*)m[(Ky, ,

+Hy) (Kpi+Sh) — (Kpr+Hp) (Kyi +S,)]. Considering the re'(—iq,,.f)= Y910 , 43

inequalities in EQ.(3.37 and that the imaginary parts 2A'(—iQm,p)

Koi(p)=0 and Sp(p)=0 whenp?<4mg, we can obtain

that whethera<1 (mp<my) or a>1 (mp>my) always \ith

have b(p)>0. This means thap® will contain a positive

imaginary part

A(=iQm,p)=1— > Nos(—iQ,p). (4.4

) b(p,) m»P <0 JooNags m»P

P e

(3.38

The propagator in the imaginary-time formalism for the
hence the amplitude associated with the scalar bound stapseudoscalar bound stadé, shown in Eq.(2.9) is
¢g will get a growth factor exn:(?t). In other words, owing
to the mass difference between masdiv@nd D fermions,
the scalar bound staig2 will encounter some effect of fluc-
tuation. It should be mentioned that such amplitude growth
factor of ¢g always exists in the case with unequal nonzeroBy means of Eqs(2.13, (2.12 and(4.2), we find

rl‘”g(—iQm,ﬁ):G/zA'(—iQm,ﬁ). (4.5

105004-7
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dll —(Q2+PD) —(wn+ipg)Qn—I-p
(277)3 7 [(@n+ipg)?+ 12+ M3 (wp+ +|MQ)2+(F+p)2+mQ]

= —§<92+p JKo(~i1Qm,p), 4.6

where Eq.(3.9 has been used. Substituting E4.6) into  which has the same form as the propagatorg@rat T=0,

Egs.(4.4) and (4.5 and considering the gap equatith16,  except thatmg now implies the dynamical mass of i@

we obtain fermions at temperaturé [13]. These results are indepen-
dent of the mass difference between the two flavors of fer-

0 -~ - . N -
FI‘ﬁP(—iQm,p)= —GI(—Q%— pZ)% ook 5(—i0m.B). mions.

(4.7) V. CHARGED SCALAR BOUND STATES IN THE
Then, by the analytic continuation to physical real engsgy IMAGINARY-TIME FORMALISM
similar to that made forfg(—mm,ﬁ),we obtain the physi- By Eq. (2.9, the configuration of the charged scalar
cal propagator for pseudoscalar bound Stﬁ@e bound state isp —(UF D); thus the four- pomt amputated
. function for the transition from YT D) to (DI'*U) will
=G40, 5ok A o

imaginary-time propagatd?ﬁ’_(—iﬂm,ﬁ) for ¢~ obeys the
——|E ma/(p2+ie) E maKa(p), (4.8  algebraic equation

o G -
where Eq.(3.30 has been used arKiQ(p) is still given by 'Y (—-iQn.p)= —+GL(—|Qm,p)F| (—iQm.p),
Eqs (3.26—(3.29. The expression(4.8) indicates that

5.1
F¢P(p) has a single pole g?=0; thus (;’)P is a massless &b
neutral pseudoscalar Goldstone boson. In addition, sinc&om which we find
when p?=0, Ho(p)=0 and Sy(p)=0 in K{(p), we also
have I'Y (=iQn,,p)=G/21-GL(-iQ,,p)], (5.2

bpr N 2002, 2 , 2 where 2.(—iQ,,, p) represents the contribution of the fer-
I''P(p)=— /(p=+ — . m - :
() I% Mgl (p Is)% MoKe(p), i p™=0, mion loops bounded by @ fermion and &D fermion propa-
(4.9 gator with al’™ and al’~ coupling vertex, i.e. we have

- do(R ddl —t[T~(my—t,) T H(My—tp—p)
GL(=i0,.5)=G al )f T - E (2u w7 ( D- D Ib)J ] _ 5.3
(2m)® N [(wntipy)? 12+ M (on+ Qntinp)?+(1+p)*+mp]
with
P=(Qp.p). (5.4
The trace in Eq(5.3) can be expressed by
_ — s - — — — — mymp
a=—t[I " (my—ty))I " (mp—tp—pP)]=4ly-(Ip+p)+8——,
mg-+mg
where we have used EgR.7) and(3.30. It can be further written by either
a=ay=4{(on+ Qu+imp)?+(+p)2+md
~[ontipy+ Qo+ i(p— o) [Qm+i(up— mu) 1= (1+P) - p+mi(mf—md)/(md+m3)} (5.5
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or
=ap=4{(w,+iuy)2+ 12+ M2+ (w,+iwo) [ Qm+ilmp—py)]+1-p+m2(md—md)/(m2+m? (5.6)
a=ap=H(w,tipny Ut (on+ipg)[Qnti(up—pu)] p+mg(mp u)/(m§ o)} :

From these expressions we obtain

_ do(R ddl ay+9ppa
GL(~i0y.p)= 2 )f T _ JouBuTOo% (57
2 (2m)° 0 [(optipy) F1+mg][(on+ Qutiupg)“+(1+p)°+mp]

= > lo+2d (R)f ¢ T

o< (*eJole) Q (2m)3
> (QDD_QUU){(wn+iMu)[Qm+i(MD_MU)]}+r‘5_guu{[ﬂm+i(MD_Mu)]2+I52} 5.9
n [(wn+iuy)?+ 12+ m3][(0n+ Qutiup)?+(1+p)2+ma] ’ '

where the result coming from E¢3.30

guuMi—gppMy=0 (5.9

has been used. Substituting E§.8) into Eq. (5.2) and considering the gap equati¢h16), we obtain

- R d?l ~ -
ry (_iQm:p):_G/“dQ(R)f W({(QDD_QUU)iMU(Qm'i'iMD_i/"U+|'p)_gUU[(Qm+iMD_i/"U)2+p2]}

XA~ 1 Q.0+ (9pp = Guu) (Lt i o =i wy)Be( —1Qpm,B.1), (5.10

where the Matsubara frequency sums

o= 1
Al =iy, p)=T> : : , (5.11)
°o 7 [(0n+ipg)?+ o]l (ept Qntimp) 2+ o]
Bu(—iQm,p =T n (5.12
—iQn,p.hH= _ _ . .
°or T [(@ntipg)?+of ][ (gt Qntiup)?+ o]
By means of a similar method to calculatg(—i{y,, 5F) in Eq. (3.12, we can express
- (B ~
A= 1051)= | dre R (500~ ) K001t 513
; o P i 2% X
BC(—IQm,p,l)ZIJO dre "*'m E_A(T,ww,—,uu) A(7,0pj4+p D)
— i pyAL—i QP+ De(—i1 Q. B0, (5.14)
with the results
A(=iQm,p,0) :_inI] 1 1-n(wy+py) —N(opj+p=up)  N(oy+py) —N(wp+pt 1p)
DJ(—iQn,p)) 1 4oyiwpiip | 1Qn—(wp—my)toytopsp  1Qn—(up—py) T oy —wp+p
_ N(oy—py) —N(wpj+p—#p) _1=n(wy—py) —N(wp+p+ up) . (5.15

=+ 7 -+ —
iQm—(up—my)— oyt opiip 1 Qn—(up—pmy) — w0y —wp4p

In the derivation of Eq(5.14 we have used the antiperiodicity conditi¢h21) of Z(r,wQ| Q) -
For analytic continuation of the definition region of the propagatorfforfrom —i{),, to the real axis op°, we will make
the replacement

—iQn+tup—my—p°+iep®, e=0,, (5.16
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considering that the charged scalar bound s¢ate- (UF*D) composed of th&J antifermions and th® fermions may have
the chemical potentighp— . Correspondingly, we will have the following substitutions:

Ad—iQn,p.D—=ALp.]), De(—iQm,p.1)—De(p,h). (5.17)

For the purpose of making a comparison between the results in the imaginary-time formalism and in the real-time formalism,
we will expressA.(p,l) andD¢(p,|) respectively by an integral over the réfl In this way, it is found that

Ac(pf)=Jg—iﬁc(p,I°,f), (5.18
Du(p) = [ SR, (519
where
Ad(p.l00)= - oF-m) SiP6(1%, uy)

+2
(12—m2+ie)[(1+p)2—mtic]  (I+p)2—mp+is

SL(1+p)?—m3]

2 m2ti sirf0(1°4 p°, up) +i4m26(12—m3) [ (1 +p)2—m3]
—Myrle

+2
X[0(12)6(1°+p°%) + 6( =12 6(—1°= p) [ 6wy — wp1+ p)SIFO(1°, ) + O wpy 4 p— Wy SIFO(1°+ p°, wp) 1.
(5.20

By means of Egs(5.10), (5.14 and(5.16—(5.19, we can analytically continue the imaginary-time propagatorgforto the
physical propagator, i.e.,

iry (=iQp.p)—T? (p), (5.21)
with

d3l -~ - R
{[(dop—9uw)! - P+auu(p?+ie)]A(p.) +(dop—guw)ip®De(p.))}

¢* _
' (p) IG/4dQ(R)f(2W)3

. d4| 2, ~ 0 =
:_IG/4dQ(R)J(‘ZT)‘l[(gUU_gDD)I'p—i'gUU(p +ig)]Ac(p,I71)

, dl L B,
=—'§ mé/4dQ<R>fW[(mﬁ—mﬁ)l~p+m6<p2+|e>]Ac<p,l°,l>, (5.22

where Eq.(3.30 has been used once again. Substituting (B0 into Eqg. (5.22 and using the formul&3.23), we finally
obtain the physical propagator for the charged scalar bound ¢tate

I'? (p)=—il{(p?+ie)[Kyp(p)+Hup(p)1+Eup(p)—i(p?—M?)Sp(p)}, (5.23
where
MZ=(mg—m3)/(m§+md), (5.24
do(R) (1. m3(1—x)+mdx| A%+MZp(p) A2
K = d — ,
(P~ fo M em3 M2o(p)  AZ+M2p(p)
MZp5(p)=m3(1—x)+mix—p?x(1—x), (5.25
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d (I+p)2—m} .
HUD(p)=4WdQ(R)j(27T)4{[(I+p)2_m2D]2+825(|2_mlzJ)SIrF0(|01#U)+(p_)_pvaHmDUL'LU‘_):U“D) ' (526)
m3—m3 [ d*
E = 4mdg(R
uo(P)=4mdq( )m6+m%f(277)4
[(1+p)?=mI[(1+p)2—m3] .
X{ [(|+p)2u_m2]2+82 2= (12 m)SirO(1°, ) — (p— = P,y Mp iy o) | (5.27)
D

4
Sip(p) =47?dg(R) J (; ')45<|2—m6>5[<l+p>2—mé]{sin20<l°,uu>+sin20<l°+p°,uD>
ar
—200(1%) 0(1°+p°)+ 6(—1°) 6~ 1°= p°) J[ 0 wu1 — wpr+ p)SIP(%, 1) + O+ p— @i SIP OO+ O, ) ).

(5.28

As for the key question under what conditign™ could be VI. PHYSICAL PROPAGATORS FOR SCALAR BOUND
massless bound states, we can answer it in two cases. STATES IN THE REAL-TIME FORMALISM
(1) my=mp=mq. For the mass-degenerdteandD fer-

mions, we will haveKuo(p)=Ko(P), Hun(P)=Ho(p). The propagators for scalar bound states in the

real-time formalism were discussed in REf1]. However,

! —_a — M2— ,
Sup(P)=So(P), Eup(p)=0, andM~=0, thus the propagators are defined there B *?*(p) (B=S,P)
and F(l;,(p) respectively for neutral scalar, pseudoscalar
Ffi’i(p)Z—i/(p2+is)[KQ(p)+HQ(p)—iSIQ(p)]. and charged scalar bound states which are the four-point

(5.29  amputated functions for the transition between the physical
field configurations, e.g., @Q)® and Q'Q")® etc.
. o . . These definitions can give the main physical features
2_
Equa;_on (5.29 |mp1|es that+p =0 is the single pole ot the hound states including their masses but also lead some
of I'” (p) hence ¢~ and ¢~ are both massless scalar extra result, e.g. a neutral scalar bound staecould have
bound states and can be identified with the chargeouple masses due thermal fluctuation. In addition, the
Nambu-Goldstone b(_)sons._ As was indicated in Secresulting expressions of the propagators f@% ¢g and
Illl, when p—0, no pinch singularity could emerge from #* have quite explicit difference with Eq€3.3, (4.8)
So(P)- and (5.23 obtained here in the imaginary-time formalism.
(2) my#mp . For the mass-nondegenerdfeandD fer-  For seeking a closer correspondence between the physical

mions, we will haveE ,#0 andM?#0, thus the pole of propagators for the above scalar bound states in the real-time
I'? (p) will be determined by the equation and the imaginary-time formalism, following Ref12],

we will redefine the physical propagators tbg, ¢2, and¢™

by diagonalization of corresponding matrix propagators.

5 EUD(p)+il\728'UD(p) These matrix propagators have in fact been obtained in
pe=— " H T : (5.30  Ref.[11].
up(P)*+Hup(P) ~iSyp(P) First let us deal with the case of the neutral scalar bound

state. By Eqs(3.3) and(3.7) in Ref.[11], the matrix of the

Hence, the masses @f~ and ¢* at finite temperature are four-point amputated functions for the transition from
not equal to zeros. However, as long as the momentum cufQQ)® and @Q'Q’)® can be expressed by

off A in Kyp(p) is large enough, the single pole Bf (p)

could still be approximately ap?=0. On the other ha_lnd, Fg’an(p):gQJF(/)gba(p), Q’,Q=U,D, b,a=12,
when p?=0 andp®=|p|—0, bothEyp(p) and S,p(p) in G

the numerator of the right-hand side of E§.30 approach (6.1)
zero. Therefore, at low energy scales it is still possible that o

¢~ and ¢* are considered as approximate massless boundherel’ ?s*?(p) (b,a=1,2) is the matrix propagator for the
states and identified with the charged Nambu-Goldston@eutral scalar bound stats2 given in Eq.(2.9), its explicit
bosons. form is
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: 2
—|2QmQ

réstip) T49p)|
r42Yp) T9%p)|  [pA(k+h)—

((p —ie)(k+h+is)—4(k+
—|(p r—4r)

In Eq. (6.2) the denotationg, h, k andh have been given by
Eqg. (3.32 and

s=2 mgSe(p), 1= MGRq(p),

S=2 meSe(p), T=2 MRo(p), (6.3

Q Q

whereKq(p) andHqg(p) are expressed by Eqé3.27) and
(3.28 and

So(p)= 4772dQ(R)j ———8(17=mQ) 5[ (1 +p)?~mg]

X[sirf6(1°+ p ,MQ)CO§0(|O,MQ)

+cog0(194 p°, uq)sirta(1%, uo) 1, (6.4)
and
Ro(p)=2m -mj)
X 8[(1+p)2—mg]sin 20(1%, )
X sin 20(1°+p°, uo), (6.5

with sinfé(1°% ue) given by Eq.(2.26). In deriving Eq.(6.2),
the gap equatioi2.27) in the real-time formalism has been

used. The matri>l“¢gba(p) (b,a=1,2) can be diagonalized
by a thermal matrixMg, i.e.,

0
I%s'4p)

0
s?4(p)

0
Is'(p)

0
I%s?(p)

¢0
risp) 0

Mgt Mg, (6.6

por
0 TIs(p
where

Ms=| sinh6s coshds|: (6.7

coshdg sinhfg )

with

4(k+N) 12+ (p?s—4s)?— (p?r —4r)?

+h+is) —i(p?r—4r)
"~ - ]. (62
—(p?+ie)(k+h—is)+4(k+h—is)
[
he ! S +1 "
Ccos = s
S 2| J-R?
he ! > 1 " (6.9
sin =— - , .
S 2\ JF-R?
and
S=p?s—4s, R=p?r—4r. (6.9

We indicate that smceSQ(p)+RQ(p)>0 [11] and
Sa(p)= RQ(p) 0whenp2<4mQ,|t can be deduced that

SP—R?=3omg (p?—4m}) (So+Rg) ¢ %(p 4m )
><(SQ Ro/)=0 no matter what valugp® could take
F¢S(p) in Eq. (6.6) will be identified with the physical

propagator ford)S in the real-time formalism and has the
expression

F¢S(p —|2 ma/{[(p?+ie)[k+h—isy1— RS
—4[k+h—isV1-R%>S]L.

0
On the other hand, by means of E§.32, Fl‘z’s(p) in Eq.
(3.3 can be written as

(6.10

rfg(p)= —i% m&/[(p>+is)(k+h—ish)—4(k+h—is].
(6.1

Comparing Eq(6.10 with Eq.(6.11), we find that the physi-
cal propagators fop2 in the two formalisms now have quite
similar form, except that the replacemestgl — R%/S?*—s'

andsy1—R?% S’ in the imaginary parts of their denomi-
nators must be made when transiting from the real-time for-
malism to the imaginary-time formalism. It has been known
for some time that for an amputated Green function, the re-
sults calculated in the two formalisms of thermal field theory
have generally some differenf&7]. In present case, we note
that the difference appears only in imaginary parts of the
denominators of the propagators which does not affect the
main physical conclusions from the propagators. This means
that all the conclusions of the mass @£ deduced from

$2 : . : 2 . .
I'S(p) in Sec. Il remain valid forl';5(p), including that

the possible fluctuation effect of the amplitudeqbﬁ is also
kept qualitatively. In particular, by redefining the physical
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point functions induced by the four-fermion interactions are
essentially determined by one fermion loops, and the calcu-
fations of them may formally be reduced the ones of usual
two-point functions, but the former is rather different from
propagator f0r¢g by F¢g11(p). We also point out that the the latter. This is because we are dealing with problem of the
scalar bound states whose propagators correspond to only
o pure amputated functions without external particle legs. In
FI"SS(p) may be identical and equal to zero if<(p? this case, the thermal matrM s [Eqgs.(6.7) and(6.8)] which

<4(mg)2... where _is the smallest mass of t diago_nalizes the amputat_ed _fou_r-point functions matrix
(. Q)min Q) min ~ ~ e (6.6) in the real-time formalism is different from the thermal
fermions. In that case, we have rdabnd k, ands=s=r

- ~ matrix of a free scalar particle and can only be considered as
=r=0 thusS=R=0 ands'=s'=0 because thé-function  an “effective” one in the case of bound states. Obviously,
product factord(12—mg) o[ (1+p)*~mg] in the mtegrand some more work is needed before any definite relation be-
of each Sp(p) and Rg(p) will become zero if G<p?
<4mQ In the other case the imaginary parts of the denomi-

0
propagatorl“is(p) for ¢g by diagonalization of the corre-

sponding matrix propagator, we no longer meet the problem
of doubling of myQ originated from the definition of the

0
imaginary parts of the denominators of bdﬁés(p) and

tweenF¢S(p) and F¢S(p) is found, for instance, by some
0 2 more formal calculations. At present, it seems to be prema-
nators ofl" ;3(p) andT’;"S(p) will generally differ. We note ture for us to be able to make a judgment on which circum-
that, d|fferent from the case of the gap equation, the appeastances of proper function should be considered. Hence an
ance of such a difference here is related to the fact that walternative and more realistic way to treat such difference
are dealing with the four-point amputated functions whichbetween the two formalisms is to compare the results ob-
are determined by the loops bounded by two fermion propatained by respectively using the propagators in the two for-
gators. The difference could be technically attributed to amalisms in the same physical problem and examine whether
different order of analytic continuation of a Green function the difference indeed gives some physically unequal descrip-
for discrete Matsubara frequencies in the two formalismdion or not.

[12]. But it is more possiblg18] that appearance of the Next we turn to the case of pseudoscalar bound state
difference is due to that we are calculating different func-mode and make similar discussions. By means of E48)

and (4.4), the matrix of the four- point amputated functions

for the transition from QiysQ)® to (Q'iysQ")™® can be
expressed byll]

tions e.g.l“l"sg(p) and Fzg(p) in the two formalisms. How-
ever, it should be pointed out that at present the two formal
isms of thermal field theory are not used usual by the
terminology in Ref[18]. First, in the imaginary-time formal- ,
ism, owing to the analytic continuatiai3.17) used F"’g(p) FQ'an(p): gﬂrf/’gba(p), Q’,Q=U,D, b,a=1,2,
is now a time-ordered, i.e., physical propagator, not a re- G 6.12

tarded one. Thus it is not difficult to understand V\[hfls( p)

and F'f’s(p) may have almost identical expressions except/vhereF¢’Pba(p) (b,a=1,2) is the matrix propagator for the

the imaginary parts in their denominators. Next, we note thaneutral pseudoscalar bound stdi% in Eq. (2.9 and has the
in the fermion bubble approximation, the amputated four-following explicit expression:

0 0 . . .
r¢et(p) T%(p) —isom? (p?—ie)(k+h+is) —ip%r
0 0 = _in2 —(n24+i —i
U2 (p) T%(p) | [(p?)2+&2][(k+h)2+52—r2] Iper (p*+ie)(k+h—is)
(6.13
The matrixF¢gba(p) (b,a=1,2) can be diagonalized by a thermal matvx, i.e
0 0 0
I%i(p) T?¥p) ree(p) O
=Mzl Myt (6.14
F¢°21 F¢°22 P 0, P
P(p) P(p) 0 ng (p)
where
coshfp sinhép
P \sinh6p coshép)’ (619
with
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1/2 1 s 1/2
, Sinh@szﬁ(w—l) . (616}

1 S
coshfp=— ?4-1
ST—r

V2

Here we again have’—r?=0 due t0Sg(p) + Ro(p)=0 [11]. The physical propagator fojs?, in the real-time formalism will
become

r;’g(p)z —i% m2/(p?+is)[k+h—isyI-r7/s7]. 6.17

0
It can be compared witIFI"SP(p), the propagator fog{ag in the imaginary-time formalism which, by Eg&t.8), (3.26) and
(3.23, will have the expression

r,‘”g(p)z—ig ma/(p®+ie)(k+h—is"). (6.189

0 0
We see thal“i"(p) andl“f’"(p) have very similar expressions except that in the imaginary parts of their denominators the
replacemens\/1—r?/s?>—s' must be made when transiting from the real-time formalism to the imaginary-time formalism.

0 0
Such difference does not change the main physical conclusion reached‘ﬁ%(rp) or F;’Sp(p): ¢3 is a massless neutral
pseudoscalar particle and can be identified with a Nambu-Goldstone boson of electroweak symmetry breaking. We also note

0 0
that when @£p2<4(mQ)r2mn, sz(p) andeﬁP(p) will be real and identical since=r=s'=0 in this case. In particular, when

p2—0, both have the same form as the propagatorﬁ%ratT=O.
Lastly we apply the parallel discussions to the charged scalar bound state mode. By.8cmd(5.4) in Ref.[11], the

matrix of the four-point amputated functions for the transition frddi'( D)@ to (DI'*U)® is just the matrix propagator
sti (b,a=1,2) for ¢~ =(UI' D) and its elements can be expressed as follows:

i (P*=ie)[Kuo(P) +Huo(P) +iSup(p)]+Eup(P) ~IM*Syp(p)
{P?[Kuo(P) +Hup(P)]+ Eun(P)}+ (p? =M Shp(P) ~ Rip(P)]

- (p)= =[T22(p)]%,

— ePlum 1o 2(p2— M?)Rup(p)
(P Kup(p) +Hup(p)1+Eup(p)}2+(p2— M2 S35 (p) —R3p(p)]

I (p)= = el o)L (p),
(6.19

whereM?, Kupn(p), Hup(p) andEyp(p) have been given by Eq&.24—(5.27), respectively, and by Eq$5.11) and(5.12
in Ref.[11], we have

d* 2_ 2 2_ 2
(27)450 —mg) o (I+p) —mg]

X {sirta(1°%, uy)cog 19+ p°, up) +cogo(1°, wy) sirt0(1°+ p°, up)}, (6.20

Suo(p)=4m2do(R) f

4
RUD(p)=2w2dQ(R)J dﬂ')4 8(12—=m?) 8[ (1+p)2—m31sin 26(1°, wy)sin 20(1°+ p°, wp) .

(2
(6.22)
By means of a thermal matrid -, the matrixl“zel (b,a=1,2) can be diagonalized, i.e.,
11 12 _
AN I L L (6.22
F¢7 F¢, C 0 I‘gf*(p) Cc .
where
" coshf:  e“sinhfc 6.0
€\ e “sinhg:. coshd. |’ 6.23
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with

1 su(p)

coshf-=

= — 12,
«=Plru=po) V2| VS2o(p) —Reo(p)

It is easy from Eqgs(6.20 and (6.21) to verify that

Sup(P) =Ryp(p) =4mdo(R)

d*!
) J (2m)*

xsirf[ (1%, wy) = 0(1°+ p° up)]=0. (6.25

8(12=m3) [ (1 +p)?—m3]

Thus we must havésyy(p) —R3p(p)=0. TS (p) in Eq.
(6.22 is now defined as the physical propagator &r in
the real-time formalism and can be expressed by

I'g (p)=—il{(p>+ie)[Kup(p)+Hyup(p)]+Eyp(p)

—i(p?~M?)\S)p(p)—R3p(p)}- (6.26

(p)

It has very similar form td’{ (p) in Eq. (5.23, the propa-
gator for ¢~ in the imaginary-time formalism, but for the

transitionI'% (p)—T (p) we must make the replacement
VSio(P) —Rip(pP)— Syp(p) in the imaginary parts of their

denominators. Obviously, all the conclusions coming from

rg; (p) will be the same as those frolﬁf” (p) in Sec. V.
When my=mp=mg and puy=up=puq, We wil have
EUD:MZZO, KUD:KQ! HUD:HQl SUD:SQ’ andRUD
=Rg, thus we get

I'g (p)=—il(p*+ie)[Ko(p)+Ho(p)

—iVS5(p)—R&(P)1,

0
which has an identical form td?i"(p) in this case. The
thermal matrix element

(6.27)

1
E

will also coincide with cosl#y. In addition, it can be proven
that

coshfc=

[So(P)/\SH(P) —R&(p) + 1142

8(12=mg) 8[(1+p)?~m3]=0,
when
(my—mp)2<p?<(my+mp)2.

(6.28

ThusSyp(p), Rup(p) andS'UD(p) are all equal to zero and

these will makel'¢ (p) andI'Y (p) become identical in
this case.

1/2
+ ll ,  sinhfc=

PHYSICAL REVIEW D 62 105004

1/2

Sup

— 6.2
\/Sﬁo(p)—Rﬁa(p) 029

1
E

VII. CONCLUSIONS

In the imaginary-time formalism of thermal field theory
we have reexamined the Nambu-Goldstone mechanism of
electroweak symmetry breaking at finite temperature in a
one-generation fermion condensate scheme and compared
the results with those obtained in the real-time formalism
through some redefined physical propagators for scalar
bound states. By means of the Schwinger-Dyson equation in
the fermion bubble diagram approximation, it is obtained
that the propagators for scalar bound states have very similar
forms in the two formalisms, except that the imaginary parts
of the denominators of the propagators have some differ-
ences when the momenta squared of the bound states are
within some given ranges. However, these differences do not
change the common essential conclusions reached in the two
formalisms. These conclusions are as follows.

(1) When the two flavors of the one generation of fermi-
ons are mass-degenerate, at the temperalubelow the
symmetry restoration temperatufe,, one may obtain a
composite Higgs bosorebg with mass 2ng, a composite
neutral pseudoscalar Nambu-Goldstone bog@nand two
composite charged Nambu-Goldstone bosgns and ¢ ™.
Thus the Goldstone theorem representing the spontaneous
breaking of electroweak groupU, (2)XUy(1)—Uq(1) is
valid rigorously in this case.

(2) When one of the two flavors of fermions is massless,
we can obtain the sam¢2 and ¢9 as those in(1), but the
charged scalar bound statés and ¢ ™ will no longer be
rigorously massless and they could be considered approxi-
mately massless only if the momentum cutaffs very large
and the considered energy scales are low. This means that
the Goldstone theorem at finite temperature is only approxi-
mately valid at low energy scales.

(3) When the two flavors of fermions have unequal non-
zero masses, besides the conclusion@jrremaining valid,
it seems that we will meet the possible fluctuation effect of
the Higgs boson’s amplitude originated from the imaginary
part of its propagator’'s pole. However, it has been argued
that such effect is compeletely negligible, if the momentum
cutoff A is sufficiently large.

The above conclusions imply that, as far as the discussed
Nambu-Goldstone mechanism in this model is concerned,
the two formalisms of thermal field theory give a physically
equivalent description. In particular, by the redefinition of
physical propagators in the real-time formalism, the extra
result of the Higgs boson mass being doubled which origi-
nates from the definition of physical propagatorq&g by 11
element of its matrix propagator has automatically disap-
peared.

Our calculations also show that the gap equation, which
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comes from two-point amputated functions and is deter-This problem needs to be researched further, especially with
mined by the loops bounded by a single fermion propagatorthe bound state propagators being involved. Before any defi-
is identical in the two formalisms without the need for ana-nite relation between the propagators in the two formalisms

lytic continuation. However, the propagator for scalar bounds found, we may still respectively use the propagators in the

states, when defined by four-point amputated functions antlvo formalisms in the same physical problem and compare

calculated in the fermion bubble diagram approximation, isthe results obtained, as has been done in this paper. Although
determined by the loops bounded by two fermion propagathe differences between the propagators do not predict any
tors, which could have some differences in the imaginaryactual different physical effect in the model discussed here,

parts of their denominators in the two formalisms. Such dif-whether, where and how they could do that is an interesting

ferences have close relation to the introduction of the ghogproblem deserving of further research.

fields to cancel the pinch singularities in the real-time for-

malism and it seems that they could technically be attributed
to a different order of analytic continuation for the discrete

Matsubara frequencies in the two formalisfi&]. However, This work was partially supported by the National Natural
a greater possibility is that such differences reflect that weScience Foundation of China and by Grant No. LWTZ-1298
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