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Three dimensional gravity from ISO„2,1… coset models
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Starting from a WZWN action in theISO(2,1) Poincare´ group which describes a bosonized spinning string
in 211 Minkowski space-time, we show that a sequence of non-trivial compactifications leads to the descrip-
tion of a spinless string which moves in a~linear dilaton! vacuum, AdS3 or BTZ black hole background. Other
solutions are also obtained and theirT duals analyzed.

PACS number~s!: 11.10.Lm, 04.20.Dw, 11.30.Cp
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I. INTRODUCTION

The observational evidence for the existence of bla
holes in nature is now very strong. The data support
existence of both supermassive black holes at the cente
galaxies and smaller~a few solar masses up to a few tens
solar masses! black holes in binary systems@1#. The best
candidate for a unified theory of all the physical phenome
observed so far, including black holes, is string theory@2#
and, indeed, several blackp-brane solutions have been foun
in various space-time dimensions in the low energy limit
this theory~for a review see, e.g., Ref.@3#!. However, only
one black hole@4# is known to exist in the three-dimension
low energy limit of string theory and it coincides with th
only known black hole in three-dimensional Einstein grav
@5#: the black hole of Ban˜ados, Teitelboim and Zanelli~BTZ!
@6# ~see also Ref.@7#!.

Although the BTZ black hole is not useful as a glob
description of real black holes~for example, the curvature o
the BTZ black hole is constant and there are no gravitatio
waves in three dimensions!, it does provide a manageab
model of string propagation on a black background in wh
an infinite number of propagating modes is present. T
Green’s function for this black hole can be constructed, a
the quantum stress tensor can be calculated from it@8#. This
system has also been used to study such problems a
quantization of a string on a black hole background~see@9#
and references therein!.

Recently, the theoretical interest in the BTZ black ho
has also been raised by the conjectured AdS-conformal
theory ~CFT! correspondence@10#, according to which all
the relevant quantities of the gravitational field theory in t
bulk of the anti–de Sitter~AdS! space-time~or any space-
time with a time-like boundary! can be described in terms o
a conformal field theory~CFT! on the boundary. Thus, b
applying this conjecture to the blackp-branes there is som
hope of describing the complete evolution of a black ho
from its formation@11# to the evaporation@12#, and solve the
riddle of its final fate~see Ref.@13# for a list of still unan-
swered questions!. However, it is not clear whether the AdS
CFT correspondence extends beyond perturbation theor
a given background manifold@14# as the solution of the
black hole problem would require in order to compute t
0556-2821/2000/62~10!/105003~9!/$15.00 62 1050
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back reaction of the evaporation radiation on the geome
@15#.

Because of the usefulness of three-dimensional bl
holes as prototypes for four-dimensional black holes in str
theory, a search for a second exact, three-dimensional b
hole in string theory would seem to be a worthwhile pursu
especially if one could be found which has non-negative c
vature. This work describes our attempt to obtain such
solution, starting from a Wess-Zumino-Witten-Noviko
~WZWN! model in the Poincare´ group ISO(2,1) @16#. Our
procedure for obtaining a three-dimensional metric is to p
mote the six parameters of theISO(2,1) group to space-time
variables and then to reduce space-time to three dimens
by various compactifications. After each compactification
investigate the symmetries of the resulting model.

A partial result has been obtained, since we can now sh
that the string theory we start from can be compactified
such a way as to yield either a~linear dilaton! vacuum or
AdS3 ~the BTZ black hole!. We also obtain other solution
which contain a non-trivial dilaton field and, thus, might b
of interest for studying evaporation.

In Sec. II we review the WZWN Poincare´ action in three
dimensions, its coset descendantsISO(2,1)/Rn @17,18# and
specialize to the case whenR is a translation in the time
direction. In Sec. III, we further compactify to three
dimensional space-time in which we recover the AdS~and
BTZ! manifold. In Sec. IV we describe other solutions a
their T duals, and finally comment on our results in Sec.
For the metric and other geometrical quantities we follow
convention of Ref.@19#.

II. ISO„2,1… WZWN MODELS

The WZWN construction starts with thes-model action
at levelk @20#:

Ss5
k

4E]M
d2s Tr ~g21 ]1g g21 ]2g!

2
k

4EM
d3z Tr ~g21 ]g`g21 ]g`g21 ]g!, ~2.1!
©2000 The American Physical Society03-1
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where in the present caseg is an element of the Poincar´
group ISO(2,1) ands65t6s are light-cone coordinate
on the boundary]M of the three-dimensional manifoldM.

The elements ofISO(2,1) can be written using the nota
tion g5(L,v), whereLPSO(2,1) andvPR3. Given the
map g: M5D23R°ISO(2,1) from the two-dimensiona
disc3 time to ISO(2,1), the action can be written entire
on the boundaryR3S1 and it describes a closed bosoniz
spinning string moving in 211 Minkowski space-time with
coordinatesv i @16#:

S52
k

4 E
]M

d2s e i jk ~]1L L21! i j ]2vk , ~2.2!

wheree i jk is the Levi-Civita symbol in three dimensions an
the metric tensor is h i j 5diag@21,11,11# ( i , j , . . .
50,1,2).

The basic property of the actionS is that it is invariant
under

g°g
L
~s1! g g

R

21~s2!, ~2.3!

whereg
L/R

PISO(2,1), and also under the left and right a
tion of the group of diffeomorphisms of the world sheet@16#.
Starting from this observation, the canonical structure of
model can be computed by reverting to the ‘‘chiral’’ versio
of Eq. ~2.2!, which is obtained by formally replacings1

→tPR ands2→sP(0,2p) @21#. One then finds two set
of conserved current densities, the first of which is given

Pi~s!5
k

2
e i jk ~L21 ]sL! jk ~2.4!

Ji~s!5k ~L21 ]sv ! i , ~2.5!

with Poisson brackets@16#

$Pi~s!,Pj~s8!%50 ~2.6!

$Ji~s!,Jj~s8!%52e i jk Jk~s! d~s2s8! ~2.7!

$Ji~s!,Pj~s8!%52e i jk Pk~s! d~s2s8!

1k h i j
]

]s
d~s2s8!, ~2.8!

and generateL* ISO(2,1), the Poincare´ loop group with the
central extension given by the last term in Eq.~2.8!. This is
the algebra of the right transformations in Eq.~2.3!, since in
the chiral pictureg

R
(s2)→g

R
(s) has become a space

dependent transformation of the fieldg on the world sheet.
The ~time-dependent! left chiral transformation,g

L
(s1)

→g
L
(t), in Eq. ~2.3! is now anISO(2,1) invariance gener

ated by the zero Fourier modes of the second set of~weakly
vanishing! current densities

P̄i5
k

2
e i jk ~]sL L21! jk ~2.9!
10500
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J̄i5k @L ]s~L21 v !# i . ~2.10!

The latter commute withPi andJi and have Poisson bracke
among themselves given by Eqs.~2.6!, ~2.7! and~2.8! with a
central extension opposite in sign@16#. One then concludes
that ~half @21#! the ~classical! gauge invariant phase space
the model isL* ISO(2,1)/ISO(2,1).

One would expect that the Fourier modes ofPi andJi ~the
Kac-Moody generators! yield a Virasoro algebra~for each
chiral sector! with generatorsLn . However, the standard
highest weight construction@2#, which would give a central
chargec5dim ISO(2,1)56, fails to deliver unitary repre-
sentations~the conditionsL̂n uphys&50, n>0, does not
suppress all negative norm states!. Spaces of positive norm
states can instead be obtained by employing the metho
induced representations which yields a central chargec50
for each chiral sector@16#. In either case, the total centra
charge of the model, after adding the ghost contribut
@22,2#, is cT5c226 and one must eventually add 262c
bosonic degrees of freedom in order to have a quan
model which is free of anomaly.

The action~2.2! is one of the two exceptional cases d
scribed in Ref.@18#, where it was shown that, if one consid
ers all parameters of the six-dimensional Poincare´ group as
space-time coordinates, thenS describes a spinless strin
moving on a curved background with six-dimensional m
ric. It was also proved that this action is unique in the se
that no generalization of the kind studied in Refs.@23,18#
exists for the Poincare´ group in three dimensions.

A. Coset models

The action~2.2! is not invariant under the local action o
any subgroupH of ISO(2,1) given by

h•g:g°h
L
~s2,s1! g h

R

21~s2,s1!, ~2.11!

where nowh
L/R

5(u
L/R

,y
L/R

)PH, due to the dependence o

hL on s2 and ofhR on s1. However,H can in general be
promoted to a gauge symmetry of the action by introduc
suitable gauge fieldsA65(v6 ,j6) belonging to the Lie al-
gebra of H, and the corresponding covariant derivativ
D65]61A6 .

In order thatISO(2,1)/H be a coset,H must be normal,
H•g5g•H, under the action defined in Eq.~2.11!. This
means that, for allgPISO(2,1) andhPH, there must exist
an h̄PH such thathgh215h̄21g h̄, and we thus find that
the only possible choices are subgroups of the transla
groupR3, that ish

L/R
5(1,y

L/R

n̄ ), wheren̄ runs in a subset of

$0,1,2% and 1 is the identity inSO(2,1). In this case, by
inspecting the action~2.2! one argues thatv6[j1[0, and
j2

i [0 iff the translation in thei direction is not included in
H. The gauged action finally reads@17#

Sg52
k

4 E d2s e i jk ~]1L L21! i j ~]2v1j2!k .

~2.12!
3-2
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For the ungauged action in Eq.~2.2!, variation with re-
spect tov leads to the conservation of the six momentu
currents on the light cone of the string world sheet,

]2P1
i 5]1P2

i 50, ~2.13!

whereP1
i is given byP̄i in Eq. ~2.9! with s→s1 and P2

i

by Pi in Eq. ~2.4! with s→s2. In the gauged case thi
variation must be supplemented by the condition that
gauge field varies under an infinitesimalH transformation,

j2
n̄ →j2

n̄ 2]2(dv n̄), and one obtains

]2P1
i 5” n̄50, ~2.14!

so that only the currentsP1
i 5” n̄ are still conserved.

Similarly, varying the actionS with respect toL leads to
the conservation of the six angular momentum currentsJ2

i

5Ji in Eq. ~2.5! with s→s2 andJ1
i 5 J̄i in Eq. ~2.10! with

s→s1. When interpreted as components of the string an
lar momentum in the target space-time, these currents
shown to include a contribution of intrinsic~non orbital! spin
@16#. In the gauged case, one obtains

]1J2
i 52k ]1~L j2! i , ~2.15!

so that the currentsJ2
i couple to the gauge field.

Since the gauge field is not dynamical, we are now free
choose dimH gauge conditions to be satisfied by the e

ments ofISO(2,1)/H. A natural choice isj2
n̄ 52]2v n̄, so

that the previous equations of motion become the sam
those obtained by varying the effective action

Se f f
(n̄)5E d2s (

kÞn̄

P1
k ]2vk , ~2.16!

where the sum runs over only the indices corresponding
the translations not included inH.

An explicit form for the effective action~2.16! can be
obtained by writing anSO(2,1) matrix as a product of two
rotations~of anglesa and g) and a boost (b) @17#, which
yields

P1
0 5

k

2
~]1a1coshb ]1g!

P1
1 5

k

2
~cosa ]1b1sina sinhb ]1g! ~2.17!

P1
2 5

k

2
~sina ]1b2cosa sinhb ]1g!.

B. Gauging the time translations

We gauge the subgroupH5$(1,y0)% of the translations in
the time direction. This choice is peculiar, since no deri
tive of a occurs inP1

1 andP1
2 , and we can then rotate th

variablesv1 andv2 by an angle2a @17#,
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F ]2ṽ1

]2ṽ2G[F cosa sina

2sina cosaG F ]2v1

]2v2G . ~2.18!

This can be considered as an internal symmetry of the ef
tive theory which is used to further simplify the action in E
~2.16! with n̄50 to the form@24#

Se f f
(0)5

k

2 E d2s @]1b ]2ṽ12sinhb ]1g ]2ṽ2#.

~2.19!

In the following we shall find it more convenient to rega
b, g, ṽ2 and ṽ1 as canonical~field! variables by foliating
the closed string world sheet with circles of constant timet
@25#. Their conjugate momenta are then given by

P1[
dSe f f

(0)

d]tb
5

k

2
]2ṽ1

P2[
dSe f f

(0)

d]tg
52

k

2
sinhb ]2ṽ2

~2.20!

P3[
dSe f f

(0)

d]tṽ2

52
k

2
sinhb ]1g5P1

2 ~a50!

P4[
dSe f f

(0)

d]tṽ1

5
k

2
]1b5P1

1 ~a50!.

The above relations can be inverted to express the veloc
in terms of the momenta. This signals the fact that all~ex-
plicit! symmetries of the original model have been ‘‘gau
fixed’’ and ṽ1, ṽ2, b and g are physical degrees of free
dom which we are allowed to consider as target space-t
coordinates for the compactified string.

In target space-time coordinatesX15b, X25g, X3

5 ṽ2 andX45 ṽ1, the action~2.19! can be written as@18#

Se f f
(0)52

k

2 E d2s ~hab1eab! @]aX1 ]bX4

2F~X1! ]aX2 ]bX3#

52
1

2 E d2s @hab Gmn
(4) ]aXm ]bXn

1eab Bmn
(4) ]aXm ]bXn#, ~2.21!

where F[sinhX1, hab and eab are, respectively, the
Minkowski tensor and the Levi-Civita symbol in two dimen
sions andm,n, . . . 51, . . . ,4. Byinterpretingk5 l s

2 as the
square of the fundamental~string! length, the symmetric ten
sor G(4) in the chosen reference frame has components
3-3
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Gmn
(4)5 l s

2F 0 0 0 21

0 0 F 0

0 F 0 0

21 0 0 0

G ~2.22!

and is the space-time metric with signature 212 andG(4)

[detG(4)5 l s
8 F2. The antisymmetric tensorB(4) has compo-

nents

Bmn
(4)5 l s

2F 0 0 0 21

0 0 F 0

0 2F 0 0

1 0 0 0

G ~2.23!

and is the axion potential.
The Euler-Lagrange equations of motion can be written

dSe f f
(0)

db
52

k

2
@]1]2X41A12F2 ]1X2 ]2X3#50

dSe f f
(0)

dg
52

k

2
]1~F ]2X3!52]1P250

~2.24!

dSe f f
(0)

d ṽ2
5

k

2
]2~F ]1X2!52]2P350

dSe f f
(0)

d ṽ1
52

k

2
]2]1X152]2P450,

from which one sees that three of the canonical mome
(P2, P3 andP4) are conserved along~one of the two! null
directions of the world sheet. We also note thatX1 is a
‘‘flat’’ target space direction, since the fourth of Eqs.~2.24!
is the free wave equation whose general solution is given

X15XL
11XR

1 , ~2.25!

where the arbitrary functionsXL
m5XL

m(s1) stand for left-
moving andXR

m5XR
m(s2) for right-moving waves.

The system of Eqs.~2.24! considerably simplifies for zero
canonical momentum modes alongX2 (X35XL

3) or
X3 (X25XR

2), in which casesX45XL
41XR

4 . When bothP2

andP3 vanish one then has the simple solution

X15XL
11XR

1

X25XR
2

~2.26!

X35XL
3

X45XL
41XR

4 ,

which describes free wave modes in all of the four spa
time directions. More general solutions would instead
10500
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scribe wave modes which propagate along a direction
couple with modes propagating in~some of! the other direc-
tions.

III. THE FINAL COMPACTIFICATION

Upon using the fact thatX15b is a flat direction for the
propagating string, we impose a further compactificat
condition in order to eliminateX45 ṽ1,

e2l ]6x15]6X4, ~3.1!

wherel is, at present, an arbitrary function ofx1[X1. We
also define the two coordinatesx0 andx2 according to

]1X25er ~c1 ]1x01c2
21 ]1x2!

~3.2!

]1X35er ~c1
21 ]2x02c2 ]2x2!,

with r5r(x1) and c1 and c2 are non-zero real constant
This reduces the action~2.21! to

S35
k

2 E d2s @e2l ]1x1 ]2x12e2r F ~]1x0 ]2x0

2]1x2 ]2x2!1c1 c2 e2r F ~]1x0 ]2x22]1x2 ]2x0!#

52
1

2 E d2s @hab Gi j
(3) ]axi ]bxj1eab Bi j

(3) ]axi ]bxj #,

~3.3!

where now the three-metricG(3) has components

Gi j
(3)5 l s

2 diag@2e2r F , e2l , e2r F#, ~3.4!

and signature 211. Further, the only non-vanishing inde
pendent component of the axion potentialB(3),

B02
(3)5 l s

2 c1 c2 e2r F, ~3.5!

does not depend onl.
We then observe that the axion field strength in th

dimensions must be proportional to the Levi-Civi
~pseudo!tensor,

Hi jk5A2G(3) e i jk H, ~3.6!

whereH5H(xi) is a function of the space-time coordinat
to be determined from the field equations andA2G(3)

[A2detG(3) is the volume element. In the present case
have

H0125]1B20
(3)52 l s

2 c1 c2 e2r ~A12F212 F r8!,
~3.7!

which yields

H52
c1 c2

l s
e2l SA12F2

F
12r8D . ~3.8!
3-4
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With respect to the particular solution~2.26!, we note that
the condition~3.1! can be safely imposed only ifXL

450, and
then the compactification condition becomes

e2l(xR
1) ]2xR

15]2XR
4 , ~3.9!

or XR
450 and

e2l(xL
1) ]1xL

15]1XL
4 . ~3.10!

The functionsr, l and the constantsc1 , c2 can then be
determined by noting that the low energy string action
three dimensions is given by~we setl s51 henceforth! @2#

Slow5E d3x A2G(3)

3e22 f FR1
4

k
14 ¹kf ¹kf2

1

12
Hi jk Hi jk G ,

~3.11!

where 4/k is a cosmological constant,R the scalar curvature
¹ the covariant derivative with respect to the metricG(3) and
f the dilaton. On varyingSlow one obtains the field equa
tions

Ri j 12 ¹ i¹ jf2
1

4
Hikl H j

kl50 ~3.12!

¹k ~e22f H i j
k !50 ~3.13!

4 ¹k¹
kf24 ¹kf ¹kf1

4

k
1R2

1

12
Hi jk Hi jk50,

~3.14!

which must be satisfied by the metric~3.4! and the axion
obtained from the potential~3.5!.

A. Linear dilaton vacuum

First we observe that for

e22 r56F, ~3.15!

the metric~3.4! becomes the flat Minkowski metric

ds257~dx0!21~dz6!26~dx2!2, ~3.16!

where the upper signs correspond tox1.0 (F.0) and the
lower signs tox1,0 (F,0) and the new coordinatez is
determined by

dz65el dx15
dx1

A6F
. ~3.17!

CorrespondinglyB(3) is constant and the axion vanishe
thus the field equation~3.13! is trivially satisfied.

The remaining Eqs.~3.12! and ~3.14! yield the following
expression for the dilaton field:
10500
f5a1
x0

b
1

z6

c
1

x2

d
, ~3.18!

where the constanta is arbitrary and the constantsb, c andd
must satisfy

6
1

b2 2
1

c2 7
1

d2 52
1

k
. ~3.19!

This solution represents alinear dilaton vacuum. When k
→` one of course obtains the trivial form for such a vacuu
with f5a.

We finally observe that alongx150 there occurs a signa
ture flip, so that the roles ofx0 andx2 as, respectively, a time
coordinate and a spatial coordinate are exchanged. We
find the same feature again in the following.

B. Recovering AdS3 and BTZ

If we assume

H52
2

l
, ~3.20!

where l is a constant, then the field equations~3.12!–~3.14!
are satisfied by choosingr50, c1 c251 and

e2l5
l 2

4
coth2x1, ~3.21!

which yields

X45
l

2
~x12cothx1!1X0

4 , ~3.22!

with X0
4 an integration constant. It then follows that the com

pactification we are employing is indeed singular, sinceX4

;71/x1 for x1→06, which means that we are mappin
vanishing boosts alongv1 ~parameterized byb) into infinite
translations alongṽ1. For this reason we tentatively consid
the range ofx15b as divided into the two~disjoint! half
lines x1.0 andx1,0.

It is indeed possible to show that this partition of th
range ofb has a natural interpretation in terms of the spa
time manifold. In fact, the choice~3.21! reduces Eq.~3.3! to
the action for a string propagating in the three-dimensio
AdS space-time. This can be seen, e.g., by defining n
~dimensionless! coordinatesr 6PR such that

r 15 ln~1sinhx1! for x1.0
~3.23!

r 25 ln~2sinhx1! for x1,0.

The metric

ds25sinhx1 @~dx2!22~dx0!2#1
l 2

4
coth2x1 ~dx1!2

~3.24!

then becomes
3-5
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ds256 er 6 @~dx2!22~dx0!2#1
l 2

4
~dr6!2, ~3.25!

where the equality holds with the plus sign forx1.0 and
with the minus sign forx1,0. The expression in Eq.~3.25!
is one of the standard forms for AdS3 with x0 ~or x2) playing
the role of time andr 1 and x2 ~or r 2 and x0) of spatial
coordinates. This can perhaps be more easily recognize
one defines a coordinate

z5expS 2
r 6

2 D , ~3.26!

and obtains

ds25
6@~dx2!22~dx0!2#1 l 2 ~dz!2

z2 , ~3.27!

which describes the half of~one of the two! AdS3 with z
.0 ~the halfz,0 being given by a definition ofz with the
opposite sign!. The BTZ black hole is then obtained by th
usual periodicity condition imposed on the coordinates@6,7#.

It then follows that the metric~3.25! we have found si-
multaneously describes two copies of~half of! AdS3 and
x150 again plays the role of a boundary atr 15r 252`
across which the signature of the metric flips. In fact this
the standard AdS horizon atuzu51`, while the time-like
infinity is at z50, and the scalar curvature,

R52
6

l 2 , ~3.28!

is a negative~regular! constant everywhere. Of course, th
metrics ~3.25! and ~3.27! solve the field equations~3.12!–
~3.14! providedf is also a constant andk5 l 2 @4#.

We conclude this part by noting that the solution~2.26!
places further restrictions on the propagating modes, sincF
can then be a function of eitherxL

1 or xR
1 , but not of both@see

Eqs.~3.9! and~3.10!#. This selects out a subclass of solutio
with only left- ~or right-! movers alongx1 and both kinds of
waves alongx0 andx3.

IV. OTHER SOLUTIONS

Various other solutions to the field equations~3.12!–
~3.14! can be found for a non-constant dilaton.

A. First example

Let us consider the metric

Gi j
(3)5diag@2F , e2l , F#, ~4.1!

where now l5l(x2) and similarly for the dilatonf
5f(x2). This metric can be obtained from the action~2.21!
by applying again a nonlinear transformation of the fo
~3.1!,~3.2!,
10500
if

s

]2X45e2l ]2x1

]1X25er @c1 ]1x01c2
21 ]1x2#

]2X35er @c1
21 ]2x02c2 ]2x2#, ~4.2!

wherec1 andc2 are constants andr5r(x1). If we chooser
such that

e22r5F, ~4.3!

the sinh(x1) term in Eq. ~2.19! is canceled, and the axio
potential B(3) is constant in our model, so the axion fie
strengthH is zero. Substituting this form forG(3) into the
field equations~with k51) allows us to determinel and
leads to the invariant line element

ds252~dx0!21coth2~x2! ~dx1!21~dx2!2. ~4.4!

The dilaton in this case is

f5Cf2 ln„sinh~x2!…, ~4.5!

whereCf is an integration constant and the domain of v
lidity of the solution isx2.0 ~which we call region II!. This
metric is ‘‘asymptotically flat,’’ in the sense that it converge
to the Minkowski metric forx2→`. The Ricci scalar is
negative and diverges at the origin~i.e., for x250),

R52
4

sinh2~x2!
. ~4.6!

The change of variables@27#

t5x0, r 5coth~x2!, u5x1, ~4.7!

brings the invariant line element into the form

ds252dt21
dr2

~r 221!2 1r 2 du2, ~4.8!

which shows explicitly the cylindrical symmetry. The radi
coordinate is understood to ber .1, according to the above
definition of region II, and the dilaton is written as

f II 5Cf1
1

2
ln~r 221!. ~4.9!

In the form ~4.8!, the metric can also be extended to t
region 0<r ,1 ~region I!, where the Ricci scalar,

R54 ~12r 2!, ~4.10!

is positive and regular everywhere and the dilaton becom

f I5Cf1
1

2
ln~12r 2!. ~4.11!

A plot of an angular sector of the ‘‘lifted surface’’@26#,
adapted so as to include the origin of region I, is shown
Fig. 1. With this choice a new singularity appears atr 51,
where the surface has diverging slope and would exten
3-6



THREE DIMENSIONAL GRAVITY FROM ISO(2,1) . . . PHYSICAL REVIEW D 62 105003
FIG. 1. The sector 0<u<p of the lifted sur-
face for the metric~4.8! extended to all positive
values ofr.
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unlimited height~the plot is of course truncated along th
vertical axis!. This simply represents the fact that the asym
totically flat region (r→1) is at an infinite proper distanc
(; lnur21u) both from the originr 50 of region I and from
the singularityr→` (x250) of region II. In fact, the Ricci
scalar actually vanishes alongr 51 and the only real singu
larity is at r→`.

The real singularity in region II is not accessible fro
region I. In particular, by solving the equation of radial nu
geodesics,

d2r

dt22
2 r

r 221 S dr

dt D 2

50, ~4.12!

wheret is an affine parameter, one finds~nearr 51 and with
t@0)

r;16e2t, ~4.13!

where the minus~plus! sign is for geodesics starting in re
gion I ~II !. Such trajectories define the light cones in regio
I and II and therefore show that the two regions are caus
disconnected.

B. Second example

Let us now consider the metric

Gi j
(3)5diag@2e22r, e2r , e2r#, ~4.14!

where nowr5r(x1) and f5f(x1). This metric results
from the nonlinear coordinate transformation

]2X45e2r ]2x1

]1X25F21/2@c1 e2r ]1x01c2
21 er ]1x2#

]2X35F21/2@c1
21 e2r ]2x02c2 er ]2x2#. ~4.15!

The transformation of coordinates used to obtain this fo
for G(3) in our model insures that the axion potential is ag
10500
-

s
ly

constant. Eliminatingx1 in favor of r and solving the field
equations again withk51, we find for the invariant line
element

ds252e22r ~dx0!21
4 dr2

sinh2~A2 r!
1e2r ~dx2!2,

~4.16!

and the dilaton is

f5Cf2
1

2
ln„sinh~A2 r!…, ~4.17!

with Cf the usual integration constant.
The change of variables@27#

t5x0, r 5er, u5x2, ~4.18!

which is well defined forr .0, gives the invariant line ele
ment the manifestly cylindrically symmetric form

ds252
dt2

r 2 1
dr2

r 2 ~r A22r 2A2!2
1r 2 du2, ~4.19!

and the dilaton can now be written as

f5Cf2
1

2
ln~r A22r 2A2!. ~4.20!

The Ricci scalar is everywhere negative,

R52~r A22r 2A2!2, ~4.21!

has essential singularities at bothr 50 and r→` and van-
ishes along the circler 51. This implies a similarity with the
previous metric~4.8!, namely one can define a region I fo
0,r ,1 and a region II forr .1. The main difference is
then that region I also contains a real singularity atr 50.
3-7
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C. T-dual solutions

We conclude this section by noting that in both solutio
above, there are two isometric coordinates, to witt and u.
Therefore, one can generate new solutions by employinT
duality @28,18#. In particular, we shallT dualize with respect
to one coordinate at a time, and denote the fields of the d
solutions with a tilde. We also denote byB the only non-
vanishing component of the axion potential,B02

(3) , which is
constant in all solutions considered.

For the solution in Sec. IV A, the non-vanishing comp
nent of the axion potential in the coordinate system (t,r ,u) is
given by

Btr
(3)5

B

12r 2 . ~4.22!

On dualizing the metric~4.8! with respect tot then yields the
non-diagonal line element

d̃s252dt21
12B2

~r 221!2 dr21
B dt dr

r 221
1r 2 du2,

~4.23!

which solves the field equations with a vanishing axion p
tential, B̃(3)50, and an unchanged dilaton field,f̃5f @28#.

Dualizing with respect tou instead leaves the metric un
affected, as can be seen by switching to the new radial
ordinateR5r 21 after applying the dual relations@28#, but
yields B̃(3)50 and a shifted dilaton field,f̃5f1 ln(R).

The duals of the metric~4.19! and of the axion potentia
Btu

(3)5B of Sec. IV B with respect tot are given by

d̃s252r 2 dt21
dr2

r 2 ~r A22r 2A2!2
2B r2 dt du

1r 2 ~12B2! du2 ~4.24!

andB̃(3)50, with the dilatonf̃5f1 ln(r). The metric above
represents a rotating space-time, since the off-diagonal t
G̃tu

(3)5” 0 ~for B5” 0).
Dualizing with respect tou and definingR5r 21 gives

d̃s252R2 ~12B2!2 dt21
dR2

R2 ~RA22R2A2!2

2B R2 dt du1R2 du2, ~4.25!

B̃(3)50 and f̃5f1 ln(R). Again this represents a rotatin
space-time.

In three out of four cases above the presence of a n
vanishing axion potential, although it corresponds to z
field strength, affects the metric field in a non-trivial mann
.
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The axion potential is in fact always absorbed into the d
metric and dilaton fields and sometimes generates
diagonal terms and rotation.

V. CONCLUSIONS

Starting from the six parameter groupISO(2,1) we have,
by using various types of compactification~gauge fixing, in-
ternal symmetries and coordinate identification!, reduced the
original action, which describes a spinless string moving
a curved six-dimensional background, to a string propaga
on either a flat~Minkowski! background with a linear dilaton
or on AdS space-time with a constant dilaton field. If t
fields satisfying the equations obtained from the low ene
effective string action are restricted to be functions of
single variable~in our case one of the boost parameters fro
the original Poincare´ group!, the fields are so tightly con
strained that there are apparently only two possible soluti
with a trivial dilaton.

The original goal of this work was to find a three
dimensional black hole other than the BTZ black hole
starting from a model of string propagation on a group ma
fold different from theSL(2,R) manifold. This goal has no
been realized, but the tactic has resulted in a relativ
simple form for the compactified Lagrangian, allowing us
recover the space-time of AdS3 ~and BTZ! and to obtain
solutions of the field equations we might not otherwise ha
been able to attain.

The fact that AdS3 can be related to the~non-semisimple!
three-dimensional Poincare´ group might be surprising at firs
sight. However, one can consider the following general
gument: The natural group of symmetry of AdS3, that is the
semisimple groupSL(2,R), is contained withinSL(2,C)
which, in turn, is isomorphic toSO(3,1). Moreover, the Lie
algebra of the groupISO(2,1) can be reached from the Li
algebra of the~semisimple! group SO(3,1) by means of a
transformation calledcontraction~see, e.g., Ref.@29#!. One
can therefore conclude that the sequence of operations
have performed reproduces the~local! effect of anexpansion
~roughly, the opposite of a contraction@29#! from the coset
ISO(2,1)/R to SL(2,R).

Other such formal constructions can be envisioned,
might turn out to be useful in the search for new solutions
we have shown in Sec. IV. Whether or not the BTZ bla
hole is the only one in three-dimensional space-time rema
an open question, and so, therefore, is the question
whether or not another exact three-dimensional black h
solution to string theory exists.
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