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Starting from a WZWN action in theSO(2,1) Poincargroup which describes a bosonized spinning string
in 2+1 Minkowski space-time, we show that a sequence of non-trivial compactifications leads to the descrip-
tion of a spinless string which moves i(laear dilaton vacuum, AdS or BTZ black hole background. Other
solutions are also obtained and th€iduals analyzed.

PACS numbs(s): 11.10.Lm, 04.20.Dw, 11.30.Cp

[. INTRODUCTION back reaction of the evaporation radiation on the geometry
[15].

The observational evidence for the existence of black Because of the usefulness of three-dimensional black
holes in nature is now very strong. The data support théoles as prototypes for four-dimensional black holes in string
existence of both supermassive black holes at the centers 8f€ory, a search for a second exact, three-dimensional black
ga|axies and Sma”e(a few solar masses up to a few tens of hole in String theory would seem to be a worthwhile purSUit,
solar massesb|ack holes in binary Systenﬂ[g_]_ The best ESDECia”y if one could be found which has non-negative cur-
candidate for a unified theory of all the physical phenomenature. This work describes our attempt to obtain such a
observed so far, inc|uding black ho'eS, is String the[ﬂ}/ Solution, Starting from a WeSS'ZUminO'Witten‘NOVikOV
and, indeed, several blagkbrane solutions have been found (WZWN) model in the Poincargroup1SQ(2,1) [16]. Our
in various space-time dimensions in the low energy limit ofProcedure for obtaining a three-dimensional metric is to pro-
this theory(for a review see, e.g., Ref3]). However, only ~Mmote the six parameters of th8O(2,1) group to space-time
one black hold4] is known to exist in the three-dimensional variables and then to reduce space-time to three dimensions
low energy limit of string theory and it coincides with the Py various compactifications. After each compactification we
only known black hole in three-dimensional Einstein gravity investigate the symmetries of the resulting model.

[5]: the black hole of Baados, Teitelboim and ZanellBTZ) A partial result has been obtained, since we can now show
[6] (see also Ref[7)). that the string theory we start from can be compactified in

Although the BTZ black hole is not useful as a global sSuch a way as to yield either @inear dilaton vacuum or
description of real black hole$or example, the curvature of AdSz (the BTZ black holg We also obtain other solutions
the BTZ black hole is constant and there are no gravitationavhich contain a non-trivial dilaton field and, thus, might be
waves in three dimensiopsit does provide a manageable Of interest for studying evaporation. )
model of string propagation on a black background in which In Sec. Il we review the WZWN Poincastion in three
an infinite number of propagating modes is present. Th&imensions, its coset descendar®(2,1)/R" [17,18 and
Green’s function for this black hole can be constructed, angpecialize to the case wheh is a translation in the time
the quantum stress tensor can be calculated frd@).itThis  direction. In Sec. I, we further compactify to three-
system has also been used to study such problems as tH#nensional space-time in which we recover the Ad8d
quantization of a string on a black hole backgroisee[9] BTZ) manifold. In Sec. IV we describe other solutions and
and references therein their T duals, and finally comment on our results in Sec. V.

Recently, the theoretical interest in the BTZ black holeFor the metric and other geometrical quantities we follow the
has also been raised by the conjectured AdS-conformal fielgonvention of Ref[19].
theory (CFT) correspondencglQ], according to which all
the relevant quantities of the gravitational field theory in the
bulk of the anti—de SittefAdS) space-time(or any space- Il. 1SO(2,1) WZWN MODELS
time with a time-like boundapycan be described in terms of . . .
a conformal field theoryCFT) on the boundary. Thus, by The WZWN construction starts with the-model action
applying this conjecture to the blagkbranes there is some at level k [20]:
hope of describing the complete evolution of a black hole,
from its formation[11] to the evaporatiohl2], and solve the

riddle of its final fate(see Ref[13] for a list of still unan- S _x 2o Tr(g to.99 1o g)

swered questionsHowever, it is not clear whether the AdS- 74 ) om

CFT correspondence extends beyond perturbation theory on

a given background manifolil4] as the solution of the _fj 43¢ Tr(g-tag/Ag~tag/g tag), (2.1
black hole problem would require in order to compute the 4)m o
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where in the present caggis an element of the Poincare T=K[A g, (A1) (2.10
group 1SO(2,1) ando™=r*o are light-cone coordinates 7
on the boundary M of the three-dimensional manifol".

The elements ofSO(2,1) can be written using the nota-
tion g=(A,v), where A € SO(2,1) andv € R®. Given the
map g: M=D?XR—1S0(2,1) from the two-dimensional
disc X time to ISO(2,1), the action can be written entirely
on the boundanR x St and it describes a closed bosonized
spinning string moving in 21 Minkowski space-time with
coordinates' [16]:

The latter commute witP' andJ' and have Poisson brackets
among themselves given by Ed2.6), (2.7) and(2.8) with a
central extension opposite in sigh6]. One then concludes
that (half [21]) the (classical gauge invariant phase space of
the model isL*1SO(2,1)/1SO(2,1).

One would expect that the Fourier mode$pfandJ; (the
Kac-Moody generatojsyield a Virasoro algebrdfor each
chiral sector with generatorsL,. However, the standard
« highest weight constructiof2], which would give a central
S=— Zj d2o €% (9, A A—l)ij d_vy, (2.2  chargec=dimISO(2,1)=6, fails to deliver unitary repre-

oM sentations(the conditionsI:n|phys)=O, n=0, does not
suppress all negative norm stagteSpaces of positive norm
states can instead be obtained by employing the method of
induced representations which yields a central charg®

wheree'¥ is the Levi-Civita symbol in three dimensions and

the metric tensor is »;=diag[—-1,+1,+1] (i,j, ...

=0,1,2). : !
o . o L . for each chiral sectof16]. In either case, the total central
un(-zll-ehre basic property of the actidBiis that it is invariant charge of the model, after adding the ghost contribution

[22,2], is c;=c—26 and one must eventually add 26
bosonic degrees of freedom in order to have a quantum
model which is free of anomaly.

. The action(2.2) is one of the two exceptional cases de-
WhereguRe 1SO(2,1), and also under the left and right ac- scribed in Ref([ls’)], where it was shown thgt, if one consid-
tion of the group of diffeomorphisms of the world SheB8l. ~ ers all parameters of the six-dimensional Poinagiaup as
Starting from this observation, the canonical structure of theypace-time coordinates, theh describes a spinless string
model can be computed by reverting to the “chiral” version moying on a curved background with six-dimensional met-
of Eq. (2.2, which is obtained by formally replacing”™ ric. It was also proved that this action is unique in the sense

—reRando”—oe(0,2m) [21]. One then finds two sets that no generalization of the kind studied in Reff23,18]
of conserved current densities, the first of which is given byexists for the Poincargroup in three dimensions.

g9, (0" gg (o), (2.3

. K ..
P'(o)= > eR(AL d.N)jk (2.9 A. Coset models
The action(2.2) is not invariant under the local action of
J(o)=k(A"1a,0), (2.5  any subgrougH of ISO(2,1) given by
with Poisson bracketgl 6] h-g:g—h (07,0%)gh (o7, 0"), (211
{P'(0),P!(¢")}=0 (26 where nowh =(6 _,y _)eH, due to the dependence of

L/R L/R"7 L/R .
h, on o~ and ofhg on o*. However,H can in general be

promoted to a gauge symmetry of the action by introducing
suitable gauge fielda .. =(w- ,£.) belonging to the Lie al-
gebra of H, and the corresponding covariant derivatives
9 D.=d.+A..
trnlo—d(o—a’), (2.9 In order thatlSO(2,1)/H be a cosetH must be normal,

7 H-g=g-H, under the action defined in E¢2.11). This

and generaté*1SO(2,1), the Poincaréop group with the Means that, for alge 1S0(2,1) andhe H, there must exist
central extension given by the last term in E2.8). Thisis ~anheH such thathgh™*=h"*g h, and we thus find that
the algebra of the right transformations in E.3), since in  the only possible choices are subgroups of the translation
the chiral picturegR(o*)—>gR(a) has become a space- groupR?, that ishL/Rz(l,yElR), wheren runs in a subset of
dependent transformation of the fieddon the world sheet. {0,1,2} and 1 is the identity inSQ(2,1). In this case, by
The (time-dependent left chiral transformation,gL(a+) inspecting the actio2.2) one argues thab.=¢,.=0, and
—g,(7), in Eq.(2.3) is now anISO(2,1) invariance gener- & =0 iff the translation in the direction is not included in
ated by the zero Fourier modes of the second s¢veikly ~ H- The gauged action finally reafis7]

vanishing current densities

{3(0), (o)} =€ (o) S(a—a') (2.7

{J(0),Pl(a")}=—€XP(0) 8(c—0a")

sz—ffdzae”k(a AAY(_v+ED)
(o} + ij\v— —Jk-

S 4
P= (2.12

K ik -1
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For the ungauged action in E(R.2), variation with re- P! cosa  sinelld_ vl
spect tov leads to the conservation of the six momentum _ = _ 5] (2.18
currents on the light cone of the string world sheet, g_v?| L—sina cosaj|d-v
J_P.=d.P =0, (213 This can be considered as an internal symmetry of the effec-

. _ _ tive theory which is used to further simplify the action in Eq.
whereP', is given byP' in Eq. (2.9) with c—o" andPL (2,16 with n=0 to the form[24]
by P' in Eq. (2.4 with o—o . In the gauged case this
variation must be supplemented by the condition that the

gauge field varies under an infinitesintdl transformation, Sgof)fzgj d?c[9.Bd_vi—sinhBa,ya_v2].
& —¢&" —9_(sv"), and one obtains (2.19
9_P*n=0, (2.14

In the following we shall find it more convenient to regard
B, v, v?andv?! as canonicalfield) variables by foliating
the closed string world sheet with circles of constant time
[25]. Their conjugate momenta are then given by

so that only the currentﬁif” are still conserved.
Similarly, varying the actiors with respect toA leads to
the conservation of the six angular momentum currehts

=J'in Eq. (2.5 with c— ¢~ andJ', =J" in Eq. (2.10 with 559«

o—o'. When interpreted as components of the string angu- 1= 50613 —Ea_vl
lar momentum in the target space-time, these currents are T
shown to include a contribution of intrinsioon orbita) spin
[16]. In the gauged case, one obtains , O & K ~
' P —m=—zsmhﬁ&_v
9.3 ==k, (ANE, (2.15 !
(2.20
so that the currentd’_ couple to the gauge field.
Since the gauge field is not dynamical, we are now free to 3 5 K . 5
choose dinH gauge conditions to be satisfied by the ele- po= PYY z—zsmh,B d.y=Pi(a=0)
ments oflISO(2,1)/H. A natural choice i£” =—d_v", so w2
that the previous equations of motion become the same as )
those obtained by varying the effective action a_ OSet K o1,
p= ~ —§&+B—P+(a—0).
5&7-01
Sih= J d?o >, PX d_uy, (2.16
k#n The above relations can be inverted to express the velocities

o ) in terms of the momenta. This signals the fact that(eX-
where the sum runs over only the indices corresponding tlicit) symmetries of the original model have been “gauge

the translations not included i, fixed” and v!, v2, B andy are physical degrees of free-

An explicit form for the effective actior(2.16 can be . ) i
. g : dom which we are allowed to consider as target space-time
obtained by writing arSQ(2,1) matrix as a product of two : o .
coordinates for the compactified string.

rotations(of anglesa and y) and a boost 8) [17], which In target space-time coordinateXi=g, X?=y, X3

yields ~o 4 ~1 i i
=p© andX"=v", the action(2.19 can be written a$18]

K
P2=§(a+a+coshﬁ 3,y) o <[ o o o
Seff:_zf d (T(??a +Ea )[&aX abx

K
PizE(COSa d,B+sinasinhBd, ) (2.1 —F(X1) 9,X% 9pX3]

1
) :_Ef dZO,[nabGE:lg (9aXM &bxv
Pi=§(sina 9, B—cosasinhBd, ).

+ Eab B,Efv) éxaxﬂ &bXV], (2.2

B. Gauging the time translations b

where F=sinhX!, 72° and ®° are, respectively, the
We gauge the subgrotp={(1,y%} of the translations in Minkowski tensor and the Levi-Civita symbol in two dimen-
the time direction. This choice is peculiar, since no derivasions andu,v, ...=1,... 4. Byinterpreting;<=l§ as the
tive of @ occurs inP% andP?%, and we can then rotate the square of the fundamentgtring) length, the symmetric ten-
variablesv! andv? by an angle— a [17], sor G in the chosen reference frame has components
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0O 0 0 -1 scribe wave modes which propagate along a direction but
0 F couple with modes propagating {some of the other direc-
42 tions.
G, =I5 F o (2.22
-1 0 O Ill. THE FINAL COMPACTIFICATION

and is the space-time metric with signature 2 and G
=detG*"=I8 F2. The antisymmetric tens®*) has compo-
nents

Upon using the fact thaX'=g is a flat direction for the
propagating string, we impose a further compactification

condition in order to eliminatX*=71,

0 0 0 -1 et 9. xt=9.X", (3.1
B4 — |2 0 0 F (2.23 where\ is, at present, an arbitrary function ef=X*. We
rroSEg —F 0 ' also define the two coordinate8 andx? according to
1 0 O

and is the axion potential.

The Euler-Lagrange equations of motion can be written as

9. X?>=e"(cy 0, x°+c, 19, x?)
(3.2

9, X3=e’ (c;ta_x"—cyd_x?),

69 .
eff _ _ f[a+a_x4+ V1I-F?9,%X?9_X3]=0 with p=p(x!) andc; andc, are non-zero real constants.
oB 2 This reduces the actiof?2.2]) to
SSEt K 3 2 Kl g2 raon 0 ol ol a2 0, ,0
5y == 50+(F3-X")==3,P"°=0 S3=5 d?o[e®* 9, xt o x'—e? F (9,x%9_x
2.2
(2.24 — 9, X2 9_X2)+C1C,€%PF (9,x°9_x2— 9. x%9_x%]
oS «
_= 2y _ 3_ 1 ) ) . .
=2 ~5 0 (F X )=—a_P3=0 :_EJ 020 [ 772G 2x1 g+ 2B 9,0 ],
oS« (3.3
~ :__3_0+X1:_(9_P4:0, =(3)
Sut 2 where now the three-metri@'*) has components
from which one sees that three of the canonical momenta Gi(]-3)=I§diag[—e2PF e e F], (3.9

(P?, P®andP?*) are conserved alongne of the two null
directions of the world sheet. We also note thék is a
“flat” target space direction, since the fourth of Eq2.24)

is the free wave equation whose general solution is given by

X=X+ X%, (2.25
where the arbitrary functionX{'=X{(¢*) stand for left-
moving andX&=Xg(o ") for right-moving waves.

The system of Eqg2.24) considerably simplifies for zero
canonical momentum modes along? (X3=X?) or
X3 (X?=X32), in which casex*= X!+ X%. When bothP?
and P? vanish one then has the simple solution

and signature 2 1. Further, the only non-vanishing inde-
pendent component of the axion poten@f),
B)=12¢c,c,e®F, (3.5
does not depend on.

We then observe that the axion field strength in three
dimensions must be proportional to the Levi-Civita
(pseudagtensor,

(3.6

Hij=v-G¥ e H,

whereH="H(x') is a function of the space-time coordinates

Xl:XHX%e to be determined from the field equations agd G®
=/~ deG® is the volume element. In the present case we
x2:x§ have
2.2
(220 Horz= 018 = —12¢y ¢, €% (V- F2+2F p),
x3=x3 (3.7
— hich yield
XA= X4+ X4, which yields
which describes free wave modes in all of the four space- H=— C1C2 e*( 1-F 12, (3.9
time directions. More general solutions would instead de- ls F P '
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With respect to the particular solutid8.26), we note that
the condition(3.1) can be safely imposed onIyX‘L‘ZO, and
then the compactification condition becomes

1
e R §_xk=09_Xp, (3.9
or Xg=0 and
1
e g, xt=a,X].

(3.10

The functionsp, A\ and the constants;, ¢, can then be

PHYSICAL REVIEW D 62 105003

x0  z.
_+_
c

p=a+ b

+— (3.18

where the constarat is arbitrary and the constaritsc andd
must satisfy

. 1 1 1 B 1 31
This solution represents lnear dilaton vacuum When k
— o one of course obtains the trivial form for such a vacuum

determined by noting that the low energy string action inwith ¢=a.

three dimensions is given Hyve setl;=1 henceforth [2]
SmWZJ d*x - G®

4 1 .
-2 k k
xe 2¢ Rt +4 Vi Vih— SHij HY |,

(3.1)

where 4k is a cosmological constarf® the scalar curvature,
V the covariant derivative with respect to the me@ic¢) and
¢ the dilaton. On varyingS,,, one obtains the field equa-
tions

1
Rij+2 Vivj¢_ZHik| HJ k|=0 (312
Vk(e_2¢Hkij):O (3.13
‘ p 4 1 -
4VkV ¢—4Vk¢V ¢+E+R—l—2Hijk HIJ :0,
(3.14)

which must be satisfied by the metri8.4) and the axion
obtained from the potentidB.5).

A. Linear dilaton vacuum

First we observe that for

e 2P==+F,

(3.15
the metric(3.4) becomes the flat Minkowski metric

ds?=F(dx%)2+(dz. )2+ (dx?)?, (3.16
where the upper signs correspondxto>0 (F>0) and the
lower signs tox!<0 (F<0) and the new coordinate is
determined by

dxt

=F

CorrespondinglyB® is constant and the axion vanishes;
thus the field equatiofB.13 is trivially satisfied.

The remaining Eqs(3.12 and(3.14) yield the following
expression for the dilaton field:

dz.=eMdx!=

(3.17

We finally observe that along'=0 there occurs a signa-
ture flip, so that the roles of® andx? as, respectively, a time
coordinate and a spatial coordinate are exchanged. We shall
find the same feature again in the following.

B. Recovering AdS and BTZ
If we assume

(3.20

wherel is a constant, then the field equatioi®s12—(3.14)
are satisfied by choosing=0, c;c,=1 and
|2
eZ)\

— 1
7 coth?x?,

(3.21

which yields

|
X4=§(x1— cothx?) + X2, (3.22

with X3 an integration constant. It then follows that the com-
pactification we are employing is indeed singular, siXée
~* 1 for x}—0*, which means that we are mapping
vanishing boosts along® (parameterized by) into infinite
translations along®. For this reason we tentatively consider
the range ofx!=p as divided into the twddisjoint) half
linesx!>0 andx!*<0.

It is indeed possible to show that this partition of the
range ofB has a natural interpretation in terms of the space-
time manifold. In fact, the choic€.21) reduces Eq(3.3) to
the action for a string propagating in the three-dimensional
AdS space-time. This can be seen, e.g., by defining new
(dimensionlesscoordinates . € R such that

r.=In(+sinhx) for x>0
(3.23
r_=In(—sinhx?) for x*<0.

The metric

|2
ds?=sinhx*[(dx?)?2— (dx°%)?]+ Zcothzxl (dxt)?

(3.29

then becomes
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|2 XA=e2 y X1
ds?==+ eri[(dxz)z—(dxo)z]JrZ(drt)z, (3.25 g e X

9, X?=e[cy . x°+c, t ., x?]
where the equality holds with the plus sign fot>0 and
with the minus sign fox'<0. The expression in E43.25 d_X3=e”[c;to_x—c,d_x?7], (4.2
is one of the standard forms for Ag@ith x° (or x?) playing
the role of time and-, andx? (or r_ andx°) of spatial Wherec; andc, are constants angl=p(x*). If we choosep
coordinates. This can perhaps be more easily recognized $uch that

one defines a coordinate e 2=F, (4.3

s—exd — = (3.26 the sinhg) term in Eq.(2.19 is canceled, and the axion
2) ' potential B®) is constant in our model, so the axion field
strength’H is zero. Substituting this form fo&(®) into the
and obtains field equations(with k=1) allows us to determina and
leads to the invariant line element
2\2 0y2 2 2
I (G _(dz’;) P77 509 A= — (dx°)2+ cot?(x?) (dx})2+ (dx2)2.  (4.4)

The dilaton in this case is
which describes the half dfone of the two AdS; with z P 5
=0 (the halfz<0 being given by a definition o with the ¢=Cy=In(sin(x%), (4.5
opposite sigh The BTZ black hole is then obtained by the whereC, is an integration constant and the domain of va-
usual periodicity condition imposed on the coordind®3]. ity of the solution isx?>0 (which we call region I). This

It then follows that the metri¢3.25 we have found si-  yatric is “asymptotically flat,” in the sense that it converges
multaneously describes two copies @falf of) AdS; and {5 the Minkowski metric forx?—. The Ricci scalar is

1_ H — —
x*=0 again plays the role of a boundaryrat=r_=—< oqaiive and diverges at the origire., for xX2=0),
across which the signature of the metric flips. In fact this is
the standard AdS horizon &t|=+«, while the time-like 4
infinity is atz=0, and the scalar curvature, R=— SInfGD) (4.6)
6 The change of variabld27]
R=— iz (3.28
t=x° r=cothx?), 6=x% (4.7

is a negative(regulay constant everywhere. Of course, the brings the invariant line element into the form
metrics (3.25 and (3.27) solve the field eqzuationSB.lz)—
(3.14) provided ¢ is also a constant and=1< [4]. _ 2 2 2

We conclude this part by noting that the soluti¢h26 ds’=—dt*+ (r’—1)? tredes, “.8
places further restrictions on the propagating modes, since o o _
can then be a function of eithef or x%, but not of bott{see ~ Which shows explicitly the cylindrical symmetry. The radial
Egs.(3.9) and(3.10]. This selects out a subclass of solutions coordinate is understood to be-1, according to the above
with only left- (or right) movers along® and both kinds of definition of region Il, and the dilaton is written as
waves along’ andx®.

2

1
¢||=C¢+ Eln(rz_l). (49)
IV. OTHER SOLUTIONS

In the form (4.8), the metric can also be extended to the

Various other solutions to the field equatiof3.12— region O<r<1 (region ), where the Ricci scalar

(3.14 can be found for a non-constant dilaton.
R=4(1-r?), (4.10

A. First example . . .
. . is positive and regular everywhere and the dilaton becomes
Let us consider the metric

1
G®)=diag[ - F , e®, F], (4.2) ¢ =Cyt 5 In(1-r?). (4.1
where now A=\(x?) and similarly for the dilaton¢ A plot of an angular sector of the “lifted surface26],
= ¢(x?). This metric can be obtained from the acti@21) adapted so as to include the origin of region I, is shown in

by applying again a nonlinear transformation of the formFig. 1. With this choice a new singularity appears at1,
(3.2,(3.2, where the surface has diverging slope and would extend to
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e

e,
I |

I
§§§§§§l|l FIG. 1. The sector & < 7 of the lifted sur-

face for the metriq4.8) extended to all positive
values ofr.

unlimited height(the plot is of course truncated along the constant. Eliminating in favor of p and solving the field
vertical axig. This simply represents the fact that the asymp-equations again wittkk=1, we find for the invariant line
totically flat region ¢—1) is at an infinite proper distance element

(~In|r—1|) both from the originr=0 of region | and from

the singularityr —o (x?=0) of region Il. In fact, the Ricci 4 dp2
: : —2 0\2 p 2 2\2
scalar actually vanishes alomg=1 and the only real singu- ds?=—e 2 (dx°)%+ h?i +e? (dx9)%,
larity is atr—oo. Sinff(v2 p)
The real singularity in region Il is not accessible from (4.16
region I. In particular, by solving the equation of radial null

geodesics, and the dilaton is

dr  2r (dr)\? 1

- = $=Cy— 5 In(sinh(y2 p)), (4.17)
dr* rz—l(d7> 0. (4.12 ¢ 2

wherer is an affine parameter, one fineteearr =1 and with ~ with C,, the usual integration constant.

0) The change of variabld27]

r~lxe 7, (4.13 t=x% r=e?, 6=x5 (4.18

where the minugplus) sign is for geodesics starting in re- \which is well defined for >0, gives the invariant line ele-

gion I (I). Such trajectories define the light cones in regionsment the manifestly cylindrically symmetric form
I and Il and therefore show that the two regions are causally
disconnected. dt2 dr?
ds?=— —+ —,2+r2d02, (4.19

r 20p\V2_—\2
B. Second example re(re—r—)

Let us now consider the metric and the dilaton can now be written as

G()=diag[ e~ %, €¥, €], (4.14 .
, : =C4— =In(r?—r=2), 4.2
where nowp=p(x}) and ¢=¢(x'). This metric results $=Cy= 5 ) (4.20
from the nonlinear coordinate transformation
The Ricci scalar is everywhere negative,
9_X*t=e? g_x*
R=—(r?—r=?)?2, (4.20)
9. X?=F 2[cie ? 3, x°+c, e’ 9, x?]
has essential singularities at batk-0 andr—o« and van-
9_X3=F Y2[c;re P9 x"—c,e?9_x?]. (4.19 ishes along the circle=1. This implies a similarity with the
previous metrig4.8), namely one can define a region | for
The transformation of coordinates used to obtain this forr0<r<1 and a region Il for>1. The main difference is
for G in our model insures that the axion potential is againthen that region | also contains a real singularity &0.
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C. T-dual solutions The axion potential is in fact always absorbed into the dual
metric and dilaton fields and sometimes generates off-

We conclude this section by noting that in both solutions’,. .
diagonal terms and rotation.

above, there are two isometric coordinates, to twaind 6.
Ther_efore, one can generate new solutio.ns b)_/ employing V. CONCLUSIONS

duality [28,18]. In particular, we shall dualize with respect

to one coordinate at a time, and denote the fields of the dual Starting from the six parameter grolO(2,1) we have,
solutions with a tilde. We also denote iB/the only non- by using various types of compactificaticgauge fixing, in-
vanishing component of the axion potentiBt>, which is  ternal symmetries and coordinate identificatjoreduced the
constant in all solutions considered. original action, which describes a spinless string moving on

For the solution in Sec. IV A, the non-vanishing compo- & curved six-dimensional background, to a string propagating
nent of the axion potential in the coordinate systém,@) is  ©N either a flatMinkowski) background with a linear dilaton

given by or on AdS space-time with a constant dilaton field. If the
fields satisfying the equations obtained from the low energy

(3) B effective string action are restricted to be functions of a

B = 1—r2" (4.22 single variablgin our case one of the boost parameters from

the original Poincaregroup), the fields are so tightly con-
On dualizing the metri¢4.8) with respect td then yields the strained that there are apparently only two possible solutions

non-diagonal line element with a trivial dilaton.
5 The original goal of this work was to find a three-
1-B Bdtdr dimensional black hole other than the BTZ black hole by

N2 42 2 112462
ds e+ (r’— 1)ZOIr T trdes starting from a model of string propagation on a group mani-

(4.23  fold different from theSL(2,R) manifold. This goal has not
. . . ) o ) been realized, but the tactic has resulted in a relatively
which solves the field equations with a vanishing axion poimpje form for the compactified Lagrangian, allowing us to
tential, B®®=0, and an unchanged dilaton field=¢ [28].  recover the space-time of AgSand BT2 and to obtain
Dualizing with respect t@ instead leaves the metric un- solutions of the field equations we might not otherwise have
affected, as can be seen by switching to the new radial caseen able to attain.

ordinateR=r"* after applying the dual relatior28], but The fact that Ad$ can be related to th@on-semisimple

yields B®=0 and a shifted dilaton fieldp= ¢+ In(R). three-dimensional Poincaggoup might be surprising at first
The duals of the metri¢4.19 and of the axion potential sight. However, one can consider the following general ar-
B{®)=B of Sec. IV B with respect td are given by gument: The natural group of symmetry of Ag$hat is the
semisimple groupSL(2,R), is contained withinSL(2,C)

~ 5 o dr? 5 which, in turn, is isomorphic t&(3,1). Moreover, the Lie
ds®=—rodt"+ ——F———- —Brodtde algebra of the groupSO(2,1) can be reached from the Lie
e algebra of the(semisimple group SO(3,1) by means of a

+r2(1-B?) de? (4.24) transformation calledontraction(see, e.g., Ref.29]). One

can therefore conclude that the sequence of operations we
andB®) =0, with the diIaton?zS: #-+In(r). The metric above have performed reproduces ttiecal) effect of anexpansion
represents a rotating space-time, since the off-diagonal terfiioughly, the opposite of a contracti@9]) from the coset
653)9&0 (for B#0). ISO(2,1)/R to SL(2,R). . N
Dualizing with respect t@ and definingR=r ~! gives .Other such formal constructions can be enV|S|on_ed, and
might turn out to be useful in the search for new solutions, as

~ dR2 we have shown in Sec. IV. Whether or not the BTZ black
ds’=—-R?(1-B*)?dt?+ ————— hole is the only one in three-dimensional space-time remains
R°(R*“—=R™) an open question, and so, therefore, is the question of
_BRdtdo+R2de2, 4.25 whether or not another exact three-dimensional black hole

solution to string theory exists.

B®=0 and$=¢+In(R). Again this represents a rotating
space-time.

In three out of four cases above the presence of a non- This work was supported in part by the U.S. Department
vanishing axion potential, although it corresponds to zermf Energy under Grant No. DE-FG02-96ER40967 and by the
field strength, affects the metric field in a non-trivial manner.NATO Grant No. CRG 973052.
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