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In theories with(sets of two large extra dimensions and supersymmetry in the bulk, the presence of
non-supersymmetric brane defects naturally induces a logarithmic potential for the volume of the transverse
dimensions. Since the logarithm of the volume rather than the volume itself is the natural variable, parameters
of O(10) in the potential can generate an exponentially large size for the extra dimensions. This provides a true
solution to the hierarchy problem, on the same footing as technicolor or dynamical supersymmetry breaking.
The area moduli have a Compton wavelength of about a millimeter and mediate Yukawa interactions with
gravitational strength. We present a simple explicit example of this idea which generates two exponentially
large dimensions. In this model, the area modulus mass is in the millimeter range even for six dimensional
Planck scales as high as 100 TeV.

PACS numbeis): 11.10.KK, 04.50+h, 11.25.Mj

[. INTRODUCTION then the logarithmic Green’s functions for these fields can
give rise to logarithmic variation of the parameters on our
It has recently been realized that the fundamental scaldgrane universe; in cases with sufficient supersymmetries, this
of gravitational and string physics can be far beneatHogarithmic variation can exactly reproduce the logarithmic
~10'® GeV, in theories where the standard model fields rerunning of couplings seemingly far above ttmew very low
sides on a 3-brane in large-volume extra dimensifijs ~ String scale. This phenomenon is another example of the
Lowering these fundamental scales close to the weak scafulk reproducing the physics of the desert, this time with
pro\/ides a novel approach to the hierarchy pr0b|em, and imquantitative precision. Of course, for the “infrared running”
plies that the structure of quantum gravity may be experiicture to work after SUSY breaking, we must assume that
mentally accessible in the near future. SUSY is not broken in the bulk but only directly on branes.
While this prospect is very exciting, two important theo- This is the analogue of softly breaking SUSY at low energies
retical issues need to be addressed for this scenario to be sthe usual desert picture.
compelling as the more “standard” picture with high funda- It is interesting that these same ingredients: sets of two
mental scale, where the hierarchy is stabilized by supersynifansverse dimensions with SUSY in the bulk, only broken
metry (SUSY) dynamically broken at scales far beneath theon branes, can also be used to address the issue of large
String scale. First, what generates the |arge volume of théa.diUS stabilization. Indeed, in the SUSY Iimit, there is no
extra dimensions? And second, what about the successf@ulk cosmological constant and there is no potential for the
picture of logarithmic gauge coupling unification in the su-radii; they can be set at any size. The crucial point is that

persymmetric standard model? The success is so striking th@ficé SUSY is broken on branes with a characteristic scale
we do not wish to think it is an accident. A4, locality guarantees that no bulk cosmological constant is

One way of generating a large volume for the extra di-induced, and therefore the effective potential for the radius
mensions involves considering a highly curved bulk. Indeednoduli does not develop any positive power-law dependence
Randall and Sundrum have proposed a scenario where i@ the volume of the transverse dimensions. For two trans-
bulk volume can be exponemja”y |arger than the proper siz&erse dimensions, Iogarithmic variation of Ilght bulk fields
of a single extra dimensiof2]. Goldberger and Wise then can then give rise to a logarithmic potential for the sReof
showed how such a dimension could be stabiliddIn the  the extra dimensions:
original proposal of 1], however, the bulk was taken to be
very nearly flat. Previous attempts at stabilizing large dimen- V(R)~A*f(log(RM,.)) 1)
sions in this framework involved the introduction of large . )
integer numbers in the theory, such as large topologicaivhereM, is the fundamental scale of the theory. This can
chargeg4,5] or large numbers of brands]. In this paper, arlse,.for instance, from the infrared Iogarlthm|c variation of
we instead demonstrate hOW to Stab”'&monentia”ylarge C0up|lng constants on branes Where SUSY is broken or from
dimensions in the framework ¢1.]. inter-brane forcep7,10,11. Since logR) ratherRitself is the

The setup needed to accomplish this meshes nicely witRatural variable, if the potential has parameter©¢f0), a
recent discussions of how the success of logarithmic gaugeinimum can result at lodf) ~ 10, thereby generating an
coupling unification can be maintained with large dimen-exponentially large radius and providing a genuine solution
sions and low string scale. [6—10] it was argued that loga- to the hierarchy problem, on the same footing as technicolor
rithmic gauge coupling unification may be reproduced inor dynamical SUSY breaking.
theories with(sets of two large dimensions. If various light This idea is appealing and general, relying only on sets of
fields propagate in effectively two transverse dimensionsiwo transverse dimensiorifor the logarithmic dependence
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and supersymmetry in the bulko stably guarantee the ab-
sence of a bulk constant which would induce power-law cor- V(r)=—
rections to the effective potential for the radiit makes the

existence of large extra dimensions seem plausible. How- . . . . . .
9 P For a radion which determines the size ofradimensional

ever, th_e discussions {7,10,11 have only pointed out this bulk, the coefficient of the exponential imAn+4), so that
possibility on general grounds but have not presented con- ; . .
n observation of a coefficient correspondingite2 would

crete models realizing the idea. In this paper we remedy thi o .
e a dramatic signal of our mechanism.

situation by presenting an explicit example of a simple . . .
theory with two extra dimensions, which stabilizes exponen-_l_e{} ;glrgr?t—gefracl)rr%u;s(,jtr?art\' ::232; dlsc!)irr%g:otg;?zn 1%0?:00
tially large dimensions. The interaction of branes with mass- - phy =3 TR

less bulk scalar fields induces a logarithmic potential for theWIII be sufficiently large that the range of the radion-

areaA of the transverse dimensions of the form medlated_ force W|II_ be considerably Iess t_han 1 mm, making
an experimental discovery extremely difficult. This conclu-

Gymim
%(Hze-mm. (6)

2 sion is incorrect, for several reasons:
V(A)=—f4+ v—2+w4log(AMi). ) (i) The astrophysical and cosmological limits are derived
log(AMZ from graviton emission and hence constrain the gravitational
scale, which may be somewhat larger than the fundamental
This potential is minimized for an area scale,M, .
o - (i) It is the scale of supersymmetry breaking on the
AM,Zc =gl W 3 branes,A, which determinesng, and this may be less than

M, , reducingmg and making the range of the Yukawa po-
and so only a ratio of/w~6 is needed to generate an areatential larger.
to generate the- (mm)? area needed to solve the hierarchy (i) The radion mass may be reduced from the order of
problem with M, ~ TeV. There is a single fine-tuning magnitude estimateng~A?/Mp, by powers of log, de-
among the parametets, w and f, which are all of order pending on the functiofiwhich appears in the potentiéd),

M, , to set the 4D cosmological constant to zero. as occurs in the theory described in the next section.
(iv) Finally, the cosmological and astrophysical limits on
Il. THE RADION SIGNAL the fundamental scale are unimportant in the case that the

bulk contains more than one 2D subspace, but as discussed
Since the potential for the radii of the extra dimensionsjn Sec. IV, the radions still have massed mm L.

varies only logarithmically, one might worry that the mass of
the radius modulus about the minimum of the potential will
be too light. In fact, the mass turns out to be just in the

millimeter range, and gives an observable deviation from |n this section we present a specific effective theory that

IIl. EXPLICIT MODEL

Newton’s law at sub-millimeter distances. . stabilizes two large extra dimensions, without relying on in-
Conside a 6 dimensional spacetime with metric of the put parameters with particularly large>(L0) ratios. The
form framework for our model is as follows. Supersymmetry in

_ the bulk guarantees a vanishing bulk cosmological constant.
ds?=g,,(x)dx“dx"+R%(X)g(Y)mdy™dy", (4  Embedded in the 6D spacetime is a set of parallel three-
branes that can be regarded as non-supersymmetric defects.
where the geometry df is taken to be fixed at high energy Following closely the example d#], the tensions of these
scales, for example by brane configurations, as illustrated ithree-branes themselves compactify the extra dimensions.
the next section. The low energy 4D effective field theoryWe take the bulk bosonic degrees of freedom to be those of
involves the 4D graviton together with the radion figR{x),  the supergravity multiplet, namely, the gravitgpg and the
which feels the potential of Eq1). After a Weyl rescaling of ~ anti-self-dual 2-formA,g. The 2-formA,g does not couple
the metric to obtain canonical kinetic terms, the radion isto any of the three-branes and can be set to zero in our case.

found to have a mass We can also have a set of massless bulk scalarontained
in hypermultiplets. The relevant part of the bosonic action is
, RV'(R) A* TeV?\? ., then
mR~M—2~ M—zf (|OgR)N Mp| ~mm °-. (5)
P! Pl S=Spuikt Sprane (7)

Hence, an interesting general consequence of such logarith-
mic potentials is that the mass of the radion is naturally inVNere
the millimeter range for supersymmetry breaking and funda-

mental scalesA~M, ~ TeV. This order of magnitude re- :f a2y — | o N2 L.
sult is important for mm range gravity experiments, because Sbulk d'xd y\/_G( M R+Ei (9)™+

the Weyl rescaling introduces a gravitational strength cou- 8
pling of the radion to the standard model fields, so that ra-

dion exchange modifies the Newtonian potential to is the bulk action and
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Sbranes:J’ d4X2i \/_gi( _fi4+§ ﬁa(¢aa¢|a)+ s
)

is the action for the brand44]. Here thefi4 are the brane
tensions and’; are Lagrangians for fieldg; that may reside
on the branes, which can also depend on the value of bull
fields ¢ evaluated on the brang|,. Also, G is the 6D met-

ric, g; is the induced metric on thi¢h brane, and we have set
the bulk cosmological constant to zero.

Note that whileS,,, must be accompanied by all the
extra fermionic terms to have SUSY in the bulk, the brane FIG. 1. The two transverse dimensions in the presence of a
actions do not have to linearly realize SUSY at all, althoughthree-brane with tensioff.. The shaded region is excluded, and the
they may realize SUSY non-linearly. In particular, theretwo borders of the excluded region are to be identified.
need not be any trace of superpartners on the brane where the
standard model fields reside. The only reason we need SUSangle § removed. Adding a second brane removes a further
in the bulk is to protect against the generation of a bulkportion of the Cartesian plane. In fact, ﬁf/4M“+f‘2‘/4M4
cosmological constant,,, which would make a contribu- >24, then the excluded region surrounds the allowed por-
tion ~ Ay KA to the potential for the area modulus and spoiltion, as in Fig. 2. In this case Einstein’s equations have a
our picture with logarithmic potentials. static solution that features a compact space with spherical

Our model has three 3-branes, two of which couple totopology, provided that a third brane of tensionfs
scalarsp and¢'. The dynamics on the brane impose bound-=167M*— {—f3 is placed at the intersecting lines of ex-

ary conditions on the bulk scalar fields. In particular, imaginecjusion. In general, a set of three-branes has a static solution
that the the brane defects create brane-localized potentials fgjith spherical topology if

#, which wanté to take on the value? on one brane and;
on the other. This will lead to a repulsive contribution to the fi
potential for the area. The same two branes will be taken to > VTVERREL (13
have equal and opposite magnetic charges for the sg¢dlar '
. . X ; , ;
il 16ad 10 an attracive potential. The baiance benweer™2 iS: (he defct angles must add up to-4
P ) If a set of branes compactifies the space in this manner,

these contributions provides a specific realization of how[hen the 4D effective theory is given by including in the

competing dependences on Rgan lead to an exponentially action of Eq.(10) the massless excitations about the classical
large radius without very large or small input parameters.

We begin by reviewing how the brane tensions can comMetric. Thus we replace,,—g,,,(x) and allowgp(y) to
pactify the two extra dimensiori&4,15. Suppose we ignore fluctuate abouts,,, in the tylk. The induced metric on a
for the time being the branes’ couplings to bulk scalars, ingiven brane will differ fromg,,,(x) by terms involving the
which case the relevant terms in the action in the low-energy
limit are

fi1Em’)

Sz—fd“xz \/—gifi“—ZM“f d*xd?y - GR.
(10)

For the case in which only a single brane is present, the statit
solution to Einstein’s equations is

ds’= ﬂuvdx#dxy"'gmn(y)dymdyna (11

wheregG,,, is the 2D Euclidean metric everywhere but at the
position of the three-brane, where it has a conical singularity

with deficit angle
5,/2
f4

o= W (12) b

FIG. 2. A compact space can be obtained given three branes
As expected, this is in exact correspondence with the metrighose corresponding deficit anglésadd up to 4r. Identifications
around point masses i2+1)-dimensional gravityf15]. AS  to be made are indicated by the hatch marks. Note that in contrast to
shown in Fig. 1, the spatial dimensions transverse to thene brane in Fig. 1, branes 1 and 3 in this figure have tensions larger
brane are represented by the Cartesian plane with a wedge tfn 47M*,
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FIG. 5. The simplified boundary-value problem fér

FIG. 3. The boundary conditions os. Identifications to be Shape” of the extra dimensions is fixed by the branes’ defi-
made are indicated by the hatch marks. cit angles or, equivalently, by their tensions. However, the
size of the extra dimensions,

fields associated with the brane separations, which we tem-
porarily ignore. The curvature breaks_up into two pieR&S A= J’ dZy\/Q (16)

andR®), the Ricci scalars built out of,,(x) and Gm(y),
respectively. Then, using the Gauss-Bonnet Theorem foI

) 5 completely undetermined. Moreover, the scalar associated
spherical topology,

with fluctuations ofA, the radion, is massless and mediates
phenomenologically unacceptable long-range forces. To sta-
bilize the volume of the extra dimensions and give the radion
2 (2)= —
f d?yVGR 8, (14 a mass, we couple bulk scalar fields to two of the branes,
which, for simplicity, we assume have equal tensiérishe

along with the fact thaR has noy dependence, we can scalar profiles will generate a potentM),(A) that is mini-

integrate over the extra dimensions to obtain mized for a certain valué of the volume of the compacti-
fied space. Adding the scalar action to Etp) yields a total
potential
s:—f d“xx/—E[E fi—16mM*
1
V(A)=V,(A)+ X fi—16aM*. (17)
I
+2(Jd2y@)M4R(4>} (15)
The effective cosmological constant
In this action it is explicit that adjusting the deficit angles to Aets=V(A) (18
add up to 4r is equivalent to tuning the 4D cosmological
constant to zero. can then be made to vanish by a single fine tuning of funda-

To develop our specific model we consider the case ofental parameters. The backreaction on the spatial geometry
three three-branes on a space of spherical topology. Then thigat is induced by the scalars is discussed below.

We work with two massless bulk scalarg, and ¢’,
which induce repulsive and attractive forces, respectively. In
treating the scalar fields, we will for simplicity ignore their
backreaction on the metric and assume that they propagate in
the flat background with conical singularities set up by the
branes. It is easy to see that the effect of backreaction can be
made parametrically small if the scalar energy scales are
somewhat smaller tha , , and none of our conclusions are
affected.

Suppose that on branes 1 and 3 of Fig¢3is forced to
take on unequal valuas, andv3, respectively. This can for
instance be enforced if the non-SUSY brane defects generate
a potential for¢ on the branes, analogous to what was con-

FIG. 4. A boundary-value problem that determingsHeree, . . - :
refers to the unit vector normal to the relevant boundary, and ”ne§|dered in(3]. Becausap is massless in the bulk, we are 2free

of V¢ are shown dashed. The solution for the full space of Fig. 3 isl0 Perform a constant field redefinition and takg= —v3
given by first evenly reflecting across the bottom horizontal line,=v?. We account for the brane thicknesses by enforcing
and then performing an odd reflectighe., ¢— — ¢) across the these values forp to hold along arcs of finite radius,
vertical line wherep=0. ~1/M, , and not just at individual points. The field configu-
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VO =mwin)e, VO =-(wr)e,

FIG. 6. The configuration of’. Each brane carries a topological charge, which generates an attractive potential.

ration in the bulk is then given by solving Laplace’s equation b~ P+ Ow2. (22)
with these boundary conditions.

Keeping in mind the identifications to be made between, 4o 16 pe able to solve Laplace’s equation on a compact

the various edges of the space in Fig. 3, the symmetry of thg .

” i AR pace, the branes must carry equal and opposite charges,
problem tells us that the field configuration is found by solv-_ - . : :
ing the problem depicted in Fig. 4, and then reflecting thaWhICh we take to correspond to=x1. The configuration

. . S 2 . . Tfor ¢' is then found by solving Laplace’'s equation with
solution appropriately. For simplicity we consider instead aV¢’=(+w2/r )& on the branegthe gradient runs clock-
slightly different problem which, unlike that shown in Fig. 4, wise on_one b’;aﬁle and counterclockwise on the atfétis
is trivially solved. As indicated in Fig. 5, we take the bound-

ary at whiché=0 holds to be an arc of radit rather than sets up the the vortex-antivortex field configuration &'

a straight line, so that the solution in this region is immedi-Shown In Fig. 6. For simplicity, in order to calculate the
9 ' 9 energy in this configuration we once again work on a pie
ately found to be

slice (Fig. 7) rather than a triangle, and it is easily proved
that this modification does not affect the essential scaling of

— ZM 19 the energy with the area. With this simplification the solution
v , (19
log(R/r ) is
wherer measures the distance from tfrissing left vertex R
of the pie slice. The total energy of this configuration is ¢'=w6+C, (23
R (Vg¢)? vt where6 is the angular coordinate ar@lis an undetermined,
4] dﬁfr drr > eolog(R/r*) , (20 jrrelevant constant. The energy of the configuration is then

found to be

where 6,=2m— f4/4M*. Thus, ¢ sets up a 1/I0B repulsive
potential. It is not difficult to prove using simple variational R (Vg')?
arguments that the same conclusion is reached when one 4f daf, drr

solves the “real” problem involving the triangle rather than *
the pie slice.

Now suppose that the same two branes that couplg to
carry topological charge under a derivatively coupled field
¢'. That is, under any closed loop containing a brane we
have

= gowlog(R/T, ), (24)

2

J dl- V' =ngow?, (22) vh =mwin)e,

wherew is a fixed parameter with unit mass dimension and FIG. 7. The simplified boundary-value problem fof . Heree,
is an integer. Non-zero charge#0 is only possible if we ande are the unit vectors normal and parallel, respectively, to the
make the identification relevant boundary.
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so we have found an attractive potential that will balance thelimensional subspaces where massless fields can reside is
repulsive contribution of Eq20). From Eqs.(20) and(24), sufficient to generate logarithms. Take the case of four extra
we see that the full potential is dimensions. Imagine one set of parallel 5-branes filling out
A the 12345 directions and another set filling out the 12367
_ v 4 4 4 directions. They will intersect on 3-dimensional spaces
V(R)=6 log(R/r ) 0w log(RIT, )+ E, fi' = 16mM", where 3-branes can reside. These 3-branes can act as sources
(25) for fields residing on each of the 5-branes, which effectively
propagate in two sets of orthogonal 2D subspaces. Once

which is minimized when again, bulk SUSY can guarantee a vanishing “cosmological
_ 212 constant” for each of the 2D subspaces. The SUSY breaking
R=R=r e" ™", (26)  at the intersections can set up logarithmically varying field

) ) ) ) configurations on the 5-branes that lead to a potential of the
Even a mild ratiov/w~6 yields an exponentially large ra- ¢4 V(logA,,logA,) for the areasA;,A, of the 2D sub-
dius R~ 10, . The effective cosmological constant, spaces. Minimizing the potential, each radius can be expo-
nentially large, and the ratio of the radii will also be expo-
Ae”:V(ﬁ) _ E fi4_ 167M4+ 2 650 2W2, (27) nential, but the value d¥1 5, will require the Iarge;t radiu§ to
i be very much smaller than 1 mm. It would be interesting to
. _ . build an explicit model along these lines.
can be made to vanish by a single tuninguofw, and the Even without an explicit model, however, we can see that
brane tensions. o the scale of the radion masses is unchanged. The logarithmic
Note that we can now see explicitly that the presence ofotential still givesmgi~A2%/Mp~mm~?%, for A~1 TeV.
the non-supersymmetric brane defects cannot generate a bullter Weyl rescaling, each radion couples with gravitational

cosmological constant. The presence of the branes leads &rength to the standard model and should show up in the
logarithmic variation for the bulk fields, which does indeed syp-millimeter measurements of gravity.

break SUSY and generate a potential for the area modulus.
However, since anyonstantfield configuration preserves
SUSY, the SUSY breaking in the bulk must be proportional
to the gradientof the bulk scalar fields, which drops ag 1/ There is an alternative way in which theories with two
with distancer away from the branes. Therefore, it is impos- transverse dimensions can generate effectively exponentially
sible to induce a cosmological constant, since this wouldarge radii. The logarithmic variation of bulk fields can force
amount to an constant amount of SUSY breaking throughouthe theory into a strong-coupling region exponentially far
the bulk. In fact, a very simple power-counting argumentaway from some branes, and interesting physics can happen
shows that all corrections to the energy are logarithmic functhere. This is the bulk analogue of the dimensional transmu-
tions of the area. tation of non-Abelian gauge theories, which generate scales
Given a specific form for the logarithmic potenti&5),  exponentially far beneath the fundamental scale and trigger
we can work out the mass of the area modulus, which is interesting physics, such as e.g. dynamical supersymmetry
. breaking[10]. It is tempting to speculate that such strong-
T2 R2V"(R) _ vt 28) coupling behavior.might effectively compactify the trans-
R M%n Méllog3(§/r*)' verse two dimensions. Recently, Cohen and Kaplan have
found an explicit example realizing this idgE6]. They con-
i i B 312 sider a massless scalar field with non-trivial winding in two
Interestingly,m is suppressed bjog(R/r ) ]”* compared transverse dimensions: a global cosmic string. SincéJ the total

to the naive estimatMi/M p|. Hence even foo~M, as : : L . .

large as 100 TeV, the range of the radion-mediated YukawSneray of the string diverges logarithmically with _d|stance
o ' . ; away from the core of the vortex, we expect gravity to be-

potential is 0.1 mm—accessible to planned experiments.

come strongly coupled at exponentially large distances. In-
deed, Cohen and Kaplan find that the metric develops a sin-
IV. FOUR AND SIX EXTRA DIMENSIONS gularity at a finite proper distance from the vortex core, but

Since the logarithmic form of the propagator occurs only@rgue that the singularity is mild enough to be rendered
in two dimensions, one may worry that the ideas in thisharmless. What they are left with is a non-compact trans-

paper are only applicable to the case of two large dimenYe'Se space, with gravity trapped to an exponentially large

sions. This is the case most severely constrained by astr6f®a:

physical and cosmological constraifts12,13, which de- _ 4a

mand the 6D Planck scalsl, >50 TeV, seemingly too AMZ =eM/Tx (29
large to truly solve the hierarchy problem. One possibility is

that the true Planck scale of the ten dimensional theory couldvhere f . is the decay constant of the string. A ratio of
be ~ O(TeV), and the 6D Planck scale 650 TeV could M, /f_~2.5is all that is needed to solve the hierarchy prob-
arise if the remaining four dimensions are a reasonable factdem in this case. This model is a natural implementation of
O(10) bigger than a (TeV)™. But we do not have to resort the ideas of 1], to solve the hierarchy problem with large
to this option. As pointed out ifi7,10], the presence of two- dimensions, together with the idea of trapping gravity in

V. OTHER IDEAS
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non-compact extra dimensions as[itv]. Unlike [2], how- A remarkable feature of theories with large extra dimen-
ever, the bulk geometry is not highly curved everywhere, busions is that the phenomena that used to be understood inside
only near the singularity. Thus, gravity has essentially beeithe energy desert can also be interpreted as arising from the
trapped to a flat “box” of aredA in the transverse dimen- space in the extra dimensions. Certainly all the qualitative
sions, and the phenomenology of this scenario is essentialljuccesses of the old desert, such as explaining neutrino
the same as that §1]. An attractive aspect of this scenario is masses and proton stability, can be exactly reproduced with
that, unlike both our proposal in this paper and thosg],  the help of the bul1,19,20,18, in such a way that e.g. the

no modulus needs to be stabilized in order to solve the hiersuccess of the seesaw mechanism in explaining the scale of
archy problem. This also points to a phenomenological difneutrino masses is not an accident. As we have mentioned,
ference between our proposal and thaf b®]. While both  there is even hope that the one quantitative triumph of the
schemes generate an exponentially large area for two transupersymmetric desert, logarithmic gauge coupling unifica-
verse dimensions, there is no light radion mode[16] tion, can be exactly reproduced so that the old success is

whereas we have a light radion with1 mm ! mass. again not accidental. We find it encouraging that it is pre-
cisely the same sorts of models—with two dimensional sub-
VI. CONCLUSIONS spaces, SUSY in the bulk broken only on branes—which

_ N allow us to generate exponentially large dimensions. Hope-
In this paper, we have shown how to stabilize exponenfy|ly, in the next decade experiments will tell us whether any

tially large compact dimensions, providing a true solution togf these ideas are relevant to describing the real world.
the hierarchy problem along the lines|df] which is on the

same footing as technicolor and Qynam|cal SUSY brgakmg. ACKNOWLEDGMENTS
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