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Solving the hierarchy problem with exponentially large dimensions
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In theories with~sets of! two large extra dimensions and supersymmetry in the bulk, the presence of
non-supersymmetric brane defects naturally induces a logarithmic potential for the volume of the transverse
dimensions. Since the logarithm of the volume rather than the volume itself is the natural variable, parameters
of O~10! in the potential can generate an exponentially large size for the extra dimensions. This provides a true
solution to the hierarchy problem, on the same footing as technicolor or dynamical supersymmetry breaking.
The area moduli have a Compton wavelength of about a millimeter and mediate Yukawa interactions with
gravitational strength. We present a simple explicit example of this idea which generates two exponentially
large dimensions. In this model, the area modulus mass is in the millimeter range even for six dimensional
Planck scales as high as 100 TeV.

PACS number~s!: 11.10.Kk, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

It has recently been realized that the fundamental sc
of gravitational and string physics can be far bene
;1018 GeV, in theories where the standard model fields
sides on a 3-brane in large-volume extra dimensions@1#.
Lowering these fundamental scales close to the weak s
provides a novel approach to the hierarchy problem, and
plies that the structure of quantum gravity may be exp
mentally accessible in the near future.

While this prospect is very exciting, two important the
retical issues need to be addressed for this scenario to b
compelling as the more ‘‘standard’’ picture with high fund
mental scale, where the hierarchy is stabilized by supers
metry ~SUSY! dynamically broken at scales far beneath t
string scale. First, what generates the large volume of
extra dimensions? And second, what about the succes
picture of logarithmic gauge coupling unification in the s
persymmetric standard model? The success is so striking
we do not wish to think it is an accident.

One way of generating a large volume for the extra
mensions involves considering a highly curved bulk. Inde
Randall and Sundrum have proposed a scenario where
bulk volume can be exponentially larger than the proper s
of a single extra dimension@2#. Goldberger and Wise the
showed how such a dimension could be stabilized@3#. In the
original proposal of@1#, however, the bulk was taken to b
very nearly flat. Previous attempts at stabilizing large dim
sions in this framework involved the introduction of larg
integer numbers in the theory, such as large topolog
charges@4,5# or large numbers of branes@5#. In this paper,
we instead demonstrate how to stabilizeexponentiallylarge
dimensions in the framework of@1#.

The setup needed to accomplish this meshes nicely
recent discussions of how the success of logarithmic ga
coupling unification can be maintained with large dime
sions and low string scale. In@6–10# it was argued that loga
rithmic gauge coupling unification may be reproduced
theories with~sets of! two large dimensions. If various ligh
fields propagate in effectively two transverse dimensio
0556-2821/2000/62~10!/105002~7!/$15.00 62 1050
es
h
-

le
-

i-

as

-

e
ful

at

-
d
he
e

-

al

th
ge
-

s,

then the logarithmic Green’s functions for these fields c
give rise to logarithmic variation of the parameters on o
brane universe; in cases with sufficient supersymmetries,
logarithmic variation can exactly reproduce the logarithm
running of couplings seemingly far above the~now very low!
string scale. This phenomenon is another example of
bulk reproducing the physics of the desert, this time w
quantitative precision. Of course, for the ‘‘infrared running
picture to work after SUSY breaking, we must assume t
SUSY is not broken in the bulk but only directly on brane
This is the analogue of softly breaking SUSY at low energ
in the usual desert picture.

It is interesting that these same ingredients: sets of
transverse dimensions with SUSY in the bulk, only brok
on branes, can also be used to address the issue of
radius stabilization. Indeed, in the SUSY limit, there is
bulk cosmological constant and there is no potential for
radii; they can be set at any size. The crucial point is t
once SUSY is broken on branes with a characteristic sc
L4, locality guarantees that no bulk cosmological constan
induced, and therefore the effective potential for the rad
moduli does not develop any positive power-law depende
on the volume of the transverse dimensions. For two tra
verse dimensions, logarithmic variation of light bulk field
can then give rise to a logarithmic potential for the size,R, of
the extra dimensions:

V~R!;L4f „log~RM* !… ~1!

whereM* is the fundamental scale of the theory. This c
arise, for instance, from the infrared logarithmic variation
coupling constants on branes where SUSY is broken or fr
inter-brane forces@7,10,11#. Since log(R) ratherR itself is the
natural variable, if the potential has parameters ofO(10), a
minimum can result at log(R̄);10, thereby generating a
exponentially large radius and providing a genuine solut
to the hierarchy problem, on the same footing as technico
or dynamical SUSY breaking.

This idea is appealing and general, relying only on sets
two transverse dimensions~for the logarithmic dependence!
©2000 The American Physical Society02-1



-
or

ow

o
th
le

en
ss
th

ea
hy

n
o
il

he
om

e

y
d
ry

i

ri
i

da
-
us
ou
ra

n-
ing
u-

ed
nal
ntal

he
n
o-

of

n
the

ssed

hat
in-

in
ant.
ee-
fects.

ons.
e of

ase.

is

ARKANI-HAMED, HALL, SMITH, AND WEINER PHYSICAL REVIEW D 62 105002
and supersymmetry in the bulk~to stably guarantee the ab
sence of a bulk constant which would induce power-law c
rections to the effective potential for the radii!. It makes the
existence of large extra dimensions seem plausible. H
ever, the discussions in@7,10,11# have only pointed out this
possibility on general grounds but have not presented c
crete models realizing the idea. In this paper we remedy
situation by presenting an explicit example of a simp
theory with two extra dimensions, which stabilizes expon
tially large dimensions. The interaction of branes with ma
less bulk scalar fields induces a logarithmic potential for
areaA of the transverse dimensions of the form

V~A!52 f 41
v4

log~AM
*
2 !

1w4log~AM
*
2 !. ~2!

This potential is minimized for an area

ĀM
*
2 5ev2/w2

~3!

and so only a ratio ofv/w;6 is needed to generate an ar
to generate the; (mm)2 area needed to solve the hierarc
problem with M* ; TeV. There is a single fine-tuning
among the parametersv, w and f, which are all of order
M* , to set the 4D cosmological constant to zero.

II. THE RADION SIGNAL

Since the potential for the radii of the extra dimensio
varies only logarithmically, one might worry that the mass
the radius modulus about the minimum of the potential w
be too light. In fact, the mass turns out to be just in t
millimeter range, and gives an observable deviation fr
Newton’s law at sub-millimeter distances.

Consider a 6 dimensional spacetime with metric of th
form

ds25gmn~x!dxmdxn1R2~x!g̃~y!mndymdyn, ~4!

where the geometry ofg̃ is taken to be fixed at high energ
scales, for example by brane configurations, as illustrate
the next section. The low energy 4D effective field theo
involves the 4D graviton together with the radion field,R(x),
which feels the potential of Eq.~1!. After a Weyl rescaling of
the metric to obtain canonical kinetic terms, the radion
found to have a mass

mR
2;

R2V9~R!

M Pl
2

;
L4

M Pl
2

f 9~ logR!;S TeV2

M Pl
D 2

;mm22. ~5!

Hence, an interesting general consequence of such loga
mic potentials is that the mass of the radion is naturally
the millimeter range for supersymmetry breaking and fun
mental scales,L;M* ; TeV. This order of magnitude re
sult is important for mm range gravity experiments, beca
the Weyl rescaling introduces a gravitational strength c
pling of the radion to the standard model fields, so that
dion exchange modifies the Newtonian potential to
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V~r !52
GNm1m2

r
~112e2mRr !. ~6!

For a radion which determines the size of ann dimensional
bulk, the coefficient of the exponential is 4n/(n14), so that
an observation of a coefficient corresponding ton52 would
be a dramatic signal of our mechanism.

It might be argued that, sinceM* is larger than 50–100
TeV for n52 from astrophysics and cosmology@12,13#, mR
will be sufficiently large that the range of the radio
mediated force will be considerably less than 1 mm, mak
an experimental discovery extremely difficult. This concl
sion is incorrect, for several reasons:

~i! The astrophysical and cosmological limits are deriv
from graviton emission and hence constrain the gravitatio
scale, which may be somewhat larger than the fundame
scale,M* .

~ii ! It is the scale of supersymmetry breaking on t
branes,L, which determinesmR , and this may be less tha
M* , reducingmR and making the range of the Yukawa p
tential larger.

~iii ! The radion mass may be reduced from the order
magnitude estimatemR'L2/M Pl by powers of logR, de-
pending on the functionf which appears in the potential~1!,
as occurs in the theory described in the next section.

~iv! Finally, the cosmological and astrophysical limits o
the fundamental scale are unimportant in the case that
bulk contains more than one 2D subspace, but as discu
in Sec. IV, the radions still have masses;1 mm21.

III. EXPLICIT MODEL

In this section we present a specific effective theory t
stabilizes two large extra dimensions, without relying on
put parameters with particularly large (.10) ratios. The
framework for our model is as follows. Supersymmetry
the bulk guarantees a vanishing bulk cosmological const
Embedded in the 6D spacetime is a set of parallel thr
branes that can be regarded as non-supersymmetric de
Following closely the example of@4#, the tensions of these
three-branes themselves compactify the extra dimensi
We take the bulk bosonic degrees of freedom to be thos
the supergravity multiplet, namely, the gravitongAB and the
anti-self-dual 2-formAAB . The 2-formAAB does not couple
to any of the three-branes and can be set to zero in our c
We can also have a set of massless bulk scalarsf i contained
in hypermultiplets. The relevant part of the bosonic action
then

S5Sbulk1Sbrane ~7!

where

Sbulk5E d4xd2yA2GS 22M4R1(
i

~]f i !
21••• D

~8!

is the bulk action and
2-2
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SOLVING THE HIERARCHY PROBLEM WITH . . . PHYSICAL REVIEW D62 105002
Sbranes5E d4x(
i

A2gi S 2 f i
41(

a
La~ca ,fua!1••• D

~9!

is the action for the branes@14#. Here thef i
4 are the brane

tensions andLi are Lagrangians for fieldsc i that may reside
on the branes, which can also depend on the value of b
fieldsf evaluated on the branefua . Also, G is the 6D met-
ric, gi is the induced metric on thei th brane, and we have se
the bulk cosmological constant to zero.

Note that whileSbulk must be accompanied by all th
extra fermionic terms to have SUSY in the bulk, the bra
actions do not have to linearly realize SUSY at all, althou
they may realize SUSY non-linearly. In particular, the
need not be any trace of superpartners on the brane wher
standard model fields reside. The only reason we need SU
in the bulk is to protect against the generation of a b
cosmological constantLbulk , which would make a contribu
tion ;LbulkA to the potential for the area modulus and sp
our picture with logarithmic potentials.

Our model has three 3-branes, two of which couple
scalarsf andf8. The dynamics on the brane impose boun
ary conditions on the bulk scalar fields. In particular, imag
that the the brane defects create brane-localized potential
f, which wantf to take on the valuev1

2 on one brane andv2
2

on the other. This will lead to a repulsive contribution to t
potential for the area. The same two branes will be taken
have equal and opposite magnetic charges for the scalaf8,
setting up a vortex-antivortex configuration forf8 which
will lead to an attractive potential. The balance betwe
these contributions provides a specific realization of h
competing dependences on logR can lead to an exponentiall
large radius without very large or small input parameters

We begin by reviewing how the brane tensions can co
pactify the two extra dimensions@14,15#. Suppose we ignore
for the time being the branes’ couplings to bulk scalars,
which case the relevant terms in the action in the low-ene
limit are

S52E d4x(
i

A2gi f i
422M4E d4xd2yA2GR.

~10!

For the case in which only a single brane is present, the s
solution to Einstein’s equations is

ds25hmndxmdxn1Gmn~y!dymdyn, ~11!

whereGmn is the 2D Euclidean metric everywhere but at t
position of the three-brane, where it has a conical singula
with deficit angle

d5
f 4

4M4 . ~12!

As expected, this is in exact correspondence with the me
around point masses in~211!-dimensional gravity@15#. As
shown in Fig. 1, the spatial dimensions transverse to
brane are represented by the Cartesian plane with a wed
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angled removed. Adding a second brane removes a furt
portion of the Cartesian plane. In fact, iff 1

4/4M41 f 2
4/4M4

.2p, then the excluded region surrounds the allowed p
tion, as in Fig. 2. In this case Einstein’s equations hav
static solution that features a compact space with sphe
topology, provided that a third brane of tensionf 3

4

516pM42 f 1
42 f 2

4 is placed at the intersecting lines of e
clusion. In general, a set of three-branes has a static solu
with spherical topology if

(
i

f i
4

4M4 54p; ~13!

that is, the deficit angles must add up to 4p.
If a set of branes compactifies the space in this man

then the 4D effective theory is given by including in th
action of Eq.~10! the massless excitations about the class
metric. Thus we replacehmn→ḡmn(x) and allowGmn(y) to
fluctuate aboutdmn in the bulk. The induced metric on
given brane will differ fromḡmn(x) by terms involving the

FIG. 1. The two transverse dimensions in the presence o
three-brane with tensionf 4. The shaded region is excluded, and t
two borders of the excluded region are to be identified.

FIG. 2. A compact space can be obtained given three bra
whose corresponding deficit anglesd i add up to 4p. Identifications
to be made are indicated by the hatch marks. Note that in contra
the brane in Fig. 1, branes 1 and 3 in this figure have tensions la
than 4pM4.
2-3
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ARKANI-HAMED, HALL, SMITH, AND WEINER PHYSICAL REVIEW D 62 105002
fields associated with the brane separations, which we t
porarily ignore. The curvature breaks up into two piecesR(4)

and R(2), the Ricci scalars built out ofḡmn(x) andGmn(y),
respectively. Then, using the Gauss-Bonnet Theorem
spherical topology,

E d2yAGR(2)528p, ~14!

along with the fact thatR(4) has noy dependence, we ca
integrate over the extra dimensions to obtain

S52E d4xA2ḡF(
i

f i
4216pM4

12S E d2yAGD M4R(4)G . ~15!

In this action it is explicit that adjusting the deficit angles
add up to 4p is equivalent to tuning the 4D cosmologic
constant to zero.

To develop our specific model we consider the case
three three-branes on a space of spherical topology. Then

FIG. 3. The boundary conditions onf. Identifications to be
made are indicated by the hatch marks.

FIG. 4. A boundary-value problem that determinesf. Heree'

refers to the unit vector normal to the relevant boundary, and li
of ¹f are shown dashed. The solution for the full space of Fig.
given by first evenly reflecting across the bottom horizontal li
and then performing an odd reflection~i.e., f→2f) across the
vertical line wheref50.
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‘‘shape’’ of the extra dimensions is fixed by the branes’ de
cit angles or, equivalently, by their tensions. However,
size of the extra dimensions,

A5E d2yAG, ~16!

is completely undetermined. Moreover, the scalar associ
with fluctuations ofA, the radion, is massless and media
phenomenologically unacceptable long-range forces. To
bilize the volume of the extra dimensions and give the rad
a mass, we couple bulk scalar fields to two of the bran
which, for simplicity, we assume have equal tensionsf. The
scalar profiles will generate a potentialVf(A) that is mini-
mized for a certain valueĀ of the volume of the compacti
fied space. Adding the scalar action to Eq.~15! yields a total
potential

V~A!5Vf~A!1(
i

f i
4216pM4. ~17!

The effective cosmological constant

Le f f5V~Ā! ~18!

can then be made to vanish by a single fine tuning of fun
mental parameters. The backreaction on the spatial geom
that is induced by the scalars is discussed below.

We work with two massless bulk scalars,f and f8,
which induce repulsive and attractive forces, respectively
treating the scalar fields, we will for simplicity ignore the
backreaction on the metric and assume that they propaga
the flat background with conical singularities set up by t
branes. It is easy to see that the effect of backreaction ca
made parametrically small if the scalar energy scales
somewhat smaller thanM* , and none of our conclusions ar
affected.

Suppose that on branes 1 and 3 of Fig. 3,f is forced to
take on unequal valuesv1

2 andv3
2, respectively. This can for

instance be enforced if the non-SUSY brane defects gene
a potential forf on the branes, analogous to what was co
sidered in@3#. Becausef is massless in the bulk, we are fre
to perform a constant field redefinition and takev1

252v3
2

[v2. We account for the brane thicknesses by enforc
these values forf to hold along arcs of finite radiusr *
;1/M* , and not just at individual points. The field configu

s
s
,

FIG. 5. The simplified boundary-value problem forf.
2-4
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FIG. 6. The configuration off8. Each brane carries a topological charge, which generates an attractive potential.
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the
ration in the bulk is then given by solving Laplace’s equati
with these boundary conditions.

Keeping in mind the identifications to be made betwe
the various edges of the space in Fig. 3, the symmetry of
problem tells us that the field configuration is found by so
ing the problem depicted in Fig. 4, and then reflecting t
solution appropriately. For simplicity we consider instead
slightly different problem which, unlike that shown in Fig.
is trivially solved. As indicated in Fig. 5, we take the boun
ary at whichf50 holds to be an arc of radiusR, rather than
a straight line, so that the solution in this region is imme
ately found to be

f5v2
log~R/r !

log~R/r * !
, ~19!

wherer measures the distance from the~missing! left vertex
of the pie slice. The total energy of this configuration is

4E duE
r
*

R

drr
~“f!2

2
5u0

v4

log~R/r * !
, ~20!

whereu052p2 f 4/4M4. Thus,f sets up a 1/logR repulsive
potential. It is not difficult to prove using simple variation
arguments that the same conclusion is reached when
solves the ‘‘real’’ problem involving the triangle rather tha
the pie slice.

Now suppose that the same two branes that couple tf
carry topological charge under a derivatively coupled fi
f8. That is, under any closed loop containing a brane
have

E dl•“f85nu0w2, ~21!

wherew is a fixed parameter with unit mass dimension ann
is an integer. Non-zero chargenÞ0 is only possible if we
make the identification
10500
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f;f1u0w2. ~22!

In order to be able to solve Laplace’s equation on a comp
space, the branes must carry equal and opposite cha
which we take to correspond ton561. The configuration
for f8 is then found by solving Laplace’s equation wi
“f85(6w2/r * )ei on the branes~the gradient runs clock-
wise on one brane and counterclockwise on the other!. This
sets up the the vortex-antivortex field configuration forf8
shown in Fig. 6. For simplicity, in order to calculate th
energy in this configuration we once again work on a
slice ~Fig. 7! rather than a triangle, and it is easily prove
that this modification does not affect the essential scaling
the energy with the area. With this simplification the soluti
is

f85w2u1C, ~23!

whereu is the angular coordinate andC is an undetermined
irrelevant constant. The energy of the configuration is th
found to be

4E duE
r
*

R

drr
~“f8!2

2
5u0w4log~R/r * !, ~24!

FIG. 7. The simplified boundary-value problem forf8 . Heree�
andei are the unit vectors normal and parallel, respectively, to
relevant boundary.
2-5
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ARKANI-HAMED, HALL, SMITH, AND WEINER PHYSICAL REVIEW D 62 105002
so we have found an attractive potential that will balance
repulsive contribution of Eq.~20!. From Eqs.~20! and ~24!,
we see that the full potential is

V~R!5u0

v4

log~R/r * !
1u0w4log~R/r * !1(

i
f i

4216pM4,

~25!

which is minimized when

R5R̄5r * ev2/w2
. ~26!

Even a mild ratiov/w;6 yields an exponentially large ra
dius R̄;1016r * . The effective cosmological constant,

Le f f5V~R̄!5(
i

f i
4216pM412u0v2w2, ~27!

can be made to vanish by a single tuning ofv, w, and the
brane tensions.

Note that we can now see explicitly that the presence
the non-supersymmetric brane defects cannot generate a
cosmological constant. The presence of the branes lead
logarithmic variation for the bulk fields, which does inde
break SUSY and generate a potential for the area modu
However, since anyconstantfield configuration preserve
SUSY, the SUSY breaking in the bulk must be proportion
to thegradientof the bulk scalar fields, which drops as 1r
with distancer away from the branes. Therefore, it is impo
sible to induce a cosmological constant, since this wo
amount to an constant amount of SUSY breaking through
the bulk. In fact, a very simple power-counting argume
shows that all corrections to the energy are logarithmic fu
tions of the area.

Given a specific form for the logarithmic potential~25!,
we can work out the mass of the area modulus, which is

mR
2;

R̄2V9~R̄!

M Pl
2

;
v4

M Pl
2 log3~R̄/r * !

. ~28!

Interestingly,mR is suppressed by@ log(R̄/r * )#3/2 compared
to the naive estimateM

*
2 /M Pl . Hence even forv;M* as

large as 100 TeV, the range of the radion-mediated Yuka
potential is 0.1 mm—accessible to planned experiments.

IV. FOUR AND SIX EXTRA DIMENSIONS

Since the logarithmic form of the propagator occurs o
in two dimensions, one may worry that the ideas in t
paper are only applicable to the case of two large dim
sions. This is the case most severely constrained by a
physical and cosmological constraints@1,12,13#, which de-
mand the 6D Planck scaleM* .50 TeV, seemingly too
large to truly solve the hierarchy problem. One possibility
that the true Planck scale of the ten dimensional theory co
be; O(TeV), and the 6D Planck scale of;50 TeV could
arise if the remaining four dimensions are a reasonable fa
O(10) bigger than a (TeV)21. But we do not have to resor
to this option. As pointed out in@7,10#, the presence of two
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dimensional subspaces where massless fields can resi
sufficient to generate logarithms. Take the case of four e
dimensions. Imagine one set of parallel 5-branes filling
the 12345 directions and another set filling out the 123
directions. They will intersect on 3-dimensional spac
where 3-branes can reside. These 3-branes can act as so
for fields residing on each of the 5-branes, which effectiv
propagate in two sets of orthogonal 2D subspaces. O
again, bulk SUSY can guarantee a vanishing ‘‘cosmologi
constant’’ for each of the 2D subspaces. The SUSY break
at the intersections can set up logarithmically varying fie
configurations on the 5-branes that lead to a potential of
form V(logA1 ,logA2) for the areasA1 ,A2 of the 2D sub-
spaces. Minimizing the potential, each radius can be ex
nentially large, and the ratio of the radii will also be exp
nential, but the value ofM Pl will require the largest radius to
be very much smaller than 1 mm. It would be interesting
build an explicit model along these lines.

Even without an explicit model, however, we can see t
the scale of the radion masses is unchanged. The logarith
potential still givesmRi'L2/M Pl'mm21, for L'1 TeV.
After Weyl rescaling, each radion couples with gravitation
strength to the standard model and should show up in
sub-millimeter measurements of gravity.

V. OTHER IDEAS

There is an alternative way in which theories with tw
transverse dimensions can generate effectively exponent
large radii. The logarithmic variation of bulk fields can forc
the theory into a strong-coupling region exponentially
away from some branes, and interesting physics can hap
there. This is the bulk analogue of the dimensional transm
tation of non-Abelian gauge theories, which generate sc
exponentially far beneath the fundamental scale and trig
interesting physics, such as e.g. dynamical supersymm
breaking@10#. It is tempting to speculate that such stron
coupling behavior might effectively compactify the tran
verse two dimensions. Recently, Cohen and Kaplan h
found an explicit example realizing this idea@16#. They con-
sider a massless scalar field with non-trivial winding in tw
transverse dimensions: a global cosmic string. Since the t
energy of the string diverges logarithmically with distan
away from the core of the vortex, we expect gravity to b
come strongly coupled at exponentially large distances.
deed, Cohen and Kaplan find that the metric develops a
gularity at a finite proper distance from the vortex core, b
argue that the singularity is mild enough to be rende
harmless. What they are left with is a non-compact tra
verse space, with gravity trapped to an exponentially la
area:

ĀM
*
2 5eM

*
4 / f p

4
~29!

where f p is the decay constant of the string. A ratio
M* / f p;2.5 is all that is needed to solve the hierarchy pro
lem in this case. This model is a natural implementation
the ideas of@1#, to solve the hierarchy problem with larg
dimensions, together with the idea of trapping gravity
2-6
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SOLVING THE HIERARCHY PROBLEM WITH . . . PHYSICAL REVIEW D62 105002
non-compact extra dimensions as in@17#. Unlike @2#, how-
ever, the bulk geometry is not highly curved everywhere,
only near the singularity. Thus, gravity has essentially b
trapped to a flat ‘‘box’’ of areaA in the transverse dimen
sions, and the phenomenology of this scenario is essent
the same as that of@1#. An attractive aspect of this scenario
that, unlike both our proposal in this paper and those of@2,3#,
no modulus needs to be stabilized in order to solve the h
archy problem. This also points to a phenomenological
ference between our proposal and that of@16#. While both
schemes generate an exponentially large area for two tr
verse dimensions, there is no light radion mode in@16#
whereas we have a light radion with;1 mm21 mass.

VI. CONCLUSIONS

In this paper, we have shown how to stabilize expon
tially large compact dimensions, providing a true solution
the hierarchy problem along the lines of@1# which is on the
same footing as technicolor and dynamical SUSY break
Of course, there are many mysteries other than the hiera
problem, and the conventional picture of beyond the stand
model physics given by SUSY and the great desert ha
number of successes. So why do we bother pursuing alte
tives? Are we to think that the old successes are just
accident?
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A remarkable feature of theories with large extra dime
sions is that the phenomena that used to be understood in
the energy desert can also be interpreted as arising from
space in the extra dimensions. Certainly all the qualitat
successes of the old desert, such as explaining neu
masses and proton stability, can be exactly reproduced
the help of the bulk@1,19,20,18#, in such a way that e.g. the
success of the seesaw mechanism in explaining the sca
neutrino masses is not an accident. As we have mentio
there is even hope that the one quantitative triumph of
supersymmetric desert, logarithmic gauge coupling unifi
tion, can be exactly reproduced so that the old succes
again not accidental. We find it encouraging that it is p
cisely the same sorts of models—with two dimensional s
spaces, SUSY in the bulk broken only on branes—wh
allow us to generate exponentially large dimensions. Ho
fully, in the next decade experiments will tell us whether a
of these ideas are relevant to describing the real world.
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