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Null branes in string theory backgrounds

P. Bozhilov*
Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia

~Received 5 June 2000; published 2 October 2000!

We consider null bosonicp-branes moving in curved space-times and develop a method for solving their
equations of motion and constraints, which is suitable for string theory backgrounds. As an application, we
give an exact solution for such a background in ten dimensions.

PACS number~s!: 11.10.Lm, 04.25.2g, 11.27.1d
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I. INTRODUCTION

The null p-branes are the zero tension limitTp→0 of the
usualp-branes, the one-brane being a string. This relati
ship between them generalizes the correspondence bet
massless and massive particles. Thus, the tensionless b
may be viewed as a high-energy limit of the tensile ones

The p-branes are characterized by an energy sc
Tp

1/(p11) and therefore by a length scaleTp
21/(p11) . The

gravitational field provides another length scale, the cur
ture radius of the space-timeRc . For ap-brane moving in a
gravitational field an appropriate parameter is the dimens
less constantD5RcTp

1/(p11) . Large values ofD imply a
weak gravitational field. One may reach such values ofD by
letting Tp→`. In the opposite limit, small values ofD, one
encounters strong gravitational fields and it is appropriate
considerTp→0, i.e., null or tensionless branes.

A Lagrangian which could describe, under certain con
tions, null bosonic branes inD-dimensional Minkowski
space-time was first proposed in Ref.@1#. An action for a
tensionlessp-brane with space-time supersymmetry was fi
given in Ref. @2#. Since then, other types of actions a
Hamiltonians~with and without supersymmetry! have been
introduced and studied in the literature@3–10#. Owing to
their zero tension, the worldvolume of the nullp-branes is a
lightlike, (p11)-dimensional hypersurface, imbedded in t
Minkowski space-time. Correspondingly, the determinant
the induced metric is zero. As in the tensile case, the
brane actions can be written in reparametrization and sp
time conformally invariant form. However, their distinguis
ing feature is that at the classical level they may have
number of global space-time supersymmetries and
k-invariant in all dimensions, which support Majorana~or
Weyl! spinors. At the quantum level, they are anomaly fr
and do not exhibit any critical dimension, when approp
ately chosen operator ordering is applied@11,3,4,7,12#. The
only exception are the tensionless branes with manifest c
formal invariance, with critical dimensionD52 for the
bosonic case andD5222N for the spinning case,N being
the number of worldvolume supersymmetries@7#.

Let us mention also the paper@13#, which is devoted to

*Email address: bojilov@thsun1.jinr.ru
0556-2821/2000/62~10!/105001~6!/$15.00 62 1050
-
een
nes

le

-

n-

to

i-

t

f
ll
e-

y
e

e
-

n-

the construction of field theory propagators of null strin
andp-branes, as well as the corresponding spinning versio

Almost all of the above investigations deal withfree null
branes moving inflat background~a qualitative consideration
of null p-brane interacting with a scalar field has been do
in @4#!. The interaction of tensionless membranes (p52)
with antisymmetric background tensor field in fou
dimensional Minkowski space, described by means of We
Zumino-like action, is studied in Ref.@14#. The resulting
equations of motion are successfully integrated exactly.

To our knowledge, the only papers until now devoted
the classical dynamics ofnull p-branes (p.1) moving in
curvedspace-times are Refs.@15–17#. In Ref. @15#, the null
p-branes living in D-dimensional Friedmann-Robertson
Walker spacetime with flat space-like section (k50) have
been investigated. The corresponding equations of mo
have been solved exactly. It was argued that an ideal fluid
null p-branes may be considered as a source of gravity
Friedmann-Robertson-Walker universes.

In Ref. @16#, the classical mechanics of null branes in
gravity background was formulated. The Batalin-Fradk
Vilkovisky approach in its Hamiltonian version was applie
to the considered dynamical system. Some exact solution
the equations of motion and of the constraints for the n
membrane (p52) in general stationary axially symmetri
four dimensional gravity background were found. The e
amples of Minkowski, ~A!dS, Schwarzschild, Taub-NUT
~Newman-Unti-Tamborino!, and Kerr space-times were con
sidered. Another exact solution, for the Demianski-Newm
background, can be found in Ref.@17#.

In this article we consider the classical evolution of te
sionless bosonic p-branes in a particular type o
D-dimensional curved background. In Sec. II we develop
method for solving their equations of motion and constrain
In Sec. III, as an application of the method proposed,
give an explicit exact solution for the ten-dimensional so
tonic five-brane gravity background. Section IV is devoted
our concluding remarks.

II. SOLVING THE EQUATIONS OF MOTION

We will use the following reparametrization invariant a
tion for the null bosonicp-brane living in aD-dimensional
curved space-time with metric tensorgMN(x):
©2000 The American Physical Society01-1
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S5E dp11jL, L5VmVn]mxM]nxNgMN~x!,

]m5]/]jm, jm5~j0,ja!5~t,sa!,

m,n50,1, . . . ,p, a,b51, . . . ,p,

M ,N50,1, . . . ,D21. ~1!

It is a natural generalization of the flat space-time act
given in Refs.@5,6#.

Let us rewrite the Lagrangian density from Eq.~1! into
the form (]t5]/]t,]a5]/]sa):

L5
1

4l0
gMN~x!~]t2la]a!xM~]t2lb]b!xN, ~2!

where the connection betweenVm and (l0,la) is given by

Vm5~V0,Va!5S 2
1

2Al0
,

la

2Al0D .

The Euler-Lagrange equation forxK are

]tF 1

2l0
~]t2lb]b!xKG2]aF la

2l0
~]t2lb]b!xKG

1
1

2l0
GMN

K ~]t2la]a!xM~]t2lb]b!xN50, ~3!

where GMN
K is the connection compatible with the metr

gMN(x):

GMN
K 5 1

2 gKL~]MgNL1]NgML2]LgMN!.

The equations of motion for the Lagrange multipliersl0 and
la which follow from Eq.~2! give the constraints

gMN~x!~]t2la]a!xM~]t2lb]b!xN50, ~4!

gMN~x!~]t2lb]b!xM]axN50. ~5!

From now on, we will work in the gaugel0,la

5constants, in which Eqs.~3! have the form

~]t2la]a!~]t2lb]b!xK

1GMN
K ~]t2la]a!xM~]t2lb]b!xN50. ~6!

We are going to look for solutions of the equations of moti
~6! and constraints~4!,~5! for the following type of gravity
background:

ds25gMNdxMdxN

5gqq~dxq!212gqsdxqdxs1gss~dxs!21gabdxadxb

1(
i

gii ~dxi !2, ~7!
10500
n

wherexqÞxs are two arbitrary coordinates and it is suppos
that gMN does not depend on them.

To simplify the equations of motion~6! and constraints
~4!,~5!, we introduce the ansatz

xq~t,sa!5CqF~za!1yq~t!, xs~t,sa!5CsF~za!1ys~t!,

xM~t,sa!5yM~t! for MÞq,s, za5lat1sa, ~8!

whereF(za) is an arbitrary function ofza, andCq, Cs are
constants. Inserting Eq.~8! in Eqs. ~4!, ~5!, and ~6!, one
obtains~the overdot is used ford/dt)

ÿK1GMN
K ẏMẏN50, ~9!

gMNẏMẏN50, ~10!

~Cqgqq1Csgqs!ẏ
q1~Cqgqs1Csgss!ẏ

s50. ~11!

It turns out that for the given metric~7!, the equations forẏq

andẏs in Eq. ~9! become linear differential equations. On th
other hand, with the help of Eq.~11!, we can separate th
variables in them. The corresponding solution, compati
with Eq. ~11!, is (C5const)

ẏq~t!52C~Cqgqs1Csgss!exp~2H!,

ẏs~t!51C~Cqgqq1Csgqs!exp~2H!,

H5E ~gqqdgqq12gqsdgqs1gssdgss!. ~12!

Now we observe that if we introduce the matrix

h5S gqq gqs

gqs gss
D ,

then the following equality holds:

exp~H!5expS E Trh21dhD5deth[h. ~13!

At the same time, the above equality is the compatibil
condition for the solution~12! with the other equations o
motion and constraint~10!.

Using Eqs.~12! and ~13!, the equations for the other co
ordinates and the remaining constraint can be rewritten
(K,M ,NÞq,s)

ÿK1GMN
K ẏMẏN1

1

2
gKM]MS C2

G

h D50,

gMNẏMẏN1S C2
G

h D50, ~14!

where

G5~Cq!2gqq12CqCsgqs1~Cs!2gss.
1-2
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At this stage, taking into account the general structure
the string theory gravity backgrounds inD dimensions, we
introduce an additional restriction on the metric~7!. Namely,
we suppose that the set of values of the indexM is expressed
by the subsetsM5(q,s,a,i ) such thatgMN does not depend
on coordinatesxa(t,sa)5ya(t) in addition toxq, xs. Under
this condition, one can reduce the order of the differen
equations forya by one with the result

ẏa5expS 2E gabdgbg DCg, Cg5const. ~15!

The condition on Eq.~15! to be in accordance with the equ
tions for yi and the constraint~14! is

2
dgab

dt
ẏaẏb1gab

d

dt
~ ẏaẏb!50,

and it is identically satisfied.
Let us turn to the equations of motion for the remaini

coordinatesyi . These are

ÿi1G jk
i ẏ j ẏk1

1

2
gi j F] j S C2

G

h D2~] jgab!ẏaẏbG50,

~16!

whereẏa are given by Eq.~15!. The following step is to use
the equality:

~] jgab!ẏaẏb52] j~gabẏaẏb!,

which is an identity on the solutions~15!. This allows us to
transform Eqs.~16! into the form

2
d

dt
~gi j ẏ

j !2~] igjk!ẏ j ẏk1] i S C2
G

h
1VD50,

where

V5FC expS E gdg21D Ga

gabFexpS 2E g21dgDCGb

.

Taking into account that the matrixgi j is a diagonal one, we
can further transform the equations foryi(t) to obtain~there
is no summation overi ):

d

dt
~gii ẏ

i !21 ẏi] iFgii S C2
G

h
1VD G

1 ẏi(
j Þ i

] i S gii

gj j
D ~gj j ẏ

j !250. ~17!

In receiving Eq.~17!, the constraint~14! rewritten in the
form

gii ~ ẏi !21(
j Þ i

gj j ~ ẏ j !21V1C2
G

h
50 ~18!

is also used.
10500
f

l

Now it is evident from Eq.~17! that we can reduce the
order of these differential equations by one, if

] i S gii

gj j
D50 for iÞ j ~19!

or

] i~gj j ẏ
j !250 for iÞ j . ~20!

Keeping in mind the aim to apply our results to the stri
theory gravity backgrounds, we choose the following com
nation of the two existing possibilities: for all coordinatesyi

except one, which we callyr , the equalities~19! are satisfied;
for i 5r , the equalities~20! hold. Then the result of integra
tion, compatible with Eq.~18!, is

~gkkẏ
k!25Ck~yr , . . . ,yk21,yk11, . . . !2gkkS C2

G

h
1VD

5Ek~ . . . ,yk21,yk,yk11, . . . !, ~21!

~grr ẏ
r !25grr H S (

k
21D S C2

G

h
1VD2(

k

Ck

gkk
J 5Er~yr !,

~22!

]kS gkk

gii
D50, kÞq,s,a,r . ~23!

HereCk , Ek , andEr are arbitrary functions.Ck depend on
all coordinates on which depends the metric, butyk ~for ev-
ery fixed value ofk). Ek do not depend onyr , but depend on
yk. Obviously, the right hand sides of Eqs.~21! and ~22!
have to be nonnegative.

Now, we are interested in finding exact solutions of t
above equations. It turns out that it is preferable to us
slightly different approach for multidimensional and fo
lower-dimensional space-times. This will allow us to obta
solutions in more general class of metrics in the lower
mensional case. At first, we will try to find solutions appr
priate for application to higher-dimensional backgrounds.

A simple analysis shows that we can integrate Eqs.~21!
and ~22! completely, if we fix the coordinates on which th
background depends, exceptyr . We prefer to consider jus
this possibility in connection with further applications
mind. BecausegMN5gMN(yr ,yk), (kÞq,s,a,r ), we fix the
coordinatesyk: yk5y0

k5const. Then theexact solution of
the equations of motion and constraints for a nullp-brane in
this background is given by~8!, whereyk are constants and
1-3
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yq5y0
q7CE

y0
r

yr

du
~Cqgqs

0 1Csgss
0 !

h0W0
1/2

, y0
q ,y0

r 5const,

ys5y0
s6CE

y0
r

yr

du
~Cqgqq

0 1Csgqs
0 !

h0W0
1/2

, y0
s5const,

ya5y0
a6CgE

y0
r

yr du

W0
1/2

expS 2E dggb
0 g0ba D , y0

a5const,

t5t06E
y0

r

yr du

W0
1/2

, t05const,

W052
Ck

0

grr
0 gkk

0
, Ck

05gkk
0 S C2

G0

h0
1V0D . ~24!

In the above equalitiesgMN
0 5gMN

0 (yr)5gMN(yr ,y0
k) and

analogously forG0, h0, V0, andCk
0 .

Let us turn to the lower dimensional case. This sepa
consideration is necessary, because in obtaining the solu
~24! we have restricted the metric to be independent on
many variables. In four dimensions, for instance, it is pr
erable to have a metric, which depends at least on two of
coordinates. This gives us the possibility to consider diff
ent types of black hole backgrounds, for example. Tak
this into account, now we would like to find exact solutio
of the differential equations~21!,~22! for background metric,
which does not depend only onyq andys. To this end, we se
a5$B% and choose the coordinatesyk, (kÞq,s,r ) to be
constant. Then for the remaining coordinates one obtain

yq5y0
q7E

y0
r

yr

du~Cqgqs
0 1Csgss

0 !F2
grr

0

G0h0G 1/2

,

ys5y0
s6E

y0
r

yr

du~Cqgqq
0 1Csgqs

0 !F2
grr

0

G0h0G 1/2

,

t5t06E
y0

r

yr

duF2
grr

0 h0

C2G0G 1/2

. ~25!

The correspondingexactsolution for the tensionlessp-brane
in the chosenD-dimensional gravity background is give
again by Eq.~8! with Eq. ~25! inserted in there. Finally, we
note that for obtaining exact solutions in cosmological ty
backgrounds, one can identifyx0 with yr in Eq. ~24! or in
Eq. ~25!.

III. THE EXPLICIT SOLUTION

In this section we are going to apply the method propo
in the previous one for finding an explicit exact solution. W
start by considering a nullp-brane moving in the solitonic
(d̃21)-brane background@18#
10500
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ds25gMNdxMdxN

5exp~2A!hmndxmdxn1exp~2B!

3~dr21r 2dVD2d̃21
2

!,

exp~2A!5S 11
kd̃

r dD 2d/(d1d̃)

,

exp~2B!5S 11
kd̃

r dD 1d̃/(d1d̃)

,

kd̃5const, 1d̃5D22,

hmn5diag~2,1, . . . ,1 !, m,n50,1, . . . ,d̃21.

The (D2d̃21)-dimensional sphereSD2d̃21 is supposed to
be parametrized so that

gkk5exp~2B!r 2 )
n51

D2k21

sin2un ,

D2k2151,2, . . . ,D2d̃22,

gD21,D215exp~2B!r 2.

If we now setq50, a51,2, . . . ,d̃22,D21, s5d̃21, r

5d̃, k5d̃11, . . . ,D22, the conditions~23! are fulfilled
and we can use the general formula~24!. The result is

ym5y0
m6EmE

r 0

r

duS 11
kd̃

udD S E2
~CD21!2

u2
1

Ekd̃

ud D 21/2

,

r[yd̃,

Em5~E0,E1, . . . ,Ed̃21!5~CCd̃21,C1, . . . ,CC0!,

w5w06CD21E
r 0

r du

u2 S E2
~CD21!2

u2
1

Ekd̃

ud D 21/2

,

w[yD21,

t5t06E
r 0

r

duS 11
kd̃

udD
d̃

d1d̃S E2
~CD21!2

u2
1

Ekd̃

ud D 21/2

,

E[2EmEnhmn5~CCd̃21!22~CC0!22 (
a51

d̃22

~Ca!2>0.

~26!

Let us restrict ourselves to the particular case of ten
mensional solitonic five-brane background. The correspo
ing values of the parametersD, d̃ and d are D510, d̃56,
d52. Taking this into account and performing the integr
tion in Eq. ~26!, one obtains the following explicit exac
1-4
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solution of the equations of motion and constraints fo
tensionlessp-brane living in such curved space-time:

x0~t,sa!5C0F~za!1y0~t!,

x5~t,sa!5C5F~za!1y5~t!,

xM~t,sa!5yM~t! for MÞ0,5,7,8,

x7,8~t,sa!5y0
7,85const,

where forC5k62(C9)2/E.0

ym5y0
m7

k6Em

~CE!1/2
lnS C 1/2/r 1~11C/r 2!1/2

C 1/2/r 01~11C/r 0
2!1/2D

6
Em

E 1/2
@~C1r 2!1/22~C1r 0

2!1/2#,

w5w07
C9

~CE!1/2
lnS C 1/2

r
1~11C/r 2!1/2

C 1/2

r 0
1~11C/r 0

2!1/2
D ,

t5t07S k6
3

C 4E 2D 1/4

r 3/2S 11
C
r 2D 1/2

3F2S 3/4,1,23/4;3/2,3/4;11
r 2

C ,2
r 2

k6
D

72S k6
3r 0

2

C 2E 2D 1/4

F1S 1/4,1/2,23/4;5/4;2
r 0

2

C ,2
r 0

2

k6
D

6
G~1/4!k6

4G~3/4!
Ap

CE2F1S 1/4,1/2;21/4;12
k6

C D
7

G~1/4!k6

2G~3/4!
Ap

CES 12
k6

C D 21/4

32F1F1/4,3/2;3/4;S 12
k6

C D 21G . ~27!

In the above expressions,G(z) is the Euler’sG function and
2F1(a,b;c;z) is the Gauss’ hypergeometric function. Th
functions F1(a,b,b8;c;w,z) and F2(a,b,b8;c,c8;w,z) in
Eq. ~27! are two of the hypergeometric functions of tw
variables. The defining equalities forF1 andF2 are @19,20#

F1~a,b,b8;c;w,z!

5 (
k,l 50

`
~a!k1 l~b!k~b8! l

k! l ! ~c!k1 l
wkzl ~ uwu,uzu,1!,

F2~a,b,b8;c,c8;w,z!

5 (
k,l 50

`
~a!k1 l~b!k~b8! l

k! l ! ~c!k~c8! l

wkzl ~ uwu1uzu,1!,
10500
awhere

~a!k5
G~a1k!

G~a!
.

IV. CONCLUDING REMARKS

In this paper we performed some investigation on
classical dynamics of the null bosonic branes in a curv
space-time. In the Sec. II, we foundexactsolutions of the
equations of motion and constraints for a nullp-brane in two
particular types ofD-dimensional curved backgrounds. How
ever, the latter are general enough to include in itself ma
interesting cases of string theory gravity backgrounds in
ferent dimensions~such as black branes, intersecting bran
and cosmological type backgrounds!. In the Sec. III, we gave
an explicit example of exact solution for the solitonic fiv
brane curved background in ten dimensions.

Let us briefly comment on the area of applicability of th
obtained results. Considering this, we have to take into
count the following properties of the tensionless extend
objects: ~1! the null p-branes can be considered as a hi
energy limit of the tensile ones, when the role played by
string tension may be ignored;~2! in the presence of strong
gravitational fields, it is appropriate to consider the null te
sion limit of a brane;~3! the large tension limit of aq-brane
is related to the zero tension limit of the dualp-brane.

For example, if the null branes are viewed as space-t
probes, the obtained exact solutions may have relevanc
the singularity structure of branes. On the other hand, th
solutions may have cosmological implications especially
the early universe. It is worth checking if this type of sol
tions leads to self-consistent brane cosmology. Another
propriate field of application of our results is the investig
tion of the solution properties near black hole horizons.

Outside the framework of the exact solutions, one can
to find an approximate solution for a tensilep-brane by per-
turbative expansion in powers of the brane tension. Then
exact null brane solution will be the zero approximatio
However, it is more interesting to answer the question: c
we calculate all the terms in such an expansion? In ot
words, does our method work in the tensile brane case
turns out that the answer is positive at least for the ten
one-branes~strings!. The appropriate ansatz is

xq,s~t,s1!5Cq,s~z162l0T1t!1yq,s~t!,

xM~t,s1!5yM~t! for MÞq,s.

The corresponding solutions foryM are

yq5y0
q7CE

y0
r

yr

du
@Cqgqs

0 1Csgss
0 62l0T1~Cqh0/C!#

h0U0
1/2

,

ys5y0
s6CE

y0
r

yr

du
@Cqgqq

0 1Csgqs
0 72l0T1~Csh0/C!#

h0U0
1/2

,

1-5
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ya5y0
a6CgE

y0
r

yr du

U0
1/2

expS 2E dggb
0 g0ba D ,

yk5const, t5t06E
y0

r

yr du

U0
1/2

,

U052
Dk

0

grr
0 gkk

0
, Dk

05gkk
0 H FC2

h0
1~2l0T1!2GG01V0J .

It is evident that taking the limitT1→0 in the above expres
sions, we obtain our null string solution withF(z1)5z1.

Let us finally note that there exists another ansatz wh
leads to the same type of exact solutions and it is
is

tu

10500
h

xq~t,sa!5CqF~za!1yq~s!,

xs~t,sa!5CsF~za!1ys~s!,

xM~t,sa!5yM~s! for MÞq,s,

wheres is one of the world-volume coordinatess1, . . . ,sp.
The corresponding tensile string ansatz is obvious.
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