PHYSICAL REVIEW D, VOLUME 62, 105001

Null branes in string theory backgrounds
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We consider null bosonip-branes moving in curved space-times and develop a method for solving their
equations of motion and constraints, which is suitable for string theory backgrounds. As an application, we
give an exact solution for such a background in ten dimensions.

PACS numbep): 11.10.Lm, 04.25-g, 11.27+d

[. INTRODUCTION the construction of field theory propagators of null strings
andp-branes, as well as the corresponding spinning versions.
The nullp-branes are the zero tension liffig—0 of the Almost all of the above investigations deal witiee null

usual p-branes, the one-brane being a string. This relationbranes moving iflat backgrounda qualitative consideration
ship between them generalizes the correspondence betweehnull p-brane interacting with a scalar field has been done
massless and massive particles. Thus, the tensionless brarieg4]). The interaction of tensionless membrangs=@)
may be viewed as a high-energy limit of the tensile ones. with antisymmetric background tensor field in four-
The p-branes are characterized by an energy scaleimensional Minkowski space, described by means of Wess-
TH®*1) and therefore by a length scalE, ¥®*. The  Zumino-like action, is studied in Ref14]. The resulting
gravitational field provides another length scale, the curvaequations of motion are successfully integrated exactly.
ture radius of the space-tinR,. For ap-brane moving in a To our knowledge, the only papers until now devoted to
gravitational field an appropriate parameter is the dimensionthe classical dynamics afull p-branes p>1) moving in
less constantD= RcTrl,/(pﬂ)- Large values ofD imply a curvedspage_-tlmgs are _Ref51_5—17_|. In_Ref.[15], the null
weak gravitational field. One may reach such value® dfy p-branes living in D-dimensional Friedmann-Robertson-
letting T,—. In the opposite limit, small values @, one Walker spacetime with flat space-like sectide=0) have

N . L . been investigated. The corresponding equations of motion
encounters strong gravitational fields and it is appropriate t?’lave been sglved exactly. It Wag argugd tﬂat an ideal fluid of
considerT,—0, i.e., null or tensionless branes. :

) . . . .null p-branes may be considered as a source of gravity for
A Lagrangian which could describe, under certain condi- b Y g y

. " . . . . | Mink Ki Friedmann-Robertson-Walker universes.
tions, null bosonic branes ib-dimensional Minkowski In Ref. [16], the classical mechanics of null branes in a

space-time was first proposed in Rgt]. An action for @ = grayity background was formulated. The Batalin-Fradkin-
tensionlesgp-brane with space-time supersymmetry was firstyjikovisky approach in its Hamiltonian version was applied
given in Ref.[2]. Since then, other types of actions and g the considered dynamical system. Some exact solutions of
Hamiltonians(with and without supersymmefrhave been the equations of motion and of the constraints for the null
introduced and studied in the literatuf8—-10. Owing 10 memprane |f=2) in general stationary axially symmetric
their zero tension, the worldvolume of the nptbranes is a  our dimensional gravity background were found. The ex-
lightlike, (p+ 1)-dimensional hypersurface, imbedded in theamples of Minkowski, (A)dS, Schwarzschild, Taub-NUT
Minkowski space-time. Correspondingly, the determinant OfiNewman-Unti—Tamborin)) and Kerr space-times were con-

the induced metric is zero. As in the tensile case, the nulkjgered. Another exact solution, for the Demianski-Newman
brane actions can be written in reparametrization and spacgzckground, can be found in RéL7].

time conformally invariant form. However, their distinguish- | ‘this article we consider the classical evolution of ten-
ing feature is that at the clgssical level they may have anyionless bosonic p-branes in a particular type of

number of global space-time supersymmetries and bg_gimensional curved background. In Sec. Il we develop a
«-invariant in all dimensions, which support Majorat@  method for solving their equations of motion and constraints.
Weyl) spinors. At the quantum level, they are anomaly freejn sec. 11, as an application of the method proposed, we
and do not exhibit any critical dimension, when appropri-give an explicit exact solution for the ten-dimensional soli-

ately chosen operator ordering is appliéd.3,4,7,12 The  onjc five-brane gravity background. Section IV is devoted to
only exception are the tensionless branes with manifest cony,, concluding remarks.

formal invariance, with critical dimensiod=2 for the
bosonic case anB=2—2N for the spinning case\ being
the number of worldvolume supersymmetrigs IIl. SOLVING THE EQUATIONS OF MOTION
Let us mention also the papgt3], which is devoted to
We will use the following reparametrization invariant ac-
tion for the null bosonig-brane living in aD-dimensional
*Email address: bojilov@thsunl.jinr.ru curved space-time with metric tensgyn(X):
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s=f dP*ieL,  £L=V™V"9,xMaxNgun(X),

&"=(&,6=(r,0%,
a,b=1,...p,

Om=01 9E™,
m,n=0,1,...p,

M,N=0,1,...D—1. (1)
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wherex9# x® are two arbitrary coordinates and it is supposed
thatgy,n does not depend on them.

To simplify the equations of motiof6) and constraints
(4),(5), we introduce the ansatz

X4 7,0%)=CIF(Z22) +y%7), x(7,0%)=CF(z*)+Yy3(1),

xM(r,0?)=yM(7) for M#q,s, z*=\3r+0?, (8)

It is a natural generalization of the flat space-time actionvhereF(z?) is an arbitrary function o? andCY, C® are

given in Refs[5,6].
Let us rewrite the Lagrangian density from Ha) into
the form @,=dldr,0,= dl da®):

ﬁ—i (X)(9,—N295)xM(9,— \Pap)xN 2
_4}\OgMN T a T b ’

where the connection betwed and (\°,\?) is given by

Vm_(vo Va)_ 1 )\a )
| 2\N0"2\\0)"
The Euler-Lagrange equation faf are
1 A®
9. —=(3,—\Pap)x"|—0a 3,—\Pgp)xK
{2)\0( b) a[ 2)\0( b)

1
o TN AR 9X M (0, =N ap)x=0, - (3)
whereT'K,, is the connection compatible with the metric
gmn(X):
Thin= 395 (IOt INDmL— ILOmn) -

The equations of motion for the Lagrange multipliafsand
A which follow from Eq.(2) give the constraints
IMn(X) (= N29) X (3= N ap)x"=0, (4)

©)

From now on, we will work in the gauge\®\?
=constantsin which Eqgs.(3) have the form

Iun(X)(3,— N\Pap)xMaxN=0.

(9,=N23)(d,~ NPap)x"

+ T (2= N2 XM(9,~ \Pdp)xN=0. ©6)

We are going to look for solutions of the equations of motion

(6) and constraint$4),(5) for the following type of gravity
background:

dszngNdXMdXN
= 0qq(dXh)2+ 20, AdxId X3+ g dX®) 2+ g, sdx*dXP

+Ei gii(dx)?, (7

constants. Inserting Eq8) in Egs. (4), (5), and (6), one
obtains(the overdot is used fad/d7)

Yy + Ty MyN=0, ©)
aunyMyN=0, (10
(ngqq+csgqs)yq+(cngs+ ngss)yszo- (11

It turns out that for the given metri@), the equations foy®

andy® in Eq. (9) become linear differential equations. On the
other hand, with the help of Ed11), we can separate the
variables in them. The corresponding solution, compatible
with Eq. (11), is (C=const)

y9(7) = — C(CYg4s+ Cgsdexp — H),

yS(7) =+ C(Cgqq+ Cgge) X —H),

H= f (999dggqt29%°dgyst 9°dgss)- (12
Now we observe that if we introduce the matrix
he ( 9ag gqs>'
gqs Oss
then the following equality holds:
exp(H)=ex;{ J Trh™'dh|=deth=h. (13

At the same time, the above equality is the compatibility
condition for the solution12) with the other equations of
motion and constrain{10).

Using Egs.(12) and(13), the equations for the other co-
ordinates and the remaining constraint can be rewritten as
(K,M,N#q,s)

. . 1 G
y<+TanyMyN+ 59KM(9M(CZF>=0,
CMON G
guny Yy +|C o =0, (14)

where

G=(C92g4q+2CICgqst (C%)?Qss.
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At this stage, taking into account the general structure of Now it is evident from Eq.(17) that we can reduce the
the string theory gravity backgrounds i dimensions, we order of these differential equations by one, if
introduce an additional restriction on the mei{7g. Namely,
we suppose that the set of values of the inlikis expressed
by the subsetM =(q,s,«,i) such tha,,y does not depend Oii
on coordinates®(7,0%) =y*(7) in addition tox9%, x5. Under Ji (g
this condition, one can reduce the order of the differential 11
equations foly® by one with the result

y”‘=exp(—f g*fdgpg,

The condition on Eq(15) to be in accordance with the equa- ai<gj,-yi)2:o for i#]. (20)
tions fory' and the constraintl4) is

) 0 for i#] (19

or
C?”, CY=const. (15

dga,B YvB g B_(y 8 =0, Keeping in_mind the aim to apply our results to _the string
“Fdr theory gravity backgrounds, we choose the following combi-
nation of the two existing possibilities: for all coordinatgs
and it is identically satisfied. except one, which we cajff, the equalitie$19) are satisfied;
Let us turn to the equat|0ns of motion for the rema|n|ngf0r i=r, the equa“ueszo) hold. Then the result of |ntegra_
coordinatey'. These are tion, compatible with Eq(18), is

v i yiyk Eii . 29_ . vayh| =

i G
(16 (G 9?=Culy, ...y Ty - gkk( PR
wherey“ are given by Eq(15). The following step is to use =E( ...y hyRyRt ), (21)
the equality:
(919ap)Y°YP == i(apy*y?), c
(9rry") —grr[(E —1)<C2h +V)—2 —k]=Er<yr),
which is an identity on the solutiord5). This allows us to ko Gkk
transform Eqs(16) into the form (22)
29 (G ¥) — (30,093 + | C 2 +V) =0
—(gijy) —(9i9j )Yy + 9| C*=+V|=0,
dr = - 1 h ak(Z—kk>:o, K#Q,s,ar. (23
i

where
a B . .
_ 1 B _1 HereCy, Ey, andE, are arbitrary functionsC, depend on
v Cex;{J gdg ” Yap exp{ J 9 dg)C all coordinates on which depends the metric, Yttfor ev-
ery fixed value ok). E, do not depend og", but depend on

Taking into account that the matrg; is a diagonal one, we yk Obviously, the right hand sides of Eq1) and (22)
can further transform the equations §0( 7) to obtain(there  have to be nonnegative.
is no summation ove): Now, we are interested in finding exact solutions of the
above equations. It turns out that it is preferable to use a
slightly different approach for multidimensional and for
lower-dimensional space-times. This will allow us to obtain
solutions in more general class of metrics in the lower di-
+yiz g, &) (g”yj)zzo_ (17) m_ensional case. At first, we will try to _find solutions appro-
jZi gij priate for application to higher-dimensional backgrounds.
A simple analysis shows that we can integrate EQ$)
In receiving Eq.(17), the constraint(14) rewritten in the and(22) completely, if we fix the coordinates on which the
form background depends, excegt We prefer to consider just
this possibility in connection with further applications in

d VIV G
d—T(giiy) +Y'di|gii| C FJFV

G - G mind. Becauseyn=9un(Y", YY), (k#q,s,a,r), we fix the
S (yh)2 (yh?2 2 : MN=YMNLY 5 Y )y S,a,r),
9ii(y) +,E¢i g (y)THVHCIE =0 (18 coordinatesy®: y*=yt=const. Then theexactsolution of
the equations of motion and constraints for a qmulirane in
is also used. this background is given b§B), wherey* are constants and
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0 (Cggs+Cog2y) 0o ds?=gyndxMdxM
yi=yg+ duv, Yg.Yo=Const, ,
Yo Wo =exp(2A) 7, dx*dx"+exp(2B)
2 2
. . (C gqq+csgqs) . X(dr +r dQD e l)
y>=yp*C d U———;  » Yo=const, _
Yo h*Wj —d/(d+d)
“=yg+C? —ex% fd ) =const,
y'=Yo 2 gyﬂg +/(d+4)
+J’ du )
T=To= r_, TOZCOI‘IS, -
yo W5 ky=const, +d=D-2,

no=diag—,+, ..., +), wr=01,...d-1
5o (24)
grrgkk

0 0
Wo=— S CE=gEk( CZG—0+V° : }
h The (D—d—1)-dimensional spherg® 91 is supposed to
be parametrized so that
In the above equalitieg®=09%xn(Y")=gun(Y"yK) and
analogously foiG°, h°, V°, andC}.

Let us turn to the lower dimensional case. This separate
consideration is necessary, because in obtaining the solution
(24) we have restricted the metric to be independent on too
many variables. In four dimensions, for instance, it is pref-
erable to have a metric, which depends at least on two of the
coordinates. This gives us the possibility to consider differ-
ent types of black hole backgrounds, for example. Taklan we now setq=0, a=12,...d-2D—1, s=d—1, r
this into account, now we would like to find exact solutions - N ]
of the differential equation€1),(22) for background metric, =9 k=d+1,... D-2, the conditions(23) are fulfilled
which does not depend only ¢ andy®. To this end, we set @nd we can use the general form(@s). The result is
a={} and choose the coordinatg¥, (k#q,s,r) to be

D-k-1

gu=exp2B)r2 [ sirfe,,
n=1

D-k—1=1,2,...D—-d-2,

Uo-1p-1=€Xp(2B)r?.

D-1y2 ~\ T2
constant. Then for the remaining coordinates one obtains y"=y6‘iE/‘f du( 149 k3 (5_ (C . ) N 5_‘?) '
r go " r u u
_va= Y 0 0, 9 -
yi=yi+ fygdu(cngs+csgss) core| r=yd,
r o 1 Er=(EEL ... ES"Y=(cci-Lct, ... cCY,
s= Sindqu0+CS° - == -
YTYOE | AU e sl = o o ooafrduf (€2 aqg|
e=eoxC ] 2\ T
ol u u
. ho]Y/2
T= Toi fy dul — grr (25) (PEyDil
Yo c2G° ’

The correspondingxactsolution for the tensionlegsbrane r
in the chosenD-dimensional gravity background is given T= To+J'
again by Eq(8) with Eq. (25) inserted in there. Finally, we fo
note that for obtaining exact solutions in cosmological type

3
kylara/  (CPH2 g 2
g-—s—+—2]

u

d-2
backgrounds, one can identify’ with y' in Eq. (24) or in , G N
Eq. (35) KP y q = ErE Nur= (CCd 1)2—(CCO)2— Zl (C )2;0.

(26)

Ill. THE EXPLICIT SOLUTION . . .
Let us restrict ourselves to the particular case of ten di-

In this section we are going to apply the method proposednensional solitonic five-brane background. The correspond-
in the previous one for finding an explicit exact solution. Weing values of the parametet, d andd are D=10, d=6,
start by considering a nuft-brane moving in the solitonic  g=2. Taking this into account and performing the integra-
(d—1)-brane backgrounfl8] tion in Eq. (26), one obtains the following explicit exact
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solution of the equations of motion and constraints for awhere

tensionlesgp-brane living in such curved space-time:
x0(7,0%)=COF () +y%(7),
x3(7,0%)=C°F(2%) +y>(7),
xM(r,0®)=yM(7) for M+0,5,7,8,
x"8(r,0%) =y} 8= const,

where forC=kg—(C%)?/£>0

KeEX
(05)1/2 n

CYr +(1+Clr?)?
CMr o+ (1+Clr ) M2

y
Yo+

yM:

1/2[(C+r2)1/2 (C+r2)1/2]

12
—— T (@+cr)te

Cl/z ’
—— (A
0

1/4
) r 3/2)

Cg
(Cg)lIZIn

T= 7'01(

XF,

= Qo+

3 1/2

k6
cle? oz

2

r
3/4,1,-3/4;3/2,3/4; B—E ,

r2
ke
2

3.2\ 14
r
+2( 60) F1(1/4,l/2,—3/4;5/4;— 0
c2e?
k

E 1
o
26
—-1/4
_6)

o
ke

T4k K
(L/Dks 1/4,1/2:— 1/4;1——6)

“ar (318 C

T'(14)ke
2T (3/4)

\/cze(l_ 1

C
In the above expressionB(z) is the Euler'sI” function and
2F(a,b;c;z) is the Gauss’ hypergeometric function. The
functions F,(a,b,b’;c;w,z) and F,(a,b,b’;c,c’;w,z) in
Eq. (27) are two of the hypergeometric functions of two
variables. The defining equalities f6r, andF, are[19,20

1/4,3/2; 3/4(

XoF

(27)

Fi(a,b,b";c;w,z2)

(@)k+1(b)k(b")

:k,|=0 k'|'(C)k+ ‘z (|W|,|Z|<1),
F,(a,b,b";c,c’;w,2)
S (D1 (0)b )
,Izzo kH1(c)(c)), z  (Jwl+|z<1),

I'(a+k)

(a)kZW

IV. CONCLUDING REMARKS

In this paper we performed some investigation on the
classical dynamics of the null bosonic branes in a curved
space-time. In the Sec. Il, we fourekactsolutions of the
equations of motion and constraints for a ruibrane in two
particular types ob-dimensional curved backgrounds. How-
ever, the latter are general enough to include in itself many
interesting cases of string theory gravity backgrounds in dif-
ferent dimensiongsuch as black branes, intersecting branes,
and cosmological type backgroundm the Sec. Ill, we gave
an explicit example of exact solution for the solitonic five-
brane curved background in ten dimensions.

Let us briefly comment on the area of applicability of the
obtained results. Considering this, we have to take into ac-
count the following properties of the tensionless extended
objects: (1) the null p-branes can be considered as a high
energy limit of the tensile ones, when the role played by the
string tension may be ignore@®) in the presence of strong
gravitational fields, it is appropriate to consider the null ten-
sion limit of a brane{3) the large tension limit of @-brane
is related to the zero tension limit of the dumbrane.

For example, if the null branes are viewed as space-time
probes, the obtained exact solutions may have relevance to
the singularity structure of branes. On the other hand, these
solutions may have cosmological implications especially in
the early universe. It is worth checking if this type of solu-
tions leads to self-consistent brane cosmology. Another ap-
propriate field of application of our results is the investiga-
tion of the solution properties near black hole horizons.

Outside the framework of the exact solutions, one can try
to find an approximate solution for a tensfdrane by per-
turbative expansion in powers of the brane tension. Then the
exact null brane solution will be the zero approximation.
However, it is more interesting to answer the question: can
we calculate all the terms in such an expansion? In other
words, does our method work in the tensile brane case? It
turns out that the answer is positive at least for the tensile
one-branegstringg. The appropriate ansatz is

x4S(7,at)=CuS(zt = 2\OT 7) +yoS(7),
xM(r,ab)=yM(7) for M#q,s.

The corresponding solutions fgM are

[C qu+ Cs

0+ 2)\T,(CY%/C)]

hOUélz

yd= YO+CI

Yo

yszygini d
y

0

[Cg,+ Cougs 2)\°T1(C3h°/C)]
u hOU 172
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v du 0 o x4(7,0%)=CIF(z8) +y% o),
y*=yg+C” yru—uzexp(—f d9,9 Ba)'
oYo
x3(7,0%)=C¥(2*) +y%(0),
K=const, 7=+ fyrﬂ
y T vy U2’ xM(r7,0®)=yM(o) for M#q,s,
B Dy o o)|C? 0w 21 ~0 w0 whereg is one of the world-volume coordinates, . . . o
Uo=~— go ggk' D= G F“L(Z)‘ T)7 |G+ V7. The corresponding tensile string ansatz is obvious.
rr

It is evident that taking the limiT;—0 in the above expres-
sions, we obtain our null string solution wiff(z*) = z2.
Let us finally note that there exists another ansatz which The author would like to thank J. Gamboa for the useful

ACKNOWLEDGMENT

leads to the same type of exact solutions and it is information.
[1] A. Balachandran, F. Lizzi, and G. Sparano, Nucl. Pf8&77, Nucl. Phys.50, 556 (1989 ].
359(1986. [12] P. Bozhilov, Mod. Phys. Lett. A3, 2571(1998.
[2] A. Zheltukhin, Yad. Fiz.48, 587 (1988 [Sov. J. Nucl. Phys. [13] J. Gamboa, C. Ramirez, and M. Ruiz-Altaba, Phys. Lett. B
48, 375(1998]; Teor. Mat. Fiz.77, 377 (1988. 231, 57(1989.
[3] J. Gamboa, Mod. Phys. Lett. A 533(1992. [14] A. Zheltukhin, Phys. Lett. B33 112(1989; A. Zheltukhin,
[4] I. Bandos and A. Zheltukhin, Fortschr. Phyid, 619(1993. Yad. Fiz.51, 1504(1990 [Sov. J. Nucl. Physs1, 950(1990].
[5] J. Isberg, U. Lindstrom, B. Sundborg, and G. Theodoridis,[15] S. Roshchupkin and A. Zheltukhin, hep-th/9607119.
Nucl. Phys.B411, 122 (1994). [16] P. Bozhilov, Phys. Rev. B0, 125011(1999.
[6] S. Hassani, U. Lindstrom, and R. von Unge, Class. Quantunij17] P. Bozhilov and B. Dimitrov, Phys. Lett. B72 54 (2000.
Grav. 11, L79 (1994. [18] M. Duff, R. Khuri, and J. Lu, Phys. Re259 213(1995.
[7] P. Saltsidis, Phys. Lett. BO1, 21 (1997. [19] I. Gradshteyn and I. RyzhikTables of Integrals, Series and
[8] P. Bozhilov, Phys. Lett. Bl40, 35(1998. Products 5th ed.(Academic, New York, 1993
[9] P. Bozhilov, Phys. Lett. BI54, 27 (1999. [20] A. Prudnikov, Y. Brychkov, and O. Marichewntegrals and
[10] P. Bozhilov, Mod. Phys. Lett. A4, 1335(1999. Series, Vol. 3: More Special Functioi§&ordon and Breach,
[11] I. Bandos and A. Zheltukhin, Yad. Fis0, 893(1989 [Sov. J. New York, 1990.

105001-6



