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A framework was recently introduced to generalize black hole mechanics by replacing stationary event
horizons with isolated horizons. That framework is significantly extended. The extension is nontrivial in that
not only do the boundary conditions now allow the horizon to be distorted and rotating, but also the subsequent
analysis is based on several new ingredients. Specifically, although the overall strategy is closely related to that
in the previous work, the dynamical variables, the action principle and the Hamiltonian framework are all quite
different. More importantly, in the nonrotating case, the first law is shown to arise@sessary and sufficient
condition for the existence of a consistent Hamiltonian evolut®omewhat surprisingly, this consistency
condition in turn leads to new predictions even $batic black holes. To complement the previous work, the
entire discussion is presented in terms of tetrads and asso¢iatddLorentz connections.

PACS numbes): 04.70.Bw

[. INTRODUCTION symmetri¢ and that the imaginary part of the Weyl tensor
component¥ ,—which encodes the angular momentum—
The zeroth and first laws of black hole mechanics refer tovanishes. Second, while a rather general class of matter fields
equilibrium situations and small departures therefrom. Thavas allowed, it was assumed that the only relevant charges—
standard treatmentsl—5] restrict themselves to stationary i.e., hair—are the standard electromagnetic ones. The second
space-times admitting event horizons and small perturbationsssumption was weakened [i8,12] which allowed dilaton
from stationarity. While this simple idealization is a natural couplings and Yang-Mills fields. In this paper, we allow for
starting point, from physical considerations it seems overlydistortionand more general matter sources. Distortion plays
restrictive.(Se€[6,7] and especially8] for a detailed, critical an important role in several astrophysical situations, e.g., in
discussion. A framework which is tailored to more realistic problems involving black holes immersed in external fields
physical situations was introduced [i6] and the zeroth and or surrounded by matter rings, and especially in the problem
first laws were extended to it ifv—9]. This analysis gener- of black hole collisions. Post-Newtonian considerations sug-
alizes black hole mechanics in two directions. First, the nogest that, during black hole coalescence, individual horizons
tion of event horizons is replaced by that of “isolated hori- are distorted due to the Coulomb attraction even in the re-
zons.” While the former can only be defined retroactively, gime in which the black holes are sufficiently far from each
requiring access to the entire space-time history, the lattesther for the gravitational radiation falling into their horizons
can be defined quasilocally. Second, the underlying spacee be negligible. This phenomenon is also seen in numerical
time need not adminyKilling field; isolated horizons need simulations.
not be Killing horizons. The static event horizons normally The extension$9,12] which incorporated dilatonic and
used in black hole mechani€$-3,1Q and the cosmological Yang-Mills charges did not involve a significant generaliza-
horizons in de Sitter space-timgkl] are all special cases of tion of the basic framework developed [iB8]. The present
isolated horizons. Furthermore, since space-times can nopaper, on the other hand, does. We begin with substantially
admit gravitational and matter radiation, there is a large clasweaker boundary conditiongormulated in terms ofrea)
of other examples. tensor fields rather than the spinors useddi, and show
The framework developed if8] for generalizing black that they imply constancy of surface gravitgnd electro-
hole mechanics was based on two restrictive assumptionstatic potentialon the horizon. This property turns out to be
First, only undistorted, nonrotating horizons were consid-necessary and sufficiefdr the usual action principle of tet-

ered. That is, the boundary conditions used8h implied ~ rad gravity to continue to be valid in presence of isolated
that the intrinsic 2-metric of the horizon is spherically horizons. The action leads to a covariant phase space, con-
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structed from solutions to the field equations. Referdi8de  holds® In this sense, the first law is even more fundamental
by contrast, used the canonical phase space based on spirtlban it is generally taken to be. Conceptually, this is perhaps
rial variables which is tailored for quantization but which the most striking feature of the present framework.

contains technical complications that are unnecessary to the The requirement that the first law hold is not sufficient to
classical mechanics of isolated horizotdp to this point, fix t2 uniquely. Although every® must be a null normal to
distortion and rotation are both incorporatedHowever, in A, the rescaling oft? from one spacetime to another can
the last step, i.e., in the discussion of the first law, we restrictiepend on the horizon parameters and the first law does not
ourselves to nonrotating horizondotation is incorporated fully determine this parameter dependence. There is an infi-
in [13].) nite family of parameter-dependent vector fietdsach de-

To formulate the first law one must first define the energyfining a consistent Hamiltonian evolution and a horizon en-
E, associated with any isolated horizan Since there can ergyE\ . By contrast, at infinity all these vector fields must
be radiation in the spacetime outside isolated horizons, thgend to a time translation of a universal flat metric, used in
Arnowitt-Deser-MisnerfADM) energyEpy is not a good  the construction of the phase space. Hence, there is only the
measure of, [7,8]. Instead, as in the work of Brown and familiar 3-parameter freedom in the definition Bfp,,, as-
York [14], the strategy is to define the energy of the horizonsociated with the choice of a rest frame. Furthermore, in any
using a Hamiltonian framework. Experience with the phaseone space-time, we can eliminate it by simply going to the
space formulation of general relativity suggests that, in theest frame and thus extracting the total md&gyy of the
presence of boundaries, the Hamiltonidpgenerating time ~ system. Although not necessary for mechanics, it is natural
translation along a suitable vector fiel® acquires surface to ask if one can define a similar notion of mass of isolated
terms. The idea is tdefine E, as the surface term at in the horizons. The answer is in the affirmative in Einstein-
Hamiltonian The key issue then is that of selecting the “ap- Maxwell theory. Let us require that should not only lead to
propriate” time translation®. Since one expects the volume & consistent Hamiltonian evolution but also agree, on static
term in the expression dfl, to be a linear combination of solutions, with th_e static K|Il|ng_f|eld_ which isinit at infin-
constraints and thus vanish when evaluated on solutions, tHg'" Then the hOF'ZO” value df is uniquely dgtermmed for
problem reduces to that of specifying the boundary values o?l spacg—t|mes n the phasi space. There is a pEeferred no-
t2 (or, equivalently, of the lapse and shift fieldShe condi- tion of time translation, say;. We can setM,=EJ and
tions at infinity are obvious and, in any case, will not affectregardM , as the mass of an isolated horizanin the earlier
the surface term ah. Thus, we need to focus only on the work_ on nondistorted _horlzonb7—9,12, the discussion of
boundary value of? on A. the first law was carried qut only in the _con.text. of these

In the nonrotating case it is clear that, at the horizen, preferreq evolution vec_t(_)r fle|d!$. Tha_t derivation is more
should be proportional to the null normal 40 However, our clos_ely tied to the _tradmonal discussion of the laws in the
boundary conditions do not select the null normal uniquely;Stat'C coptext .bUt IS not necessary from the more gen(_afal
there is a freedom to rescale normal by a constafibn A) perspective of isolated horizons. Nonetheless, the availability

which can vary from one space-time to anoth@his free- of a canonical definition of the mad4, is useful for other

dom is phvsically important because. amona other thinas thgpplications of this framework, e.g., to numerical relativity.
phy yimp ' 9 gs, The paper is organized as follows. In Sec. I, we specify

surfaf:e gravity Is sensitive to it. Suppose we fix this freedon}he boundary conditions defining general isolated horizons,
by tying the bOL!ndary value df' to f'_GIdS on t_h_e horl_zon, allowing both distortion and rotation. We explain the role of
e.g., by demanding that surface gravity bgpecificfunction _ these conditions, compare them with those usef@i9,12
of the area and charges. We can then ask whether the timg,q work out their consequences, including the zeroth law.
evolution generated by tht§ preserves the symplectic struc- | Sec. 11l we introduce the Lagrangian framework based on
ture. It turns out that the answer is not alW&yS in the afﬁr-tetrads andreab Lorentz connections and, in Sec. \VA the
mative. On the horizon, the evolution vector figfdand the  covariant phase space. The first law is discussed in Sec. V.
electromagnetic potentish, have to be tied to the horizon Up to this point, the focus is on Einstein-Maxwell theory
parameters appropriately. These conditions impose a cortalthough incorporation of the dilaton is straightforwparith
straint on the surface gravity, and the electric potential Sec. VI we extend the framework to incorporate Yang-Mills
® ). Somewhat surprisingly, the constraint is precisely thefields. The horizon mass is introduced in Sec. VIl and subtle-
first law 5EtA:(K(t)/87TG)5aA+(I)(t)5QA. Thus the evolu- ties associated with the dilaton and Yang-Mills fields are
tion defined by % is Hamiltonian if and only if the first law ~discussed. For the convenience of readers who may not be
familiar with distorted black holes, Appendix A presents a
variety of examples and, for convenience of readers who

2This is not surprising since this freedom exists already on Killing
horizons. If the space-time is asymptotically flat and admits a static
Killing field globally, one can eliminate this freedom by restricting ®In the undistorted context, while this role of the first law was
oneself to that Killing field which is unit at infinity. However, this known to the authors df8], its importance was not fully appreci-
strategy is not available if there is radiation in the exterior region,ated. The importance was noticed independentlj1#] and used
or, as in the static solutions representing distorted black holes, theffectively in[12] to extract physical information on spherical black
metric fails to be asymptotically flat. holes with Yang-Mills hair.
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work in the Newman-Penrose formalism, Appendix B sum-Note that if conditiongii) and(iii) hold for one null normal
marizes the structure of isolated horizons in that frameworkl, they hold for all.

We have attempted to make this paper self-contained in The role of these conditions is as follows. The restriction
terms of methodology and technical details. However, theon topology is geared to the structure of horizons that result
motivation behind isolated horizons and certain properties ofrom gravitational collapse. However, it can be weakened.
our Hamiltonian are the same as those discussed in detail @ne can retain the requirement that the horizon have com-
[8]. Since the inclusion of distortion does not add anythingpact cross sections but replage by a manifold with higher
substantial to these issues, we have refrained from repeatiggnus. Our main analysis will extend to this case in a

that discussion in this paper. straightforward manner. More generally, we can allavto
have noncompact cross sections, as for example in the case
Il. STRUCTURE OF ISOLATED HORIZONS of certain acceleration horizons. The results presented in this
AND THE ZEROTH LAW section, including our derivation of the zeroth law, will go

through. However, since such horizons extend to infinity, our

In this section, we will introduce the basic definitions of Hamiltonian framework will have to be modified appropri-
isolated horizons and analyze their immediate consequencesiely. Finally, one could envisage incorporation of Newman-
The definitions will become progressively stronger. How-Unti-Tamburino (NUT) charge. This extension would be
ever, even the strongest boundary conditions are significantlgven more subtle because, if all fields are smoatkyould
weaker than requiring the horizon to be a Killing horizon for be topologicallyS® and| would provide a Hopf fibration. In
a local Killing vector field. By proceeding in steps, we will this case A would not admitany cross sections which are
be able to keep track of the precise assumptions that argverywhere transverse toThis extension will be discussed
needed to obtain various results. Also, the availability of aglsewhere.

hierarchy of definitions will be useful in other applications—  Requirement(iii) is analogous to the dynamical condi-
such as numerical relativity and quantum gravity—which lietions one imposes at infinity. While at infinity one requires
beyond the scope of the present paper. that the metriqand other fieldsapproach a specific solution

Let us begin by introducing some notation. Throughoutto the field equationgthe “classical vacuum), at the hori-
this paper we assume that all manifolds and fields undefon we only ask that the field equations be satisfied. The
consideration are smooth. L&t be a 4-manifold equipped energy condition involved is very weak; it is implied by the
with a metricg,, of signature(—, +, +, +). LetA be anull  (much strongerdominant energy condition that is typically
hypersurface of {1,9,;,). A future directechull normal toA  used. Thus, the first and the last conditions are quite tame.
will be denoted byl. (In this paper, the term “null normal” The key condition igii). It implies, in particular, thathe
will always refer to a future directed null normelLet  horizon area is constant “in time’and thus incorporates the
Jabl gapbe the degenerate intrinsic metric & A tensor  idea that the horizon is isolated without having to assume the
q2° on A will be called an “inverse” of Qg if it satisfies existence of a Kil!ing field. We Wiil denote the area PX
9%, Gpal Geg. Thusg?® is unique only up to addition of and refer toR, d_gfmed byaA=_47-_rRA as thehorlz_o_n radlu_s
terms of the form (@) for some vector field/ tangential to AII_ these condmon_s are sat|.sf|e.d on any Killing honzon
A. The expansior of a specific null normallis defined by (with 2-sphere sectionsf gravity is coupled to physically
a(l):qabva|b’ whereV, is the derivative operator compat- rgasonable mattefmcludmg 'perfect' fdes, Kl'eln-GorQOn
ible with g,y . It is straightforward to check thaf, is inde- fields, Maxwell fields possibly with dilatonic coupling,

pendent of the choice @°. With this structure at hand, we Yang-Mills fields. " _
can now introduce our first definition. Although the conditions in the definition are quite weak,

they have surprisingly rich consequences. We will now dis-
) ) cuss them in detail. In some of this analysis it is convenient
A. Nonexpanding horizons to use a null tetrad and the associated Newman-Penrose
Definition 1 A three-dimensional submanifold of a  quantities(see Appendix B and references thejei@iven a
space-time (M,g,;,) is said to be aonexpanding horizoif ~ specific null normal field® to A, we can introduce a com-

it satisfies the following conditions: plex null vector fieldm? tangential toA and a real, future
) ) ) ) directed null fieldn? transverse ta\ so that the following
(i) A'is topologicallyS*x R and null. relations holdn-1=—1, m-m=1 and all other scalar prod-
(i) The expansiory of | vanishes om for any null ;cts yanish. The quadruplet,6,m,m) constitutes a null tet-
normall. rad. There is of course an infinite number of null tetrads

(iii) All equations of motion hold ai\ and the stress- ;ompatible with a givel, related to one another by restricted
eneg%y.tensoﬂ'ab of matter fields aid is such that | grentz rotations. Our conclusions will not be sensitive to
—Tpl® is future directed and causal for any future ipjg gauge freedom.
directed null normal. (a) Properties of | Sincel?® is a null normal toA, it is
automatically twist free and geodesic. We will denote the
acceleration of? by «,:
4Equalities which hold only aA will be denoted by ‘A" and the
pullback of a covariant index will be denoted by an arrow under
that index: e.g.w , will denote the pullback of the 1-form, to A. 12y 1P A K b, (2.1
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Note that the acceleration is a property not of the horizon The 1-formw will play an important role throughout this
itself, but of a specific null normal to it: if we repladeby  paper. It has an interesting geometrical interpretation. We

|”=fl, then the acceleration changes wig,=f )+ L,f. can regardp as a connection on the line bundid* overA
Since the twist of vanishes, the Raychaudhuri equationwhose fibers are the one-dimensional null normal&.t&n-
implies der the rescalings—1=fl, of the null normall, it trans-
1 forms via
2 — b
L6002 k) b0y~ 5 01~ 07~ Rapl™ 0> Ba= 0yt V 4 INT. 2.6
whereo=m?m°V |, is the shear ofin the given null tetrad. (d) Induced connection oA. Each metric submanifolty!

Since 9b(|) vanishes on A, we conclude thatoo  of M admits a natural connection—one which is torsion free
+Rgpl 17 20. Theb condition onbth_e stress-energy tensor enand compatible with the induced metric d This connec-
sures thatR,p|%1°=87G T, is non-negative onA.  tion is also canonically induced by the space-time connection

Hence, we conclude V. However, since the induced metug, on A is degener-
arh ate, there exist infinitely many connections compatible with
o20  and Rqpl*1°20. (2.2 it. A general null submanifold inherits a uniqUersion-free

derivative operatoD from V if and only if its null normall
satisfies V,l, =0. Therefore, the conditions imposed in

(b) Conditions on the Ricci tensofhe second equation in definitio_n 1. guarantee t_hat every nonexpand'ing horizon has a
unique intrinsic derivative operatd?. The action ofD on a

Egs.(2.2) implies that the vector R?,|® is tangential taA. _ o
The energy condition and the field equations imply that thig/€ctor fieldx* tangent toA and on a 1-formy, intrinsic to A

vector must also be future causal. This means &i® Is given by

: a b A -
must be proportional td® and, henceR,,I°20. In the DXPAVXD and Dunph V.

Thus, in particular, every null normélis free of expansion,
twist and shear.

Newman-Penrose formalism this condition translates to - A
. L whereX® and7, are arbitrary extensions & and 7, to the
B =—R.13PA0 and ® = d == R..12mPA Q. full space-time manlfoIdM. It is easy to show thaD is
007 ab 017 10T Thab independent of the extensions.
(2.3 The 1-formw captures only part of the information iR.

The full connectionD on A plays an important role in ex-
tracting physics in the strong field regime néaf18]. How-
invariant: i.e., it does not depend upon the specific choice o€Ver, it is not essential to the discussion of isolated horizon

Since this statement is equivalentRy, ,I°20, it is gauge

null normall andm. mechanics.

(c) A natural connection 1-form on. Sincel is expan- (e) Conditions on the Weyl tensadret us begin with the
sion, shear and twist free, there exists a one-fagpintrinsic ~ definition of the Riemann tensor[V,V,—V,V,]X°
to A such that = —R,pX9. If we setX®=1° and pull back the indicea

andb, then using Eq(2.4), we obtain
VaIPAw,lP 2.4 d d
- [Dawp—Dpwall 2 = Rapg 12 — Capyl 2.7
which in turn implies . .
P where C,p,.% is the Weyl tensor. The last equality follows
Li0ap22 Vi, AO. from Rgp!P20. Thus, ifv is any 1-form onA satisfying

v-140, contracting the previous equation with we get
Thus, every null normal is a “Killing field” of the degen-

erate metric on\. Furthermore, we will now show that Caba®vcl?20.
Ze:=imOm 2 m
€:=1mLm (2.9 Let us choose a null tetrad and seto bem or m. Then
is also invariantly defined. Sincéq,,=0, the spaceS of Wo:=Caped *mPI*mIA O,
integral curves of is naturally equipped with a nondegener-
ate metricq,p (so thatga, on A is the pullback ofg,p). W :=Cped *mPInd

Denote bye,,, the unique(up to orientation unit alternating
tensor on §,q,,). Here 2¢ is the pullback toA of e. Al-

thoughl is a “Killing field” of the intrinsic horizon geom-  where we have used the trace-free property of the Weyl ten-
etry, the space-time metrg,,, neednot admit a Killing field  sor in the second equation. It is also clear that EBS®) are

in any neighborhood oA. Robinson-Trautman metri¢d 5] independent of which null norméland vector fieldsn and

and the Kastor-Traschen solutioffs7] provide explicit ex- m we choose to construct the null tetrad; E(@8) are gauge
amples of this type. invariant.

=Caped *mPm*maA 0, (2.9
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(f) Curvature ofw. Let us contract Eq(2.7) with n. and This concludes our analysis of the consequences of the
usel®n,=—1. Then we have boundary conditions defining nonexpanding horizons. Note
that, even thouglhis a Killing field for the intrinsic, degen-
2D}a0p) 2 Capa® INe 2 Capegl o0 (2.9  erate metriay,, on A, it is not an infinitesimal symmetry for

other geometrical fields such as the intrinsic conneciaor
components of the curvature tensor. In the next subsection,
we will make the structure more rigid by suitably restricting
the choice ofl.

Expanding the Weyl tensor in terms of td&s, one obtains

CabCJ Cndé 4( Rq\Pz])n[al b] + 2\];’3' [amb] + 2‘?3' [aﬁb]

— 2 ngaMy) — 2V NjaMp) B. Weakly isolated horizons

A4 (Im[ W ])mpamy, (2.10 The time independence of the intrinsic mettg, cap-
tures the idea thak is isolated in a suitable sense. While this
where condition has rich consequences, the resulting structure is
still not sufficient for physical applications. In particular,
\Ifzgcabmj ambmend, ‘Ifggcabcdlanbm"nd sincel can be rescaled by an arbitrary positive definite func-

(2.1)  tion, the acceleratiork, is not necessarily constant an
Therefore, we need to impose additional restrictions on the
Substituting this expression into E.9), pulling back on  physical fields atA to establish the zeroth law. Sindes
the two free indices and taking into account EG&8) and  already a symmetry of the intrinsic metric, it is natural to
(2.5), we obtain require it also be a symmetry of the “extrinsic curvature.”
However, the standard definition of the extrinsic curvature is
dw2 2(Im[W¥,])2%e. (2.12 not applicable to null surfaces. Nonetheless, given a null
normall, we can construct a tensor fiekd,”:=D,|°, defined
This relation will play an important role in what follows. intrinsically on A, which can be thought of as the analogue
Note that, becaus®, and ¥, vanish onA, ¥, is gauge of the extrinsic curvaturgIndeed, on a metric submanifold,
invariant. if we replacel by the unit normal,K,” is precisely the ex-
Remark It is interesting to compare the structure ®f  trinsic curvature. It is then natural to demand that, on an
with that of null infinity Z (in the usual conformal gauge, in isolated horizonK,? also be time independent;K,°2 0.
which the conformal factor is chosen such that the null nor-As a consequence of E(R.4), this is equivalent to imposing
mal to Z is divergence frele Both are null surfaces and can £, A 0.
be regarded as “line bundles” over a base spacef the Let us examine the above condition. As we will show at
integral curves of null normalgFor brevity, we will ignore  the end of this section, given a nonexpanding horizon we can
a caveat concerning completeness of figefhe null nor-  always find a null normal® which satisfiesC,w4 0. The
mals are Killing fields of the intrinsic degenerate metric sopehavior of this condition under rescalings lofs compli-
that this metric is the pullback to the 3-surface of a positive-cated by the fact thab itself depends upon the choice of null
definite metric orsS. In both cases, the space-time connectionnormal[see Eq.(2.6)]. However, under a constant rescaling
induces an intrinsic connection on the 3-surfat®l. These |, ,7—¢|, the connection 1-formm is unchanged. Therefore,
connections capture physically important information. How-if | satisfies the conditiorf;wA 0, so does any related tol

ever, there are a number of differences as well. Since by constant rescaling. This suggests we introduce an equiva-
constructed by a conformal completion, the conformal free- y 9. 99 q

given a physical space-time, the intrinsic metric and the delong to the same equivalence clas$$ if and only if I=cl for
rivative operator are known only up to conformal transfor-some positive constant c

mations. On the other hand, sinZeis at infinity, in some The above considerations lead us to the following defini-
ways its structure is both more rigid and simpler. First, with-tion:
out loss of generality, we can assume that the metri€ @ Definition 2 A weakly isolated horizonX,[I]) consists

a 2-sphere metric; the issue of distortion is physically irrel-of a nonexpanding horizoA, equipped with an equivalence
evant atZ. Second, the Weyl tensor vanishes identicall{ at

and the curvature of the intrinsic connection captures non-

trivial information about the next order space-time curvature. syq are grateful to Thibault Damour for pointing out thét® is

By contrast, at only four components of the Weyl curva- 5jieq the Weingarten map and is analogous to extrinsic curvature.
ture vanish and four other components are coded in the CUfrhis comment suggested the above motivation for our condition on
vature of the intrinsic connection oA. In spite of these the connection 1-formw. For an alternate, and in a sense weaker,
differences, one can carry over some techniques from nulongition see the remark at the end of Sec. Il D. From the viewpoint
infinity to extract physical information about isolated hori- of intrinsic structures on discussed in Sec. Il A, it is perhaps more
zons. In particular, using the analogues of techniques whichatural to ask thdtbe a symmetry of théull intrinsic connectiorD
have been successful &t one can introduce preferred cross (see Sec. 11D and18]). However, this stronger condition is not
sections of and Bondi-type expansions nAdrl8]. necessary for the laws of mechanics discussed here.
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class[|] of null normals to it satisfying the pullback toA of the alternating tensog on the spaces
(of orbits ofl), clearlyl-?e2 0. Therefore,
LiwA0 for all I=¢€[l]. (2.13
l-dw20

As pointed out above, if this last equation holds for dni¢  for every null normall. In particular, on a weakly isolated

holds for alll in [1]. horizon this equation holds for arye[l]. Moreover, each
A Killing horizon (with 2-sphere cross sectionis auto-  of these restricted null normals also satisfies

matically a weakly isolated horizofprovided the matter

fields satisfy the energy condition of definition. Given a OLLiwAd(l )+ -dw.

nonexpanding horizon, one can always find an equivalence

class[I] of null normals such that4,[I]) is a weakly iso-

lated horizon. However, conditiof2.13 does not by itself

single out the appropriate equivalence cldgs As indicated

if‘ Sec. IID, onecan furthg_r strengthep the boundary condj— where we have used the definitié®.1) of . Thus, sur-
tions and provide a specific prescription to select the equivag, .o gravity is constant o 0

lence clas$!] uniquely. However, for mechanics of isolated Although this proof of the zeroth law appears extremely

horizons, these extra steps are unnecessary. In particular, 04, nje “the argument is not as trivial as it might first appear
analysis will not depend on how the equivalence c[d$Ss  gjnce we have used a number of consequences of the bound-
chosen. The adverb "weakly” in definition 2 emphasizes 5y conditions derived in Sec. Il A. In contrast to earlier deri-

this point. ) vations[2,10] we do not require the presence of a Killing
Cond|t|on(2.13) has several consequences which are relsqoq even in a neighborhood af. Therefore the proof ap-
evant for this paper. o ) plies also to space-times such as the Robinson-Trautman so-
(@) Surface gravity In the case of Killing horizond\, |tions[15] which do not admit a Killing field. AlsoA need
surface gravity is defined as the acceleration of the Killing,; pe “complete”—it may be of finite affine length with
fie_Id_g normal tQAK. Hoyvever, ifAgisa KiIIing horizon for respect to any—and may not admit the analogue of a “bi-
¢ itis also a Killing horizon forcg for any positive constant  fycate surface” on which the Killing field vanishes. Finally,
c. Hence, surface gravity is not an intrinsic property\a,  the field equations are used rather weakly; we only need to
but depends also on the choice of a specific Killing fi€ld 555yme that- (R%,— 1 R6%,)I° is a future directed causal
(Of course the result that the surface gravity is constant ojgctor.
Ay is insensitive to this rescaling freedonin asymptoti- Surface gravity does not have a definite value on a weakly
callyflqt space-times admitting gIobaI.K|II|ng fields, this am- jspjated horizon. The value of, depends upon the choice
biguity is generally resolved by selecting a preferred normals i normall [1]. Since all the normalkto A are future
ization in terms of the structure at infinity. For example, in gjrected, the rescaling constantis necessarily positive.
the static case, one requires the Killing figldo be unit at  theefore, if the surface gravity is nonzefespectively,
infinity. However, in absence of global Killing field or ;orq with respect to oné, it is nonzero(respectively, zero
asymptotic flatness, this strategy does not work and we simgy;it, respect to any othdre[1]. This rescaling freedom is

ply have to accept the constant rescaling freedom in the defpe same as the one discussed above in the context of Killing
nition of surface gravity. In the context of isolated horizons, j,4i>ons.

then, it is natural to keep this freedom. _ _ We will conclude this subsection with three remarks.
A weakly isolated horizon is similarly equipped with a (i) Freedom in the choice dfi]. Given a nonexpanding

preferred family[1] of null normals, unique up to constant pqrizon A it is natural to ask if one can always select an
rescalings. Therefore, it is natural to interpref) as the g ivalence clasl] of null normals such thatA,[1]) is a
surface gravity associated withUnder the permissible re- \yeaiy isolated horizon. As indicated earlier in this section,
scalingsl—1I=cl, the surface gravity transforms vij,  the answer is in the affirmative and, furthermore, there is a
=Ck(y. Thus, whilew is insensitive to the rescaling free- considerable freedom in the choice [df.. Let us examine
dom in [1], «qy captures this freedom fully. One can, if this issue in some detail.
necessary, select a specifim [1] by demanding thak ) be Sincel-dwA 0 for any null normall to a nonexpanding
a specific function of the horizon parameters which are inhorizon, it follows that a null normal satisfiesC,w 20 if
sensitive to this freedom, e.g., by setting)=1/2R, , where  and only ifdx(,20. Thus, to find a family|] required in
R, is the horizon radiugrelated to the horizon arem, via  the definition of weakly isolated horizons, it is necessary and
ar= 477R§). sufficient to find a null normdilfor which the surface gravity
(b) Zeroth law The boundary conditions of definition 2 is constant. On a nonexpanding horizon, the surface gravity
allow us to define surface gravity,, of a weakly isolated transforms as follows:
horizon A,[17). We will now show that the surface gravity
is constant oM. In other words, the zeroth law holds for If 1=>TAfl, then k2 T+ Lf.
weakly isolated horizons.
Recall from Eq.(2.12 that on a nonexpanding horizon, Hence, starting with any, we can simply solve foff by
dw A 2 Im[W,]%€ for any choice of null normal. Since?e is  requiring thatx(j, be constant om\. The solution is not

Hence, we conclude
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unique. If k; is constant, given any nonzero functigrsat- C. Electromagnetic field

isfying £,02 0 and a constark, let us set We shall now describe the form of the electromagnetic
field at an isolated horizon and introduce a partial gauge
fixing at the horizon which will allow us to introduce the
K notion of an electric potential. In the next three sections—
fAge 7+ — where we discuss the action, phase space, and first law—we
0 will assume that the only matter fields presatthe isolated
horizon are Maxwell fields. However, as our discussion will
- o~ make clear, this restriction is made primarily for simplicity.
wherev satisfiesCiv£1. Then, we obtain an e[l] for  the gyerall framework is rather general and can accommo-
which ) 2%. This is the only freedom if botl, andx)  date matter for which there exists a well-defined action prin-
are to be constant. Thus, each nonexpanding horizon givesple and acovariant Hamiltonian framework. In particular,
rise to an infinite family of weakly isolated horizons. Put iy Sec. VI, we describe how to extend the formalism to in-
differently, although one can easily obtain weakly isolatedc|yde Yang-Mills fields.
horizons from nonexpanding ones by choosing appropriate The isolated horizon boundary conditions restrict matter
null normals[1], a specific weakly isolated horizon carries primarily through conditions on the stress-energy tensor
much more information than the nonexpanding horizon itt_ . Let us begin withT 21?20, a direct consequence of
one can further strengthen the boundary conditions to give gestriction arises due to the fact thatis a nonexpanding
prescription for selecting a specifit]. However, the analy-  horizon; the subsequent stronger boundary conditions do not
sis of this paper doesot depend on how this selection is fyrther constrainF.) Although this condition is weak, it
made. turns out to have interesting consequences on the form of the
(if) How does definition 2 compare with that used in theglectromagnetic fieldF, at A. The stress-energy tensor for
undistorted, nonrotating caSeAs one would expect, the electromagnetism is given in terms of the field strerfgtas
definition given in[6-8] is significantly stronger. Further-
more, it was tied to a foliation from the beginning. More
precisely, it assumed that there exists a foliation to which
is normal, withw = — kn, and it required that the expansion
Rd ] of the null normaln to the leaves of the foliation be Let us contract this expression withl® and examine the
constant om\ (see Appendix B for definitions of the NP spin consequences fdt. This gives
coefficients. Although it was shown that the foliation is
unique if it exists, the heavy reliance on the foliation right 04 T,pl 1P A [12mMPFgy|, (219
from the beginning made that definition less elegant and its

invariant content less transparent. Also, since we now aIIOV\‘/"here’ to obtain the last expression, we have useq the anti-
dw to be nonzero and impose no conditions orf Rewe symmetry ofF and the fact that the metric at the horizon can

can now incorporate rotation and distortion. be expressed in terms of a null tetrad @g,= — 2l aNy)

(iii) Alternate boundary conditiondn the definition of +2M@My) - An immediate consequence of Eg.19 is that
isolated horizons, we required,w £ 0, which in particular l8E.. A Q (2.16
implies £;xy=L,(l- 0)20. Thus, the definition itself as- L ab=r ’
sured us thatc(y is “time independent” and to prove the
zeroth law we had to show that it is also independent o
“angles.” Could we have used another definition in which
the “time dependence” of) was not explicitly required
but followed from other conditions? The answer is in the
affirmative: In place off,w 2 0, we could have required that
A admit a foliation on which the expansion [Rg of n and 12*F,,A0. 2.17
the Newman-Penrose spin coefficiemtwhich carries the —

angular momentum information are “time independent” thaqe two restrictions tell us there is no flux of electromag-
[13]. Then the field equations would hairepliedthat « ), is netic radiation across the horizon.

time independent. Furthermore, all results of this paper go |1 s straightforward to show that Eq€2.16,(2.17 and
through(and were in fact first obtaingavith these modified 1o form of the metric af place further restrictions ofi,y
boundary conditions. Note however that the new condition is

1
T FachC_ ZgachdFCd . (2-14)

ab= g

gn order to obtain a similar expression fdF recall that
the stress energy tensor can be rewritten &g,
=(—147)[*Fac*Fot— 3 9ap*Feg FSY]. Applying the same
argument which led to Eq2.16), we obtain a similar restric-
tion on *F, namely

neither weaker nor stronger than the one we used. Both re- Tapl2mP20, T, l2mPAO,
quire that7r be time independent. In addition, the present
definition of isolated horizons requires thaj, be time in- Tabmambé 0, Tabmambé 0.

dependent while the alternative definition would have re-

quired, instead, that Re] be time independent. In this pa-  The first two equations contain no new information since
per, we chose the present definition because it can be stated already knew from general argumefgse Eq(2.3)] that
without reference to a foliation. D020 and ®y;20. However, the last two equations do
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place further restrictions on the stress-energy tensor. Sinagected components. Thus, in the first law, we will not be able
the equations of motion are enforced at the boundary, we sde consider variations of fields with SP#0. As far as me-
immediately that they are equivalent to further restricting thechanics of isolated horizons is concerned, there is essentially
Ricci tensor at the horizon by requiring: no loss of generality if we restrict ourselves to the cRse

=0. Therefore, in the next three sections, while working

with Maxwell fields, we will do so. As usual, otiinal results

can be formally extended to the case of nonvanishing mag-
(2.18 netic charge by performing a duality rotation Bn(As dis-

. . - cussed in Sec. VI, the situation is rather different in the case
This result need not hold for general matter fields; it relies or Yang-Mills fields)

the properties of the electromagnetic stress-energy tensor Recall that the first law in the Einstein-Maxwell case in-

(2.14. . . . . volves the electrostatic potenti®l In static space-times, one
The next task is to Qeflne the (_alectrlc an.d magnet'ctypically setsd = — £2A, where ¢ is the static Killing field
charges of the horizon. Since the horizon is an inner bound: d the gauge is chosen such that the vector poteAtial

ary of spacetime, the normal to a 2-sphere cross section Qhs to zero at infinity and satisfigsA=0 everywhere in
th_e horizon Wi_II naturally be _inward pointing. Bearing this in space-time We now need a strategy to define the electric
mind, we define the electric and magnetic charges of th‘ff)o'[entialcb withoutreference to a Killing field or infinity. To

1 1
Dpi=5 RapM*MP 20, Dygi=o RapPmP 20,

horizon as this end, we introduce the following definition:
efinition e electromagnetic potential will be sai
1 1 Definition 3 The el i ialwill b id
Qp=—— F, Py=—— F. (2.19 to be in agauge adapted to the weakly isolated horizon
4m Js, 4w Js, (A,[1]) if it satisfies

For these definitions to be meaningful, the value®Qgfand

P, should be independent of the cross section of the horizon C@AO. (2.2
S, . We will now show thatA, being a nonexpanding hori- . . L ) N
zon, guarantees this is the case. Let us first evaluate Mathematically, this restriction is analogous to this condition
Liw2A0 imposed on the gravitational field in definition 2.
LiFAI-AF+d(I-F). However, while the condition ow is a physical restriction
I on the form of the gravitational field &, the condition orA

The first term on the right hand side vanishes due to Maxis a gauge choice; it can always be imposed without physi-
well’s equations om\, while the second term is zero due to cally constraining the electromagnetic field strength.

the previous restriction oR, Eq. (2.16). Therefore we con- Given an electromagnetic potentialin a gauge adapted
clude thatF is Lie dragged by. An identical argument for to (A,[1]), we can now define the scalar potentigi) at the

*F leads to the analogous conclusion. Therefore we obtainhorizon in an obvious fashion:

/:,|Eé0 and /_’,I*Eéo. (2.20 DyE—1-A.

This result, along with Eqg2.16 and(2.17), guarantees that . . .
Q, andP, are independent of the choice of cross secBign The key question now is whether our boundary conditions

of the horizon. Note that this result was obtained using onl)ﬁre strong enough to ensure tiia, is constant on. Only

the boundary conditions; equations of motion in the bulk are[then can we hope to use this notion of the scalar potential in

not needed.
Finally, let us examine the remaining freedom in the elec
tromagnetic field. The boundary conditions do not restric

he first law. Note that this question is rather similar to the
one we asked of surface graviy, in Sec. 11 B. By using
targuments completely analogous to those that led us to the
zeroth law, we will now show that the answer to the present

F.pn?m® and *F,,;n®mP at all. These components describe R : A
the electromagnetic radiation flowing along the horizon question is also in the affirmative. In a gauge adapted to the
‘horizon,

Therefore, isolated horizon boundary conditions allow elec-
tromagnetic radiation arbitrarily close to—and even at—the
horizon, provided none crosses it.

So far we have confined ourselves to the field strengths
and *F. However, in the action principle and the Hamil- As we saw above, the boundary conditions imply
tonian framework we have to consider also the Maxwell po-i A0 [Eqg. (2.16]. Hence, it follows immediately that
tential A. Now, if the magnetic charge is nonzero, either oned ;) is constant on the horizon. We can regard this result as
has to allow “wire singularities” in the vector potentials or the “electromagnetic part” of the zeroth law of isolated ho-
regardA as a connection on a nontrivigl(1) bundle.(If we rizon mechanics.
regard it as a connection on &" bundle, the magnetic We will see in the next section that these zeroth laws play
charge is necessarily zey&ince we wish to deal only with a key role in making the gravitational and the electromag-
smooth fields, we will not allow “wire singularities” in the netic action principles well defined in the presence of iso-
potentials. If we work with bundles, the magnetic charge islated horizons. As with surface gravity;,, the functional
quantized whence the space of histories has several discodependence ob;, on the horizon parameters varies with the

>3

0ALAL |-F —dd ).

D —
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choice ofl e [I]. We will see in Sec. V that the Hamiltonian (@ V alp2 w,l®.
framework constrains these dependences in an interesting

fashion (b) K(T)é'aa)a, the surface gravity defined by the null

normall?, is constant om\.
(c) There is a naturalarea 2-form %e on A satisfying
D. Other definitions and remarks L£,%€A0 and?ey;|P20.
(d) The electromagnetic potentidl is chosen to satisfy
L/AA0 and in this gauge the scalar potentig),:=
—12A, is constant on.

In this subsection, we introduce two new definitions
which are important to the general framework of isolated

horizons. o -
The first is concerned with rotation. From one’s experi- (& The electromagnetic field satisfieS'F,, 20; and
ence with the Newman-Penrose framework, one expects the 12*Fap2 0.

—

gravitational contribution to angular momentum to be coded
in the imaginary part of’,. This expectation will be shown

to be correct in[13]. Therefore, in the Einstein-Maxwell 1. ACTION
theory, we introduce the following definition: ) ) )

Definition 4 A weakly isolated horizon 4,[1]) will be In_ thls paper we use the first order forrr_lulatlon_ of general
said to benonrotatingif Im[¥,] vanishes on. relativity in terms of tetrads and connections. Since tetrads

If (Ay,[£]) is a Killing horizon and¢ is a hypersurface @€ essential to incorporate spinorial matter, it is natural to
orthogonal timelike vector field nearAy, on physical base the framework on tetrads from the beginning. The use

grounds one would expect the horizon to be nonrotating. |9f a first order formalism, on the other hand, is motivated

this expectation compatible with our definition? The answeP'imarily by mathematical simplicity. In the first order
is in the affirmative. For, in this case, one can show thaff@mework, the action and the Hamiltonians can be ex-

pressed entirely in terms of differential forms which signifi-
cantly simplify the variational calculations. The previous pa-
per [8] which dealt with undistorted horizons used spinors
and self-dual connections, while here we choose to use or-
thonormal tetrads and real, Lorentz connections. For analyz-

again compatible with one’s intuition that the horizon should9 rr]necggmcshof 'EOIat.?d hpnzon;, therel are two advantages
be nonrotating in this case. In this paper, while we allow fort© this. First, the Hamiltonian and symplectic structure are

presence of rotation in the first four sections, we will restrict"OW manifestly real Wh'.Ch simplifies evaluatlon. of the
: wooundary terms at the horizon. Second, the analysis can now

in Sec. V. be extended to other space-time dimensions in a straightfor-
ward manner. However, these simplifications come with a

price. Since, at present, the self-dual variables appear to be
indispensable for nonperturbative quantization, the results
obtained here will have to be reexpressed in terms of self-

dual variables in order to extend the analyg2§] of the

Bab:=Cachat €" vanishes in the region wheéd is timelike.
Hence, by continuity, it also vanishes Arforcing Im{'W,] to
vanish there. Similarly, if the space-time admitkypersur-
face orthogonal rotational Killing field ¢ in a neighbor-
hood of A, Im[¥,] again vanishes orh. The definition is

Finally, for completeness, let us introduce a stronger no
tion of “isolation” by strengthening the boundary conditions
of definition 2.

Definition 5 A weakly isolated horizonX,[1]) is said to

be isolatedif i )
quantum horizon geometry and black hole entropy to include
[£,,D]VAO (2.22 rotation.
for all vector fi_eldsV tangent?al_toA a_nd alll _e_[l]. A. Preliminaries
As before, if any ond satisfies this condition, so do all . . . . ) i
le[1]. However, unlike Eq.2.13, condition (2.22 is a Let us begin with the first order action for Einstein-

genuinerestriction in the sense that it cannot always be mef@xwell theory on a four-dimensional manifaltit which is
by a judicious choice of null normals. Generically it doesoPologically MR, whereM is an oriented Riemannian
suffice to single out the equivalence clék uniquely[18].  3-manifoldwithout boundarythe complement of a compact
In particular, in the Kerr family, the onlyi] which satisfies Set 0f wh|ch3|s diffeomorphic tathe complement of a com-
Eq. (2.22 is the one containing constant multiples of the Pact set of R*. Thus, topological complications o, if any,
globally defined Killing field which is orthogonal to the ho- &ré confined to a compact set. In this subsection we shall
rizon. Every Killing horizon is of course an isolated horizon, @NlY give the relevant formulas. For details, see ¢23].
Thus, even though E@2.22 is a stronger condition than Eq. OuUr basic fields will consist of a triplef, ,A,”,A,) defined
(2.13, it is still veryweak compared to conditions normally 0n M wheree; denotes a co-tetrady,’ the gravitational
imposed. For most physical applications, e.g., to numericalLorentz connection, andA, the electromagnetic connec-
relativity, it is appropriate to work with isolated horizons. tion. Here, lowercase latin letters refer to the tangent space of
For mechanics of isolated horizons, however, we can—and! while the uppercase lettets J, etc. refer to an internal
will—work with the larger class of weakly isolated horizons. four-dimensional vector spacé with a fixed metricz,; of

The following consequences of the boundary conditionssignature(—, +, +, +). The co-tetrac, is an isomorphism
defining weakly isolated horizons, derived in this section,between the tangent spadg(,M) at any pointp and the
will play an important role in the subsequent discussion: internal spaceV. Using it, we define a metric oo\l by
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Jabi=€5en7,; Which also has signature-, +, +, +). The
Lorentz connectiom,,” acts only on internal indices and
defines a derivative operator

Dok =04k, +AaIJkJ )

wheregd is a fiducial derivative operator which, as usual, will
be chosen to be flat and torsion free. Finally, is the U1)
electromagnetic connection 1-form awi. (As noted in Sec.

I.I C, we will assume that the magnetic charge is 2erdl FIG. 1. The region of space-time! under consideration has an
fields will be assumed to be smooth and satisfy the Standarﬂternal boundanA and is bounded by two partial Cauchy surfaces

asymptotic CondiltJionS at infinity. M= which intersectA in the 2-sphere$* and extend to spatial
The 2-forms, infinity i°.

i

1
2|J‘=§‘EIJKLl‘-‘KDE‘L d*F=0.

constructed from the co-tetrads will play an important role B. Internal boundary A
throughout our calculations. In particular, the action for an
asymptotically flat space-tim@vith no internal boundabpyis
given by (see e.g[21])

Let us now consider the variational principle for asymp-
totically flat histories which admit a weakly isolated horizon
A as their internal boundary. The manifold under consid-

-1 eration has an internal boundaty topologicallyS?x R. As
S(e,AA)= mf SYOF, before, M is topologicallyM X R, whereM is now an ori-
M ented manifold with an internal, 2-sphere boundary, whose
1 topological complications are again confined to a compact
f SNOA;;— S—J FOF. region. Space-time is bounded to the future and past by two
Ter TIM (partial Cauchy surfacesM =, extending to spatial infinity
(3.) (seeFig. 1
Following definition 2 of weakly isolated horizons, we
Here F and F are the curvatures of the gravitational and wjll equip A with a fixed equivalence class of vector fie[tls
electromagnetic connectiomsandA, respectively: which are transversal to its 2-sphere cross sectiohgre, as
I A K 3 _ before,| ~1" if and only if | Acl’ for a constant). It is also
Fi=dAT+ATOAC,  F=dA, convenient to fix annternal null tetrad (',n',m',m') on A,
*F=1 Gadech is the dual ofF defined using,', and ., feach element o_f which is annihilated by the fiducial, flat
is the timelike cylinder at infinity. The boundary termat ~ INternal connectiow. _ _
ensures the differentiability of the action. The permissible histories consist of smooth triplets

Let us briefly examine the equations of motion arising(€&AA) on M satisfying boundary conditions at infinity and

from the action. Varying the action with respect to the con-OnA. The boundary conditions at infinity are, as before, the
nection. one obtains standard ones which ensure asymptotic flatness. Since the

asymptotic behavior and boundary integrals at infinity play
DX=0. only a secondary role in our analysis, we shall not spell out
the precise fall off requirements. A, the histories are sub-
This condition implies that the connectidn defined byA  ject to three conditionsi) the tetradse should be such that
has the same action on internal indices as the unique connegre vector fieldl2:=1'e? defined by each history belongs to
tion V compatible with the co-tetrad, i.e., satisfyift,el,  the equivalence clag$] fixed onA4, (ii) the tetrade and the
=0. When this equation of motion is satisfied, the curvatureyravitational connectior should be such thatA([1]) is a

1

167G

F is related to the Riemann curvatuReof V by weakly isolated horizon for the history, aiid ) the electro-
. el 3 magnetic potentiah is in a gauge adapted to the horizon,
Fan™=Rap €€y i.e., LLALO.

Remark In space-time, we have the freedom to perform a
lgcal, internal Lorentz rotation on the tetral (and the
gravitational connectiom\,,”). All these tetrads define the
same Lorentzian metrig,;,. Sincel? is required to be a null

1 normal toA, the permissible gauge rotations are reduced on
Gap=87GTap=2G| FacFpag®'— ZgachdFCd A to the subgroup " X E?),.. of local null rotations pre-
serving the null direction field. (Here R* is the group of
whereG,, is the Einstein tensor arif,, the electromagnetic rescalings ofl, n® which leavesm® fixed andE? is the
stress energy tensor. Finally, variation with respect to théhree-dimensional Euclidean group consisting of rotations in
electromagnetic connectiod,, yields Maxwell’'s equation the I-m, I-m, and m-m planes) Condition (i) above—

Varying the action with respect tdd and taking into account
the above relation between curvatures, one obtains Einstein
equations
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dictated by the existence of a preferred equivalence ¢lass boundary, the variation of the boundary term at infinity pre-
in definition 2—further reduces the internal gauge freedontisely cancels the contribution arising from the variation of
to R"x(E2y), i.e., reduces the grou, of local I-n re-  the bulk terms.

scalings to the grouft* of global rescalings. Thus, while In order to show that the action principle is viable, it is
any one space-timeM,d,;,), still defines infinitely many necessary to show that the terms at the horizon vanish due to
histories due to the freedom of tetrad rotations, this freedonthe boundary conditions imposed there. Let us begin with the
is somewhat reduced at because of the structure fixed by gravitational term. Using Eq$3.2) and(3.3) it can be reex-

the boundary conditiors. pressed as

Given any tetrad e, the internal null vectors
(I",n",m',m') fixed on A trivially provide a null tetrad b Sw2e 3.5
(I:z,na,ma,ﬁa). In terms of these vectors, we can express 87G Ja ' '
>as

Since ?¢ is the pullback taA of the alternating tensor on the
E'Jézl['nJ]25+2n|](im|['aJ]—in_ql['mj]), (3.2 2-sphereS of integral curves of, it follows that £,?¢A 0.
- Furthermore, the weak isolation of the horizon ensures
Where’ as before?ezimmm is the pu”back toA of the £|wé0 and, since the null ﬂorn"mﬁ1 defined byanytetrad
natural alternating tensor on the 2-sphéref integral curves ~ Pelongs to the fixed equivalence cldfkat the horizon, we
of 12 associated with the given history. The weak isolation ofhave sl Ac;l for some constant;. These two facts imply
(A,[1]) restricts the form of the connectiohat A. To see  £i16w20. Thus the entire integrand is Lie dragged Ibyn
this, recall that one of the equations of motion requires thdhe variational principle, however, all fields are fixed on the

connectionD defined byA to have the same action on inter- initial and final hypersurfaces, sayi*. In particular, so
nal indices asV. Hence, V| 24,0, +A,, l;AA,,%;, hecessarily vanishes on the initial and final cross sections of

e horizon. Therefore, the integrand Eg.5 vanishes on
e initial and final cross sectiorend is Lie dragged byl.
This immediately implies that Eq3.5) is zero.

Let us now consider the electromagnetic term. Since ev-
ery A is in a gauge adapted to the isolated horiz6A 2 0.

where, in the second step we have used the fact that the fl%ﬁ
derivative operatorg, has been chosen to annihilate the in-
ternal tetrad orA. SinceVaeLzo by definition of V, and
Val’2w,l” [see Eq.(2.4)] it follows that Ajl72wl).

Hence, onA, A has the form Furthermoregl®A ¢ 42, so we conclude; 5SA 2 0. Next, Eq.
(2.20 ensures that;*F2 0. Thus, the integrand of the elec-
ApL2ipnge+Cy, (3.3 tromagnetic surface term is Lie dragged By An identical
argument to the one presented above implies that the elec-
where the 1-fornC,; satisfiesC ;172 0. tromagnetic surface term E€3.4) also vanishes. Therefore,

With this background material at hand, we are now readythe variation of the actioi3.1) continues to yield Einstein-
to consider variations of the acti@8.1) in the presence of an Maxwell equations in spite of the presence of an inner
inner boundary representing a weakly isolated horizon. Aboundary representing a weakly isolated horizon.
key question is whether a new surface term at the horizon is It is instructive to reexamine the key step in the above
necessary to make the variational principle well defined. Weargument. Suppose we only had a nonexpanding horizon.
will show that, thanks to the zeroth law, such a term is notfThen, the gravitational surface term could still be reduced
needed. Eq. (3.5, and 2¢ and “F would still be Lie dragged by.
A simple calculation yields However, in this case, we could not argue thaand A are
also Lie dragged. As we saw in Secs. IIB and IIC, these
. , conditions are equivalent, respectively, to the constancy of
5S(e,A,A)=fM(equatlons of motionx 5¢ the surface gravityx, and the electromagnetic potential
®y on A. In this sense, given a nonexpanding horizon as the
1 . 1 N inner boundary, the gravitational and electromagnetic zeroth
- RLE DoA, = EL‘SAD F laws are thenecessary and sufficient conditioose must
impose for the viability of the standard, first order, tetrad
(3.4  action principle.

Remark Note that Eq(3.1) is not the unique viable action
where, in the first term¢ stands for the basic fieldg(A,A)  for the problem: as usual, there is freedom to add suitable
in the action. Note that, as in the case without an internaboundary terms without affecting the viability. Specifically,

we are free to add any horizon boundary term which is com-

posed entirely of fields which are Lie dragged Ibyor ex-

SNonetheless, from a space-time perspective, the multiplicity o2MPI€ the intrinsic horizon metrig,, and fieldso, ?¢, and

histories can still be rather surprising. For exampleggf is the ~ A. Then, as a result of the argument given above, the new
Schwarzschild metric with madd >0, there is a history in which ~action would also be viable. However, as usual, this freedom
the surface gravity, is positive and another in which it is zero. Will not affect the definition of the symplectic structure
This redundancy can be eliminated by working with isolated, rathetwhich underlies the Hamiltonian treatment of the next sec-
than weakly isolated horizons. tion.
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IV. COVARIANT PHASE SPACE Note that these conditions associate with each poirt af
unique pair(¢,x) on A and in the “extremal” casex(;)=0, ¢

Let us now construct the phase space of space-times COlznishes id entically

taining weakly isolated horizons. In the next section, we will We wish to use the standard procedii22] involving

use this framework to construct Hamiltonians generatinta.ond variations of the action to define the symplectic
suitable time translations and define the energy of an isolateg,cture® Let us recall the main steps of this procedure. One
horizon. In[8], the phase space was constructed by performirst constructs the symplectic currelitGiven a pointy in
ing a Legendre transform of the action. This procedure leadg,e phase spade and two tangent vectors; and 8, at that
to a “canonical” framework in which the phase space con-point, J provides a closed 3-fornd(y;8;,8,) on M. Inte-

sists of configuration and momentum variables defined on rating dJ over the parti4 of space-time under consider-
spatial hypersurface. With the self-dual connections used i tion. one obtains

[8], the gravitational configuration variable turns out to be a
connection and its conjugate momentum a 2-form so that the
Hamiltonian description can again be given in terms of 0= f~ dJ(y;81,8,)= % _J.

forms. With the full Lorentz connections now under consid- M

eration, the situation turns out to be more complicated. Spe- _
cifically, one encounters certain second class constraints antlow, if there is no internal boundary, one can choggeto
when these are solved, one ends up with the same canonida¢ a region bounded by any two Cauchy surfadgsandM,

phase space that one would have obtained through a secosd that the boundary is given V=M, UM,U r.., where
order formalism. In the Hamiltonian framework, then, the r_ is the timelike “cylinder at infinity.” In simple cases, the

simplicity we encountered in Sec. Ill is lost. More specifi- agsymptotic conditions ensure that the integrall(y; 81, 55)

cally, constraint functions and Hamiltonians now contain,,nishes Then, taking orientations into account, if follows

termsljlinvol;]/inﬁ secl(:nddgriyatives ﬁf the bal.SiC canc()jnical that [\J(y; 81,6,) is independent of the choice of Cauchy
variables which make variations rather comp |ca_( F0€  surfaceM. One then sets the symplectic structure to be
tails, see Chaps. 3 and 4 [ig1].) Therefore, in this section

we will not use a Legendre transform. Instead, we will con-

struct the “covariant phase space” from the space of solu- Q|y(5l,52):f J(y;61,5,).
tions to field equationgsee, e.9.[22]). As in Sec. Ill, all M
expressions will now involve only the basic form fields and

their exterior derivatives and variational calculations will  In our case, the second variation of the act@rl) yields
continue to be simple. the following symplectic current:
To specify the phase space, let us begin as in Sec. lll by
fixing a manifold M with an internal boundanA (see Fig. _ -1 . .
1). As before, we will equipA with an equivalence clag$] I(7:61,85) = 755612 H6A =~ 8,2 11A]

of vector fields transverse to its 2-sphere cross sections. To
evaluate the symplectic structure and Hamiltonians, we will
often use a partial Cauchy surfabé in the interior of M
which intersectsA in a 2-sphereS. Points of the covariant

phase spacE will consist of histories considered in Sec. llI Using the fact that the fieldy=(e,A,A) satisfy the field

which satisfy field equation®lore explicitly, I' consists of equations and the tangent vectes &, satisfy the linearized
asymptotically flat solutionsg,A,A) to the field equations equations offy, one can directly verify thai(y; 8, ,6,) is in
on M such that(i) the vector field *:=I'ef' belongs to the  fact closed as guaranteed by the general procedure involving
_equwalenkﬁe (_:Iaf[sk] f('jxid an’ (i) '(;.eaﬁh sollut|on,z(s,[l])_ second variations. It is now natural to chooseto be a part
IS a weakly 10 ated horizon, andii) the gectrqmagnetlc of our space-timeM bounded by two partial Cauchy sur-
potentialA is in a gauge adapted to the horizon, iGA 2 O0. o . ~
Our next task is to use the actié®.1) to define the sym- [@c€SM1, My, the timelike cylinderr.. and a pariA of the
plectic structureQ on T'. It is convenient to make a brief 1Solated horizon bounded by, and M,. Again, the
detour and first introduce two new fields which can be re-2Symptotic conditions ensure that the integralajver 7.,
garded as “potentials” for the surface graviky,, and the vanishes. Hence,
electric potentiafb |y . Given any point ¢,A,A) in the phase
spacel’, let us define scalar fieldg and y on A as follows: o ) _ _ _
(i) LyLr(l-w)A KQ) and L x2(1-A)A _‘D(l) ) Actually this procedure provides a presymplectlc s.tructure, ie,a
(i) ¥ and y vanish onS™, the intersection oM~ with closed 2-form on the phas_e-space which, howc_evgr,_ is generally de-
AT generate. The vectors in its kernel represent infinitesimal “gauge
transformations.” The physical phase space is obtained by quo-
tienting the space of solutions by gauge transformations and inherits
a true symplectic structure from the presymplectic structure on the
"Condition(ii) serves only to fix the freedom to add constantgto space of solutions. The 2-forf introduced below is indeed de-
andy. One could envisage replacing it by a different condition. Ourgenerate. However, for simplicity, we will abuse the notation some-
results will be insensitive to this choice. what and refer td) as the symplectic structure.

1
— 1[5 FOSA-5,"FOSAL  (4.1)
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(JMfJMffz

However, this does not immediately provide us the con-

served symplectic structure because the integrdl @fer A
does not vanish in general. Since the isolation of the horizon _
implies that there are no fluxes of physical quantities acrosklence, if M, and M, intersectA in 2-spheresS; and S,
A, one might expect that, although nonzero, the integral ovefespectively, we have
o)
S S

A would be “controllable.” This is indeed the case. Using
The negative sign appearing in the above expression is due

1
J(v:61,6,)=0. J(7:61,67)= %[5&52(26)— S21h81(%€)]

1
+ E[51X52*F_ Sox 6,7 F].

the forms(3.2) and(3.3) of = andA on A and the definitions ﬁJ( ¥;01,02)=—
of the potentialsy andy, it is easy to verify that the pullback A
of the symplectic current ta is itself exact:

j(7:61,07).

J(7:01,62) 2dj(y,61,65) to the choice of orientation d, , which is induced fronM
- rather than fromA. Using these results we can define the
where the 2-fornj on A is given by symplectic structure as

-1 1
Q| ,(61,6,)= 16.G JM[512UD52A|J_ 8,3 08,A ;5] + 887G i[ 81(%€) Syh— 5x(%€) 814

1 1
i jM[ﬁl*FD52A_ 8,"FO6,A]+ yp= 353[ 81" FSx— 85"Fd1x]- 4.2

Again, using field equations one can directly verify that thesufficient condition for this to happen is that there exist a
right side Eq(4.2) is independent of the choice of the partial function H,—the Hamiltonian generating theevolution—
Cauchy surface; the symplectic structure is “conserved.”such that
We will use(I',Q2) as our covariant phase space.

Note that, even though the action did not contain a surface SH=Q(5,6) (5.1
term at the horizon, the symplectic structure does. So the
overall situation is the same as in the undistorted, nonrotaffor all vector fieldsé to I'. On general grounds, one expects
ing case considered if8]. Finally, our discussion of the H; to contain a surface ter)y,, at infinity representing the
action principle and our construction of the covariant phaseotal (i.e., ADM) energy, and a surface terf}, at the hori-

space is applicable tall weakly isolated horizond\; no-  zon which can be interpreted as the horizon energy, both tied
where did we have to restrict ourselves to the nonrotatingg the evolution field?.

case. A key question then is to specify the appropriate bound-
ary conditions ort?. It is clear that, at infinityt® should be
V. HAMILTONIAN EVOLUTION AND THE FIRST LAW an asymptotic time translation, i.e., should approach a time-

. i . i . translation Killing field of the flat metric used to specify the
To discuss the first law, we must first define horizon enoundary conditions. At the horizon, on the other hand, the
ergy, which in turn requires a time evolution figflon M. metric isnot universal and the space-time defined by a ge-
Given a vector field® satisfying appropriate boundary con- neric pointy of the covariant phase does not adanity Kill-
ditions, 6;:=(Lie, LA, LA) satisfies the linearized equations jng field nearA. Therefore, specification of the boundary
for any y:=(e,A,A) in I' and thus defines a vector field on conditions atA is not as straightforward as that at infinity. It
I'.° This 6, can be interpreted as the infinitesimal generatols for this reason that we now assume that[(]) is anon-
of time evolution on the covariant phase space. It is thefotating, weakly isolated horizon for all pointg=(e,A,A)
natural to ask if this vector field is a phase space symmetryof the phase space. The problem of specifying the appropri-
i.e., if L5 vanishes everywhere dn. The necessary and ate poundary conditions off in the rotating case is more
complicated. However, it has been addressed successfully
and will be discussed ifl3].
9n the Lie derivatives, the internal indices are treated as scalars; Recall that the internal boundaty of M is equipped
thus £}, =t°gye., + e} 0,t?. To makes, a well-defined vector field ~With a specificequivalence clasg] of vector fields. As dis-
on T, we now excludeM = from M and letM and A be without ~ cussed in Sec. |l, thesare the isolated horizon analogues of
future and past boundaries. Whenever needed, these boundari€®nstant multiples of Killing fields on the Killing horizons in
M= andS*, can be added by taking the obvious closure\af static space-times. Therefore, in thenrotating case, it is
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natural to demand that, oA, the evolution vector field®  Note that the expression involves integralsly over the
should belong to the equivalence cl@ids This automatically = 2-sphere boundarieS, and S, of M, the partial Cauchy
ensures thatf.e, LA, L;A) satisfy the appropriate boundary surface used in the evaluation of the symplectic structure;
conditions to define a tangent vector at each point of thehere is no volume term.
phase spac€&. However, unlike at infinity, the geometry at ~ The integrals at infinity can be evaluated easily by making
the horizon isnot fixed once and for all. Therefore, it is use of the falloff conditions. As one would expect, the elec-
natural to allow the precise value of the evolution vectortromagnetic term vanishébecause falls off at least as 1/
field t2 on A to vary from one point of the phase space towhile F falls off as 1f?) while the gravitational term yields
another. In more familiar terms, this corresponds to allowingprecisely the ADM energyEhy,, associated with the
the (boundary values ¢flapse and shift fields to depend on asymptotic time translation defined B At the horizon, we
dynamical fields ¢,A,A) themselves, a procedure routinely can use Eqs(3.2) and(3.3) to show thatt-3 contracted on
used in numerical relativity and gauge-fixed calculations ininternal indices withSA vanishes and Eq(2.17) implies
canonical gravity. Following the current terminology in nu- t.*F=0, leaving
merical relativity, we will refer to such® aslive evolution
vector fields. The use of live fields turns out to be necessary 1
to ensure tha, is a phase space symmetry, i.e., yields a Xi(6)=— %J (t-w) (%)
Hamiltonian evolution onI',(). S

Let us fix a livet? whose restriction to the horizon be- 1
longs to the equivalence clafg at all points of the phase - 4—j (t-A)S(*F)+ SEppm

. . . . . o mJs

space. To analyze 6, is a Hamiltonian vector field, it is A
simplest to compute the 1-ford§; on I' defined by
Kyday— Dy Qr+ SEppy (5.6

X(8)=0Q(8,5,). (5.2 87G

. I . . . where, in the last step, we have used the fact that bath
Now 4 is Hamiltonian—i.e..L; (=0 onI'—ifand only it _, “anqt.A=—,, are constant on the horizon and the
Xy is closed, i.e., definition (2.19 of electric charge.
The necessary and sufficient condition for the existence of
dX{=0 a Hamiltonian is thak, be closed. Clearly, this is equivalent
to

whered denotes the exterior derivative dthe infinite di-
mensional phase spac€. If this is the case then, up to an
additive constant, the Hamiltonian is given by 872G dkyyDday +dP ) [dQ, =0, (5.7

dH=Xe. where [ denotes the antisymmetric tensor product Ian

Now, Eq.(5.7) trivially implies that the surface gravity

and the electric potentiab , at the horizon defined by*

can dependnly upon the area and charge of the horizon.

Other factors, such as the “shape” of the distorted horizon,

cannot affect the values afy or ® . Finally, Eq.(5.7) is

the necessary and sufficient condition that there exist a func-
LiZ=t-DX+D(t-2)—[(t-A),X], tion EY , also only ofa, andQ, such that

To calculate the right side of E¢5.2), it is useful to note
the following identities from differential geometry:

LA=t-F+D(t-A),

LA=t-F+d(t-A), L1
5EA:% K(t)ﬁaA-l-(D(t)ﬁQA . (58)

LAF=t-(d*F)+d(t-*F). (5.3

] ] ] o SinceE} is a functiononly of a, andQ, , it is a function of
Using these, the field equations satisfied ByA,A) and the  fie|ds definediocally at the horizon. As noted before, it is

linearized field equations fo, we obtain the required eX- o+ ral to interpreE!, as the horizon energy defined by the

pression ofX; : time translationt?. The total Hamiltonian is given by
Xi(8):=Q(65,L,) (5.9 Hy=E% oy —EL . (5.9
. f T (t-A) 63— (t-3)05A] . .Let us su_mmarize. Equatid®.8) is a necessary and suf-
167G Jom ficient condition for the 1-formX, to be closed. Therefore,

the vector fields; on I' defined by the space-time evolution
_ i j (t-A)S(*F)—(t-*F)08A. (5.5 field t# is Hamiltonianif and only ifthe first law(5.8) holds.
47 Jom Thus Eq.(5.9) is a restriction on the choice of thige vector
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field t2: While anyt? (which preserves the boundary condi- since it relies on a Hamiltonian framework, we cannot incor-
tions) defines an evolution flow on the phase space, it is onlyporate phenomenological matter if it does not admit a phase
when space description. Other treatments based on Hamiltonian
methods generally restrict themselves to static space-times
Kday+ @ 4dQ, with a nonzero surface gravity. This assumption is essential
there because those treatments use “bifurcate” surfaces in
an important way and these do not exist in the extremal static
solutions where the surface gravity vanishes. In contrast, the
results of this section do not refer to a bifurcate surface and
through irrespective of whetheyg,) is nonzero or zero. In
a realistic collapse, the physical space-timedasexpected to
have the bifurcate surface. The present analysis uses only the
ortion of the physical space-time in which the horizon has
ettled down with no further in-going radiation, rather than
an analytical continuation of the near horizon geometry used
in certain approaches. Finally, in contrast to other treatments,
we have an infinite family of first laws, one for each evolu-
tion field t? for which ¢&; is a phase space symmetry.
(iii) Nonuniqueness of energlgach permissible, live®
defines a horizon enerdy, . At first it seems surprising that
here is so much freedom in the notion of energy. Let us
compare the situation &', which, like A, is null. There, we
: ; . . only have a 3-parameter freedom which, furthermore, can be
We will conclude this section with a few remarks. liminated simplv by fixing a rest frame. How does this dif-
(i) Form of H,. The Hamiltonian(5.9) contains only sur- elminated Simply by 9 ' :
. o . ference arise? Recall that energy(tise numerical value ¢f
face terms. This may seem surprising because, in the canonj: generator of aunit time translation. At infinity, all
cal framework, the familiar Hamiltonian contains a VOIume4—metrics in the phase space approachs;tﬂmeﬂat meitric
integral consisting of a linear combination of constraints.Hence, we can simply fix a unit time-translation Killing fiéld

While the volume term vanishes “on shell” and does notta of that flat metric near infinity and use its restrictionZto
contribute to numerical value of the canonical Hamiltonian’© o . y T
s the unit time translation f@ll metrics in the phase space.

n physical it is nonethel rucial for ining th . ; . :
on physical states, it is nonetheless crucial for obtaining t y contrast, there is no fixed 4-metric neato which all the

correct evolution equations since derivatives of the Hamil-

tonian transverse to the constraint surface are needed to Cow_etrlcs in our phase space approach. Hence, we do not have

struct the Hamiltonian vector field. The covariant phasel'® @nalogue ofg; only the equivalence clagd] is now
space, by contrast, consists only of solutions to the field®mmon to all the metrics. If, for a given metig, in our
equations whence the issue of taking “off shell” derivatives collectl(zn, we select the time translation represented by a
never arises. In diffeomorphism invariant theories, thespecificl®in[l], a priori we do not know which vector field
Hamiltonian on the covariant phase space is always made f in [I] would represent the “same” time translation for
surface term$’ If space-time has several asymptotic regions,another geometrg,,. One might imagine using the seem-
the boundary term in each region defines the standard energygly simplest strategy: just fix & in [1] and demand thaf
corresponding to that region. Therefore, in the present casepproach that§ for all points y in the phase space. Unfor-
it was natural to interpreE}y as the horizon energy defined tunately, the strategy is not viable because suthfails to
by the t® evolution. Finally, we should emphasize that we define a Hamiltonian evolution ifi.** Finally, if we restrict
used a covariant phase space only for simplicity. The finaburselves toglobally static space-times, we can overcome
results go throughand, in fact, were first obtaingdn a this difficulty by always working with the Killing field which
canonical framework as well. is unit at infinity. However, in absence of global Killing
(i) Comparison As noted in the Introduction, all treat- fields, the behavior of the evolution vector fiefti near the
ments of the first law for nonrotating but possibly distortedhorizon is unrelated to its behavior near infinity. Nonethe-
horizons available in the literature refer to static space-timedess, as we shall show in Sec. VII, if one has sufficient con-
The isolated horizon framework, by contrast, does not refetrol on the space of static solutions of the theory under con-
to a Killing field at all and thus allows a significantly larger sideration, itis possible to select a preferred energy function
class of physically interesting situations. On the other handon the phase space and use it as the mass of the isolated

87G

is an exact 1-form o’ that this flow is Hamiltoniar(i.e.,
preserves the symplectic structurét first, this restriction
seems somewhat surprising because, in absence of inter
boundarieseveryvector fieldt® (which tends to a fixed Kill-
ing field of the flat metric at infinity defines a Hamiltonian
evolution. However, even in this context, there isanpriori
reason to expect this tight correspondence to hold if on
allows general, live vector field§ whose boundary values at
infinity can change from one space-time to another. Finally
we will see in Sec. VIl that every space-time belonging to
the phase spadéadmits an infinite family of vector fields'

for which X, is closed. Therefore, in particular, the first law
doesnotrestrict the “background” space-timéer the varia-
tions §) in any way. Indeed, for any space-time in our phas
space, there is an infinite family of first laws, one associate
with each permissiblé®.

On particular, therefore, Hamiltonians generating diffeomor- 1!'As we saw above, a necessary condition dpto be a Hamil-
phism which have support away from the boundaries vanish identonian vector field orl" is that «(;y be a functiononly of a, and
tically. Unlike their counterparts on the canonical phase space, th®, . Therefore, if we can find a tangent vec®in the phase space
infinitesimal phase-space motions induced by such space-time vewith da,=5Q,=0 but k) #0, t* cannot define a Hamiltonian
tor fields are in the kernel of the covariant symplectic structure. evolution. It is easy to find such a tangent vecédor this t2.
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horizon. In the Einstein-Maxwell case, all static solutionscross section of the horizon as was done in the Maxwell
with horizons are explicitly known whence the strategy istheory. However, these 2-forms now have a free internal in-
viable. dex and are only gauge covariant rather than gauge invariant.
Since there is no preferred internal basis at the horizon, the
VI. YANG-MILLS FIELD integrals would fail to be well defined. Therefore, we must
. . ] _ look for 2-forms which are gauge invariant. A natural quan-
In the previous three sections we restricted our attentiomity to consider is the norm of, defined by the Killing-

to Einstein-Maxwell theory. We will now indicate how cartan formk;; on the Lie algebra o6 and the(contravari-
Yang-Mills fields can be included. This section is divided an 2e on the horizon:

into three parts. In the first, we discuss restrictions on the
Yang-Mills fields due to the horizon boundary conditions ||:|;:[(26.F)i(2€.|:)i|<ij]1/2, (6.5
and introduce the notion of a “Yang-Mills gauge adapted to
the horizon.” In the second part, we discuss the action prinfAlthough the contravariante is ambiguous up to terms of
ciple and construct the covariant phase space for Einsteirthe typel 2! whereV?2 is any vector field tangential ta,
Yang-Mills theory. Using this formalism, in the third subsec- this ambiguity does not affectF| because of Eq.
tion, we introduce a Hamiltonian generating time evolution(6.3).] The norm of *F is defined analogously. These two
and extend the first law to the Yang-Mills case. guantities are gauge invariant and allow us to define the elec-
tric and magnetic Yang-Mills charges of the horizon:
A. Preliminaries

. . 1 1
We will restrict ourselves to compact gauge gro@and QMa— — 3€ |*F|2e, PXM:a—— j; IF|?e.
Yang-Mills connections defined on trivial bundles. Since the am Js, 4 Js,
bundle is trivial, the connection gives rise to a smooth, glo- (6.9

bally defined Lie algebra valued 1-formd. As usual, the
Yang-Mills derivative operatoD will be defined asD\
=JdN+[A,\], whered is a flat Yang-Mills connection, and
the field strengthF, via

Recall that the unusual signs in the definitions of the charges
arise due to the orientation of tt8&3—the normal to the two
sphere is inward pointing. In Maxwell theory, the magnetic
charge is zero unless we consider either connections on non-
E:=dA+A[A. (6.2 trivial bundles or allow “wire singularities.” As is well
known, this is not true for Yang-Mills theory: the magnetic
The stress energy tensdr, is given in terms of the field charge can be nonzero even if we restrict attention to smooth
strength as fields on a trivial bundle.
We would now like to verify that the charges defined in
6.2) Egs.(6.6) are independent of the cross section of the horizon
S, on which the integration is performed. The isolated hori-

) o ) ~zon boundary conditions guarantee this is the case. First,
where the label runs over the internal indices in the Lie yecqll the geometric identity

algebra of the grougs.

Let us begi'n. by examining how the isplated horizon L,F=1-DF—[(I-A),F]+D(l-F). (6.7)
boundary conditions restrict the form of the field strenggh,
onA. Since the Yang-Mills stress energy tensor has the sam® similar expression forF is also true. The first term on the
form as the Maxwell one, Eq2.14), the analysis is com- right hand side vanishes due to the field equations and the
pletely analogous to that of Sec. Il C. Therefore, we shall nothird term is zero due to the previous restriction BnEq.
include derivations of the results, but instead highlight the(6.3). Therefore at the isolated horizon,
differences.

Recall that, on a nonexpanding horizoRg,l%°20, LFA-[(I-A),F] and L{FA—[(I-A),"F].
whenceT,,21°PA0. This has several consequences for the (6.9
Yang-Mills field. In particular, one concludes

) 1 )
T Fac Fo'i— Zgachdl Fed |,

e

In the Maxwell caseF and *F are Lie dragged by. How-
I*Fap 20 and 13*F,,20. (6.3)  ever, for non-Abelian fields, this is not a gauge invariant
A — statement; the terms on the right hand sides of E&8) are
These two restrictions guarantee that there is no flux ofecessary for gauge invariance. Although the field strength
Yang-Mills field across the horizon. Making use of the spe-and its dual are not Lie dragged alomg recalling that
cific form of the stress-energy tensor, we also conclude ~ £°¢20 and using the cyclic property of the trace, it is
straightforward to demonstrate that their norms are

1 1
_ b _ b
<D02—§Rabmam AQ, <D20—§Rabﬁam A0. (6.9 £||F|é0 and £||*F|é0. (6.9
Our next task is to define the Yang-Mills equivalents of This result, along with Eq(6.3), guarantees that the charges
the electric and magnetic charges of the horizon. NaivelyQx" andP}" are independent of the choice of cross section
one might consider integrating and *F over a 2-sphere S, of the horizon.
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_Let us consider the remaining components of the Yanggonnection and\, is the Yang-Mills connection. The gravi-
Mills field. The boundary conditions place no restrictions Onational fields,e}, andA,,’ satisfy the same boundary condi-
Fapn®m® and *Fapn®m® at all. As in the electromagnetic {ions (at A and infinity as in Sec. Il B. Furthermore, we
case, these components describe the radiation flowing aloﬂ%quire the Yang-Mills fields to be in a gauge adapted to the

the horizon. The isolated horizon boundary conditions allowgrizon and assume they fall off sufficiently fast at infinffy.
radiation arbitrarily close to—and even at—the horizon, pro-tne Einstein-Yang-Mills action is

vided none crosses it.
We have so far restricted our attention to the field strength -1

and its dual. However, in the action principle and phase S(e'A-A):meE”DFIJ

space, the basic variable will be the Yang-Mills connection

A. Let us begin with the definition of the Yang-Mills equiva- 1 y

lent of the electric potential. Recall that, given lathe elec- + 167G f 2N0A),

tric potential was defined in Sec. I C dg;)2 —(I-A). This T

definition is not appropriate in the Yang-Mills case since the 1

resulting potential has a free internal index and is therefore T 8n fMTF[FD*F]- (6.13

not gauge invariant. Instead, we define the Yang-Mills po-

tential, )" to be negative the norm of {A):

The gravitational part of the action has previously been dis-
q)YM.A:_|(| Al (6.10 cussed in S_ec. I1I; therefore we shall on_Iy_considgr in de‘_tail
the Yang-Mills terms and verify the variational principle is
This gives us a gauge invariant potentia| at the horizon. well defined. Taklng into account the results of Sec. lll, a
As in Maxwell theory, we need to constrain the formfof  variation of the action can be expressed as
at the horizon. Several considerations motivate our choice of
these boundary conditions. First they must be chosen so that
the action principle is well defined. Second, if the gauge
group isU(1), the boundary conditions should reduce to
those given in Sec. Il C for the electromagnetic field. Finally, 1 .
we should be able to show that the Yang-Mills electric po- T A LTr[éAD Fl. (6.19
tential is constant on the horizon. These considerations sug-
gest the following definition:
Definition 6 The connectiorA will be said to be in a
gauge adapted to the isolated horizoA,[1]) if it satisfies
the following two conditions:

5S(e,A,A)=f (equations of motioj¥¢
M

We must demonstrate the boundary termatanishes due
to the conditions imposed on the Yang-Mills fields. Using
Egs. (6.13 and (6.12), one can show that the trace in Eq.
(6.14 can be replaced by a product of norms:
(i) The Yang-Mills potential is constant on the horizon,
T SADF]= (8D}~ cs@ ) *F| e,
dd ' 20. (6.11)

where *e=n?¢ is the volume form om\ and 8l =cl.

In the action principle, variations are performed keeping
data fixed at the initial and final slices. In particuléb )’

(i) The dual of the field strengthi'F) and (- A) pointin
the same Lie algebra direction,

(I-A)x(%e-*F)! (6.12  andcs vanish there. However, the boundary conditions guar-
antee thatI)Zf,)M, and hence its variation, is constant An
on the horizon. Sinces® )" andc,; vanish on the initial cross section of the

. . YM
These boundary conditions satisfy the requirements dist©izon and are constant, it follows thakb,"20 and
s20. Therefore, the Yang-Mills horizon boundary term

cussed above. First, it is straightforward to show that in thé®o= ! Y ) )
U(1) case, conditior(i) is equivalent to requiring;;A2 0 vanishes; the action principle is well defined in the presence

and (ii) is redundant. Second, as we shall see in Sec. VI BOf Yang-Mills _f|_e|ds. As in the E.|nste|n—.MaxweII case,
these boundary conditions are also sufficient to make th oundar_y conditions played a crucial role in demonstrating
variational principle well defined. the viability of the action.
It is not difficult to show that these conditions can always
be satisfied. The remaining gauge freedom is simply
A—g Ag+g tag, whereg satisfiesC,g2 0. 2More specifically we require the falloff conditions on the Yang-
Mills connection to be such that all integrals, in particular the sym-
plectic structure, be finite and yet the asymptotic electric and mag-
) ) ) ) ) ) netic charges are not forced to vanish. While it is not trivial to meet
In this section we will consider the first order action for ihese condition§for examples the conditions used[28,12 appear
Einstein-Yang-Mills theory on the manifold1 described in not to lead to a well-defined symplectic structutieey can be met.
Sec. llIB. The basic fields will consist of the triplet However, as in the rest of the paper, for brevity, we will not spell
(e'a,AaH,A'a), wheree'a andA,,” are the tetrad and Lorentz out the boundary conditions at infinity in detail.

B. Action and phase space
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We now wish to construct the covariant phase space andirectly verify that the right side of E46.16 is independent
symplectic structure. As before, points in covariant phasef the choice of the partial Cauchy surface; the symplectic
spacel” will consist of histories which satisfy the Einstein- structure is “conserved.” We will us€l’, )) as our covari-
Yang-Mills field equations, appropriate falloff conditions at ant phase space.
infinity and the isolated horizon boundary conditionsAat
Before proceeding further, we shall once again need to intro-
duce an additional field at the horizon. This can be regarded ] . ] i
as a “potential” for the Yang-Mills potentia™. Given In this subs_ecnon we W|_II generalize the arguments_ of
any point €,A,A) in the phase spack, let us define the _Sec._ \% to_ obtain an expression for the energy of the ho_rlzon
scalar fieldy on A as follows: (i) £,y= _(I)E)M and (ii) x in Emstem—'Yang-MlIIs'theory. To do so, we mgst specify a
vanishes or§~, the intersection oM~ with A. These con- time evolution vector field?. As _before, we requiré to be
ditions are identical to those imposed in the Maxwell case. a memb_er of t_he prefgrred quw_alence cles at thg ho-

Once again, we take second variations of the action i izon (this again requires restriction to nonrotating isolated

order to obtain a symplectic structure. Since the gravitational c_mzonas) and approach unit t|r_ne_ t_r an_slatlon asymptotlcglly.
terms are exactly the same in Sec. IlI, we shall only describ&Vent” we can calculate the infinitesimal generator of time
in detail the Yang-Mills part of the symplectic structure. The evolution, &= (L&, LA, LiA), and determine whether it is

second variation of the actiof6.13 yields the following Hamiltonian. Recall thab, is HamiIFonian if and only if the
symplectic current: 1-form X; on the phase space defined by

C. Hamiltonian and the first law

1 Xi(6)=Q(6,6) (6.17)
J( 'y, 51 y 52) :Jgrav_ —TI’[ 51*FD62A_ 62*FD51A]
4 . . .
6.15 is cIo_sed. Let us calcule_l'oét. The_ gra\_/ltatlonal part will be

' identical to the expression obtained in Sec. V; therefore we
Using the fact that the field equations and linearized fielgshall concentrate on the Yang-Mills terms. As with the Max-
equations are satisfied, one can directly verify thatwell field, the Lie derivatives of the Yang-Mills fields can be
J(v;6,,5,) is indeed a closed 3-form. We again choose the'eexpressed using the following identities:
spacetime region of interesi, to be that part of the space-
time M bounded byM,, M., infinity and a portiom of the
isolated horizon. Integratingdd over M and using
asymptotic falloff conditions, we obtain

foJMsz

The integral of] over A does not vanish but, as in Sec. IIl,
the pullback of] to A is exact. Therefore, we can express the

LA=t-F+D(t-A),
LFF=t-(D*F)—[I-A*F]+D(t-*F). (6.18
Making use of these expressions, the field equations satisfied

J(7:01,62)=0. by (e,A,A) and the linearized field equations fér we ob-
tain the required expression o :

integral overA of J as integrals over the initial and final 1 M

2-spheress; andS,. Using these results, and keeping track 1

of orientations, we obtain the symplectic structure — 4_f T (t-A)S(*F)—(t-*F)08A], (6.19
™ J oM

1
- 1J _ 1J
0f,(01,62)= 167G fM[‘SlE D051 = 8,27 0a1A,] As before the expression involves integraisly over the

2-sphere boundarieS, and S, of M; there is no volume
term. The gravitational terms yieldELp,, at infinity and
—(1/87G) k(yy0a, at the horizon. The Yang-Mills term at
infinity vanishes due to falloff conditions: therefore we need
only calculate the Yang-Mills contribution at the horizon.
This is composed of two terms, the second of which vanishes
due to the restrictiori6.3) which guaranteek LFéO. Since

we are in a gauge adapted to the horizdnA() and *F point

in the same internal direction. This allows us to replace the
trace in the first term by norms,

+L§[5(2)5 — 8, (2€)819]
87765162¢ 2 (€)oo

1
—an fM[al*FmazA— 8,*FO8,A]

1
+ e Lo x| Fe o).
T Js

(6.1

Full use of the isolated horizon boundary conditions has been TH(t-A)6("F)]= _q)(\(t;w5(|*':|2€)’

made in obtaining this symplectic structure. In particular, to

obtain the given form of the Yang-Mills surface term, we and guarantees thdlz/t;v' is constant on the horizon. Making
have used the fact that-(A) and @e-*F) point in the same use of the definition of Yang-Mills electric charge H§.6),
direction in the Lie algebra. Using field equations one carwe obtain
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Xi(6)= K62

K<t)5aA—cb<Yt)“"5QZM+ SESowm - SM apy +V8Q=

- 87G 87G

Recall that the necessary and sufficient condition for the exwhere V and Q are the Yang-Mills potential and charge
istence of a Hamiltonian is that, be closed. Clearly, this is evaluated ainfinity while x anda are of course evaluated at
equivalent to the horizon. Because of the non-Abelian nature of the Yang-
Mills field, unlike in the Maxwell case, the chargg evalu-
1 -~ M ated at infinity is_now quite diffgrent from the charge evalu-
86 Ur@Dday+d ) Q. 7 =0. (6.20  ated at the horizon and, as in the Maxwell theory, the
potentialV evaluated at infinity has no direct bearing on the
potential at the horizon. Furthermore, that calculation makes
an essential use of the bifurcation 2-sphere and all fields are

YM . required to be smooth there. This restriction implies that the
dependonly upon the area, and chargeQ,™ of the hori- a4 wjills potential at the horizowanishes (The same is

zon. Finally, Eq.(6.20 is also the necessary and sufficient 4,6 if one restricts the analysis [#3] to the Maxwell case.
canNcljltlon that there exist a functidf, , also only ofa, and The first law derived in the isolated horizon framework is
Q, " such that valid also in presence of radiation in the exterior space-time
region and makes no reference to the bifurcation 2-sphere.
(Although we restricted ourselves to the nonrotating case,
rotation has been incorporated in this framework| 113].)
Furthermore, it has the aesthetically pleasing feature that all

As before E\, is interpreted as the horizon energy defined byduantities that appear in E(QG-ZD—IHC%dmg the energy
the time translatio®. We conclude that the vector fielijis ~ Ea . the potentiakb ()", and the charg®“'—are evaluated
Hamiltonian if and only if the first law, Eq6.21), holds. at the horizon. In particular, one can now meaningfully con-
We will conclude this section with a few remarks. sider the physical process version in which one does an ex-
(i) The derivation of the first law and its final form are perimentat the horizon by dropping a test particle and field
completely analogous to those in the Einstein-Maxwelland changing théorizon chargenfinitesimally. More gen-
theory. By contrast, in the discussion of the first law forerally Eq.(6.21) is genuinely a law governing the mechanics
undistorted isolated horizons dfL2], certain restrictions Of the horizon
were imposed on the permissible variatiatis the Einstein-
Yang-Mills case. In our treatment, subtleties arise only in the VIl. HORIZON MASS
definition of a canonical horizon maésee Sec. VIl Crather
than the discussion of the first law itself.
(i) Although the Yang-Mills magnetic charge;™ will
generically not be zero, no term invoIvinifZM arises in the

Once again, we conclude that the surface grawjtyand the
Yang-Mills potential® ()" at the horizon defined by can

1
5Eg=%x(t)5aA+q>(Yt)“"5Q}M. (6.21)

For notational simplicity, we will say that dive) vector
field t? is permissibleif it gives rise to a Hamiltonian evolu-
tion. We saw in Secs. V and VI that each permissible vector
first law. field t* defines a horizon energil . In the phase space

¢ . : o
(iii) How does our result compare with those previouslyframework’ E, has a direct interpretation: it is the surface
available[23,247? In [24] the first law for Yang-Mills fields term at the horizon in the expression of the Hamiltonian

is proved for globally stationary spacetimes and small perdenerating thet® evolution. However, in many physical
turbations from one such space-time to another. AssumingPPlications—such as the study of black hole mergers—one

the Yang-Mills fields fall off sufficiently fast at infinityin 1S interested in properties ofspecificspace-time, rather than

the nonrotating cagehe first law of[24] then reads the full phase space. Then, it is useful to have at one’s dis-
posal a canonical notion of energy, the analog of the ADM

1 energy in the rest frame at infinity. This quantity could then
oM = K5a+j T 6" F]. be interpreted as the horizon mass. In this section, we will
87G for introduce this notion in detail. The discussion is divided into
three parts. In the first, we consider the Einstein-Maxwell
Here, M is the ADM mass evaluated at infinity, while all theory; in the second, we discuss dilatonic couplifgk

terms on the right hand side are evaluated at the horizomnd, in the third, we analyze the Einstein-Yang-Mills system.
Because of a different gauge choice at the horizon, the au-

thors define a Lie algebra valued potentfaland leave the
“ P 5Q” term inside an integral. However, the general form
of this first law is the same as ours. In this sense, our frame- In Sec. V we showed thaf is permissible if and only if
work generalizes the results [#4] to nonstatic contexts. ~ Ed.(5.7) holds on the phase space. We will now construct a
In [23], the first law is proved for globally stationary large family of permissible evolution fieldS. Fix any regu-
space-times and arbitrary small departures therefrom. Howar functionk, of two variablesa, andQ, . Then, given any
ever, there are a number of important differences betweepoint y=(e,A,A) of I', we define(the boundary value of
these results and the ones obtained in this paper. In the nothe vector field® as follows. Consider the vector field on
rotating case, the first law ¢23] reads A defined by the tetrad,®?=efl', and denote byk ) the

A. Einstein-Maxwell theory

104025-19



ASHTEKAR, FAIRHURST, AND KRISHNAN PHYSICAL REVIEW D62 104025

surface gravity associated with it. Thety=c«k ) for some value of the total Hamiltonian, generating evolution along
constantc. Let us sett?=cl?. Repeating this procedure at &2, must be constarisee, e.g.8]). In the Einstein-Maxwell
each phase-space poigt we obtain a live vector field®  case, there is a single connected component and, by the di-
with k()= kq. (The resultingc will be constant omA but a  mensional argument given above, the numerical value of the
function on the phase spag@lext, consider the electromag- Hamiltonian must vanish on it. Hence, from E§.9) it fol-
netic potential, which is guaranteed to be constanfAdoy  lows that, on any static solution,
our boundary conditions but whose value at any phase space
point is so far completely free. We will now use H§.7) to Hi;=Mapm—M,=0.
fix it. Equation(5.7) implies
On a general solution, of cours®) ,py would be greater
Ik 9Py thanM, , the difference being equal to the energy in radia-
@z day tion. If the horizon is complete in the future and timelike
infinity i * satisfies certain regularity conditions, ag®j one
Since k)= Ko is known, we can simply integrate the equa- can argue that the difference is precisely the total energy
tion for &) as a function ofa, andQ, . Furthermore, the radiated acrosg" and henceM, equals the future limit of
solution is unique if we impose the physical condition thatthe Bondi mass. These considerations support our interpreta-
® ;) should vanish whenev&), = 0. Thus, starting from any tion of M, as the horizon mass.
regular functionk, of a, andQ,, we have obtained a per- Finally, since we now have a canonical evolution fig)d
missible evolution field®. Conversely, it is easy to verify we can drop the suffix on surface gravity and electromag-
that every permissible vector field arises via this construcnetic potential and write the first la¢®.8) in the more famil-
tion. There is clearly a very large family of such live vector iar form
fields.
An obvious question is if there is a “canonical” or “natu-
ral” choice of t2? We will now show that the answer is in
the affirmative. Recall that, in the Einstein-Maxwell theory,
there is precisely a 2-parameter familygibbally staticso-  In contrast to treatments based on static space-times, the
lutions admitting horizons: the Reissner-Nordstréamily.  quantities that enter this law are all definatthe horizon.
[SinceA is required to be a globally defined connection on aTherefore, as pointed out {18], it is now possible to inter-
trivial U(1) bundle, the magnetic charge is zero on the entirgret this law also in the “active” sense where one considers
phase spackLet us focus on this family. Denote ki the  physical processes which increase the area and the charge of
static Killing field which isunit at infinity. Its surface gravity a given horizon. To our knowledge, the standard proofs of

1
5MA:%K§&1A+®5QA.

is a specific function of, andQy, : this physical versiof5,10] are not applicable to processes in
) which the background has nonzero electric charge and the
1 1 GQ; process changes it infinitesimally.
K(@_ﬂ N _Ri_ : We will conclude with a few remarks.

(i) In the above discussion, the permissible evolution field

As before,R, is the horizon radius, defined I@/A=4WR§. t§ was constructed by setting=cl?® wherec is given by
We can therefore use in place ofx, in the above con- KOE(]./ZRA)[].—G(QA/RA)Z]:CK(D. For c to be well de-
struction. The resulting permissible, live vector fielfl  fined, it is necessary that, vanishes whenevex ) does.
agrees withé? on the horizon of every static solution. This Therefore, for the mass to be well defined, we must excise
property is satisfiednly if we setko= kg . those points from the phase space at whigh vanishes but

Next, we can “integrate” Eq(5.8) to obtain the horizon ko does not. However, this is not a serious limitation. In
energyEX’. Althougha priori there is the freedom to add a particular, we still _retain all _static solutioniscluding the
constant, we can fix it by requiring that the energy vanish a§xtremal onest which «, vanishes.
a, andQ, tend to zero. Indeed, we have no choice in this (“_) Since we have a specifi¢y, we can use Ec(_5__7) to
since one cannot construct a quantity with dimensions oPbtain the corresponding electrostatic potentiak,
mass from the fundamental constants that appear in thg Qa/Ra . Furthermore, by integrating Ef.8) it is easy to
Einstein-Maxwell theory(Einstein-Yang-Mills theory does €xpressM, explicitly in terms of the horizon parameters:
admit such a constant and we will see in Sec. VIIC that it 2
leads to an interesting modification of the situation discussed 1+ GQA) 7.1
here) Let us define the horizon mass via _Ri_ ' '

1 A
MA__4’7TG KaA‘f‘(DQA—%

MAzEtAO. Thus, the functional dependence Mf, on the horizon pa-
rameters at any point of the phase space is the same as in
To justify this definition, let us begin by restricting ourselves static space-times. Note that this isesultof the framework,
to static solutions. In each static solution, we are free tmot an assumption. Its derivation involved two distinct steps.
extendt§ such that it coincides with the Killing field?. First, and most importantly, the first layb.8) arose as a
General symplectic arguments imply that, on any connectedecessary and sufficient condition for the existence of a con-
component of the space of static solutions, the numericadistent Hamiltonian framework. Second, the freedontdn
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was exploited in order to construct the preferred, permissiblté is conserved in space-tiniee., its value does not change
evolution fieldtg. It is quite significant thaM, can be ex- if the 2-sphere of integration is deformedhile Q is not.
pressed so simply using just the parameters defoelly at  From the perspective of the isolated horizons, it is more use-
the horizon even when there is radiation arbitrarily close 1%l to usea Q,,0, as the basic chargédé:
it. This fact is likely to play an important role in the problem Ararea '
of extracting physics in the strong field regimes from nu- 1 . - 1 o
merical simulations of black hole collisiofi8]. It is impor- Qu=7- fﬁ F. Qa=7— fﬁ e ?PF.
. ™ JSy ™ JSy

tant to notice that although we made use of our knowledge of
static solutions to arrive at a canoni¢gland the mass func-  Athough the standard electric charge is not conserved in
tion M,, the final I'ESU|t(7.1) makes no referenc® these space_time’ iis conserved a|on@, Whence(?A is well de-
solutions.M, is a simple function of the parameters which fined.
can be directly computed from the geometry of any one iso- |t is straightforward to extend the construction of the
lated horizon. _ _ phase space to include the dilaton. The only difference is that

(||!) In the earlier work{8] on undlstor_ted horlzons, one i chargeQ in Egs.(5.6)—(5.8) is replaced bfg. With this
restricted oneself to the preferred evolution figjdrom the  inor change, the discussion of the first part of Sec. VII A is
very beginningalthough this vector field was selected using also unaffected. Thus, given any functiep of a, andQ,

a different but equivalent procedyr€ The a priori freedom P R
. . o X we can construct a permissibidiye) evolution fieldt?.
in the choice of a permissiblg was not discussed and the : : .
The difference arises in the next step where we con-

first law appeared only in the more familiar form, given structed a preferred§. With the dilatonic coupling, the

bove. . . .
above theory has a uniqué25] three parameter family of static

solutions which can be labeled bg{,Q,,Q,). As in the
B. Dilatonic coupling Reissner-Nordstra family, these solutions are spherically
symmetric. In terms of these parameters, the surface gravity

The Einstein-Maxwell-dilaton system was studied in K of the static Killing field which is unit at infinity is given

some detail in the undistorted case[#1. We will revisit it
here in the more general context considered in this paper

because it brings out a subtlety in the definition of the hori- 0,0 0,0 ~12
zon masdM , and the associated first law. Kip=5o—| 142G 23812 =278
The dilaton is a scalar fielé which can couple to the 2Ry AT R

Maxwell field in a nonstandard fashion. The coupling is gov- . .
erned by a constant. If «=0, one obtains the standard The problem in the construction of the prefert@ds thalt we
Einstein-Maxwell-Klein-Gordon theory and the situation need a functionx, which depends only ora, and Q4.
then is completely analogous to the Einstein-Maxwell theoryTherefore, we can no longer se§= k() on the entire phase
considered above. =1, the theory represents the low en- space because, depends on all three horizon parameters.
ergy limit of string theory. In this case, there are some inter- To extract the mass functiod , on the phase space, we
esting differences from the Einstein-Maxwell theory consid-can proceed as follows. Let us folialeby Q, = const sur-
ered in this paper. To bring out these differences, in thifaces. On each leak, 4, trivially depends only o, andQ,
subsection we will selx=1. (The situation for a general and so we can seto= k(. Therefore, by the procedure
value of e is discussed ii9] where one can also find details outlined in Sec. VII A, we obtain dive) vector ﬁe|dtg and

on the material summarized belgw. can define the masd , () =E'(y) for all points y on this

n t_he standa_rd_ fqrmulatlon, the theory has three charge%af_ Repeating this procedure for each leaf, we obtain a live
all defined at infinity; the ADM masM opy , the usual elec- vector fieldt? and a mass functioM, everywhere orl’,

tric chargeQ.., and another charg®...: However, the surface gravity(, , now depends on all three
1 . ~ 1 26 parameters, rather than just andQ, . Therefore, the first
Qw:ﬂ s F and ro:4To i@e F. law (5.8 cannot hold for arbitrary variationd and conse-

quently5to fails to be a Hamiltonian vector field. Put differ-

ently, although there is a multitude of permissible, live vec-
o _ _ tor fields, each leading to a first law, none of them can
*This strategy seems to have generated a misunderstafstiag  coincide with the Killing field&2 (which is unit at infinity
e.g.,[29) that the first law was obtained i{8,9,12 merely by o gl static solutions. This is a significant departure from the
identifying the parameters labeling a general isolated horizon WitkEinStein-Maxwell case considered above.
those of static horizons and then using the Smarr formulas available Nonethelesgmodulo the caveat discussed in the first re-

in the static context. This was not the case. Ra.ther, static solutlonﬁ]ark at the end of Sec. VIIYA the above procedure does
were usedonly to select the appropriate normalization of the evo-

lution vector fieldt? at the horizon. The Hamiltonian framework

was then used to define the horizon mass without any reference to

Smarr formulas. As in this section, the mass was theownto n the undistorted case, the dilaton is constantAoand hence
reproduce the Smarr-type formulas on general horizons. we can replac&, by ¢, as in[9].
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provide us with a well-defined mass functidn, on the tence of a quantity with units of mass has interesting conse-
entire phase space which can be expressed in terms of tlggiences which we will now discuss.

horizon parameters as Let us begin with a summary of the known static solutions
in Yang-Mills theory. First, the Reissner-Nordsticfamily
constitutes a continuous two parameter set of static solutions
of the Einstein-Yang-Mills theory, labeled by (,QX"). In
addition, there is a one-parameter family of “embedded

) S : : 0
It equalsM ppy in static space-times and has other propertieéo‘bellan SOIUUO(?S W'th (a fixed magnet.p Chaf?‘PA’ 'Ia-
which motivated our interpretation d¥1, as the horizon P€led by @s,Py). Finally, there are families of “genuinely

mass in the Einstein-Maxwell case. Since this function ig’0n-Abelian solutions.” For these, the analogue of the Israel
well defined on the entire phase space, we can simply vary {f1éorem for Einstein-Maxwell theory fails to hol@7]; the

and express the result in terms of the horizon parameterd1€0ry admits static solutions which need not be spherically
The result is symmetric. In particular, an infinite family of solutions la-

beled by two integersn(,n,) is known to exist. All static,
1 o spherically symmetric solutions are known and they corre-
5MA:%K53A+(I)5QA s_pond to the infinite subfamilyn(,n,=0), Iabeled_ by a
single integer. However, the two parameter family is ob-
. - 5 . - tained using a specific ansatz, so there may well exist other
wherer= ), P?=(QaQ4/R3), andQ{=0Q,Q4. Thus,  static solutions. Although the available information on static
although there is still a first law in terms 6§ andM,, it solutions is quite rich, in contrast to the Einstein-Maxwell-
does not have the canonical fonj'ﬁ8) becausdg is not a dilaton system, one is still rather far from having Complete
permissible vector field. More generally, in theories with control of the static sector of the Einstein-Yang-Mills theory.
multiple scalar field$26], if one focuses only on static sec-  The zeroth and first laws do hold in the Einstein-Yang-
tors, one obtains similar “nonstandard” forms of the first Mills case. At present, however, we can only hope to repeat
law with work terms involving scalar fields. This reflects the the strategy used in the last two subsections to define a ca-
fact that there is no permissible vector fi¢fd defined for all  nonical mass functioM , on portions of the phase space. In
points of the phase space, which coincides with the properl@rder to define it on the full phase space, the “uniqueness”
normalized Killing field onall static solutions. In the undis- and “completeness” conjectures $12] will have to hold
torted case, the analysis was carried out only in terms of th@0ssibly with a suitable modification® Nevertheless, new

first law had the above form. our attention to certain leaves of the phase space. The basic

idea is taken fronT12] but applied in a slightly different

Alternatively, one can restrict oneself to variations manner to the more general context of distorted horizons
which are tangential to the leaves of the phase space foliation . g S
Consider a connected component of the known static so-

constructed above. Sind§ is a permissible vector field for lutions, labeled byfi=(n,,n,). This is a one-dimensional

any one leaf, we obtain the standard first law subspace of the phase space which we de@ptd=ach point
_ _ — in S; can be labeled by the value of the horizon asga
oM, = (1/8”G)K(to>5aA+®(to> 6Qa Calculate the surface graviy for this family, where¢? is
the static Killing field which is unit at infinity, and set,
for the restricted variations. The idea of using such restricted= k(g In the construction sketched in Sec. VIIA. We then
variations was suggested|[ib2] in the context of Yang-Mills  obtain a live vector field3, and the corresponding first law
fields (although the foliations and other details were not
spelled out thene
To summarize, because there is now a three parameter
family of static solutions rather than two—or, more pre-
cisely, because the standard surface grawify in static
space-times depends ag , Q, , and Q,—a canonical, per- ©On the full phase space. .
missible evolution field is no longer available. However, ~When restricted t&;, we can interpreE { as the horizon
there is still a multitude of permissible evolution fields andmassM{"” and replacec(,,) by the functionBs(a,) used in

corresponding first laws. Furthermore, one can still define g, literature:3;= 2« yRa . Then, by integrating the first
canonical mass functioM, on the entire phase space. 0

~ 1-12
QaQa
R

R
MA:_A

°G 1-2G

1
t
5EA0: % K(to)5aA

law alongS;, one obtains

C. Yang-Mills fields

In Einstein-Maxwell theory, with and without the dilaton,  15:or example it may be appropriate to restrict oneself to the class
there is no way to construct a quantity with the dimensionsf space-times admitting isolated horizons which are complete in
of mass from the fundamental constants in the theory. Thenhe future. Physically, this is the most interesting case since such
situation is different for Einstein-Yang-Mills theory because horizons would represent the asymptotic geometry resulting from a
the coupling constarg has dimensionsl(M) ~*2. The exis-  gravitational collapse or black hole mergers.
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1 (R [18] the neaA geometry of vacuum solutions is examined in
M(AH)ZEJ Ba(x)dx detail using similar techniques to those used at null infinity.
0 The resulting structure—the presence of a preferred ‘“rest
. ) frame,” constraints on possible isometrics, Bondi-type ex-
where we have used the fact that, S"E%O s a surface  angjons of the metric—should be useful to extract physics
integral atA, it vanishes as the horizon area goes to zerojy the strong field regime of general relativity, especially in
Thus, the horizon mass is completely determineg@fas).  the problem of binary black hole collisions.

Next, we use the fact that the Hamiltonian given By This paper, however, focused on another aspect of iso-
:ETAODM_EtAO [see Eq.(5.9)] is constant on each connected, lated horizons: ext_ensions of.the z.eroth .and first laws of
static sector it2 coincides with the static Killing field on the Plack hole mechanics. All previous discussions of these laws

were restricted to perturbations of stationary black holes. Us-

Einstein-Maxwell case, since there is no constant with the'9 Lagrangian Q”d Hamlltom_an frame\_/v(_)rks, we exteno_led

. . . - 0 these laws to arbitrary space-times admitting nonrotating iso-
dimension of energy, it follows that the restriction HiDM lated horizons in Einstein-Maxwell-dilaton and Einstein-

to the static sector must vanish. The situation is quite differyang-Mills theory. Furthermore, the analysis suggests that it

ent in Einstein-Yang-Mills theory where the Yang-Mills cou- gjoyid be rather easy to incorporate other forms of matter,
pling constantg provides a scale. k=1 units, @VG) " provided they admit Lagrangian and Hamiltonian descrip-

entire sector. By construction, ot§ has this property. In the

~mass. Therefore, we can only conclude tions.
) ) ) The generalization of black hole mechanics presented in
ML =M+ (gyG)~tc™ this paper has several interesting features. First, all quantities

that enter the first laws are defin&xtally at the horizomA.
for somefi-dependent consta@(™. As the horizon radius |n standard treatments, some quantities such as area and sur-
shrinks to zero, the static solutidi27,28 under consider- face gravity are defined at the horizon. Others, like energy
ation tends to the solitonic solution with the same “quantum@nd sometime$23] even the Yang-Mills—Maxwell charge
numbers” fi. Hence, by taking this limit, we conclude @nd potential, are evaluated at infinity. In part because of this
(g\/g)—lc(ﬁ):MZ%i't\ﬁ)n,(ﬁ). Therefore, we have the follow- “mismatch,” to our knowledge the “physical process ver-

A . ; .. sion” of the first law[10] had not previously been estab-
ing interesting relation between the black hole and solitonic; ;
solutions: Clslshed for processes which change the charge of the black

hole. Since all quantities in the present treatment are defined
locally at the horizon, it is now straightforward to establish
BH,<ﬁ>_ifRA . soliton,(n) the law for such processd8]. Second, other treatments
Mabiv = Ba(X)dX+Mpy Prox ’ >
2G Jo based on a Hamiltonian framewof0,32,23 often criti-
cally use the bifurcate 2-surface which does not exist in the
where the integral of8; is evaluated on the one-dimensional extremal case. Therefore, extremal black holes are often ex-
“parameter space” oB; (given by the horizon radigsFur-  cluded from the first law. The present analysis never makes
thermore, as is clear from the above discussion, the ADMeference to bifurcate surfacéshich do not exist in physi-
mass of the soliton is a multiple ogg/@)—l_ Thus, some- cal space-times resulting from gravitational collapJéere-
what surprisingly, the derivation of the first law in the iso- fore, our discussion of the first law holds also in the extremal
lated horizon framework has led to an interesting relationcase. Third, with obvious modifications of boundary condi-

between the ADM masses of black holes and their solitoni¢ions at infinity, our analysis includes cosmological horizons
analogs in thestatic sector where thermodynamic considerations are also applicable

[11].
Finally, and perhaps most importantly, our analysis sheds
VIll. DISCUSSION new light on the “origin” of the first law: it arose as a
In the first part of this paper, we introduced the notions ofnecessary and sufficient condition for the existence of a
weakly isolated and isolated horizons. In contrast with earlieHamiltonian generating time evolution. A new feature of our
work [8,9,17, the definitions allow for the possible presenceframework is the existence of an infinite family of first laws
of distortion and rotation at the horizon. In addition, the corresponding to the infinite family of “permissible™ vector
present definitions are more geometric and intrinsic; in parfiG'dSta. (A vector fieldt® is permissible if it is Hamiltonian,
ticular, they never refer to a foliation. that is, induces canonical transformations on the phase
The notion of an isolated horizon, unlike that of an eventspace). In theories where we have sufficient control on the
horizon, is Comp|ete|y qua5i|oca|_ One can test if a givenspace of static SO|Uti0nS, such as Einstein-MaxweII, one can
3-surface in space-time {sveakly) isolated or not simply by ~select a natural evolution fielt§. Corresponding to evolu-
examining space-time geometry at the surface. Furthermoréipon along thist3, there is a canonical notion of energy which
space-times admitting an isolated horizdmeed not admit can be interpreted as the mass of the isolated horizon. There
any Killing field even in a neighborhood ak. In particular, exist also preferred values of surface gravity and electric
they can admit radiation in the exterior region. Thereforepotential and a canonical first law. This additional structure
such space-times can serve as more realistic models of laie extremely useful in other applications of the framework,
stages of a gravitational collapse or black hole merger. Irsuch as extraction of physical information from numerical
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simulations of black-hole collisions. However, it is not es-insensitive to the distortion parameters.

sential to the discussion of mechanics: our derivation of the In the literature on static, distorted black holes, it is gen-

first law in Secs. V and VI doesot require any knowledge erally assumed that the solution is valid only in a finite re-

of the static sector of the theory. gion around the horizon and its distant behavior is suitably
The Hamiltonian approach to black hole mechanics hasnodified by the far-away matter which causes the distortion.

appeared in the literature before, most notably in the work ofor undistorted isolated horizons, Robinson-Trautman space-

Brown and York[14]. The spirit of the Brown-York ap- time [15] offer interesting examples of vacuum, asymptoti-

proach is similar to ours. In particular, they do not restrictcally flat solutions which admit isolated horizons but no Kill-

themselves to stationary situations. However, in that workjng fields whatsoever. Distorted analogues of these solutions

the focus is on an outer, timelike boundary whereas our foare not known but presumably exist. It would be interesting

cus is on the inner, null boundary representing the isolatetb find them.

horizon. Conserved quantities in presence of internal bound-

aries were recently discussed also by Julia and $B@in 1. Black hole in a magnetic universe

a more general context of theories with gauge symmetries. N . )

As in our framework, their treatment exploits the simplifica- h ILe.t us bfgm W'tr; a S|mpI¢ ef_xallrr’\,plehlarr: u.nchargid tr)]laCk
tions that occur in a first order formalism and the final'°c N an exte_:r_na magnetlc 'e.d whic c_Jlsto_rtst e ho-
surface-integral expressions of conserved charges are difZo™ The specific solution we wish to consider is static and

: o - - axisymmetric and was first obtained in the Ernst-potential
tated by the precise boundary conditions imposed at the i amework[34]. The magnetic field is nonzero on the hori-

ternal boundaries. Their treatment is based on superpote Th has t ider the full set of Einstei
tials and thus complements the Hamiltonian methods use n. thus, oné has 1o consider the full set of kinsten-

: [l equations on the horizon.
here and irf14]. axwe . 9 .
In this paper, the Lagrangian and Hamiltonian frame- . Thebspace—t|me has topology’ > k* and the metric is
works are based on real tetrads and Lorentz connections. It V€M Y

2

therefore quite straightforward to extend our analysis to any dr
dt?+ ————+r?d¢?

space-time dimension. Indeed, it has already been extended dsz=F2[—<1— e

to 2+ 1 dimensions if31]. However, our phase space—and 1-2Mmir
especially the explicit symplectic structure used here—is tai- r2sir?
lored to the Einstein-matter system. While it should be pos- + = dg? (A1)
sible to extend it to higher derivative theories of gravity as in
[32], that task would not be as simple. where
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APPENDIX A: EXAMPLES OF DISTORTED HORIZONS ds?= — |:2< 1— Z_M) dv?+2F2dudr+ F2r2d6?
r
Because of the no hair theorems in Einstein-Maxwell )
theory, distorted horizons have received a rather limited at- . r? sin® Hd 2 (A2)
tention in the literature. Therefore, in this appendix we will F? '

discuss a few explicit examples in Einstein-Maxwell theory.
For a general construction and an existence result, se®ince the metric is not asymptotically flat, the standard pro-
[18,33. cedure of normalizing the Killing field to be unit at infinity is
To obtain explicit solutions, one has to impose symme-not applicable. Thus, we only have an equivalence dlbks
tries. All solutions considered in this section will be static of (preferred null normals to the horizon«d/dv. Let A be
and axisymmetric. As one would expect from the no-hairthe Killing horizon and assume the Killing field/dv is a
theorems, they fail to be asymptotically flat, whence they failmember of the equivalence clddg. It follows trivially that
to represent isolated black holes in the standard sense. Nong\,[17]) is a nonrotating isolated horizon.Bf,# 0, the scalar
theless, they all satisfy the isolated horizon boundary condieurvature?R of the horizon 2-metric had dependence; the
tions. That framework also serves to “explain” the other- horizon is distorted. However, an explicit calculation shows
wise surprising feature that the surface gravity of thesehat, as in the Schwarzschild space-time, the surface gravity
solutions depends only on the area and the charge and isis given by 1/2=1/2R, and the electrostatic potentidl
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vanishes om\. At first, it is quite surprising that while the Schwarzschild solution simply by adding # any solution
presence of distortion affecys, ®,,, ¥,, and °R, it does ¢, of the flat space Laplace equation which is regular along
not affectx or . However, as we saw in Sec. V, this result the z axis [35]. Thus, we can set

is to be expected from the general Hamiltonian consider-
ations. y=v¥stidp, y=vst¥p. (A8)

Substituting these expression into E¢a4) and (A5) and
using the forms of the Schwarzschild functiosig and yg,

In this subsection, we will review the construction of a one can show that, gt=0,
large family of distorted black holes starting from Weyl so-
lutions [35] and a recent generalization of these results to Yplp=022¢pl,-0- (A9)
include electric chargg36]. , , ) , .

A general class of static, axisymmetric spacetimes wad his fact plays an important role in analyzing the horizon

found by Weyl in 191737]. The metric for such a spacetime Structure. _ , _ ,
can be cast in the following form: In Schwarzschild coordinates, the distorted metric takes

the form

2. Distorted black holes as special cases of Weyl solutions

ds?=—e??dt?+ e I (dp2+dZ?) +e 2p2dp?
(A3) _ ) ) e2(7D_ l/’D) )
ds?’=—e ‘”D(l—ZM/r)dt + mdr
where ¢ and y are smooth functions gf and z. Einstein’s
vacuum equations expressed in termsyaind y take a par- +e?("~¥0)r2d 92+ r2 sir? e 2'od 2. (A10)
ticularly simple form. The equation fap,
As usual, the metric has a coordinate singularity a2M.

o, - Let us therefore introduce the Eddington-Finkelstein coordi-
bopt i ,2=0, (A4) " natev as before. The metric can be reexpressedin,@, 4)
coordinates as
is simply the Laplace equation fiat spacewith cylindrical B
coordinategp,z ). (In addition, y has to be independent of ds*=—e*/o(1-2M/r)dv?+(1-2M/r)~*
the angular coordinateb.) Given a solution fory, the func- X e2V0(e2(Y0~200) _ 1)dr2+ 2e2/odpdr

tion y can be determined by simple integration:

, +e?(¥p)r2dp?+ e 2¥or?sir? Ad 2. (All)
Y= Pl — V5]
Using condition(A9) it is not difficult to show that the co-
Y2=2p[ ¥, 2] (A5)  efficient ofdr? in the metric is regular at=2M [35].
) o . It is immediately obvious from Eq(All) that ther
The Schwarzschild metric is of course a particular solu-—n syrface is a Killing horizon of/dv. However, we

tion to these equations and corresponds to choosingjfor cannot select a preferred normalization for this vector field

and y. since the metric is not asymptotically flat. As in the last
1 (L—M 1 (L2—M2 subsection, Ie_tA_ be _the Killing horizqn and choqsda
Y= ths==In . y= 7s==—|n<ﬁ), «gldv. Then, it is straightforward to verify that\([1]) is a
2 \L+M 2 \L—n complete, nonrotating isolated horizon. Let us calculate the
(A6) value of surface gravity for2 d/dv. We obtain
where L=3(,+1.), 7=3(,—-1.) with 1 1
|, =p?+(z+M)? and | _=p?+(z—M)? and M is the Ké(e%-w)ﬁéﬁ (A12)

mass of the Schwarzschild solution. Note thats just the

Newtonian potential due to a rod of lengtiM2placed sym-  \here we arrived at the last expression by using @g).
metrically about the origin on the axis. Bothys and ys  again, while the spin coefficient Re], the Weyl component
diverge logarithmically in the limito—0 (for [z|<M). In W¥,, and the scalar curvaturéR of the horizon metric all
order to recast this solution in the standard Schwarzschllgepend on the distortion functiof, , somewhat surprisingly
form, one must transform fromz(p) to the Schwarzschild e surface gravity;, does not.
coordinates i, ) by The natural question is whether the above framework can
. be extended to obtain distorted Reissner-Nordstrsolu-
—(r_ 2_ 207 _

z=(r=M)cosd, p*=r*(1-2M/r)sir 6. (A7) tions. This turns out to be nontrivial because the key equa-
tion (A4) now acquires a source term from the electromag-
netic field and this field itself depends nontrivially ah

Weyl coordinates. Therefore, the Weyl coordinates covthroth the Maxwell equations. At first, the coupled system
only the exterior of the horizo'n appears to be hopelessly difficult. However, there exists a

Now, the key point is that Eq/A4), the only field equa- prescription 38] for defining a new poteftié} in terms ofy
tion one has to solve, is linear. Hence we can “distort” theand the electromagnetic field such thatsatisfies the flat

This coordinate transformation shows that the horizon,
=2M, corresponds to the line segmept=0, |z|<M in
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space Laplaciar{A4). Using this method, the known dis- as in Reissner-Nordstmo space-time. Considerations of Sec.
torted black hole solutions were recently generalized to th&/ suggest that this peculiar behavior gfin all these ex-

charged cas¢36]. The distorted Reissner-Nordstnosolu-  amples is not accidental but can be “explained” from gen-
tion is given by the metric eral Hamiltonian considerations which led us to the first law.

1 2702\ A2 +2
ds*=—(1-2M/r +Q%r?)e?/odt APPENDIX B: THE NEWMAN-PENROSE FORMALISM

+(1—2M/r +Q?/r?)~1e?(x~¥p)dr2 1. Notation and conventions

+e?("o~¥p)r2d g2+ e 2¥or? sir? 9dp?. (A13) Let us begin with a summary of the Newman-Penrose
formalism (see[39] or [40—-42 for a complete account
The forms ofyp andyp are now substantially more compli- Apart from the spacetime signature which we take to be
cated than in the uncharged case. Nonetheless, it is still pos-- | + +, +), we will follow the conventions used if%2].
sible to show that EqA9) continues to hold. As before this Consider a tetrad of null vectors I, m, andm (n and| are
equality implies that the apparent singularityrﬁt—2MrH real whilem is complex} which satisfy
+Q?=0 is only a coordinate singularity. The surface de-

fined byr=ry is a Killing horizon of ¢/dt. There is once n-l=-1, n-m=0, n-m=0,
again, no natural way to normalize the Killing field, so we _ _
only have an equivalence clags'] of null normals to the I'm=0, |I-m=0, m-m=1 (B1)

Killing horizon. (A,[1]) is a nonrotating isolated horizon.

. o The directional derivatives along the basis vectors are de-
The surface gravity ob/dt is given by

noted by

2 _
K:i 1_Q_2 ) (A14) D=I13V,, A=n%V,, 6=miV,, 6=m2V
2ry ry

Again, the surface gravity is independent of the distortion ofThe full information contained in the connection is expressed
the horizon and has the same dependence on the horizam terms of twelve complex scalars called the Newman-
radiusR, (which turns out to be equal tq;) and chargegd  Penrose spin coefficients defined as follows:

k=—mPV,l., e=%(MIPV,ym,—n3°V,l,), w=m°V,n,,
o=—m*m°V,l,, B=3mmPV,m,—n®m°Vyl,), wu=m*m°V,n,,
p=—mfmPV,l,, a=3%(MmPV,m,—n®mPVyl,), A=m*m°Vyn,,
r=—mn®V,l,, y=3(M*N°V,m,—n3n®V,l,), »=mn°V,n,. (B3)
It is sometimes more useful to express these definitions in terms of covariant derivatives of the basis vectors:
DI=(e+e€)l—xm—«m, Dn=—(e+€)n+mm+mm,
Al=(y+9)|=7m—m, An=—(y+7)n+vm+vm,
Sl=(a+B)l—pm—com, n=—(a+B)n+um+rm,
Dm=7l—«kn+(e—e)m, Am=vl—mn+(y—7y)m,
Sm=\—on+(B—a)m, m=ul—pn+(a—pB)m. (B4)
The ten independent components of the Weyl tensor are expressed in terms of five complexisgatbrss ¥,, ¥4, and
V¥ ,. The ten components of the Ricci tensor are defined in terms of four real and three complex®gglabs,, 55, A,
Do, Pyo, andd,;. These scalars are defined as follows:
Wo=Caped M°I°m?,  dg;=3 Repl®mP,  ®15=3 Rypl*m®, (BS)
W1=Caped®m°I°n?,  ®gp=73 Rypm®m®,  dpo=3 Rypnm®,
W,=Caped *Mm°men?,  @p1=3 Rypmn®,  @;o=3 Rypm?n®,
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W,=C,hped 2n°mMenY,

W ,=Capcdmen®mend,

The six components of the electromagnetic-field 2-fétgy
can be defined in terms of three complex scalars:

¢O:_Iameabv
1 anb anab
¢>1=—§(| n°—mm°)Fyp,
do=n2M°F ;. (B6)

The eight real Maxwell equatiord==0 andd*F=0 can be
written as a set of four complex equations:

D ¢~ Spo= (71— 2) o+ 2p b1~ K b, (B7)

Do~ 1= — N+ 271+ (p—2€) by, (B8)
Apo— 6¢1=(2y— p) o= 271t 0y, (B9)
Ad1—0¢r=vo—2ud1+ (2B~ 1) ds. (B10)

2. Boundary conditions

1 alb
P oo=3 Rapl“I”,

1 anb
® 5= 3 Rapn®n®,

PHYSICAL REVIEW D62 104025

®11= 7 Rap(12n°+mPm®),

A=R/24.

Also, as shown in Eq2.9)

WoA0, W, AO. (B14)

The intrinsically defined one-formy, defined in Eq(2.4) is
given by

wa=—Kk@Nat (a+ )M+ (a+p)m,.  (B1H

It is often convenient to choose the null tetrad such that
=0 which implies
mh a+E.

miw, (B16)

In this case we get a foliation of spanned bym and m.
Furthermore, by an appropriate spin transformation, we can
choosee to be real so thaé2'e and thus the foliation is Lie
dragged along;:

Limi=(e—e)m?A0. (B17)
The one-formw now becomes
(J.)a:_K“)na"' 7Tma+ma. (818)

In this section we describe the isolated horizon boundary

conditions in the Newman-Penrose formalism. We will re-
strict ourselves to Einstein-Maxwell theory with zero cosmo-

logical constant.

In a null-tetrad adapted to the null hypersurfagetakel
to be a null normalm andm tangent toA, andn transverse
to A. Sincel is hypersurface orthogonal and null, it is geo-
desic. This implies that kyp2 0 and Infp]A0. Thus

DIP:=13V P A (e+€)IP. (B11)
The surface gravity is therefore given layy =€+ € and the
expansion of is 6y2 2Rdp].

For a nonexpanding horizah, the conditions orh imply
p2 0 and the Raychaudhuri equation then impkes0 and
®go=13 R,/ 3P A 0. Furthermore, from Eq2.16) (which is a
consequence of the energy condidiom follows that ¢po£ 0.

Let us consider a weakly isolated horizoh,[I]). The con-
dition £,w=0 is equivalent to requiring

[Zm‘réO, £|K(|)é0 (Blg)
and as we proved in Sec. Il B, these conditions imply that the
surface gravityx ) is constant on.

As mentioned in Sec. Il B, a weakly isolated horizon with
nonzero surface gravity admits a natural foliation. In the
Newman-Penrose framework this foliation can be character-
ized as follows: It is the unique foliation on each leaf of
which the pullback of the 1-formrm,+7m, is divergence
free. This condition was first introduced by jqiaek [43] in
the context of stationary spacetimes.

Finally, since our boundary conditions require that
Likh20, in a sense, a part of the zeroth law is simply as-

This leads to the following conditions on the Ricci tensor atsumed. As mentioned in Sec. IIB, we could have used a

the horizon:

D20, Pp20, P20,

D20, D00, ®yyd—2Gehidy. (812
The first Maxwell equatioriB7) gives
D¢$,20 which impliesD®,20. (B13)

8we will denote the NP spin coefficiert by «yp to distinguish
it from the surface gravity, .

slightly different set of boundary conditions which make no
direct requirement or;, and yet lead to the zeroth la(@s
well as the results of Secs. IlI-VlI

Let (A,[1]) be a nonexpanding horizon, equipped with an
equivalence claspl] of null normals to be related to each
other by constant positive rescalings. As above, introduce a
null tetrad wherd is an element ofl ], mandm are tangent
to the foliation, n is curl free, ande is real. In place of
definition 2, let us assume that admits a foliation by a
family S, of 2-spheres transverse [b] such that the NP
spin coefficients in an associated null tetrad satisfy
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These conditions now replace the requiremépt 20 used identity V,Rpqqe=0. In the NP formalism, this is written as

in the definition of a weakly isolated horizon. We can provea set of nine complex and two real equations. We shall need
the zeroth law from these conditions as follows. First, con-only two of these equatior{€2]:

sider the definition ¥,V .= RapJ &4 Of the Riemann ten-

sor. In the NP formalism, these are written as a set of 18 DW,— oW, +Adgy— 6D+ 2DA
complex equations known as the “field equations.” For our
purposes, we need only three of these equatid@k =—\NVo+2(m—a)V,+3pV,
Da—de=(p+e—2€)a+ Bo— Be— i\ —2xW3ta®g,
— Tyt (e+p)m+ Dy, +(2y+2y— )P~ 2(a+ 7P
DB de=(a+m)o+(p—e)p —27P10+ 2pPyy,
—(pty)k—(a—me+ ¥y, D®y;— Do+ Adgg— 8Dy +3DA
Du—o6m=(p—e—€e)u+oN+(m—a+pB)m =2y+2y—pu— )Pyt (71— 2a—27)P;
—vkt+W,+2A. +(m—2a—27)P 1o+ 2(p+p) P,
Adding the first equation to the complex conjugate of the T 0Dyt 0P o= kD= kDo (B23

second equation and imposing our boundary conditions gives
Subtracting these equations, imposing our boundary con-
S(e+€)Lok)y20 (B2D)  itions, and usingA =0, we getDW¥,A 0. Combining this
result with Eq.(B22) givesD(e+€) A 0. This completes the
proof of the zeroth law within the alternate definition of
VoA (e+€)u. (B22)  weak isolation. Most of the results of this paper were first
obtained using that definition. However, since that notion is
Equation(B21) tells us that surface gravity is constant ontied so heavily to the presence of a foliation, its intrinsic
each leaf of the foliation. It now only remains to show that it meaning is somewhat obscure. Therefore, it was then re-
is also constant alonig To show this we turn to the Bianchi placed by definition 2 used in the main body of the paper.

while the third equation reduces to
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