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Isolated horizons: Hamiltonian evolution and the first law
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A framework was recently introduced to generalize black hole mechanics by replacing stationary event
horizons with isolated horizons. That framework is significantly extended. The extension is nontrivial in that
not only do the boundary conditions now allow the horizon to be distorted and rotating, but also the subsequent
analysis is based on several new ingredients. Specifically, although the overall strategy is closely related to that
in the previous work, the dynamical variables, the action principle and the Hamiltonian framework are all quite
different. More importantly, in the nonrotating case, the first law is shown to arise as anecessary and sufficient
condition for the existence of a consistent Hamiltonian evolution. Somewhat surprisingly, this consistency
condition in turn leads to new predictions even forstatic black holes. To complement the previous work, the
entire discussion is presented in terms of tetrads and associated~real! Lorentz connections.
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I. INTRODUCTION

The zeroth and first laws of black hole mechanics refe
equilibrium situations and small departures therefrom. T
standard treatments@1–5# restrict themselves to stationar
space-times admitting event horizons and small perturbat
from stationarity. While this simple idealization is a natur
starting point, from physical considerations it seems ove
restrictive.~See@6,7# and especially@8# for a detailed, critical
discussion.! A framework which is tailored to more realisti
physical situations was introduced in@6# and the zeroth and
first laws were extended to it in@7–9#. This analysis gener
alizes black hole mechanics in two directions. First, the
tion of event horizons is replaced by that of ‘‘isolated ho
zons.’’ While the former can only be defined retroactive
requiring access to the entire space-time history, the la
can be defined quasilocally. Second, the underlying sp
time need not admitanyKilling field; isolated horizons need
not be Killing horizons. The static event horizons norma
used in black hole mechanics@1–3,10# and the cosmologica
horizons in de Sitter space-times@11# are all special cases o
isolated horizons. Furthermore, since space-times can
admit gravitational and matter radiation, there is a large c
of other examples.

The framework developed in@8# for generalizing black
hole mechanics was based on two restrictive assumpti
First, only undistorted, nonrotating horizons were cons
ered. That is, the boundary conditions used in@8# implied
that the intrinsic 2-metric of the horizon is sphericall
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symmetric1 and that the imaginary part of the Weyl tens
componentC2—which encodes the angular momentum
vanishes. Second, while a rather general class of matter fi
was allowed, it was assumed that the only relevant charge
i.e., hair—are the standard electromagnetic ones. The se
assumption was weakened in@9,12# which allowed dilaton
couplings and Yang-Mills fields. In this paper, we allow f
distortionand more general matter sources. Distortion pla
an important role in several astrophysical situations, e.g.
problems involving black holes immersed in external fie
or surrounded by matter rings, and especially in the prob
of black hole collisions. Post-Newtonian considerations s
gest that, during black hole coalescence, individual horiz
are distorted due to the Coulomb attraction even in the
gime in which the black holes are sufficiently far from ea
other for the gravitational radiation falling into their horizon
to be negligible. This phenomenon is also seen in numer
simulations.

The extensions@9,12# which incorporated dilatonic and
Yang-Mills charges did not involve a significant generaliz
tion of the basic framework developed in@8#. The present
paper, on the other hand, does. We begin with substant
weaker boundary conditions@formulated in terms of~real!
tensor fields rather than the spinors used in@8##, and show
that they imply constancy of surface gravity~and electro-
static potential! on the horizon. This property turns out to b
necessary and sufficientfor the usual action principle of tet
rad gravity to continue to be valid in presence of isolat
horizons. The action leads to a covariant phase space,

1However, it allowed space-times, such as the Robinson-Traut
solutions, in which there is no space-time Killing field whatsoev
in any neighborhood of the isolated horizon@15#.
©2000 The American Physical Society25-1
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structed from solutions to the field equations. Reference@8#,
by contrast, used the canonical phase space based on s
rial variables which is tailored for quantization but whic
contains technical complications that are unnecessary to
classical mechanics of isolated horizons.Up to this point,
distortion and rotation are both incorporated. However, in
the last step, i.e., in the discussion of the first law, we rest
ourselves to nonrotating horizons.~Rotation is incorporated
in @13#.!

To formulate the first law one must first define the ene
ED associated with any isolated horizonD. Since there can
be radiation in the spacetime outside isolated horizons,
Arnowitt-Deser-Misner~ADM ! energyEADM is not a good
measure ofED @7,8#. Instead, as in the work of Brown an
York @14#, the strategy is to define the energy of the horiz
using a Hamiltonian framework. Experience with the pha
space formulation of general relativity suggests that, in
presence of boundaries, the HamiltonianHt generating time
translation along a suitable vector fieldta acquires surface
terms. The idea is todefine ED as the surface term atD in the
Hamiltonian. The key issue then is that of selecting the ‘‘a
propriate’’ time translationta. Since one expects the volum
term in the expression ofHt to be a linear combination o
constraints and thus vanish when evaluated on solutions
problem reduces to that of specifying the boundary value
ta ~or, equivalently, of the lapse and shift fields!. The condi-
tions at infinity are obvious and, in any case, will not affe
the surface term atD. Thus, we need to focus only on th
boundary value ofta on D.

In the nonrotating case it is clear that, at the horizon,ta

should be proportional to the null normal toD. However, our
boundary conditions do not select the null normal unique
there is a freedom to rescale2 the normal by a constant~on D!
which can vary from one space-time to another. This free-
dom is physically important because, among other things,
surface gravity is sensitive to it. Suppose we fix this freed
by tying the boundary value ofta to fields on the horizon,
e.g., by demanding that surface gravity be aspecificfunction
of the area and charges. We can then ask whether the
evolution generated by thista preserves the symplectic stru
ture. It turns out that the answer is not always in the af
mative. On the horizon, the evolution vector fieldta and the
electromagnetic potentialAa have to be tied to the horizo
parameters appropriately. These conditions impose a
straint on the surface gravityk (t) and the electric potentia
F (t) . Somewhat surprisingly, the constraint is precisely
first law dED

t 5(k (t)/8pG)daD1F (t)dQD . Thus the evolu-
tion defined by ta is Hamiltonian if and only if the first law

2This is not surprising since this freedom exists already on Kill
horizons. If the space-time is asymptotically flat and admits a st
Killing field globally, one can eliminate this freedom by restrictin
oneself to that Killing field which is unit at infinity. However, thi
strategy is not available if there is radiation in the exterior regi
or, as in the static solutions representing distorted black holes
metric fails to be asymptotically flat.
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holds.3 In this sense, the first law is even more fundamen
than it is generally taken to be. Conceptually, this is perh
the most striking feature of the present framework.

The requirement that the first law hold is not sufficient
fix ta uniquely. Although everyta must be a null normal to
D, the rescaling ofta from one spacetime to another ca
depend on the horizon parameters and the first law does
fully determine this parameter dependence. There is an
nite family of parameter-dependent vector fieldsta each de-
fining a consistent Hamiltonian evolution and a horizon e
ergy ED

t . By contrast, at infinity all these vector fields mu
tend to a time translation of a universal flat metric, used
the construction of the phase space. Hence, there is only
familiar 3-parameter freedom in the definition ofEADM

t , as-
sociated with the choice of a rest frame. Furthermore, in
one space-time, we can eliminate it by simply going to t
rest frame and thus extracting the total massMADM of the
system. Although not necessary for mechanics, it is nat
to ask if one can define a similar notion of mass of isola
horizons. The answer is in the affirmative in Einstei
Maxwell theory. Let us require thatta should not only lead to
a consistent Hamiltonian evolution but also agree, on st
solutions, with the static Killing field which isunit at infin-
ity. Then the horizon value ofta is uniquely determined for
all space-times in the phase space. There is a preferred
tion of time translation, sayt0

a . We can setMD5ED
t0 and

regardMD as the mass of an isolated horizonD. In the earlier
work on nondistorted horizons@7–9,12#, the discussion of
the first law was carried out only in the context of the
preferred evolution vector fieldst0

a . That derivation is more
closely tied to the traditional discussion of the laws in t
static context but is not necessary from the more gen
perspective of isolated horizons. Nonetheless, the availab
of a canonical definition of the massMD is useful for other
applications of this framework, e.g., to numerical relativit

The paper is organized as follows. In Sec. II, we spec
the boundary conditions defining general isolated horizo
allowing both distortion and rotation. We explain the role
these conditions, compare them with those used in@6–9,12#
and work out their consequences, including the zeroth l
In Sec. III we introduce the Lagrangian framework based
tetrads and~real! Lorentz connections and, in Sec. IV, th
covariant phase space. The first law is discussed in Sec
Up to this point, the focus is on Einstein-Maxwell theo
~although incorporation of the dilaton is straightforward!. In
Sec. VI we extend the framework to incorporate Yang-Mi
fields. The horizon mass is introduced in Sec. VII and sub
ties associated with the dilaton and Yang-Mills fields a
discussed. For the convenience of readers who may no
familiar with distorted black holes, Appendix A presents
variety of examples and, for convenience of readers w

ic

,
he

3In the undistorted context, while this role of the first law w
known to the authors of@8#, its importance was not fully appreci
ated. The importance was noticed independently in@16# and used
effectively in@12# to extract physical information on spherical blac
holes with Yang-Mills hair.
5-2
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ISOLATED HORIZONS: HAMILTONIAN EVOLUTION . . . PHYSICAL REVIEW D62 104025
work in the Newman-Penrose formalism, Appendix B su
marizes the structure of isolated horizons in that framewo

We have attempted to make this paper self-containe
terms of methodology and technical details. However,
motivation behind isolated horizons and certain propertie
our Hamiltonian are the same as those discussed in deta
@8#. Since the inclusion of distortion does not add anyth
substantial to these issues, we have refrained from repea
that discussion in this paper.

II. STRUCTURE OF ISOLATED HORIZONS
AND THE ZEROTH LAW

In this section, we will introduce the basic definitions
isolated horizons and analyze their immediate consequen
The definitions will become progressively stronger. Ho
ever, even the strongest boundary conditions are significa
weaker than requiring the horizon to be a Killing horizon f
a local Killing vector field. By proceeding in steps, we w
be able to keep track of the precise assumptions that
needed to obtain various results. Also, the availability o
hierarchy of definitions will be useful in other applications
such as numerical relativity and quantum gravity—which
beyond the scope of the present paper.

Let us begin by introducing some notation. Througho
this paper we assume that all manifolds and fields un
consideration are smooth. LetM be a 4-manifold equipped
with a metricgab of signature~2, 1, 1, 1!. Let D be a null
hypersurface of (M,gab). A future directednull normal toD
will be denoted byl. ~In this paper, the term ‘‘null normal’’
will always refer to a future directed null normal.! Let
qab=gab←

be the degenerate intrinsic metric onD.4 A tensor

qab on D will be called an ‘‘inverse’’ ofqab if it satisfies
qabqacqbd=qcd . Thusqab is unique only up to addition o
terms of the forml (aVb) for some vector fieldV tangential to
D. The expansionu ( l ) of a specific null normall is defined by
u ( l )5qab¹al b , where¹a is the derivative operator compa
ible with gab . It is straightforward to check thatu ( l ) is inde-
pendent of the choice ofqab. With this structure at hand, w
can now introduce our first definition.

A. Nonexpanding horizons

Definition 1. A three-dimensional submanifoldD of a
space-time (M,gab) is said to be anonexpanding horizonif
it satisfies the following conditions:

~i! D is topologicallyS23R and null.
~ii ! The expansionu ( l ) of l vanishes onD for any null

normal l.
~iii ! All equations of motion hold atD and the stress

energy tensorTab of matter fields atD is such that
2Tb

al b is future directed and causal for any futu
directed null normall.

4Equalities which hold only atD will be denoted by ‘‘=’’ and the
pullback of a covariant index will be denoted by an arrow und
that index: e.g.,v a will denote the pullback of the 1-formva to D.
←
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Note that if conditions~ii ! and~iii ! hold for one null normal
l, they hold for all.

The role of these conditions is as follows. The restricti
on topology is geared to the structure of horizons that re
from gravitational collapse. However, it can be weaken
One can retain the requirement that the horizon have c
pact cross sections but replaceS2 by a manifold with higher
genus. Our main analysis will extend to this case in
straightforward manner. More generally, we can allowD to
have noncompact cross sections, as for example in the
of certain acceleration horizons. The results presented in
section, including our derivation of the zeroth law, will g
through. However, since such horizons extend to infinity, o
Hamiltonian framework will have to be modified appropr
ately. Finally, one could envisage incorporation of Newma
Unti-Tamburino ~NUT! charge. This extension would b
even more subtle because, if all fields are smooth,D would
be topologicallyS3 and l would provide a Hopf fibration. In
this case,D would not admitany cross sections which ar
everywhere transverse tol. This extension will be discusse
elsewhere.

Requirement~iii ! is analogous to the dynamical cond
tions one imposes at infinity. While at infinity one requir
that the metric~and other fields! approach a specific solutio
to the field equations~the ‘‘classical vacuum’’!, at the hori-
zon we only ask that the field equations be satisfied. T
energy condition involved is very weak; it is implied by th
~much stronger! dominant energy condition that is typicall
used. Thus, the first and the last conditions are quite tam

The key condition is~ii !. It implies, in particular, thatthe
horizon area is constant ‘‘in time’’and thus incorporates th
idea that the horizon is isolated without having to assume
existence of a Killing field. We will denote the area byaD

and refer toRD defined byaD54pRD
2 as thehorizon radius.

All these conditions are satisfied on any Killing horizo
~with 2-sphere sections! if gravity is coupled to physically
reasonable matter~including perfect fluids, Klein-Gordon
fields, Maxwell fields possibly with dilatonic coupling
Yang-Mills fields!.

Although the conditions in the definition are quite wea
they have surprisingly rich consequences. We will now d
cuss them in detail. In some of this analysis it is conveni
to use a null tetrad and the associated Newman-Pen
quantities~see Appendix B and references therein!. Given a
specific null normal fieldl a to D, we can introduce a com
plex null vector fieldma tangential toD and a real, future
directed null fieldna transverse toD so that the following
relations hold:n• l 521, m•m̄51 and all other scalar prod
ucts vanish. The quadruplet (l ,n,m,m̄) constitutes a null tet-
rad. There is of course an infinite number of null tetra
compatible with a givenl, related to one another by restricte
Lorentz rotations. Our conclusions will not be sensitive
this gauge freedom.

~a! Properties of l. Since l a is a null normal toD, it is
automatically twist free and geodesic. We will denote t
acceleration ofl a by k ( l ) :

l a¹al b=k~ l !l
b. ~2.1!

r

5-3
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Note that the acceleration is a property not of the horizonD
itself, but of a specific null normal to it: if we replacel by
l 85 f l , then the acceleration changes viak ( l 8)5 f k ( l )1Ll f .

Since the twist ofl vanishes, the Raychaudhuri equati
implies

Llu~ l !=k~ l !u~ l !2
1

2
u~ l !

2 2ss̄2Rabl
al b

wheres5mamb¹al b is the shear ofl in the given null tetrad.
Since u ( l ) vanishes on D, we conclude that ss̄
1Rabl

al b=0. The condition on the stress-energy tensor
sures that Rabl

al b58pGTabl
al b is non-negative onD.

Hence, we conclude

s=0 and Rabl
al b=0. ~2.2!

Thus, in particular, every null normall is free of expansion,
twist and shear.

~b! Conditions on the Ricci tensor. The second equation in
Eqs.~2.2! implies that the vector2Ra

bl b is tangential toD.
The energy condition and the field equations imply that t
vector must also be future causal. This means thatRa

bl b

must be proportional tol a and, hence,R a←bl b=0 . In the

Newman-Penrose formalism this condition translates to

F005
1

2
Rabl

al b=0 and F015F̄105
1

2
Rabl

amb=0.

~2.3!

Since this statement is equivalent toR a←bl b=0, it is gauge

invariant: i.e., it does not depend upon the specific choice
null normal l andm.

~c! A natural connection 1-form onD. Since l is expan-
sion, shear and twist free, there exists a one-formva intrinsic
to D such that

¹ a←
l b=val b ~2.4!

which in turn implies

Llqab=2 ¹al b←——
=0.

Thus, every null normall is a ‘‘Killing field’’ of the degen-
erate metric onD. Furthermore, we will now show that

2eª im∧m̄ ~2.5!

is also invariantly defined. SinceLlqab50, the spaceS of
integral curves ofl is naturally equipped with a nondegene
ate metricqI ab ~so thatqab on D is the pullback ofqI ab).
Denote byeI ab the unique~up to orientation! unit alternating
tensor on (S,qI ab). Here 2e is the pullback toD of eI. Al-
though l is a ‘‘Killing field’’ of the intrinsic horizon geom-
etry, the space-time metricgab neednot admit a Killing field
in any neighborhood ofD. Robinson-Trautman metrics@15#
and the Kastor-Traschen solutions@17# provide explicit ex-
amples of this type.
10402
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The 1-formv will play an important role throughout this
paper. It has an interesting geometrical interpretation.
can regardv as a connection on the line bundleTD' overD
whose fibers are the one-dimensional null normals toD. Un-
der the rescalingsl ° l̃ 5 f l , of the null normall, it trans-
forms via

va°ṽa5va1¹ a←
ln f . ~2.6!

~d! Induced connection onD. Each metric submanifoldM
of M admits a natural connection—one which is torsion fr
and compatible with the induced metric onM. This connec-
tion is also canonically induced by the space-time connec
¹. However, since the induced metricqab on D is degener-
ate, there exist infinitely many connections compatible w
it. A general null submanifold inherits a unique~torsion-free!
derivative operatorD from ¹ if and only if its null normall
satisfies ¹al b←——

50. Therefore, the conditions imposed
definition 1 guarantee that every nonexpanding horizon h
unique intrinsic derivative operatorD. The action ofD on a
vector fieldXa tangent toD and on a 1-formha intrinsic toD
is given by

DaXb=¹a←
X̃b and Dahb= ¹ah̃b←——

whereX̃b andh̃b are arbitrary extensions ofXb andhb to the
full space-time manifoldM. It is easy to show thatD is
independent of the extensions.

The 1-formv captures only part of the information inD.
The full connectionD on D plays an important role in ex
tracting physics in the strong field regime nearD @18#. How-
ever, it is not essential to the discussion of isolated horiz
mechanics.

~e! Conditions on the Weyl tensor. Let us begin with the
definition of the Riemann tensor,@¹a¹b2¹b¹a#Xc

52Rabd
cXd. If we set Xc5 l c and pull back the indicesa

andb, then using Eq.~2.4!, we obtain

@Davb2Dbva# l c=2Rabd←
cl d=2Cabd←

cl d ~2.7!

where Cabc
d is the Weyl tensor. The last equality follow

from Rab←
l b=0. Thus, if v is any 1-form onD satisfying

v• l =0, contracting the previous equation withvc we get

Cabd←
cvcl

d=0.

Let us choose a null tetrad and setv to bem or m̄. Then

C0ªCabcdl
ambl cmd=0,

C1ªCabcdl
ambl cnd

5Cabcdl
ambm̄cmd=0, ~2.8!

where we have used the trace-free property of the Weyl
sor in the second equation. It is also clear that Eqs.~2.8! are
independent of which null normall and vector fieldsm and
m̄ we choose to construct the null tetrad; Eqs.~2.8! are gauge
invariant.
5-4
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~f! Curvature ofv. Let us contract Eq.~2.7! with nc and
usel ana521. Then we have

2D[avb]=Cabd←
cl dnc=Cabc←dl cnd. ~2.9!

Expanding the Weyl tensor in terms of theC’s, one obtains

Cabcdl
cnd=4~Re@C2# !n[al b]12C3l [amb]12C̄3l [am̄b]

22C̄1n[amb]22C1n[am̄b]

14i ~ Im@C2# !m[am̄b] ~2.10!

where

C2ª
∧ Cabcdl

ambm̄cnd, C3ª
∧ Cabcdl

anbm̄cnd.
~2.11!

Substituting this expression into Eq.~2.9!, pulling back on
the two free indices and taking into account Eqs.~2.8! and
~2.5!, we obtain

dv=2~ Im@C2# !2e. ~2.12!

This relation will play an important role in what follows
Note that, becauseC0 and C1 vanish onD, C2 is gauge
invariant.

Remark. It is interesting to compare the structure ofD
with that of null infinity I ~in the usual conformal gauge, i
which the conformal factor is chosen such that the null n
mal to I is divergence free!. Both are null surfaces and ca
be regarded as ‘‘line bundles’’ over a base spaceS of the
integral curves of null normals.~For brevity, we will ignore
a caveat concerning completeness of fibers.! The null nor-
mals are Killing fields of the intrinsic degenerate metric
that this metric is the pullback to the 3-surface of a positi
definite metric onS. In both cases, the space-time connect
induces an intrinsic connection on the 3-surface@19#. These
connections capture physically important information. Ho
ever, there are a number of differences as well. SinceI is
constructed by a conformal completion, the conformal fr
dom permeates all geometric structures atI. In particular,
given a physical space-time, the intrinsic metric and the
rivative operator are known only up to conformal transfo
mations. On the other hand, sinceI is at infinity, in some
ways its structure is both more rigid and simpler. First, wi
out loss of generality, we can assume that the metric onS is
a 2-sphere metric; the issue of distortion is physically irr
evant atI. Second, the Weyl tensor vanishes identically aI
and the curvature of the intrinsic connection captures n
trivial information about the next order space-time curvatu
By contrast, atD only four components of the Weyl curva
ture vanish and four other components are coded in the
vature of the intrinsic connection onD. In spite of these
differences, one can carry over some techniques from
infinity to extract physical information about isolated ho
zons. In particular, using the analogues of techniques wh
have been successful atI, one can introduce preferred cro
sections of and Bondi-type expansions nearD @18#.
10402
-

-
n

-

-

-
-

-

-

-
.

r-

ll

h

This concludes our analysis of the consequences of
boundary conditions defining nonexpanding horizons. N
that, even thoughl is a Killing field for the intrinsic, degen-
erate metricqab on D, it is not an infinitesimal symmetry for
other geometrical fields such as the intrinsic connectionD or
components of the curvature tensor. In the next subsec
we will make the structure more rigid by suitably restrictin
the choice ofl.

B. Weakly isolated horizons

The time independence of the intrinsic metricqab cap-
tures the idea thatD is isolated in a suitable sense. While th
condition has rich consequences, the resulting structur
still not sufficient for physical applications. In particula
sincel can be rescaled by an arbitrary positive definite fun
tion, the accelerationk ( l ) is not necessarily constant onD.
Therefore, we need to impose additional restrictions on
physical fields atD to establish the zeroth law. Sincel is
already a symmetry of the intrinsic metric, it is natural
require it also be a symmetry of the ‘‘extrinsic curvature
However, the standard definition of the extrinsic curvature
not applicable to null surfaces. Nonetheless, given a n
normall, we can construct a tensor fieldKa

b
ªDal b, defined

intrinsically onD, which can be thought of as the analog
of the extrinsic curvature.5 Indeed, on a metric submanifold
if we replacel by the unit normal,Ka

b is precisely the ex-
trinsic curvature. It is then natural to demand that, on
isolated horizon,Ka

b also be time independent:LlKa
b=0.

As a consequence of Eq.~2.4!, this is equivalent to imposing
Llv=0.

Let us examine the above condition. As we will show
the end of this section, given a nonexpanding horizon we
always find a null normall a which satisfiesLlv=0. The
behavior of this condition under rescalings ofl is compli-
cated by the fact thatv itself depends upon the choice of nu
normal @see Eq.~2.6!#. However, under a constant rescalin
l ° l̃ 5cl, the connection 1-formv is unchanged. Therefore
if l satisfies the conditionLlv=0, so does anyl̃ related tol
by constant rescaling. This suggests we introduce an equ
lence relation:Two future-directed null normals l and l˜ be-

long to the same equivalence class@ l # if and only if l̃5cl for
some positive constant c.

The above considerations lead us to the following defi
tion:

Definition 2. A weakly isolated horizon (D,@ l #) consists
of a nonexpanding horizonD, equipped with an equivalenc

5We are grateful to Thibault Damour for pointing out thatKa
b is

called the Weingarten map and is analogous to extrinsic curvat
This comment suggested the above motivation for our condition
the connection 1-formv. For an alternate, and in a sense weak
condition see the remark at the end of Sec. II D. From the viewp
of intrinsic structures onD discussed in Sec. II A, it is perhaps mo
natural to ask thatl be a symmetry of thefull intrinsic connectionD
~see Sec. II D and@18#!. However, this stronger condition is no
necessary for the laws of mechanics discussed here.
5-5
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class@ l # of null normals to it satisfying

Llv=0 for all l 5P@ l #. ~2.13!

As pointed out above, if this last equation holds for onel, it
holds for all l in @ l #.

A Killing horizon ~with 2-sphere cross sections! is auto-
matically a weakly isolated horizon~provided the matter
fields satisfy the energy condition of definition 1!. Given a
nonexpanding horizonD, one can always find an equivalenc
class@ l # of null normals such that (D,@ l #) is a weakly iso-
lated horizon. However, condition~2.13! does not by itself
single out the appropriate equivalence class@ l #. As indicated
in Sec. II D, onecan further strengthen the boundary cond
tions and provide a specific prescription to select the equ
lence class@ l # uniquely. However, for mechanics of isolate
horizons, these extra steps are unnecessary. In particular
analysis will not depend on how the equivalence class@ l # is
chosen. The adverb ‘‘weakly’’ in definition 2 emphasiz
this point.

Condition~2.13! has several consequences which are
evant for this paper.

~a! Surface gravity. In the case of Killing horizonsDK ,
surface gravity is defined as the acceleration of the Kill
field j normal toDK . However, ifDK is a Killing horizon for
j, it is also a Killing horizon forcj for any positive constan
c. Hence, surface gravity is not an intrinsic property ofDK ,
but depends also on the choice of a specific Killing fieldj.
~Of course the result that the surface gravity is constant
DK is insensitive to this rescaling freedom.! In asymptoti-
cally flat space-times admitting global Killing fields, this am
biguity is generally resolved by selecting a preferred norm
ization in terms of the structure at infinity. For example,
the static case, one requires the Killing fieldj to be unit at
infinity. However, in absence of aglobal Killing field or
asymptotic flatness, this strategy does not work and we s
ply have to accept the constant rescaling freedom in the d
nition of surface gravity. In the context of isolated horizon
then, it is natural to keep this freedom.

A weakly isolated horizon is similarly equipped with
preferred family@ l # of null normals, unique up to constan
rescalings. Therefore, it is natural to interpretk ( l ) as the
surface gravity associated withl. Under the permissible re
scalings l ° l̃ 5cl, the surface gravity transforms viak ( l̃ )
5ck ( l ) . Thus, whilev is insensitive to the rescaling free
dom in @ l #, k ( l ) captures this freedom fully. One can,
necessary, select a specificl in @ l # by demanding thatk ( l ) be
a specific function of the horizon parameters which are
sensitive to this freedom, e.g., by settingk ( l )51/2RD , where
RD is the horizon radius~related to the horizon areaaD via
aD54pRD

2 ).
~b! Zeroth law. The boundary conditions of definition

allow us to define surface gravityk ( l ) of a weakly isolated
horizon (D,@ l #). We will now show that the surface gravit
is constant onD. In other words, the zeroth law holds fo
weakly isolated horizons.

Recall from Eq.~2.12! that on a nonexpanding horizon
dv=2 Im@C2#

2e for any choice of null normall. Since2e is
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the pullback toD of the alternating tensoreI on the spaceS
~of orbits of l!, clearly l •2e=0. Therefore,

l •dv=0

for every null normall. In particular, on a weakly isolated
horizon this equation holds for anyl P@ l #. Moreover, each
of these restricted null normals also satisfies

0=Llv=d~ l •v!1 l •dv.

Hence, we conclude

d~ l •v!=d~k~ l !!=0,

where we have used the definition~2.1! of k ( l ) . Thus, sur-
face gravity is constant onD.

Although this proof of the zeroth law appears extreme
simple, the argument is not as trivial as it might first appe
since we have used a number of consequences of the bo
ary conditions derived in Sec. II A. In contrast to earlier de
vations @2,10# we do not require the presence of a Killin
field even in a neighborhood ofD. Therefore the proof ap-
plies also to space-times such as the Robinson-Trautman
lutions @15# which do not admit a Killing field. Also,D need
not be ‘‘complete’’—it may be of finite affine length with
respect to anyl—and may not admit the analogue of a ‘‘b
furcate surface’’ on which the Killing field vanishes. Finall
the field equations are used rather weakly; we only need
assume that2(Ra

b2 1
2 Rda

b) l b is a future directed causa
vector.

Surface gravity does not have a definite value on a wea
isolated horizon. The value ofk ( l ) depends upon the choic
of null normal l P@ l #. Since all the normalsl to D are future
directed, the rescaling constantc is necessarily positive
Therefore, if the surface gravity is nonzero~respectively,
zero! with respect to onel, it is nonzero~respectively, zero!
with respect to any otherl P@ l #. This rescaling freedom is
the same as the one discussed above in the context of Ki
horizons.

We will conclude this subsection with three remarks.
~i! Freedom in the choice of@ l #. Given a nonexpanding

horizon D, it is natural to ask if one can always select
equivalence class@ l # of null normals such that (D,@ l #) is a
weakly isolated horizon. As indicated earlier in this sectio
the answer is in the affirmative and, furthermore, there i
considerable freedom in the choice of@ l #. Let us examine
this issue in some detail.

Since l •dv=0 for any null normall to a nonexpanding
horizon, it follows that a null normall satisfiesLlv=0 if
and only if dk ( l )=0. Thus, to find a family@ l # required in
the definition of weakly isolated horizons, it is necessary a
sufficient to find a null normall for which the surface gravity
is constant. On a nonexpanding horizon, the surface gra
transforms as follows:

If l ° l̃ = f l , then k~ l̃ != f k~ l !1Ll f .

Hence, starting with anyl, we can simply solve forf by
requiring thatk ( l̃ ) be constant onD. The solution is not
5-6
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unique. If k l is constant, given any nonzero functiong sat-
isfying Llg=0 and a constantk̃, let us set

f =ge2k~ l !v1
k̃

k~ l !

where v satisfiesLlv=1. Then, we obtain anl̃ ¹@ l # for
which k ( l̃ )=k̃. This is the only freedom if bothk l andk ( l̃ )

are to be constant. Thus, each nonexpanding horizon g
rise to an infinite family of weakly isolated horizons. P
differently, although one can easily obtain weakly isolat
horizons from nonexpanding ones by choosing appropr
null normals@ l #, a specific weakly isolated horizon carrie
much more information than the nonexpanding horizon
comes from. At the end of Sec. II D, we will indicate ho
one can further strengthen the boundary conditions to giv
prescription for selecting a specific@ l #. However, the analy-
sis of this paper doesnot depend on how this selection
made.

~ii ! How does definition 2 compare with that used in t
undistorted, nonrotating case? As one would expect, the
definition given in@6–8# is significantly stronger. Further
more, it was tied to a foliation from the beginning. Mo
precisely, it assumed that there exists a foliation to whichv
is normal, withv52kn, and it required that the expansio
Re@m# of the null normaln to the leaves of the foliation be
constant onD ~see Appendix B for definitions of the NP sp
coefficients!. Although it was shown that the foliation i
unique if it exists, the heavy reliance on the foliation rig
from the beginning made that definition less elegant and
invariant content less transparent. Also, since we now al
dv to be nonzero and impose no conditions on Re@m#, we
can now incorporate rotation and distortion.

~iii ! Alternate boundary conditions. In the definition of
isolated horizons, we requiredLlv=0, which in particular
implies Llk ( l )[Ll( l •v)=0. Thus, the definition itself as
sured us thatk ( l ) is ‘‘time independent’’ and to prove the
zeroth law we had to show that it is also independent
‘‘angles.’’ Could we have used another definition in whic
the ‘‘time dependence’’ ofk ( l ) was not explicitly required
but followed from other conditions? The answer is in t
affirmative: In place ofLlv=0, we could have required tha
D admit a foliation on which the expansion Re@m# of n and
the Newman-Penrose spin coefficientp which carries the
angular momentum information are ‘‘time independen
@13#. Then the field equations would haveimplied thatk ( l ) is
time independent. Furthermore, all results of this paper
through~and were in fact first obtained! with these modified
boundary conditions. Note however that the new condition
neither weaker nor stronger than the one we used. Both
quire thatp be time independent. In addition, the prese
definition of isolated horizons requires thatk ( l ) be time in-
dependent while the alternative definition would have
quired, instead, that Re@m# be time independent. In this pa
per, we chose the present definition because it can be s
without reference to a foliation.
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C. Electromagnetic field

We shall now describe the form of the electromagne
field at an isolated horizon and introduce a partial gau
fixing at the horizon which will allow us to introduce th
notion of an electric potential. In the next three sections
where we discuss the action, phase space, and first law—
will assume that the only matter fields presentat the isolated
horizon are Maxwell fields. However, as our discussion w
make clear, this restriction is made primarily for simplicit
The overall framework is rather general and can accomm
date matter for which there exists a well-defined action pr
ciple and a~covariant! Hamiltonian framework. In particular
in Sec. VI, we describe how to extend the formalism to
clude Yang-Mills fields.

The isolated horizon boundary conditions restrict mat
primarily through conditions on the stress-energy ten
Tab . Let us begin withTabl

al b=0, a direct consequence o
the boundary conditions and Raychaudhuri equation.~This
restriction arises due to the fact thatD is a nonexpanding
horizon; the subsequent stronger boundary conditions do
further constrainF.! Although this condition is weak, it
turns out to have interesting consequences on the form o
electromagnetic field,F, at D. The stress-energy tensor fo
electromagnetism is given in terms of the field strengthF as

Tab5
1

4p FFacFb
c2

1

4
gabFcdF

cdG . ~2.14!

Let us contract this expression withl al b and examine the
consequences forF. This gives

0=Tabl
al b=u l ambFabu2, ~2.15!

where, to obtain the last expression, we have used the
symmetry ofF and the fact that the metric at the horizon c
be expressed in terms of a null tetrad asgab522l (anb)
12m(am̄b) . An immediate consequence of Eq.~2.15! is that

l aFab←——
=0. ~2.16!

In order to obtain a similar expression for!F recall that
the stress energy tensor can be rewritten asTab
5(21/4p)@!Fac

!Fb
c2 1

4 gab
!Fcd

!Fcd#. Applying the same
argument which led to Eq.~2.16!, we obtain a similar restric-
tion on !F, namely

l a !Fab←——
=0. ~2.17!

These two restrictions tell us there is no flux of electroma
netic radiation across the horizon.

It is straightforward to show that Eqs.~2.16!,~2.17! and
the form of the metric atD place further restrictions onTab :

Tabl
amb=0, Tabl

am̄b=0,

Tabm
amb=0, Tabm̄

am̄b=0.

The first two equations contain no new information sin
we already knew from general arguments@see Eq.~2.3!# that
F10=0 and F01=0. However, the last two equations d
5-7
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place further restrictions on the stress-energy tensor. S
the equations of motion are enforced at the boundary, we
immediately that they are equivalent to further restricting
Ricci tensor at the horizon by requiring:

F02ª
1

2
Rabm

amb=0, F20ª
1

2
Rabm̄

am̄b=0.

~2.18!

This result need not hold for general matter fields; it relies
the properties of the electromagnetic stress-energy te
~2.14!.

The next task is to define the electric and magne
charges of the horizon. Since the horizon is an inner bou
ary of spacetime, the normal to a 2-sphere cross sectio
the horizon will naturally be inward pointing. Bearing this
mind, we define the electric and magnetic charges of
horizon as

QDª̂2
1

4p R
SD

!F, PDª̂2
1

4p R
SD

F. ~2.19!

For these definitions to be meaningful, the values ofQD and
PD should be independent of the cross section of the hori
SD . We will now show thatD, being a nonexpanding hori
zon, guarantees this is the case. Let us first evaluate

Ll F←= l •dF← 1d~ l •F!
←——

.

The first term on the right hand side vanishes due to M
well’s equations onD, while the second term is zero due
the previous restriction onF, Eq. ~2.16!. Therefore we con-
clude thatF← is Lie dragged byl. An identical argument for
!F leads to the analogous conclusion. Therefore we obta

Ll F←=0 and Ll
! F←=0. ~2.20!

This result, along with Eqs.~2.16! and~2.17!, guarantees tha
QD andPD are independent of the choice of cross sectionSD

of the horizon. Note that this result was obtained using o
the boundary conditions; equations of motion in the bulk
not needed.

Finally, let us examine the remaining freedom in the el
tromagnetic field. The boundary conditions do not rest
Fabn

amb and !Fabn
amb at all. These components describ

the electromagnetic radiation flowing along the horizo
Therefore, isolated horizon boundary conditions allow el
tromagnetic radiation arbitrarily close to—and even at—
horizon, provided none crosses it.

So far we have confined ourselves to the field strengthF
and !F. However, in the action principle and the Ham
tonian framework we have to consider also the Maxwell p
tentialA. Now, if the magnetic charge is nonzero, either o
has to allow ‘‘wire singularities’’ in the vector potentials o
regardA as a connection on a nontrivialU(1) bundle.~If we
regard it as a connection on aR1 bundle, the magnetic
charge is necessarily zero.! Since we wish to deal only with
smooth fields, we will not allow ‘‘wire singularities’’ in the
potentials. If we work with bundles, the magnetic charge
quantized whence the space of histories has several dis
10402
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nected components. Thus, in the first law, we will not be a
to consider variationsd of fields with dPÞ0. As far as me-
chanics of isolated horizons is concerned, there is essent
no loss of generality if we restrict ourselves to the casePD

50. Therefore, in the next three sections, while worki
with Maxwell fields, we will do so. As usual, ourfinal results
can be formally extended to the case of nonvanishing m
netic charge by performing a duality rotation onF. ~As dis-
cussed in Sec. VI, the situation is rather different in the c
of Yang-Mills fields.!

Recall that the first law in the Einstein-Maxwell case i
volves the electrostatic potentialF. In static space-times, on
typically setsF52jaAa wherej is the static Killing field
and the gauge is chosen such that the vector potentiaA
tends to zero at infinity and satisfiesLjA50 everywhere in
space-time. We now need a strategy to define the elect
potentialF without reference to a Killing field or infinity. To
this end, we introduce the following definition:

Definition 3. The electromagnetic potentialA will be said
to be in a gauge adapted to the weakly isolated horiz
(D,@ l #) if it satisfies

LlA←=0. ~2.21!

Mathematically, this restriction is analogous to this conditi
Llv=0 imposed on the gravitational field in definition 2
However, while the condition onv is a physical restriction
on the form of the gravitational field atD, the condition onA
is a gauge choice; it can always be imposed without ph
cally constraining the electromagnetic field strength.

Given an electromagnetic potentialA in a gauge adapted
to (D,@ l #), we can now define the scalar potentialF ( l ) at the
horizon in an obvious fashion:

F~ l !ª̂2 l •A.

The key question now is whether our boundary conditio
are strong enough to ensure thatF ( l ) is constant onD. Only
then can we hope to use this notion of the scalar potentia
the first law. Note that this question is rather similar to t
one we asked of surface gravityk ( l ) in Sec. II B. By using
arguments completely analogous to those that led us to
zeroth law, we will now show that the answer to the pres
question is also in the affirmative. In a gauge adapted to
horizon,

0=LlA←= l •F←——
2dF← ~ l !.

As we saw above, the boundary conditions imp
l •F←——

=0 @Eq. ~2.16!#. Hence, it follows immediately tha
F ( l ) is constant on the horizon. We can regard this resul
the ‘‘electromagnetic part’’ of the zeroth law of isolated h
rizon mechanics.

We will see in the next section that these zeroth laws p
a key role in making the gravitational and the electroma
netic action principles well defined in the presence of is
lated horizons. As with surface gravityk ( l ) , the functional
dependence ofF ( l ) on the horizon parameters varies with th
5-8
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choice ofl P@ l #. We will see in Sec. V that the Hamiltonia
framework constrains these dependences in an intere
fashion.

D. Other definitions and remarks

In this subsection, we introduce two new definitio
which are important to the general framework of isolat
horizons.

The first is concerned with rotation. From one’s expe
ence with the Newman-Penrose framework, one expects
gravitational contribution to angular momentum to be cod
in the imaginary part ofC2 . This expectation will be shown
to be correct in@13#. Therefore, in the Einstein-Maxwe
theory, we introduce the following definition:

Definition 4. A weakly isolated horizon (D,@ l #) will be
said to benonrotatingif Im @C2# vanishes onD.

If ( DK ,@j#) is a Killing horizon andj is a hypersurface
orthogonal, timelike vector field nearDK , on physical
grounds one would expect the horizon to be nonrotating
this expectation compatible with our definition? The answ
is in the affirmative. For, in this case, one can show t
BabªCacbdj

cjd vanishes in the region whereja is timelike.
Hence, by continuity, it also vanishes onD forcing Im@C2# to
vanish there. Similarly, if the space-time admits ahypersur-
face orthogonal, rotational Killing field wa in a neighbor-
hood of D, Im@C2# again vanishes onD. The definition is
again compatible with one’s intuition that the horizon shou
be nonrotating in this case. In this paper, while we allow
presence of rotation in the first four sections, we will restr
ourselves to nonrotating horizons in the proof of the first l
in Sec. V.

Finally, for completeness, let us introduce a stronger
tion of ‘‘isolation’’ by strengthening the boundary condition
of definition 2.

Definition 5. A weakly isolated horizon (D,@ l #) is said to
be isolatedif

@Ll ,D#V=0 ~2.22!

for all vector fieldsV tangential toD and all l P@ l #.
As before, if any onel satisfies this condition, so do a

l P@ l #. However, unlike Eq.~2.13!, condition ~2.22! is a
genuinerestriction in the sense that it cannot always be m
by a judicious choice of null normals. Generically it do
suffice to single out the equivalence class@ l # uniquely @18#.
In particular, in the Kerr family, the only@ l # which satisfies
Eq. ~2.22! is the one containing constant multiples of t
globally defined Killing field which is orthogonal to the ho
rizon. Every Killing horizon is of course an isolated horizo
Thus, even though Eq.~2.22! is a stronger condition than Eq
~2.13!, it is still very weak compared to conditions normal
imposed. For most physical applications, e.g., to numer
relativity, it is appropriate to work with isolated horizon
For mechanics of isolated horizons, however, we can—
will—work with the larger class of weakly isolated horizon

The following consequences of the boundary conditio
defining weakly isolated horizons, derived in this sectio
will play an important role in the subsequent discussion:
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~a! ¹ a←
l b=val b.

~b! k ( l )= l ava , the surface gravity defined by the nu
normal l a, is constant onD.

~c! There is a natural~area! 2-form 2e on D satisfying
Ll

2e=0 and 2eabl
b=0.

~d! The electromagnetic potentialA is chosen to satisfy
LlA=0 and in this gauge the scalar potentialF ( l )ª

2 l aAa is constant onD.
~e! The electromagnetic field satisfiesl aFab←——

=0; and

l a !Fab←——
=0.

III. ACTION

In this paper we use the first order formulation of gene
relativity in terms of tetrads and connections. Since tetr
are essential to incorporate spinorial matter, it is natura
base the framework on tetrads from the beginning. The
of a first order formalism, on the other hand, is motivat
primarily by mathematical simplicity. In the first orde
framework, the action and the Hamiltonians can be
pressed entirely in terms of differential forms which signi
cantly simplify the variational calculations. The previous p
per @8# which dealt with undistorted horizons used spino
and self-dual connections, while here we choose to use
thonormal tetrads and real, Lorentz connections. For ana
ing mechanics of isolated horizons, there are two advanta
to this. First, the Hamiltonian and symplectic structure a
now manifestly real which simplifies evaluation of th
boundary terms at the horizon. Second, the analysis can
be extended to other space-time dimensions in a straigh
ward manner. However, these simplifications come with
price. Since, at present, the self-dual variables appear t
indispensable for nonperturbative quantization, the res
obtained here will have to be reexpressed in terms of s
dual variables in order to extend the analysis@20# of the
quantum horizon geometry and black hole entropy to inclu
rotation.

A. Preliminaries

Let us begin with the first order action for Einstein
Maxwell theory on a four-dimensional manifoldM which is
topologically M3R, where M is an oriented Riemannian
3-manifoldwithout boundary~the complement of a compac
set of! which is diffeomorphic to~the complement of a com
pact set of! R3. Thus, topological complications ofM, if any,
are confined to a compact set. In this subsection we s
only give the relevant formulas. For details, see e.g.@21#.
Our basic fields will consist of a triplet (ea

I ,AaI
J ,Aa) defined

on M whereea
I denotes a co-tetrad,AaI

J the gravitational
~Lorentz! connection, andAa the electromagnetic connec
tion. Here, lowercase latin letters refer to the tangent spac
M while the uppercase lettersI, J, etc. refer to an interna
four-dimensional vector spaceV with a fixed metrich IJ of
signature~2, 1, 1, 1!. The co-tetradea

I is an isomorphism
between the tangent spaceTp(M) at any pointp and the
internal spaceV. Using it, we define a metric onM by
5-9
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gabªea
I eb

Jh IJ which also has signature~2, 1, 1, 1!. The
Lorentz connectionAaI

J acts only on internal indices an
defines a derivative operator

DakIª]akl1AaI
JkJ ,

where] is a fiducial derivative operator which, as usual, w
be chosen to be flat and torsion free. Finally,Aa is the U~1!
electromagnetic connection 1-form onM. ~As noted in Sec.
II C, we will assume that the magnetic charge is zero.! All
fields will be assumed to be smooth and satisfy the stand
asymptotic conditions at infinity.

The 2-formsS IJ

S IJª
1

2
e IJKLeK∧eL

constructed from the co-tetrads will play an important ro
throughout our calculations. In particular, the action for
asymptotically flat space-time~with no internal boundary! is
given by ~see e.g.@21#!

S~e,A,A!5
21

16pG E
M

S IJ∧FIJ

1
1

16pGE
t`

S IJ∧AIJ2
1

8p E
M

F∧!F.

~3.1!

Here F and F are the curvatures of the gravitational a
electromagnetic connectionsA andA, respectively:

FI
J5dAI

J1AI
K∧AK

J, F5dA,

!Fab5 1
2 eab

cdFcd is the dual ofF defined usingea
I , andt`

is the timelike cylinder at infinity. The boundary term att`

ensures the differentiability of the action.
Let us briefly examine the equations of motion arisi

from the action. Varying the action with respect to the co
nection, one obtains

DS50.

This condition implies that the connectionD defined byA
has the same action on internal indices as the unique con
tion ¹ compatible with the co-tetrad, i.e., satisfying¹aeb

I

50. When this equation of motion is satisfied, the curvat
F is related to the Riemann curvatureR of ¹ by

Fab
IJ5Rab

cdec
I ed

J .

Varying the action with respect toea
I and taking into accoun

the above relation between curvatures, one obtains Einste
equations

Gab58pGTab[2GS FacFbdg
cd2

1

4
gabFcdF

cdD
whereGab is the Einstein tensor andTab the electromagnetic
stress energy tensor. Finally, variation with respect to
electromagnetic connection,A, yields Maxwell’s equation
10402
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B. Internal boundary D

Let us now consider the variational principle for asym
totically flat histories which admit a weakly isolated horizo
D as their internal boundary. The manifoldM under consid-
eration has an internal boundaryD, topologicallyS23R. As
before,M is topologicallyM3R, whereM is now an ori-
ented manifold with an internal, 2-sphere boundary, wh
topological complications are again confined to a comp
region. Space-time is bounded to the future and past by
~partial Cauchy! surfacesM 6, extending to spatial infinity
~see Fig. 1!.

Following definition 2 of weakly isolated horizons, w
will equip D with a fixed equivalence class of vector fields@l#
which are transversal to its 2-sphere cross sections~where, as
before,l; l 8 if and only if l =cl8 for a constantc!. It is also
convenient to fix aninternal null tetrad (l I ,nI ,mI ,m̄I) on D,
each element of which is annihilated by the fiducial, fl
internal connection].

The permissible histories consist of smooth triple
(e,A,A) onM satisfying boundary conditions at infinity an
on D. The boundary conditions at infinity are, as before, t
standard ones which ensure asymptotic flatness. Since
asymptotic behavior and boundary integrals at infinity p
only a secondary role in our analysis, we shall not spell
the precise fall off requirements. AtD, the histories are sub
ject to three conditions:~i! the tetradse should be such tha
the vector fieldl a

ª l IeI
a defined by each history belongs t

the equivalence class@l# fixed onD, ~ii ! the tetrade and the
gravitational connectionA should be such that (D,@ l #) is a
weakly isolated horizon for the history, and~iii ! the electro-
magnetic potentialA is in a gauge adapted to the horizo
i.e., LlA=0.

Remark. In space-time, we have the freedom to perform
local, internal Lorentz rotation on the tetradeI

a ~and the
gravitational connectionAaI

J). All these tetrads define the
same Lorentzian metricgab . Sincel a is required to be a null
normal toD, the permissible gauge rotations are reduced
D to the subgroup (R13E2) loc of local null rotations pre-
serving the null direction fieldl. ~Here R1 is the group of
rescalings ofl a, na which leavesma fixed andE2 is the
three-dimensional Euclidean group consisting of rotations
the l -m, l -m̄, and m-m̄ planes.! Condition ~i! above—

FIG. 1. The region of space-timeM under consideration has a
internal boundaryD and is bounded by two partial Cauchy surfac
M 6 which intersectD in the 2-spheresS6 and extend to spatia
infinity i 0.
5-10
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dictated by the existence of a preferred equivalence clas@l#
in definition 2—further reduces the internal gauge freed
to R13(Eloc

2 ), i.e., reduces the groupRloc
1 of local l -n re-

scalings to the groupR1 of global rescalings. Thus, while
any one space-time (M,gab), still defines infinitely many
histories due to the freedom of tetrad rotations, this freed
is somewhat reduced atD because of the structure fixed b
the boundary conditions.6

Given any tetrad eI
a , the internal null vectors

( l I ,nI ,mI ,m̄I) fixed on D trivially provide a null tetrad
( l a,na,ma,m̄a). In terms of these vectors, we can expre
(←

IJas

(←
IJ=2l [ InJ]2e12n∧~ iml [ I m̄J]2 im̄l [ ImJ] !, ~3.2!

where, as before,2e5 im∧m̄ is the pullback toD of the
natural alternating tensor on the 2-sphereS of integral curves
of l a associated with the given history. The weak isolation
(D,@ l #) restricts the form of the connectionA at D. To see
this, recall that one of the equations of motion requires
connectionD defined byA to have the same action on inte
nal indices as¹. Hence, ¹ a←

l I=]al I1A a←I
Jl J=A a←I

Jl J

where, in the second step we have used the fact that the
derivative operator,], has been chosen to annihilate the
ternal tetrad onD. Since¹aeb

I 50 by definition of ¹, and
¹ a←

l b=val b @see Eq. ~2.4!# it follows that A←IJl J=v l I .

Hence, onD, A← has the form

A← IJ=2l [ InJ]v1CIJ, ~3.3!

where the 1-formCIJ satisfiesCIJl J=0.
With this background material at hand, we are now rea

to consider variations of the action~3.1! in the presence of an
inner boundary representing a weakly isolated horizon
key question is whether a new surface term at the horizo
necessary to make the variational principle well defined.
will show that, thanks to the zeroth law, such a term is
needed.

A simple calculation yields

dS~e,A,A!5E
M

~equations of motion!3df

2
1

16pG E
D
S IJ∧dAIJ2

1

4p E
D
dA∧!F

~3.4!

where, in the first term,f stands for the basic fields (e,A,A)
in the action. Note that, as in the case without an inter

6Nonetheless, from a space-time perspective, the multiplicity
histories can still be rather surprising. For example, ifgab is the
Schwarzschild metric with massM.0, there is a history in which
the surface gravityk ( l ) is positive and another in which it is zero
This redundancy can be eliminated by working with isolated, rat
than weakly isolated horizons.
10402
m

s

f

e

at
-

y

A
is
e
t

l

boundary, the variation of the boundary term at infinity pr
cisely cancels the contribution arising from the variation
the bulk terms.

In order to show that the action principle is viable, it
necessary to show that the terms at the horizon vanish du
the boundary conditions imposed there. Let us begin with
gravitational term. Using Eqs.~3.2! and~3.3! it can be reex-
pressed as

2
1

8pG E
D
dv∧2e. ~3.5!

Since 2e is the pullback toD of the alternating tensor on th
2-sphereS of integral curves ofl, it follows that Ll

2e=0.
Furthermore, the weak isolation of the horizon ensu
Llv=0 and, since the null normall a defined byany tetrad
belongs to the fixed equivalence class@l# at the horizon, we
haved l =cdl for some constantcd . These two facts imply
Lldv=0. Thus the entire integrand is Lie dragged byl. In
the variational principle, however, all fields are fixed on t
initial and final hypersurfaces, sayM 6. In particular, dv
necessarily vanishes on the initial and final cross section
the horizon. Therefore, the integrand Eq.~3.5! vanishes on
the initial and final cross sectionsand is Lie dragged byl.
This immediately implies that Eq.~3.5! is zero.

Let us now consider the electromagnetic term. Since
ery A is in a gauge adapted to the isolated horizon,LlA=0.
Furthermore,d l a=cdl a, so we concludeLldA=0. Next, Eq.
~2.20! ensures thatLl

!F=0. Thus, the integrand of the elec
tromagnetic surface term is Lie dragged byl a. An identical
argument to the one presented above implies that the e
tromagnetic surface term Eq.~3.4! also vanishes. Therefore
the variation of the action~3.1! continues to yield Einstein-
Maxwell equations in spite of the presence of an inn
boundary representing a weakly isolated horizon.

It is instructive to reexamine the key step in the abo
argument. Suppose we only had a nonexpanding horiz
Then, the gravitational surface term could still be reduc
Eq. ~3.5!, and 2e and !F← would still be Lie dragged byl.
However, in this case, we could not argue thatv andA are
also Lie dragged. As we saw in Secs. II B and II C, the
conditions are equivalent, respectively, to the constancy
the surface gravityk ( l ) and the electromagnetic potenti
F ( l ) on D. In this sense, given a nonexpanding horizon as
inner boundary, the gravitational and electromagnetic zer
laws are thenecessary and sufficient conditionsone must
impose for the viability of the standard, first order, tetr
action principle.

Remark. Note that Eq.~3.1! is not the unique viable action
for the problem: as usual, there is freedom to add suita
boundary terms without affecting the viability. Specificall
we are free to add any horizon boundary term which is co
posed entirely of fields which are Lie dragged byl, for ex-
ample the intrinsic horizon metricqab and fieldsv, 2e, and
A←. Then, as a result of the argument given above, the n
action would also be viable. However, as usual, this freed
will not affect the definition of the symplectic structur
which underlies the Hamiltonian treatment of the next s
tion.
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IV. COVARIANT PHASE SPACE

Let us now construct the phase space of space-times
taining weakly isolated horizons. In the next section, we w
use this framework to construct Hamiltonians generat
suitable time translations and define the energy of an isol
horizon. In@8#, the phase space was constructed by perfo
ing a Legendre transform of the action. This procedure le
to a ‘‘canonical’’ framework in which the phase space co
sists of configuration and momentum variables defined o
spatial hypersurface. With the self-dual connections use
@8#, the gravitational configuration variable turns out to be
connection and its conjugate momentum a 2-form so that
Hamiltonian description can again be given in terms
forms. With the full Lorentz connections now under cons
eration, the situation turns out to be more complicated. S
cifically, one encounters certain second class constraints
when these are solved, one ends up with the same cano
phase space that one would have obtained through a se
order formalism. In the Hamiltonian framework, then, t
simplicity we encountered in Sec. III is lost. More speci
cally, constraint functions and Hamiltonians now conta
terms involving secondderivatives of the basic canonica
variables which make variations rather complicated.~For de-
tails, see Chaps. 3 and 4 in@21#.! Therefore, in this section
we will not use a Legendre transform. Instead, we will co
struct the ‘‘covariant phase space’’ from the space of so
tions to field equations~see, e.g.,@22#!. As in Sec. III, all
expressions will now involve only the basic form fields a
their exterior derivatives and variational calculations w
continue to be simple.

To specify the phase space, let us begin as in Sec. II
fixing a manifoldM with an internal boundaryD ~see Fig.
1!. As before, we will equipD with an equivalence class@l#
of vector fields transverse to its 2-sphere cross sections
evaluate the symplectic structure and Hamiltonians, we
often use a partial Cauchy surfaceM in the interior ofM
which intersectsD in a 2-sphereS. Points of the covarian
phase spaceG will consist of histories considered in Sec. I
which satisfy field equations. More explicitly, G consists of
asymptotically flat solutions (e,A,A) to the field equations
on M such that~i! the vector fieldl a

ª l IeI
a belongs to the

equivalence class@l# fixed onD, ~ii ! in each solution, (D,@ l #)
is a weakly isolated horizon, and~iii ! the electromagnetic
potentialA is in a gauge adapted to the horizon, i.e.,LlA=0.

Our next task is to use the action~3.1! to define the sym-
plectic structureV on G. It is convenient to make a brie
detour and first introduce two new fields which can be
garded as ‘‘potentials’’ for the surface gravityk ( l ) and the
electric potentialF ( l ) . Given any point (e,A,A) in the phase
spaceG, let us define scalar fieldsc andx on D as follows:

~i! Llc=( l •v)=k ( l ) andLlx=( l •A)=2F ( l ) .
~ii ! c andx vanish onS2, the intersection ofM 2 with

D.7

7Condition~ii ! serves only to fix the freedom to add constants toc
andx. One could envisage replacing it by a different condition. O
results will be insensitive to this choice.
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Note that these conditions associate with each point ofG a
unique pair~c,x! on D and in the ‘‘extremal’’ casek ( l )50, c
vanishes identically.

We wish to use the standard procedure@22# involving
second variations of the action to define the symplec
structure.8 Let us recall the main steps of this procedure. O
first constructs the symplectic currentJ: Given a pointg in
the phase spaceG and two tangent vectorsd1 andd2 at that
point, J provides a closed 3-formJ(g;d1 ,d2) on M. Inte-
grating dJ over the partM̃ of space-time under conside
ation, one obtains

05E
M̃

dJ~g;d1 ,d2!5 R
]M̃

J.

Now, if there is no internal boundary, one can chooseM̃ to
be a region bounded by any two Cauchy surfacesM1 andM2

so that the boundary is given by]M̃5M1øM2øt` , where
t` is the timelike ‘‘cylinder at infinity.’’ In simple cases, the
asymptotic conditions ensure that the integral*t`

J(g;d1 ,d2)
vanishes. Then, taking orientations into account, if follo
that *MJ(g;d1 ,d2) is independent of the choice of Cauch
surfaceM. One then sets the symplectic structure to be

Vug~d1 ,d2!5E
M

J~g;d1 ,d2!.

In our case, the second variation of the action~3.1! yields
the following symplectic current:

J~g;d1 ,d2!5
21

16pG
@d1S IJ∧d2AIJ2d2S IJ∧d1AIJ#

2
1

4p
@d1

!F∧d2A2d2
!F∧d1A#. ~4.1!

Using the fact that the fieldsg[(e,A,A) satisfy the field
equations and the tangent vectorsd1 ,d2 satisfy the linearized
equations offg, one can directly verify thatJ(g;d1 ,d2) is in
fact closed as guaranteed by the general procedure invol
second variations. It is now natural to chooseM̃ to be a part
of our space-timeM bounded by two partial Cauchy su
facesM1 ,M2 , the timelike cylindert` and a partD̃ of the
isolated horizon bounded byM1 and M2 . Again, the
asymptotic conditions ensure that the integral ofJ over t`

vanishes. Hence,

r

8Actually this procedure provides a presymplectic structure, i.e
closed 2-form on the phase-space which, however, is generally
generate. The vectors in its kernel represent infinitesimal ‘‘ga
transformations.’’ The physical phase space is obtained by q
tienting the space of solutions by gauge transformations and inh
a true symplectic structure from the presymplectic structure on
space of solutions. The 2-formV introduced below is indeed de
generate. However, for simplicity, we will abuse the notation som
what and refer toV as the symplectic structure.
5-12
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S E
M1

1E
M2

1E
D̃
D J~g;d1 ,d2!50.

However, this does not immediately provide us the co
served symplectic structure because the integral ofJ over D̃
does not vanish in general. Since the isolation of the hori
implies that there are no fluxes of physical quantities acr
D, one might expect that, although nonzero, the integral o
D̃ would be ‘‘controllable.’’ This is indeed the case. Usin
the forms~3.2! and~3.3! of (← andA← on D and the definitions
of the potentialsc andx, it is easy to verify that the pullback
of the symplectic current toD is itself exact:

J←~g;d1,d2!=d j~g,d1,d2!

where the 2-formj on D is given by
he
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j ~g;d1 ,d2!5
1

8pG
@d1cd2~2e!2d2cd1~2e!#

1
1

4p
@d1xd2

!F2d2xd1
!F#.

Hence, if M1 and M2 intersectD̃ in 2-spheresS1 and S2
respectively, we have

E
D̃
J~g;d1 ,d2!52S E

S1

1E
S2

D j ~g;d1 ,d2!.

The negative sign appearing in the above expression is
to the choice of orientation ofSD , which is induced fromM
rather than fromD. Using these results we can define t
symplectic structure as
Vug~d1 ,d2!5
21

16pG E
M

@d1S IJ∧d2AIJ2d2S IJ∧d1AIJ#1
1

8pG R
S
@d1~2e!d2c2d2~2e!d1c#

2
1

4p E
M

@d1
!F∧d2A2d2

!F∧d1A#1
1

4p R
S
@d1

!Fd2x2d2
!Fd1x#. ~4.2!
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Again, using field equations one can directly verify that t
right side Eq.~4.2! is independent of the choice of the parti
Cauchy surface; the symplectic structure is ‘‘conserve
We will use ~G,V! as our covariant phase space.

Note that, even though the action did not contain a surf
term at the horizon, the symplectic structure does. So
overall situation is the same as in the undistorted, nonro
ing case considered in@8#. Finally, our discussion of the
action principle and our construction of the covariant ph
space is applicable toall weakly isolated horizonsD; no-
where did we have to restrict ourselves to the nonrota
case.

V. HAMILTONIAN EVOLUTION AND THE FIRST LAW

To discuss the first law, we must first define horizon e
ergy, which in turn requires a time evolution fieldta on M.
Given a vector fieldta satisfying appropriate boundary con
ditions,d tª(Lte,LtA,LtA) satisfies the linearized equation
for any gª(e,A,A) in G and thus defines a vector field o
G.9 This d t can be interpreted as the infinitesimal genera
of time evolution on the covariant phase space. It is th
natural to ask if this vector field is a phase space symme
i.e., if Ld t

V vanishes everywhere onG. The necessary an

9In the Lie derivatives, the internal indices are treated as sca
thusLtea

I 5tb]bea
I 1eb

I ]atb. To maked t a well-defined vector field
on G, we now excludeM 6 from M and letM andD be without
future and past boundaries. Whenever needed, these bound
M 6 andS6, can be added by taking the obvious closure ofM.
’’

e
e
t-

e

g

-

r
n
y,

sufficient condition for this to happen is that there exis
function Ht—the Hamiltonian generating thet evolution—
such that

dHt5V~d,d t! ~5.1!

for all vector fieldsd to G. On general grounds, one expec
Ht to contain a surface termEADM

t at infinity representing the
total ~i.e., ADM! energy, and a surface termED

t at the hori-
zon which can be interpreted as the horizon energy, both
to the evolution fieldta.

A key question then is to specify the appropriate boun
ary conditions onta. It is clear that, at infinity,ta should be
an asymptotic time translation, i.e., should approach a tim
translation Killing field of the flat metric used to specify th
boundary conditions. At the horizon, on the other hand,
metric is not universal and the space-time defined by a g
neric pointg of the covariant phase does not admitanyKill-
ing field nearD. Therefore, specification of the bounda
conditions atD is not as straightforward as that at infinity.
is for this reason that we now assume that (D,@ l #) is a non-
rotating, weakly isolated horizon for all pointsg[(e,A,A)
of the phase space. The problem of specifying the appro
ate boundary conditions onta in the rotating case is more
complicated. However, it has been addressed success
and will be discussed in@13#.

Recall that the internal boundaryD of M is equipped
with a specificequivalence class@l# of vector fields. As dis-
cussed in Sec. II, thesel are the isolated horizon analogues
constant multiples of Killing fields on the Killing horizons i
static space-times. Therefore, in thenonrotating case, it is

s;

ies,
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natural to demand that, onD, the evolution vector fieldta

should belong to the equivalence class@l#. This automatically
ensures that (Lte,LtA,LtA) satisfy the appropriate boundar
conditions to define a tangent vector at each point of
phase spaceG. However, unlike at infinity, the geometry a
the horizon isnot fixed once and for all. Therefore, it i
natural to allow the precise value of the evolution vec
field ta on D to vary from one point of the phase space
another. In more familiar terms, this corresponds to allow
the ~boundary values of! lapse and shift fields to depend o
dynamical fields (e,A,A) themselves, a procedure routine
used in numerical relativity and gauge-fixed calculations
canonical gravity. Following the current terminology in n
merical relativity, we will refer to suchta as live evolution
vector fields. The use of live fields turns out to be necess
to ensure thatd t is a phase space symmetry, i.e., yields
Hamiltonian evolution on~G,V!.

Let us fix a live ta whose restriction to the horizon be
longs to the equivalence class@l# at all points of the phase
space. To analyze ifd t is a Hamiltonian vector field, it is
simplest to compute the 1-formXt on G defined by

Xt~d!5V~d,d t!. ~5.2!

Now d t is Hamiltonian—i.e.,Ld t
V50 on G—if and only if

Xt is closed, i.e.,

dXt50

whered denotes the exterior derivative on~the infinite di-
mensional! phase spaceG. If this is the case then, up to a
additive constant, the Hamiltonian is given by

dHt5Xt .

To calculate the right side of Eq.~5.2!, it is useful to note
the following identities from differential geometry:

LtA5t•F1D~ t•A!,

LtS5t•DS1D~ t•S!2@~ t•A!,S#,

LtA5t•F1d~ t•A!,

Lt
!F5t•~d!F!1d~ t•!F!. ~5.3!

Using these, the field equations satisfied by (e,A,A) and the
linearized field equations ford, we obtain the required ex
pression ofXt :

Xt~d!ªV~d,Lt! ~5.4!

5
21

16pG E
]M

Tr@~ t•A!dS2~ t•S!∧dA#

2
1

4p E
]M

~ t•A!d~!F!2~ t•!F!∧dA. ~5.5!
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Note that the expression involves integralsonly over the
2-sphere boundariesS` and SD of M, the partial Cauchy
surface used in the evaluation of the symplectic structu
there is no volume term.

The integrals at infinity can be evaluated easily by mak
use of the falloff conditions. As one would expect, the ele
tromagnetic term vanishes~becauseA falls off at least as 1/r
while F falls off as 1/r 2) while the gravitational term yields
precisely the ADM energyEADM

t associated with the
asymptotic time translation defined byta. At the horizon, we
can use Eqs.~3.2! and ~3.3! to show thatt•S contracted on
internal indices withdA vanishes and Eq.~2.17! implies
t•!F50, leaving

Xt~d!52
1

8pG E
SD

~ t•v!d~2e!

2
1

4p E
SD

~ t•A!d~!F!1dEADM
t

52
1

8pG
k~ t !daD2F~ t !dQD1dEADM

t ~5.6!

where, in the last step, we have used the fact that botht•v
5k (t) and t•A52F (t) are constant on the horizon and th
definition ~2.19! of electric charge.

The necessary and sufficient condition for the existence
a Hamiltonian is thatXt be closed. Clearly, this is equivalen
to

1

8pG
dk~ t !∧∧daD1dF~ t !∧∧dQD50, ~5.7!

where ∧∧ denotes the antisymmetric tensor product onG.
Now, Eq. ~5.7! trivially implies that the surface gravityk (t)
and the electric potentialF (t) at the horizon defined byta

can dependonly upon the area and charge of the horizo
Other factors, such as the ‘‘shape’’ of the distorted horiz
cannot affect the values ofk (t) or F (t) . Finally, Eq.~5.7! is
the necessary and sufficient condition that there exist a fu
tion ED

t , also only ofaD andQD such that

dED
t 5

1

8pG
k~ t !daD1F~ t !dQD . ~5.8!

SinceED
t is a functiononly of aD andQD , it is a function of

fields definedlocally at the horizon. As noted before, it i
natural to interpretED

t as the horizon energy defined by th
time translationta. The total Hamiltonian is given by

Ht5EADM
t 2ED

t . ~5.9!

Let us summarize. Equation~5.8! is a necessary and su
ficient condition for the 1-formXt to be closed. Therefore
the vector fieldd t on G defined by the space-time evolutio
field ta is Hamiltonianif and only if the first law~5.8! holds.
Thus Eq.~5.8! is a restriction on the choice of thelive vector
5-14
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field ta: While any ta ~which preserves the boundary cond
tions! defines an evolution flow on the phase space, it is o
when

1

8pG
k~ t !daD1F~ t !dQD

is an exact 1-form onG that this flow is Hamiltonian~i.e.,
preserves the symplectic structure!. At first, this restriction
seems somewhat surprising because, in absence of int
boundaries,everyvector fieldta ~which tends to a fixed Kill-
ing field of the flat metric at infinity! defines a Hamiltonian
evolution. However, even in this context, there is noa priori
reason to expect this tight correspondence to hold if
allows general, live vector fieldsta whose boundary values a
infinity can change from one space-time to another. Fina
we will see in Sec. VII that every space-time belonging
the phase spaceG admits an infinite family of vector fieldsta

for which Xt is closed. Therefore, in particular, the first la
doesnot restrict the ‘‘background’’ space-times~or the varia-
tions d! in any way. Indeed, for any space-time in our pha
space, there is an infinite family of first laws, one associa
with each permissibleta.

We will conclude this section with a few remarks.
~i! Form of Ht . The Hamiltonian~5.9! contains only sur-

face terms. This may seem surprising because, in the can
cal framework, the familiar Hamiltonian contains a volum
integral consisting of a linear combination of constrain
While the volume term vanishes ‘‘on shell’’ and does n
contribute to numerical value of the canonical Hamiltoni
on physical states, it is nonetheless crucial for obtaining
correct evolution equations since derivatives of the Ham
tonian transverse to the constraint surface are needed to
struct the Hamiltonian vector field. The covariant pha
space, by contrast, consists only of solutions to the fi
equations whence the issue of taking ‘‘off shell’’ derivativ
never arises. In diffeomorphism invariant theories,
Hamiltonian on the covariant phase space is always mad
surface terms.10 If space-time has several asymptotic regio
the boundary term in each region defines the standard en
corresponding to that region. Therefore, in the present c
it was natural to interpretED

t as the horizon energy define
by the ta evolution. Finally, we should emphasize that w
used a covariant phase space only for simplicity. The fi
results go through~and, in fact, were first obtained! in a
canonical framework as well.

~ii ! Comparison. As noted in the Introduction, all treat
ments of the first law for nonrotating but possibly distort
horizons available in the literature refer to static space-tim
The isolated horizon framework, by contrast, does not re
to a Killing field at all and thus allows a significantly large
class of physically interesting situations. On the other ha

10In particular, therefore, Hamiltonians generating diffeom
phism which have support away from the boundaries vanish id
tically. Unlike their counterparts on the canonical phase space
infinitesimal phase-space motions induced by such space-time
tor fields are in the kernel of the covariant symplectic structure
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since it relies on a Hamiltonian framework, we cannot inc
porate phenomenological matter if it does not admit a ph
space description. Other treatments based on Hamilto
methods generally restrict themselves to static space-ti
with a nonzero surface gravity. This assumption is essen
there because those treatments use ‘‘bifurcate’’ surface
an important way and these do not exist in the extremal st
solutions where the surface gravity vanishes. In contrast,
results of this section do not refer to a bifurcate surface
go through irrespective of whetherk (t) is nonzero or zero. In
a realistic collapse, the physical space-time isnot expected to
have the bifurcate surface. The present analysis uses onl
portion of the physical space-time in which the horizon h
settled down with no further in-going radiation, rather th
an analytical continuation of the near horizon geometry u
in certain approaches. Finally, in contrast to other treatme
we have an infinite family of first laws, one for each evol
tion field ta for which d t is a phase space symmetry.

~iii ! Nonuniqueness of energy. Each permissible, liveta

defines a horizon energyED
t . At first it seems surprising tha

there is so much freedom in the notion of energy. Let
compare the situation atI1, which, likeD, is null. There, we
only have a 3-parameter freedom which, furthermore, can
eliminated simply by fixing a rest frame. How does this d
ference arise? Recall that energy is~the numerical value of!
the generator of aunit time translation. At infinity, all
4-metrics in the phase space approach thesameflat metric.
Hence, we can simply fix a unit time-translation Killing fiel
t0
a of that flat metric near infinity and use its restriction toI1

as the unit time translation forall metrics in the phase space
By contrast, there is no fixed 4-metric nearD to which all the
metrics in our phase space approach. Hence, we do not
the analogue oft0

a ; only the equivalence class@ l # is now
common to all the metrics. If, for a given metricg̃ab in our
collection, we select the time translation represented b
specific l̃ a in @ l #, a priori we do not know which vector field
l a in @ l # would represent the ‘‘same’’ time translation fo
another geometrygab . One might imagine using the seem
ingly simplest strategy: just fix al 0

a in @ l # and demand thatta

approach thatl 0
a for all pointsg in the phase space. Unfor

tunately, the strategy is not viable because such ata fails to
define a Hamiltonian evolution inG.11 Finally, if we restrict
ourselves toglobally static space-times, we can overcom
this difficulty by always working with the Killing field which
is unit at infinity. However, in absence of global Killin
fields, the behavior of the evolution vector fieldta near the
horizon is unrelated to its behavior near infinity. Noneth
less, as we shall show in Sec. VII, if one has sufficient co
trol on the space of static solutions of the theory under c
sideration, itis possible to select a preferred energy functi
on the phase space and use it as the mass of the iso

-
n-
he
c-

11As we saw above, a necessary condition ford t to be a Hamil-
tonian vector field onG is that k (t) be a functiononly of aD and
QD . Therefore, if we can find a tangent vectord in the phase space
with daD5dQD50 but dk (t)Þ0, ta cannot define a Hamiltonian
evolution. It is easy to find such a tangent vectord for this ta.
5-15
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ASHTEKAR, FAIRHURST, AND KRISHNAN PHYSICAL REVIEW D62 104025
horizon. In the Einstein-Maxwell case, all static solutio
with horizons are explicitly known whence the strategy
viable.

VI. YANG-MILLS FIELD

In the previous three sections we restricted our atten
to Einstein-Maxwell theory. We will now indicate how
Yang-Mills fields can be included. This section is divide
into three parts. In the first, we discuss restrictions on
Yang-Mills fields due to the horizon boundary conditio
and introduce the notion of a ‘‘Yang-Mills gauge adapted
the horizon.’’ In the second part, we discuss the action p
ciple and construct the covariant phase space for Einst
Yang-Mills theory. Using this formalism, in the third subse
tion, we introduce a Hamiltonian generating time evoluti
and extend the first law to the Yang-Mills case.

A. Preliminaries

We will restrict ourselves to compact gauge groupsG and
Yang-Mills connections defined on trivial bundles. Since t
bundle is trivial, the connection gives rise to a smooth, g
bally defined Lie algebra valued 1-form,A. As usual, the
Yang-Mills derivative operatorD will be defined asDl
5]l1@A,l#, where] is a flat Yang-Mills connection, and
the field strength,F, via

FªdA1A∧A. ~6.1!

The stress energy tensor,T, is given in terms of the field
strength as

Tab5
1

4p FFac
iFb

c
i2

1

4
gabFcd

iFcd
i G , ~6.2!

where the labeli runs over the internal indices in the Li
algebra of the groupG.

Let us begin by examining how the isolated horiz
boundary conditions restrict the form of the field strength,F,
on D. Since the Yang-Mills stress energy tensor has the s
form as the Maxwell one, Eq.~2.14!, the analysis is com-
pletely analogous to that of Sec. II C. Therefore, we shall
include derivations of the results, but instead highlight
differences.

Recall that, on a nonexpanding horizon,Rabl
al b=0,

whenceTabl
al b=0. This has several consequences for

Yang-Mills field. In particular, one concludes

l aFab←——
=0 and l a !Fab←——

=0. ~6.3!

These two restrictions guarantee that there is no flux
Yang-Mills field across the horizon. Making use of the sp
cific form of the stress-energy tensor, we also conclude

F025
1

2
Rabm

amb=0, F205
1

2
Rabm̄

am̄b=0. ~6.4!

Our next task is to define the Yang-Mills equivalents
the electric and magnetic charges of the horizon. Naiv
one might consider integratingF and !F over a 2-sphere
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cross section of the horizon as was done in the Maxw
theory. However, these 2-forms now have a free internal
dex and are only gauge covariant rather than gauge invar
Since there is no preferred internal basis at the horizon,
integrals would fail to be well defined. Therefore, we mu
look for 2-forms which are gauge invariant. A natural qua
tity to consider is the norm ofF, defined by the Killing-
Cartan formKi j on the Lie algebra ofG and the~contravari-
ant! 2e on the horizon:

uFuª@~2e•F! i~2e•F! jKi j #
1/2. ~6.5!

@Although the contravariant2e is ambiguous up to terms o
the typel [aVb] whereVa is any vector field tangential toD,
this ambiguity does not affectuFu because of Eq.
~6.3!.# The norm of !F is defined analogously. These tw
quantities are gauge invariant and allow us to define the e
tric and magnetic Yang-Mills charges of the horizon:

QD
Y M:=2

1

4p R
SD

u!Fu2e, PD
Y M:=2

1

4p R
SD

uFu2e.

~6.6!

Recall that the unusual signs in the definitions of the char
arise due to the orientation of theSD—the normal to the two
sphere is inward pointing. In Maxwell theory, the magne
charge is zero unless we consider either connections on
trivial bundles or allow ‘‘wire singularities.’’ As is well
known, this is not true for Yang-Mills theory: the magnet
charge can be nonzero even if we restrict attention to smo
fields on a trivial bundle.

We would now like to verify that the charges defined
Eqs.~6.6! are independent of the cross section of the horiz
SD on which the integration is performed. The isolated ho
zon boundary conditions guarantee this is the case. F
recall the geometric identity

LlF5 l •DF2@~ l •A!,F#1D~ l •F!. ~6.7!

A similar expression for!F is also true. The first term on th
right hand side vanishes due to the field equations and
third term is zero due to the previous restriction onF, Eq.
~6.3!. Therefore at the isolated horizon,

Ll F←=2@~ l •A!,F←# and Ll
! F←=2@~ l •A!,! F←#.

~6.8!

In the Maxwell case,F and !F are Lie dragged byl. How-
ever, for non-Abelian fields, this is not a gauge invaria
statement; the terms on the right hand sides of Eqs.~6.8! are
necessary for gauge invariance. Although the field stren
and its dual are not Lie dragged alongl a, recalling that
Ll

2e=0 and using the cyclic property of the trace, it
straightforward to demonstrate that their norms are

Ll uFu=0 and Ll u!Fu=0. ~6.9!

This result, along with Eq.~6.3!, guarantees that the charge
QD

Y M andPD
Y M are independent of the choice of cross sect

SD of the horizon.
5-16
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ISOLATED HORIZONS: HAMILTONIAN EVOLUTION . . . PHYSICAL REVIEW D62 104025
Let us consider the remaining components of the Ya
Mills field. The boundary conditions place no restrictions
Fabn

amb and !Fabn
amb at all. As in the electromagneti

case, these components describe the radiation flowing a
the horizon. The isolated horizon boundary conditions all
radiation arbitrarily close to—and even at—the horizon, p
vided none crosses it.

We have so far restricted our attention to the field stren
and its dual. However, in the action principle and pha
space, the basic variable will be the Yang-Mills connect
A. Let us begin with the definition of the Yang-Mills equiva
lent of the electric potential. Recall that, given anl, the elec-
tric potential was defined in Sec. II C asF ( l )=2( l •A). This
definition is not appropriate in the Yang-Mills case since
resulting potential has a free internal index and is theref
not gauge invariant. Instead, we define the Yang-Mills p
tential,F ( l )

Y M to be negative the norm of (l •A):

F~ l !
Y M

ª̂2u~ l •A!u. ~6.10!

This gives us a gauge invariant potential at the horizon.
As in Maxwell theory, we need to constrain the form ofA

at the horizon. Several considerations motivate our choic
these boundary conditions. First they must be chosen so
the action principle is well defined. Second, if the gau
group is U(1), the boundary conditions should reduce
those given in Sec. II C for the electromagnetic field. Fina
we should be able to show that the Yang-Mills electric p
tential is constant on the horizon. These considerations
gest the following definition:

Definition 6. The connectionA will be said to be in a
gauge adapted to the isolated horizon(D,@ l #) if it satisfies
the following two conditions:

~i! The Yang-Mills potential is constant on the horizo

dF~ l !
Y M=0. ~6.11!

~ii ! The dual of the field strength (!F) and (l •A) point in
the same Lie algebra direction,

~ l •A! i}~2e•!F! i ~6.12!

on the horizon.

These boundary conditions satisfy the requirements
cussed above. First, it is straightforward to show that in
U(1) case, condition~i! is equivalent to requiringLlA=0
and ~ii ! is redundant. Second, as we shall see in Sec. V
these boundary conditions are also sufficient to make
variational principle well defined.

It is not difficult to show that these conditions can alwa
be satisfied. The remaining gauge freedom is sim
A→g21Ag1g21]g, whereg satisfiesLlg=0.

B. Action and phase space

In this section we will consider the first order action f
Einstein-Yang-Mills theory on the manifoldM described in
Sec. III B. The basic fields will consist of the triple
(ea

I ,AaI
J,Aa

i ), whereea
I andAaI

J are the tetrad and Lorent
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connection andAa
i is the Yang-Mills connection. The gravi

tational fields,ea
I andAaI

J satisfy the same boundary cond
tions ~at D and infinity! as in Sec. III B. Furthermore, we
require the Yang-Mills fields to be in a gauge adapted to
horizon and assume they fall off sufficiently fast at infinity.12

The Einstein-Yang-Mills action is

S~e,A,A!5
21

16pG E
M

S IJ∧FIJ

1
1

16pG E
t`

S IJ∧AIJ

2
1

8p E
M

Tr@F∧!F#. ~6.13!

The gravitational part of the action has previously been d
cussed in Sec. III; therefore we shall only consider in de
the Yang-Mills terms and verify the variational principle
well defined. Taking into account the results of Sec. III,
variation of the action can be expressed as

dS~e,A,A!5E
M

~equations of motion!df

2
1

4p E
D
Tr@dA∧!F#. ~6.14!

We must demonstrate the boundary term atD vanishes due
to the conditions imposed on the Yang-Mills fields. Usin
Eqs. ~6.13! and ~6.12!, one can show that the trace in E
~6.14! can be replaced by a product of norms:

Tr@dA∧!F#5~dF~ l !
Y M2cdF~ l !

Y M!u!Fu De,

where De5n∧2e is the volume form onD andd l 5cdl .
In the action principle, variations are performed keepi

data fixed at the initial and final slices. In particulardF ( l )
Y M

andcd vanish there. However, the boundary conditions gu
antee thatF ( l )

Y M , and hence its variation, is constant onD.
SincedF ( l )

Y M andcd vanish on the initial cross section of th
horizon and are constant, it follows thatdF ( l )

Y M=0 and
cd=0. Therefore, the Yang-Mills horizon boundary ter
vanishes; the action principle is well defined in the prese
of Yang-Mills fields. As in the Einstein-Maxwell case
boundary conditions played a crucial role in demonstrat
the viability of the action.

12More specifically we require the falloff conditions on the Yan
Mills connection to be such that all integrals, in particular the sy
plectic structure, be finite and yet the asymptotic electric and m
netic charges are not forced to vanish. While it is not trivial to m
these conditions~for examples the conditions used in@23,12# appear
not to lead to a well-defined symplectic structure! they can be met.
However, as in the rest of the paper, for brevity, we will not sp
out the boundary conditions at infinity in detail.
5-17
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We now wish to construct the covariant phase space
symplectic structure. As before, points in covariant ph
spaceG will consist of histories which satisfy the Einstein
Yang-Mills field equations, appropriate falloff conditions
infinity and the isolated horizon boundary conditions atD.
Before proceeding further, we shall once again need to in
duce an additional field at the horizon. This can be regar
as a ‘‘potential’’ for the Yang-Mills potentialFY M. Given
any point (e,A,A) in the phase spaceG, let us define the
scalar fieldx on D as follows: ~i! Llx52F ( l )

Y M and ~ii ! x
vanishes onS2, the intersection ofM 2 with D. These con-
ditions are identical to those imposed in the Maxwell cas

Once again, we take second variations of the action
order to obtain a symplectic structure. Since the gravitatio
terms are exactly the same in Sec. III, we shall only desc
in detail the Yang-Mills part of the symplectic structure. T
second variation of the action~6.13! yields the following
symplectic current:

J~g;d1 ,d2!5Jgrav2
1

4p
Tr@d1

!F∧d2A2d2
!F∧d1A#.

~6.15!

Using the fact that the field equations and linearized fi
equations are satisfied, one can directly verify th
J(g;d1 ,d2) is indeed a closed 3-form. We again choose
spacetime region of interest,M̄, to be that part of the space
timeM bounded byM1 , M2 , infinity and a portionD̃ of the
isolated horizon. IntegratingdJ over M̃ and using
asymptotic falloff conditions, we obtain

S E
M1

1E
M2

1E
D̃
D J~g;d1 ,d2!50.

The integral ofJ over D̃ does not vanish but, as in Sec. II
the pullback ofJ to D is exact. Therefore, we can express t
integral overD̃ of J as integrals over the initial and fina
2-spheresS1 andS2 . Using these results, and keeping tra
of orientations, we obtain the symplectic structure

Vug~d1 ,d2!52
1

16pG E
M

@d1S IJ∧d2AIJ2d2S IJ∧d1AIJ#

1
1

8pG R
S
@d1 ~ 2e!d2c2d2 ~ 2e!d1c#

2
1

4p E
M

@d1
!F∧d2A2d2

!F∧d1A#

1
1

4p R
S
@d1~ u!Fu2e!d2x2d2~ u!Fu2e!d1x#.

~6.16!

Full use of the isolated horizon boundary conditions has b
made in obtaining this symplectic structure. In particular,
obtain the given form of the Yang-Mills surface term, w
have used the fact that (l •A) and (2e•!F) point in the same
direction in the Lie algebra. Using field equations one c
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directly verify that the right side of Eq.~6.16! is independent
of the choice of the partial Cauchy surface; the symplec
structure is ‘‘conserved.’’ We will use~G, V! as our covari-
ant phase space.

C. Hamiltonian and the first law

In this subsection we will generalize the arguments
Sec. V to obtain an expression for the energy of the horiz
in Einstein-Yang-Mills theory. To do so, we must specify
time evolution vector fieldta. As before, we requireta to be
a member of the preferred equivalence class@ l a# at the ho-
rizon ~this again requires restriction to nonrotating isolat
horizons! and approach unit time translation asymptotical
Given ta we can calculate the infinitesimal generator of tim
evolution, d t5(Lte,LtA,LtA), and determine whether it is
Hamiltonian. Recall thatd t is Hamiltonian if and only if the
1-form Xt on the phase space defined by

Xt~d!ªV~d,d t! ~6.17!

is closed. Let us calculateXt . The gravitational part will be
identical to the expression obtained in Sec. V; therefore
shall concentrate on the Yang-Mills terms. As with the Ma
well field, the Lie derivatives of the Yang-Mills fields can b
reexpressed using the following identities:

LtA5t•F1D~ t•A!,

Lt
!F5t•~D!F!2@ l •A,!F#1D~ t•!F!. ~6.18!

Making use of these expressions, the field equations satis
by (e,A,A) and the linearized field equations ford, we ob-
tain the required expression forXt :

Xt~d!5
21

16pG E
]M

Tr@~ t•A!dS2~ t•S!∧dA#

2
1

4p E
]M

Tr@~ t•A!d~!F!2~ t•!F!∧dA#, ~6.19!

As before the expression involves integralsonly over the
2-sphere boundariesS` and SD of M; there is no volume
term. The gravitational terms yielddEADM

t at infinity and
2(1/8pG)k (t)daD at the horizon. The Yang-Mills term a
infinity vanishes due to falloff conditions: therefore we ne
only calculate the Yang-Mills contribution at the horizo
This is composed of two terms, the second of which vanis
due to the restriction~6.3! which guaranteesl • !F← =0. Since
we are in a gauge adapted to the horizon, (l •A) and !F point
in the same internal direction. This allows us to replace
trace in the first term by norms,

Tr@~ t•A!d~!F!#52F~ t !
Y Md~ u!Fu2e!,

and guarantees thatF (t)
Y M is constant on the horizon. Makin

use of the definition of Yang-Mills electric charge Eq.~6.6!,
we obtain
5-18
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Xt~d!52
1

8pG
k~ t !daD2F~ t !

Y MdQD
Y M1dEADM

t .

Recall that the necessary and sufficient condition for the
istence of a Hamiltonian is thatXt be closed. Clearly, this is
equivalent to

1

8pG
dk~ t !∧∧daD1dF~ t !

Y M∧∧dQD
Y M50. ~6.20!

Once again, we conclude that the surface gravityk (t) and the
Yang-Mills potentialF (t)

Y M at the horizon defined byta can
dependonly upon the areaaD and chargeQD

Y M of the hori-
zon. Finally, Eq.~6.20! is also the necessary and sufficie
condition that there exist a functionED

t , also only ofaD and
QD

Y M such that

dED
t 5

1

8pG
k~ t !daD1F~ t !

Y MdQD
Y M . ~6.21!

As before,ED
t is interpreted as the horizon energy defined

the time translationta. We conclude that the vector fieldd t is
Hamiltonian if and only if the first law, Eq.~6.21!, holds.

We will conclude this section with a few remarks.
~i! The derivation of the first law and its final form ar

completely analogous to those in the Einstein-Maxw
theory. By contrast, in the discussion of the first law f
undistorted isolated horizons of@12#, certain restrictions
were imposed on the permissible variationsd in the Einstein-
Yang-Mills case. In our treatment, subtleties arise only in
definition of a canonical horizon mass~see Sec. VII C! rather
than the discussion of the first law itself.

~ii ! Although the Yang-Mills magnetic chargePD
Y M will

generically not be zero, no term involvingdPD
Y M arises in the

first law.
~iii ! How does our result compare with those previou

available@23,24#? In @24# the first law for Yang-Mills fields
is proved for globally stationary spacetimes and small p
turbations from one such space-time to another. Assum
the Yang-Mills fields fall off sufficiently fast at infinity,~in
the nonrotating case! the first law of@24# then reads

dM5
1

8pG
kda1E

for
Tr@fd!F#.

Here, M is the ADM mass evaluated at infinity, while a
terms on the right hand side are evaluated at the horiz
Because of a different gauge choice at the horizon, the
thors define a Lie algebra valued potentialf and leave the
‘‘ FdQ’’ term inside an integral. However, the general for
of this first law is the same as ours. In this sense, our fra
work generalizes the results of@24# to nonstatic contexts.

In @23#, the first law is proved for globally stationar
space-times and arbitrary small departures therefrom. H
ever, there are a number of important differences betw
these results and the ones obtained in this paper. In the
rotating case, the first law of@23# reads
10402
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dMADM1VdQ5
1

8pG
kda

where V and Q are the Yang-Mills potential and charg
evaluated atinfinity while k anda are of course evaluated a
the horizon. Because of the non-Abelian nature of the Ya
Mills field, unlike in the Maxwell case, the chargeQ evalu-
ated at infinity is now quite different from the charge eva
ated at the horizon and, as in the Maxwell theory, t
potentialV evaluated at infinity has no direct bearing on t
potential at the horizon. Furthermore, that calculation ma
an essential use of the bifurcation 2-sphere and all fields
required to be smooth there. This restriction implies that
Yang-Mills potential at the horizonvanishes. ~The same is
true if one restricts the analysis of@23# to the Maxwell case.!

The first law derived in the isolated horizon framework
valid also in presence of radiation in the exterior space-ti
region and makes no reference to the bifurcation 2-sph
~Although we restricted ourselves to the nonrotating ca
rotation has been incorporated in this framework in@13#.!
Furthermore, it has the aesthetically pleasing feature tha
quantities that appear in Eq.~6.21!—including the energy
ED

t , the potentialF (t)
Y M , and the chargeQD

Y M—are evaluated
at the horizon. In particular, one can now meaningfully co
sider the physical process version in which one does an
perimentat the horizon by dropping a test particle and fie
and changing thehorizon chargeinfinitesimally. More gen-
erally Eq.~6.21! is genuinely a law governing the mechani
of the horizon.

VII. HORIZON MASS

For notational simplicity, we will say that a~live! vector
field ta is permissibleif it gives rise to a Hamiltonian evolu-
tion. We saw in Secs. V and VI that each permissible vec
field ta defines a horizon energyED

t . In the phase space
framework,ED

t has a direct interpretation: it is the surfac
term at the horizon in the expression of the Hamiltoni
generating theta evolution. However, in many physica
applications—such as the study of black hole mergers—
is interested in properties of aspecificspace-time, rather than
the full phase space. Then, it is useful to have at one’s
posal a canonical notion of energy, the analog of the AD
energy in the rest frame at infinity. This quantity could th
be interpreted as the horizon mass. In this section, we
introduce this notion in detail. The discussion is divided in
three parts. In the first, we consider the Einstein-Maxw
theory; in the second, we discuss dilatonic couplings@9#;
and, in the third, we analyze the Einstein-Yang-Mills syste

A. Einstein-Maxwell theory

In Sec. V we showed thatta is permissible if and only if
Eq. ~5.7! holds on the phase space. We will now construc
large family of permissible evolution fieldsta. Fix any regu-
lar functionk0 of two variablesaD andQD . Then, given any
point g[(e,A,A) of G, we define~the boundary value of!
the vector fieldta as follows. Consider the vector fieldl a on
D defined by the tetrad,l a5eI

al I , and denote byk ( l ) the
5-19
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surface gravity associated with it. Then,k05ck ( l ) for some
constantc. Let us setta5cla. Repeating this procedure a
each phase-space pointg, we obtain a live vector fieldta

with k (t)5k0 . ~The resultingc will be constant onD but a
function on the phase space.! Next, consider the electromag
netic potential, which is guaranteed to be constant onD by
our boundary conditions but whose value at any phase s
point is so far completely free. We will now use Eq.~5.7! to
fix it. Equation~5.7! implies

]k~ t !

]QD
5

]F~ t !

]aD
.

Sincek (t)5k0 is known, we can simply integrate the equ
tion for F (t) as a function ofaD andQD . Furthermore, the
solution is unique if we impose the physical condition th
F (t) should vanish wheneverQD50. Thus, starting from any
regular functionk0 of aD andQD , we have obtained a per
missible evolution fieldta. Conversely, it is easy to verify
that every permissible vector field arises via this constr
tion. There is clearly a very large family of such live vect
fields.

An obvious question is if there is a ‘‘canonical’’ or ‘‘natu
ral’’ choice of ta? We will now show that the answer is i
the affirmative. Recall that, in the Einstein-Maxwell theor
there is precisely a 2-parameter family ofglobally staticso-
lutions admitting horizons: the Reissner-Nordstro¨m family.
@SinceA is required to be a globally defined connection on
trivial U(1) bundle, the magnetic charge is zero on the en
phase space.# Let us focus on this family. Denote byja the
static Killing field which isunit at infinity. Its surface gravity
is a specific function ofaD andQD :

k~j!5
1

2RD
S 12

GQD
2

RD
2 D .

As before,RD is the horizon radius, defined byaD54pRD
2 .

We can therefore usek (j) in place ofk0 in the above con-
struction. The resulting permissible, live vector fieldt0

a

agrees withja on the horizon of every static solution. Th
property is satisfiedonly if we setk05k (j) .

Next, we can ‘‘integrate’’ Eq.~5.8! to obtain the horizon
energyED

t0. Although a priori there is the freedom to add
constant, we can fix it by requiring that the energy vanish
aD and QD tend to zero. Indeed, we have no choice in t
since one cannot construct a quantity with dimensions
mass from the fundamental constants that appear in
Einstein-Maxwell theory.~Einstein-Yang-Mills theory does
admit such a constant and we will see in Sec. VII C tha
leads to an interesting modification of the situation discus
here.! Let us define the horizon mass via

MD5ED
t0.

To justify this definition, let us begin by restricting ourselv
to static solutions. In each static solution, we are free
extend t0

a such that it coincides with the Killing fieldja.
General symplectic arguments imply that, on any connec
component of the space of static solutions, the numer
10402
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value of the total Hamiltonian, generating evolution alo
ja, must be constant~see, e.g.,@8#!. In the Einstein-Maxwell
case, there is a single connected component and, by th
mensional argument given above, the numerical value of
Hamiltonian must vanish on it. Hence, from Eq.~5.9! it fol-
lows that, on any static solution,

Ht0
5MADM2MD50.

On a general solution, of course,MADM would be greater
thanMD , the difference being equal to the energy in rad
tion. If the horizon is complete in the future and timelik
infinity i 1 satisfies certain regularity conditions, as in@8# one
can argue that the difference is precisely the total ene
radiated acrossI1 and henceMD equals the future limit of
the Bondi mass. These considerations support our interpr
tion of MD as the horizon mass.

Finally, since we now have a canonical evolution fieldt0
a ,

we can drop the suffixt on surface gravity and electromag
netic potential and write the first law~5.8! in the more famil-
iar form

dMD5
1

8pG
kdaD1FdQD .

In contrast to treatments based on static space-times,
quantities that enter this law are all definedat the horizon.
Therefore, as pointed out in@8#, it is now possible to inter-
pret this law also in the ‘‘active’’ sense where one consid
physical processes which increase the area and the char
a given horizon. To our knowledge, the standard proofs
this physical version@5,10# are not applicable to processes
which the background has nonzero electric charge and
process changes it infinitesimally.

We will conclude with a few remarks.
~i! In the above discussion, the permissible evolution fi

t0
a was constructed by settingt0

a5cla where c is given by
k0[(1/2RD)@12G(QD /RD)2#5ck ( l ) . For c to be well de-
fined, it is necessary thatk0 vanishes wheneverk ( l ) does.
Therefore, for the mass to be well defined, we must exc
those points from the phase space at whichk ( l ) vanishes but
k0 does not. However, this is not a serious limitation.
particular, we still retain all static solutionsincluding the
extremal onesat whichk0 vanishes.

~ii ! Since we have a specifick0 , we can use Eq.~5.7! to
obtain the corresponding electrostatic potential:F0
5QD /RD . Furthermore, by integrating Eq.~5.8! it is easy to
expressMD explicitly in terms of the horizon parameters:

MD5
1

4pG
kaD1FQD5

RD

2G S 11
GQD

2

RD
2 D . ~7.1!

Thus, the functional dependence ofMD on the horizon pa-
rameters at any point of the phase space is the same
static space-times. Note that this is aresultof the framework,
not an assumption. Its derivation involved two distinct ste
First, and most importantly, the first law~5.8! arose as a
necessary and sufficient condition for the existence of a c
sistent Hamiltonian framework. Second, the freedom inta
5-20
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ISOLATED HORIZONS: HAMILTONIAN EVOLUTION . . . PHYSICAL REVIEW D62 104025
was exploited in order to construct the preferred, permiss
evolution fieldt0

a . It is quite significant thatMD can be ex-
pressed so simply using just the parameters definedlocally at
the horizon even when there is radiation arbitrarily close
it. This fact is likely to play an important role in the proble
of extracting physics in the strong field regimes from n
merical simulations of black hole collisions@18#. It is impor-
tant to notice that although we made use of our knowledg
static solutions to arrive at a canonicalt0

a and the mass func
tion MD , the final result~7.1! makes no referenceto these
solutions.MD is a simple function of the parameters whic
can be directly computed from the geometry of any one i
lated horizon.

~iii ! In the earlier work@8# on undistorted horizons, on
restricted oneself to the preferred evolution fieldt0

a from the
very beginning~although this vector field was selected usi
a different but equivalent procedure!.13 Thea priori freedom
in the choice of a permissibleta was not discussed and th
first law appeared only in the more familiar form, give
above.

B. Dilatonic coupling

The Einstein-Maxwell-dilaton system was studied
some detail in the undistorted case in@9#. We will revisit it
here in the more general context considered in this pa
because it brings out a subtlety in the definition of the ho
zon massMD and the associated first law.

The dilaton is a scalar fieldf which can couple to the
Maxwell field in a nonstandard fashion. The coupling is go
erned by a constanta. If a50, one obtains the standar
Einstein-Maxwell-Klein-Gordon theory and the situatio
then is completely analogous to the Einstein-Maxwell the
considered above. Ifa51, the theory represents the low e
ergy limit of string theory. In this case, there are some int
esting differences from the Einstein-Maxwell theory cons
ered in this paper. To bring out these differences, in t
subsection we will seta51. ~The situation for a genera
value ofa is discussed in@9# where one can also find detai
on the material summarized below.!

In the standard formulation, the theory has three char
all defined at infinity; the ADM massMADM , the usual elec-
tric chargeQ` , and another chargeQ̃` :

Q`5
1

4p R
S`

!F and Q̃`5
1

4` R
S`

e22f !F.

13This strategy seems to have generated a misunderstanding~see,
e.g., @29#! that the first law was obtained in@8,9,12# merely by
identifying the parameters labeling a general isolated horizon w
those of static horizons and then using the Smarr formulas avail
in the static context. This was not the case. Rather, static solut
were usedonly to select the appropriate normalization of the ev
lution vector fieldta at the horizon. The Hamiltonian framewor
was then used to define the horizon mass without any referenc
Smarr formulas. As in this section, the mass was thenshown to
reproduce the Smarr-type formulas on general horizons.
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Q̃ is conserved in space-time~i.e., its value does not chang
if the 2-sphere of integration is deformed! while Q is not.
From the perspective of the isolated horizons, it is more u
ful to useaD ,QD ,Q̃D as the basic charges:14

QD5
1

4p R
SD

!F, Q̃D5
1

4p R
SD

e22f!F.

Although the standard electric charge is not conserved
space-time, itis conserved alongD, whenceQD is well de-
fined.

It is straightforward to extend the construction of th
phase space to include the dilaton. The only difference is
the chargeQ in Eqs.~5.6!–~5.8! is replaced byQ̃. With this
minor change, the discussion of the first part of Sec. VII A
also unaffected. Thus, given any functionk0 of aD andQ̃D ,
we can construct a permissible,~live! evolution fieldta.

The difference arises in the next step where we c
structed a preferredt0

a . With the dilatonic coupling, the
theory has a unique@25# three parameter family of static
solutions which can be labeled by (aD ,QD ,Q̃D). As in the
Reissner-Nordstro¨m family, these solutions are spherical
symmetric. In terms of these parameters, the surface gra
k~j! of the static Killing field which is unit at infinity is given
by

k~j!5
1

2RL
F112G

QDQ̃D

RD
2 GF122G

QDQ̃D

RD
2 G21/2

.

The problem in the construction of the preferredt0
a is that we

need a functionk0 which depends only onaD and Q̃D .
Therefore, we can no longer setk05k (j) on the entire phase
space becausek (j) depends on all three horizon paramete

To extract the mass functionMD on the phase space, w
can proceed as follows. Let us foliateG by QD5const sur-
faces. On each leaf,k (j) trivially depends only onaD andQ̃D

and so we can setk05k (j) . Therefore, by the procedur
outlined in Sec. VII A, we obtain a~live! vector fieldt0

a and
can define the massMD(g)5ED

t0(g) for all pointsg on this
leaf. Repeating this procedure for each leaf, we obtain a
vector field t0

a and a mass functionMD everywhere onG.
However, the surface gravityk (t0) now depends on all three

parameters, rather than justaD and Q̃D . Therefore, the first
law ~5.8! cannot hold for arbitrary variationsd and conse-
quentlyd t0

fails to be a Hamiltonian vector field. Put differ
ently, although there is a multitude of permissible, live ve
tor fields, each leading to a first law, none of them c
coincide with the Killing fieldja ~which is unit at infinity!
on all static solutions. This is a significant departure from t
Einstein-Maxwell case considered above.

Nonetheless~modulo the caveat discussed in the first r
mark at the end of Sec. VII A!, the above procedure doe

h
le
ns
-

to
14In the undistorted case, the dilaton is constant onD and hence

we can replaceQD by fD as in @9#.
5-21
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ASHTEKAR, FAIRHURST, AND KRISHNAN PHYSICAL REVIEW D62 104025
provide us with a well-defined mass functionMD on the
entire phase space which can be expressed in terms o
horizon parameters as

MD5
RD

2G F122G
QDQ̃D

RD
2 G21/2

.

It equalsMADM in static space-times and has other proper
which motivated our interpretation ofMD as the horizon
mass in the Einstein-Maxwell case. Since this function
well defined on the entire phase space, we can simply va
and express the result in terms of the horizon parame
The result is

dMD5
1

8pG
kdaD1F̂dQ̂D

wherek5k (t0) , F̂25(QDQ̃D /RD
2 ), andQ̂D

2 5QDQ̃D . Thus,

although there is still a first law in terms oft0
a and MD , it

does not have the canonical form~5.8! becauset0
a is not a

permissible vector field. More generally, in theories w
multiple scalar fields@26#, if one focuses only on static sec
tors, one obtains similar ‘‘nonstandard’’ forms of the fir
law with work terms involving scalar fields. This reflects th
fact that there is no permissible vector fieldta, defined for all
points of the phase space, which coincides with the prop
normalized Killing field onall static solutions. In the undis
torted case, the analysis was carried out only in terms of
vector field t0

a and the horizon massMD @9#. The resulting
first law had the above form.

Alternatively, one can restrict oneself to variationsd̄
which are tangential to the leaves of the phase space folia
constructed above. Sincet0

a is a permissible vector field fo
any one leaf, we obtain the standard first law

d̄MD5~1/8pG!k~ t0!d̄aD1F~ t0!d̄Q̃D

for the restricted variations. The idea of using such restric
variations was suggested in@12# in the context of Yang-Mills
fields ~although the foliations and other details were n
spelled out there!.

To summarize, because there is now a three param
family of static solutions rather than two—or, more pr
cisely, because the standard surface gravityk (j) in static
space-times depends onaD , Q̃D , and QD—a canonical, per-
missible evolution field is no longer available. Howeve
there is still a multitude of permissible evolution fields a
corresponding first laws. Furthermore, one can still defin
canonical mass functionMD on the entire phase space.

C. Yang-Mills fields

In Einstein-Maxwell theory, with and without the dilaton
there is no way to construct a quantity with the dimensio
of mass from the fundamental constants in the theory.
situation is different for Einstein-Yang-Mills theory becau
the coupling constantg has dimensions (LM )21/2. The exis-
10402
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tence of a quantity with units of mass has interesting con
quences which we will now discuss.

Let us begin with a summary of the known static solutio
in Yang-Mills theory. First, the Reissner-Nordstro¨m family
constitutes a continuous two parameter set of static solut
of the Einstein-Yang-Mills theory, labeled by (aD ,QD

Y M). In
addition, there is a one-parameter family of ‘‘embedd
Abelian solutions’’ with ~a fixed! magnetic chargePD

0 , la-
beled by (aD ,PD

0 ). Finally, there are families of ‘‘genuinely
non-Abelian solutions.’’ For these, the analogue of the Isr
theorem for Einstein-Maxwell theory fails to hold@27#; the
theory admits static solutions which need not be spheric
symmetric. In particular, an infinite family of solutions la
beled by two integers (n1 ,n2) is known to exist. All static,
spherically symmetric solutions are known and they cor
spond to the infinite subfamily (n1 ,n250), labeled by a
single integer. However, the two parameter family is o
tained using a specific ansatz, so there may well exist o
static solutions. Although the available information on sta
solutions is quite rich, in contrast to the Einstein-Maxwe
dilaton system, one is still rather far from having comple
control of the static sector of the Einstein-Yang-Mills theor

The zeroth and first laws do hold in the Einstein-Yan
Mills case. At present, however, we can only hope to rep
the strategy used in the last two subsections to define a
nonical mass functionMD on portions of the phase space.
order to define it on the full phase space, the ‘‘uniquenes
and ‘‘completeness’’ conjectures of@12# will have to hold
~possibly with a suitable modification!.15 Nevertheless, new
insight into the static solutions can be obtained by restrict
our attention to certain leaves of the phase space. The b
idea is taken from@12# but applied in a slightly different
manner to the more general context of distorted horizons

Consider a connected component of the known static
lutions, labeled bynW [(n1 ,n2). This is a one-dimensiona
subspace of the phase space which we denoteSnW . Each point
in SnW can be labeled by the value of the horizon areaaD .
Calculate the surface gravityk (j) for this family, whereja is
the static Killing field which is unit at infinity, and setk0
5k (j) in the construction sketched in Sec. VII A. We the
obtain a live vector fieldt0

a , and the corresponding first law

dED
t05

1

8pG
k~ t0!daD

on the full phase space.
When restricted toSnW , we can interpretED

t0 as the horizon

massMD
(nW ) and replacek (t0) by the functionbnW(aD) used in

the literature:bnW52k (t0)RD . Then, by integrating the firs

law alongSnW , one obtains

15For example it may be appropriate to restrict oneself to the c
of space-times admitting isolated horizons which are complete
the future. Physically, this is the most interesting case since s
horizons would represent the asymptotic geometry resulting fro
gravitational collapse or black hole mergers.
5-22
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MD
~nW !5

1

2G E
0

RD
bnW~x!dx

where we have used the fact that, sinceED
(t0) is a surface

integral atD, it vanishes as the horizon area goes to ze
Thus, the horizon mass is completely determined bybnW(aD).

Next, we use the fact that the Hamiltonian given byHt0

5EADM
t0 2ED

t0 @see Eq.~5.9!# is constant on each connecte
static sector ift0

a coincides with the static Killing field on the
entire sector. By construction, ourt0

a has this property. In the
Einstein-Maxwell case, since there is no constant with
dimension of energy, it follows that the restriction ofHADM

t0

to the static sector must vanish. The situation is quite diff
ent in Einstein-Yang-Mills theory where the Yang-Mills co
pling constantg provides a scale. Inc51 units, (gAG)21

;mass. Therefore, we can only conclude

MADM
~nW ! 5MD

~nW !1~gAG!21C~nW !

for somenW -dependent constantC(nW ). As the horizon radius
shrinks to zero, the static solution@27,28# under consider-
ation tends to the solitonic solution with the same ‘‘quantu
numbers’’ nW . Hence, by taking this limit, we conclud
(gAG)21C(nW )5MADM

soliton,(nW ) . Therefore, we have the follow
ing interesting relation between the black hole and solito
solutions:

MADM
BH,~nW !5

1

2G E
0

RD
bnW~x!dx1MADM

soliton,~nW !

where the integral ofbnW is evaluated on the one-dimension
‘‘parameter space’’ ofSnW ~given by the horizon radius!. Fur-
thermore, as is clear from the above discussion, the A
mass of the soliton is a multiple of (gAG)21. Thus, some-
what surprisingly, the derivation of the first law in the is
lated horizon framework has led to an interesting relat
between the ADM masses of black holes and their solito
analogs in thestatic sector.

VIII. DISCUSSION

In the first part of this paper, we introduced the notions
weakly isolated and isolated horizons. In contrast with ear
work @8,9,12#, the definitions allow for the possible presen
of distortion and rotation at the horizon. In addition, t
present definitions are more geometric and intrinsic; in p
ticular, they never refer to a foliation.

The notion of an isolated horizon, unlike that of an eve
horizon, is completely quasilocal. One can test if a giv
3-surface in space-time is~weakly! isolated or not simply by
examining space-time geometry at the surface. Furtherm
space-times admitting an isolated horizonD need not admit
any Killing field even in a neighborhood ofD. In particular,
they can admit radiation in the exterior region. Therefo
such space-times can serve as more realistic models of
stages of a gravitational collapse or black hole merger
10402
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@18# the nearD geometry of vacuum solutions is examined
detail using similar techniques to those used at null infin
The resulting structure—the presence of a preferred ‘‘r
frame,’’ constraints on possible isometrics, Bondi-type e
pansions of the metric—should be useful to extract phys
in the strong field regime of general relativity, especially
the problem of binary black hole collisions.

This paper, however, focused on another aspect of
lated horizons: extensions of the zeroth and first laws
black hole mechanics. All previous discussions of these la
were restricted to perturbations of stationary black holes.
ing Lagrangian and Hamiltonian frameworks, we extend
these laws to arbitrary space-times admitting nonrotating
lated horizons in Einstein-Maxwell-dilaton and Einstei
Yang-Mills theory. Furthermore, the analysis suggests tha
should be rather easy to incorporate other forms of mat
provided they admit Lagrangian and Hamiltonian descr
tions.

The generalization of black hole mechanics presented
this paper has several interesting features. First, all quant
that enter the first laws are definedlocally at the horizonD.
In standard treatments, some quantities such as area and
face gravity are defined at the horizon. Others, like ene
and sometimes@23# even the Yang-Mills–Maxwell charge
and potential, are evaluated at infinity. In part because of
‘‘mismatch,’’ to our knowledge the ‘‘physical process ve
sion’’ of the first law @10# had not previously been estab
lished for processes which change the charge of the b
hole. Since all quantities in the present treatment are defi
locally at the horizon, it is now straightforward to establi
the law for such processes@8#. Second, other treatment
based on a Hamiltonian framework@10,32,23# often criti-
cally use the bifurcate 2-surface which does not exist in
extremal case. Therefore, extremal black holes are often
cluded from the first law. The present analysis never ma
reference to bifurcate surfaces~which do not exist in physi-
cal space-times resulting from gravitational collapse!. There-
fore, our discussion of the first law holds also in the extrem
case. Third, with obvious modifications of boundary con
tions at infinity, our analysis includes cosmological horizo
where thermodynamic considerations are also applica
@11#.

Finally, and perhaps most importantly, our analysis sh
new light on the ‘‘origin’’ of the first law: it arose as a
necessary and sufficient condition for the existence o
Hamiltonian generating time evolution. A new feature of o
framework is the existence of an infinite family of first law
corresponding to the infinite family of ‘‘permissible’’ vecto
fields ta. ~A vector fieldta is permissible if it is Hamiltonian,
that is, induces canonical transformations on the ph
space.! In theories where we have sufficient control on t
space of static solutions, such as Einstein-Maxwell, one
select a natural evolution fieldt0

a . Corresponding to evolu-
tion along thist0

a, there is a canonical notion of energy whic
can be interpreted as the mass of the isolated horizon. T
exist also preferred values of surface gravity and elec
potential and a canonical first law. This additional structu
is extremely useful in other applications of the framewo
such as extraction of physical information from numeric
5-23
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ASHTEKAR, FAIRHURST, AND KRISHNAN PHYSICAL REVIEW D62 104025
simulations of black-hole collisions. However, it is not e
sential to the discussion of mechanics: our derivation of
first law in Secs. V and VI doesnot require any knowledge
of the static sector of the theory.

The Hamiltonian approach to black hole mechanics
appeared in the literature before, most notably in the work
Brown and York @14#. The spirit of the Brown-York ap-
proach is similar to ours. In particular, they do not restr
themselves to stationary situations. However, in that wo
the focus is on an outer, timelike boundary whereas our
cus is on the inner, null boundary representing the isola
horizon. Conserved quantities in presence of internal bou
aries were recently discussed also by Julia and Silva@30# in
a more general context of theories with gauge symmetr
As in our framework, their treatment exploits the simplific
tions that occur in a first order formalism and the fin
surface-integral expressions of conserved charges are
tated by the precise boundary conditions imposed at the
ternal boundaries. Their treatment is based on superpo
tials and thus complements the Hamiltonian methods u
here and in@14#.

In this paper, the Lagrangian and Hamiltonian fram
works are based on real tetrads and Lorentz connections.
therefore quite straightforward to extend our analysis to
space-time dimension. Indeed, it has already been exte
to 211 dimensions in@31#. However, our phase space—an
especially the explicit symplectic structure used here—is
lored to the Einstein-matter system. While it should be p
sible to extend it to higher derivative theories of gravity as
@32#, that task would not be as simple.
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APPENDIX A: EXAMPLES OF DISTORTED HORIZONS

Because of the no hair theorems in Einstein-Maxw
theory, distorted horizons have received a rather limited
tention in the literature. Therefore, in this appendix we w
discuss a few explicit examples in Einstein-Maxwell theo
For a general construction and an existence result,
@18,33#.

To obtain explicit solutions, one has to impose symm
tries. All solutions considered in this section will be sta
and axisymmetric. As one would expect from the no-h
theorems, they fail to be asymptotically flat, whence they
to represent isolated black holes in the standard sense. N
theless, they all satisfy the isolated horizon boundary con
tions. That framework also serves to ‘‘explain’’ the othe
wise surprising feature that the surface gravity of the
solutions depends only on the area and the charge an
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insensitive to the distortion parameters.
In the literature on static, distorted black holes, it is ge

erally assumed that the solution is valid only in a finite r
gion around the horizon and its distant behavior is suita
modified by the far-away matter which causes the distorti
For undistorted isolated horizons, Robinson-Trautman spa
time @15# offer interesting examples of vacuum, asympto
cally flat solutions which admit isolated horizons but no Ki
ing fields whatsoever. Distorted analogues of these solut
are not known but presumably exist. It would be interest
to find them.

1. Black hole in a magnetic universe

Let us begin with a simple example: an uncharged bla
hole in an ‘‘external magnetic field’’ which distorts the ho
rizon. The specific solution we wish to consider is static a
axisymmetric and was first obtained in the Ernst-poten
framework@34#. The magnetic field is nonzero on the hor
zon. Thus, one has to consider the full set of Einste
Maxwell equations on the horizon.

The space-time has topologyS23R2 and the metric is
given by

ds25F2F2S 12
2M

r Ddt21
dr2

122M /r
1r 2du2G

1
r 2 sin2 u

F2 df2 ~A1!

where

F511
1

4
B0

2r 2 sin2 u.

B0 is a constant and on the axis the magnetic field is giv
by B5B0dr. BecauseF diverges at infinity, the metric fails
to be asymptotically flat. ForM50, the metric reduces to
that of the Melvin universe and forMÞ0 it admits a Killing
horizon atr 52M . To examine the behavior at the horizo
let us first cast the metric in the Eddington-Finkelstein co
dinates (v,r ,u,f) wheredv5dt1(122M /r )21dr:

ds252F2S 12
2M

r Ddv212F2dvdr1F2r 2du2

1
r 2 sin2 u

F2 df2. ~A2!

Since the metric is not asymptotically flat, the standard p
cedure of normalizing the Killing field to be unit at infinity i
not applicable. Thus, we only have an equivalence class@ l #
of ~preferred! null normals to the horizon,l}]/]v. Let D be
the Killing horizon and assume the Killing field]/]v is a
member of the equivalence class@ l #. It follows trivially that
(D,@ l #) is a nonrotating isolated horizon. IfB0Þ0, the scalar
curvature2R of the horizon 2-metric hasu dependence; the
horizon is distorted. However, an explicit calculation sho
that, as in the Schwarzschild space-time, the surface gra
k is given by 1/2r[1/2RD and the electrostatic potentialF
5-24
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vanishes onD. At first, it is quite surprising that while the
presence of distortion affectsm, F11, C2 , and 2R, it does
not affectk or F. However, as we saw in Sec. V, this resu
is to be expected from the general Hamiltonian consid
ations.

2. Distorted black holes as special cases of Weyl solutions

In this subsection, we will review the construction of
large family of distorted black holes starting from Weyl s
lutions @35# and a recent generalization of these results
include electric charge@36#.

A general class of static, axisymmetric spacetimes w
found by Weyl in 1917@37#. The metric for such a spacetim
can be cast in the following form:

ds252e2cdt21e2~g2c!~dr21dz2!1e22cr2df2

~A3!

wherec and g are smooth functions ofr and z. Einstein’s
vacuum equations expressed in terms ofc andg take a par-
ticularly simple form. The equation forc,

c ,rr1
c ,r

r
1c ,zz50, ~A4!

is simply the Laplace equation inflat spacewith cylindrical
coordinates~r,z,f!. ~In addition,c has to be independent o
the angular coordinatef.! Given a solution forc, the func-
tion g can be determined by simple integration:

g ,r5r@c ,r
2 2c ,z

2 #

g ,z52r@c ,rc ,z#. ~A5!

The Schwarzschild metric is of course a particular so
tion to these equations and corresponds to choosing foc
andg:

c5cSª
1

2
lnS L2M

L1M D , g5gSª
1

2
lnS L22M2

L22h2 D ,

~A6!

where L5 1
2 ( l 11 l 2), h5 1

2 ( l 12 l 2) with
l 15Ar21(z1M )2 and l 25Ar21(z2M )2 and M is the
mass of the Schwarzschild solution. Note thatc is just the
Newtonian potential due to a rod of length 2M placed sym-
metrically about the origin on thez axis. BothcS and gS
diverge logarithmically in the limitr→0 ~for uzu<M ). In
order to recast this solution in the standard Schwarzsc
form, one must transform from (z,r) to the Schwarzschild
coordinates (r ,u) by

z5~r 2M !cosu, r25r 2~122M /r !sin2 u. ~A7!

This coordinate transformation shows that the horizonr
52M , corresponds to the line segmentr50, uzu<M in
Weyl coordinates. Therefore, the Weyl coordinates co
only the exterior of the horizon.

Now, the key point is that Eq.~A4!, the only field equa-
tion one has to solve, is linear. Hence we can ‘‘distort’’ t
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Schwarzschild solution simply by adding tocS any solution
cD of the flat space Laplace equation which is regular alo
the z axis @35#. Thus, we can set

c5cS1cD , g5gS1gD . ~A8!

Substituting these expression into Eqs.~A4! and ~A5! and
using the forms of the Schwarzschild functionscS andgS ,
one can show that, atr50,

gDur50=2cDur50 . ~A9!

This fact plays an important role in analyzing the horiz
structure.

In Schwarzschild coordinates, the distorted metric ta
the form

ds252e2cD~122M /r !dt21
e2~gD2cD!

~122M /r !
dr2

1e2~gD2cD!r 2du21r 2 sin2 ue22cDdf2. ~A10!

As usual, the metric has a coordinate singularity atr 52M .
Let us therefore introduce the Eddington-Finkelstein coor
natev as before. The metric can be reexpressed in (v,r ,u,f)
coordinates as

ds252e2cD~122M /r !dv21~122M /r !21

3e2cD~e2~gD22cD!21!dr212e2cDdvdr

1e2~gD2cD!r 2du21e22cDr 2 sin2 udf2. ~A11!

Using condition~A9! it is not difficult to show that the co-
efficient of dr2 in the metric is regular atr 52M @35#.

It is immediately obvious from Eq.~A11! that the r
52M surface is a Killing horizon of]/]v. However, we
cannot select a preferred normalization for this vector fi
since the metric is not asymptotically flat. As in the la
subsection, letD be the Killing horizon and choosel
}]/]v. Then, it is straightforward to verify that (D,@ l #) is a
complete, nonrotating isolated horizon. Let us calculate
value of surface gravity forl =]/]v. We obtain

k=~e2cD2gD!
1

2r
=

1

2r
~A12!

where we arrived at the last expression by using Eq.~A9!.
Again, while the spin coefficient Re@m#, the Weyl component
C2 , and the scalar curvature2R of the horizon metric all
depend on the distortion functioncD , somewhat surprisingly
the surface gravityk ( l ) does not.

The natural question is whether the above framework
be extended to obtain distorted Reissner-Nordstro¨m solu-
tions. This turns out to be nontrivial because the key eq
tion ~A4! now acquires a source term from the electroma
netic field and this field itself depends nontrivially onc
through the Maxwell equations. At first, the coupled syst
appears to be hopelessly difficult. However, there exist
prescription@38# for defining a new potentialc̃ in terms ofc
and the electromagnetic field such thatc̃ satisfies the flat
5-25
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space Laplacian~A4!. Using this method, the known dis
torted black hole solutions were recently generalized to
charged case@36#. The distorted Reissner-Nordstro¨m solu-
tion is given by the metric

ds252~122M /r 1Q2/r 2!e2cDdt2

1~122M /r 1Q2/r 2!21e2~gD2cD!dr2

1e2~gD2cD!r 2du21e22cDr 2 sin2 udf2. ~A13!

The forms ofcD andgD are now substantially more compl
cated than in the uncharged case. Nonetheless, it is still
sible to show that Eq.~A9! continues to hold. As before thi
equality implies that the apparent singularity atr H

2 22Mr H

1Q250 is only a coordinate singularity. The surface d
fined by r 5r H is a Killing horizon of ]/]t. There is once
again, no natural way to normalize the Killing field, so w
only have an equivalence class@ l a# of null normals to the
Killing horizon. (D,@ l #) is a nonrotating isolated horizon.

The surface gravity of]/]t is given by

k5
1

2r H
S 12

Q2

r H
2 D . ~A14!

Again, the surface gravity is independent of the distortion
the horizon and has the same dependence on the ho
radiusRD ~which turns out to be equal tor H) and chargeQ
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as in Reissner-Nordstro¨m space-time. Considerations of Se
V suggest that this peculiar behavior ofk in all these ex-
amples is not accidental but can be ‘‘explained’’ from ge
eral Hamiltonian considerations which led us to the first la

APPENDIX B: THE NEWMAN-PENROSE FORMALISM

1. Notation and conventions

Let us begin with a summary of the Newman-Penro
formalism ~see @39# or @40–42# for a complete account!.
Apart from the spacetime signature which we take to
~2, 1, 1, 1!, we will follow the conventions used in@42#.
Consider a tetrad of null vectorsn, l, m, andm̄ ~n and l are
real whilem is complex! which satisfy

n• l 521, n•m50, n•m̄50,

l •m50, l •m̄50, m•m̄51. ~B1!

The directional derivatives along the basis vectors are
noted by

D5 l a¹a , D5na¹a , d5ma¹a , d̄5m̄a¹a .
~B2!

The full information contained in the connection is express
in terms of twelve complex scalars called the Newma
Penrose spin coefficients defined as follows:
k52mal b¹bl a , e5 1
2 ~m̄al b¹bma2nal b¹bl a!, p5m̄al b¹bna ,

s52mamb¹bl a , b5 1
2 ~m̄amb¹bma2namb¹bl a!, m5m̄amb¹bna ,

r52mam̄b¹bl a , a5 1
2 ~m̄am̄b¹bma2nam̄b¹bl a!, l5m̄am̄b¹bna ,

t52manb¹bl a , g5 1
2 ~m̄anb¹bma2nanb¹bl a!, n5m̄anb¹bna . ~B3!

It is sometimes more useful to express these definitions in terms of covariant derivatives of the basis vectors:

Dl 5~e1 ē !l 2k̄m2km̄, Dn52~e1 ē !n1pm1pm,

D l 5~g1ḡ !l 2 t̄m2tm̄, Dn52~g1ḡ !n1nm1nm,

d l 5~ ā1b!l 2 r̄m2sm̄, dn52~ ā1b!n1mm1l̄m̄,

Dm5p̄ l 2kn1~e2 ē !m, Dm5 n̄ l 2tn1~g2ḡ !m,

dm5l̄ l 2sn1~b2ā !m, d̄m5m̄ l 2rn1~a2b̄ !m. ~B4!

The ten independent components of the Weyl tensor are expressed in terms of five complex scalarsC0 , C1 , C2 , C3 , and
C4 . The ten components of the Ricci tensor are defined in terms of four real and three complex scalarsF00, F11, F22, L,
F10, F20, andF21. These scalars are defined as follows:

C05Cabcdl
ambl cmd, F015

1
2 Rabl

amb, F105
1
2 Rabl

am̄b, ~B5!

C15Cabcdl
ambl cnd, F025

1
2 Rabm

amb, F205
1
2 Rabm̄

am̄b,

C25Cabcdl
ambm̄cnd, F215

1
2 Rabm̄

anb, F125
1
2 Rabm

anb,
5-26
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C35Cabcdl
anbm̄cnd, F005

1
2 Rabl

al b, F115
1
4 Rab~ l anb1mam̄b!,

C45Cabcdm̄
anbm̄cnd, F225

1
2 Rabn

anb, L5R/24.
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The six components of the electromagnetic-field 2-formFab
can be defined in terms of three complex scalars:

f052 l ambFab ,

f152
1

2
~ l anb2mam̄b!Fab ,

f25nam̄bFab . ~B6!

The eight real Maxwell equationsdF50 andd!F50 can be
written as a set of four complex equations:

Df12 d̄f05~p22a!f012rf12kf2 , ~B7!

Df22 d̄152l012pf11~r22e!f2 , ~B8!

Df02df15~2g2m!f022tf11sf2 , ~B9!

Df12df25nf022mf11~2b2t!f2 . ~B10!

2. Boundary conditions

In this section we describe the isolated horizon bound
conditions in the Newman-Penrose formalism. We will r
strict ourselves to Einstein-Maxwell theory with zero cosm
logical constant.

In a null-tetrad adapted to the null hypersurfaceD, take l
to be a null normal,m andm̄ tangent toD, andn transverse
to D. Sincel is hypersurface orthogonal and null, it is ge
desic. This implies that16 kNP=0 and Im@r#=0. Thus

Dl b
ª l a¹al b=~e1 ē !l b. ~B11!

The surface gravity is therefore given byk ( l )5e1 ē and the
expansion ofl is u ( l )= 2Re@r#.

For a nonexpanding horizonD, the conditions onl imply
r=0 and the Raychaudhuri equation then impliess=0 and
F005

1
2 Rabl

al b=0. Furthermore, from Eq.~2.16! ~which is a
consequence of the energy condition!, it follows thatf0=0.
This leads to the following conditions on the Ricci tensor
the horizon:

F00=0, F01=0, F10=0,

F02=0, F20=0, F11=22Gf1f̄1 . ~B12!

The first Maxwell equation~B7! gives

Df1=0 which implies DF11=0. ~B13!

16We will denote the NP spin coefficientk by kNP to distinguish
it from the surface gravityk ( l ) .
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Also, as shown in Eq.~2.8!

C0=0, C1=0. ~B14!

The intrinsically defined one-formva defined in Eq.~2.4! is
given by

va52k~ l !na1~a1b̄ !ma1~ ā1b!m̄a . ~B15!

It is often convenient to choose the null tetrad such thatdn←
50 which implies

m=m̄, p=a1b̄. ~B16!

In this case we get a foliation ofD spanned bym and m̄.
Furthermore, by an appropriate spin transformation, we
choosee to be real so thate= ē and thus the foliation is Lie
dragged alongl:

Llm
a5~e2 ē !ma=0. ~B17!

The one-formv now becomes

va52k~ l !na1pma1p̄m̄a . ~B18!

Let us consider a weakly isolated horizon (D,@ l #). The con-
dition Llv50 is equivalent to requiring

Llp=0, Llk~ l !=0 ~B19!

and as we proved in Sec. II B, these conditions imply that
surface gravityk ( l ) is constant onD.

As mentioned in Sec. II B, a weakly isolated horizon wi
nonzero surface gravity admits a natural foliation. In t
Newman-Penrose framework this foliation can be charac
ized as follows: It is the unique foliation on each leaf
which the pullback of the 1-formpma1p̄m̄a is divergence
free. This condition was first introduced by Ha´j́êiček @43# in
the context of stationary spacetimes.

Finally, since our boundary conditions require th
Llk ( l )=0, in a sense, a part of the zeroth law is simply a
sumed. As mentioned in Sec. II B, we could have use
slightly different set of boundary conditions which make
direct requirement onk ( l ) and yet lead to the zeroth law~as
well as the results of Secs. III–VII!.

Let (D,@ l #) be a nonexpanding horizon, equipped with
equivalence class@ l # of null normals to be related to eac
other by constant positive rescalings. As above, introduc
null tetrad wherel is an element of@ l #, m andm̄ are tangent
to the foliation, n is curl free, ande is real. In place of
definition 2, let us assume thatD admits a foliation by a
family SD of 2-spheres transverse to@ l # such that the NP
spin coefficients in an associated null tetrad satisfy

Llm=0, Llp=0. ~B20!
5-27
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These conditions now replace the requirementLlv=0 used
in the definition of a weakly isolated horizon. We can pro
the zeroth law from these conditions as follows. First, co
sider the definition 2¹ [a¹b]jc5Rabc

djd of the Riemann ten-
sor. In the NP formalism, these are written as a set of
complex equations known as the ‘‘field equations.’’ For o
purposes, we need only three of these equations@42#:

Da2 d̄e5~r1 ē22e!a1bs̄2b̄e2kl

2k̄g1~e1r!p1F10,

Db2de5~a1p!s1~ r̄2 ē !b

2~m1g!k2~ ā2p̄ !e1C1 ,

Dm2dp5~ r̄2e2 ē !m1sl1~p̄2ā1b!p

2nk1C212L.

Adding the first equation to the complex conjugate of t
second equation and imposing our boundary conditions g

d~e1 ē !=dk~ l !=0 ~B21!

while the third equation reduces to

C2=~e1 ē !m. ~B22!

Equation~B21! tells us that surface gravity is constant o
each leaf of the foliation. It now only remains to show tha
is also constant alongl. To show this we turn to the Bianch
th
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identity ¹ [aRbc]de50. In the NP formalism, this is written a
a set of nine complex and two real equations. We shall n
only two of these equations@42#:

DC22 d̄C11DF002 d̄F0112DL

52lC012~p2a!C113rC2

22kC31s̄F02

1~2g12ḡ2m̄ !F0022~a1 t̄ !F01

22tF1012rF11,

DF112dF101DF002 d̄F0113DL

5~2g12ḡ2m2m̄ !F001~p22a22t̄ !F01

1~p̄22ā22t!F1012~r1 r̄ !F11

1s̄F021sF202k̄F122kF21. ~B23!

Subtracting these equations, imposing our boundary c
ditions, and usingL50, we getDC2=0. Combining this
result with Eq.~B22! givesD(e1 ē)=0. This completes the
proof of the zeroth law within the alternate definition
weak isolation. Most of the results of this paper were fi
obtained using that definition. However, since that notion
tied so heavily to the presence of a foliation, its intrins
meaning is somewhat obscure. Therefore, it was then
placed by definition 2 used in the main body of the pape
of

ki,
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,
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@43# P. Háếiček, J. Math. Phys.16, 518 ~1975!.
5-29


