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Reduction of the two-body dynamics to a one-body description in classical electrodynamics
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We discuss the mapping of the conservative part of two-body electrodynamics onto that of a test charged
particle moving in some external electromagnetic field, taking into account recoil effects and relativistic
corrections up to second post-Coulombian order. Unlike the results recently obtained in general relativity, we
find that in classical electrodynamics it is not possible to implement the matching without introducing external
parameters in the effective electromagnetic field. Relaxing the assumption that the effective test particle moves
in a flat spacetime provides a feasible way out.

PACS numbds): 04.20.Fy

I. INTRODUCTION the usual reduced mass of the two charged particlesMand

Recently, a novel approach to the two-body problem ir{[he total mass of the system. We shall see that the matching

L ) ; . is also possible introducing in the effective description either

general relativity has been introducgd. The main motiva- . L
4 . o . a v-dependent vector potential or a deformed flat metric with
tion of that investigation rests on better understanding the .
deformation parameter.

late dynamical evolution of a coalescing binary system made . . . _
y 9 y sy As already mentioned, the idea of reducing the relativistic

of compact bodies of comparable masses, such as black holes : L
; two-body dynamics onto a relativistic one-body one was

and/or neutron stars. In fact, these astrophysical systems are.” . . : .
. . ofiginally introduced in quantum electrodynamics. In par-

among the most promising candidate sources for the detec-

tion of gravitational-waves with the future terrestrial inter- icular, in[2] the authors, taking into account recoil effects,

ferometers such as the Laser Interferometric Gravitationa{IGSl'lmmed in the eikonal approximation the *“crossed-

Wave ObservatoryLIGO) and Virgo. The basic idea pur- _adder” Eeynman diagrams for the scattering qf .tW.O relativ-
sued in[1], in part inspired by some results obtained in quan—'StIC particles and mapped the or?e'-b.ody relat|V|§t|c Balmer
tum electrodynamick2,3], was to map the conservative two- fqrmula onto the two-body relativistic one. This method
body dynamicghenceforth denoted as the “real” dynamjcs gives the correct quantum energy Ieve_ls at least up to 1PC
onto an effective one-body one, where a test particle move%rder’ but some of the centrifugal barrier effects have to be
added by hand. Todoraet al.[3] developed a more system-

in an effective external metric. As long as radiation reaction tic aoproach based on the Lvopmann-Schwinger quasi-
effects are not taken into account, the effective metric is jus? PP ' ypp ger g

a deformation of the Schwarzschild metric with deformationpc’temial equation, Whic_h alsq gives correct results for the
parameterv= /M, where 1 is the reduced mass of the quantum energy levels, mcIung the main parts qf the radia-
binary system ani its total mass. The “effective” descrip- Ve effects of the Lamb shift. Nevertheless, this last ap-
tion should be viewed as a way of re-summing in a nonProach[3] rests on some choices for the quasi-potential
perturbative manner the badly convergent post-Newtonian€guation which are not very well justified and introduces in
expanded dynamics of the “real” description. The results inthe effective description various energy-dependent quanti-
[1] were restricted to the second post-Newtonian 1¢2EIN) ties. In the following, whenever it is possible, we will com-
and the analysis was mainly focused on the conservative papare our results in classical electrodynamics with the previ-
of the dynamics. More recently, a feasible way of incorpo-ous analysis for the corresponding quantum problem.
rating radiation reaction effects has been propdgdcand  Finally, note that, the aim of this paper is not to obtain new
the extension of the aforesaid approach to 3PN order ha®sults with respect to the quantum energy-levels of the
been investigatefb]. bound states of a two-body charged system, which is well
The purpose of the present paper is to test the robustneksown to be a hard problerf6]. On the other hand, the
of the basic idea underlying the mapping of the two-bodypresent work wants to investigate, in the context of classical
problem onto an effective one-body one, by applying it toelectrodynamics, the basic idea of reducing the two-body
classical electrodynamics. We limit to the conservative partlynamics onto a one-body one, recently introduced in gen-
of the dynamics of the bound states of two charged particlesral relativity[1].
up to second post-Coulombian ord@PQ, and we take into The outline of the paper is as follows. In Sec. Il we re-
account recoil effects. We investigate the possibility of de-view the relativistic two-body problem up to 2PC order and
scribing the exchange of energies between the two bodies isummarize its dynamics in a coordinate-invariant manner
the “real” problem through an “effective” auxiliary de- evaluating, within the Hamilton-Jacobi framework, the
scription, where a test particle moves in some external effec‘energy-levels” of the bound states. In Sec. Ill we introduce
tive electromagnetic field. Generically, we expect that thisthe “effective” one-body description and define the “rules”
electromagnetic field will be a deformation of the Coulombneeded to map the “real” onto the “effective” problem.
potential with deformation parameter= /M, wherew is  Then, in Secs. lll A, Il B and Il C we analyze three feasible
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manners of implementing the matching. Finally, Sec. IVof motion of lower orders then, as pointed ouf#)11], one

summarizes our main conclusions. does not obtain the correct equations of motion in a Lorentz
frame. To eliminate correctly the accelerations one can use
II. TWO-BODY DYNAMICS UP TO SECOND the method of “redefinition of position variables,” intro-
POST-COULOMBIAN ORDER duced by Damour and Sdtea in [9], which consists in ap-

) ) L .. pealing to a contact transformation induced by a change of
It was realized long ago that, in relativistic dynamics, if coordinates from the Wheeler-Feynman coordinate system
the position variables that are used to describe a system ?ﬁorentz frame [12] to a well defined asymptotically inertial

charged interacting particles are the coordinates associat¢gme[13]. More explicitly, the acceleration dependent La-
with a Lorentz framé, then all higher time derivatives must grangian at 2PC order is given 9]

appear in the LagrangidB]. To get an “ordinary” Lagrang-
ian it is necessary to introduce canonical position variables
different from the Lorentz coordinat¢8]. At 2PC order the
acceleration dependent Lagrangian was originally derived by
Golubenkov and SmorodinsKiiO]. If one eliminates in that
Lagrangian the higher time derivatives by using the equationvith

~ ~ 1. 1.
E(leZZlvlivzlallaz):£0+§£2+§£4! (21)

1 1 ee,

Zozzmlv?rimzvg—?, (2.2
~ 1 . 1 4 €182 ~ ~

51:§m101+gmzvz"‘ﬁ[vl‘vz"‘(n'Ul)(”'vz)]. (2.3
~ 1 6 1 6 €1€2 ~ ~ ~ ~ ~ B
£4=1_6m101+1_6m202_ ) R[3(a;-a) —(n-ay)(n-a) ]+ 2[(vy-a)(n-v1) —(ve-a)(N-vy) | +(N-ag)[v3

~ ~ ~ 1 ~ ~ ~ ~
—(n-v2)?]-(N-3)[wi— (N'w1) ]+ gloivs—2(v1 v2)*~ (N v2)* ~v3(N-0) *+3(N-v)*(N02)°] ), (24

whereR=2,—7,, N=R/R, v;=2 anda=v;. In [9], Damour and ScHer after having critically discussed and clarified the
various results previously derived in the literat{it€], worked out the contact transformations,

1 €16 | ~ ~[1 - 2 2 €16
ql:zl_g4_ml (n-vy)vy+n E[(n'vz) _Uz]"‘ﬁ , (2.5

€16 ~ ~|1 s 2., €182
q2=22+94—mz (n-vy)v+n E[(n~v1) _vl]+m_1R , (2.6)

which allow to eliminate the accelerations appearing in E22)—(2.4). Hence, the final acceleration independent Lagrangian
at 2PC order is given b}9]

Lo 1 1
E(ql,qz,ql,qz)=£o+§£2+g£4, 2.7
with
1 ., 1 ., ee
Ly §m1Q§+§mzq§—T, (2.9
1 ‘4 1 ., €16 . . . )
ﬁzzgmlch"”§m2Q2+E[Q1'QZ+(n'Q1)(n'Q2)], (2.9

For coordinates belonging to a Lorentz frame we mean coordinates which transform as linear representation of theyRuip¢@te
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1 1 e . . . S
Lam ol omatf— 2 G- 2(3y- 8%+ 3(n- 8 (N Gp)— (n- 4B
S €8y . . €16, . . 2(e.e,)?
—(n-0p) 2+ ——[F—3(n-qy) 2]+ ——[B—3(n-gp) 2] — ———, 2.1
e T L (210

whereq=q; — g, andn=g/q. Applying the Legendre transformation fy we derive(in full agreement with9])

1 1
H(0h,02,P1,P2) =Ho+ §H2+§H4, (2.11)
where
2
Pr P2 €16
HO_Z(ml+m_2)+ q (212
4 4
P P €.6;
HZ—‘g(m_i"'mg) 2mym q[pl P2+ (N-py)(N-p2)], (2.13

b p1+pz L€ [3(n-p)’(n-p)?  Pi(N-po)®  pa(n-py)’
4716 m. m3  Mimyq 8mym, 8m;m, 8mym,

1 PEops| (pp)? PR elez<p§ p%) (e167)?
+—[(n- n-pp)+(ps- —+t— |- + + —+— |- . 2.1
4[( Py (N-p2) +(py pZ)](mf 2 4mym, | 8mm, . q \m;  m, aq? (2.14
Let us denote
m;m, M
M=mi+my, u= VISR (2.19

where the parameter takes values between 0 and 1/4, corresponding to the test mass limit and the equal mass case,
respectively. Henceforth, we shall limit to the dynamics of the bound states generated by the two charged bodies, therefore
e;e,<0 and we pose the coupling constarnt —e;e,>0. In the center of mass frame we ha®e p;= —p, and introducing

the following reduced variables:

-~ H P . ut
i (2.16
M M a @
we can re-write the Hamiltonian, E¢R.11), in the more convenient form
R 1 1 1 1 v 11
— T (1_ 4 rn2 N2 2(n. N4 _ 4
HIp)= 5P = =5 (1=3np = G rlp (Nl = o5 pL3vi(n-p) i+ v(3v=2)p
£ 20(r— PN )]+ — L(1-5v+57)pP+ ! L 217
viv— - 14 14 - 5 - 5 .
P 16c? P 4ct 2p 4ctr3

The above Hamiltonian is invariant under time translationsdn the following we pose ENR= ENR and J=Jcm.-
and space rotations. We denote the two conserved quantitiedsing the Hamilton-Jacobi formallsm, we can sum-
that is the center-of-mass non-relativistic energy and angulanarize in a coordinate-invariant manner the two-charge
momentum, by dynamics by evaluating the “energy-levels” of the system.
NR Introducing Ehe reduced Hamilton principal-functioﬁ,
ﬂ(r,p):gNR:gc_-m, rA\p=j= JC-m-_ (2.189 defi_ned by GS/&r)z_p,_ separating the time_and angular co-
o a ordinates and restricting to the planar motion, we can write
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S=—ERt+jo+S.(r,&NR)). (2.19

Solving the Hamilton-Jacobi equatidi(r,p) = ENR with re-
spect to @S /dr)=p,=n-p, using p?=(n-p)2+jr?, we
get

‘s,(r,SNR,j)zf drVR(r,ENRj), (2.20

whereR is a polynomial of the fifth order in 1/ explicitly
given by

. 2B C D; D, Dj
NR iy — _t — 4+ — 4 —
R(LET ) =A+~ et Et At (2.21)

with

A= 28“%%(1— 3v)(?€NR)2+14 v(4v—1)(EVR)3, (2.22
c c

1 1 )
B=1+ —(1- )R+ = 2 (20— 1)(3%)2, 2.23
c c*2
1
C=—j%+ S (1+w), (2.24)
C
1 11
o2 T 2:20NR T _
D,= CZVJ C4vj £ +C42(4V 1), (2.25
3
Do=—— V%, (2.26
C
3 2:4
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1/2 NR
real oNR — aH _l — 5_
e T Lt e
1 , MR 2
—3—2(5—61/—31/ ) E —j
+a2 1 VENR+11 5 a?
27\ 2 2 ye? 8( V)C4 3
(2.29

Finally, to get the “energy-levels” we solve the above equa-
tion in terms of the relativistic energg®=&ENR+Mc2. In-
troducing the Delaunay action variablé=Z$+ 7, we get

1a?n 1 11

R M2 S A
ENN,J)=Mc Y +C2a,u, 2 N
+13 1 +1 ] 3 1
85T T T

1 , 1 1 5
+1—6(—5+3v—v )A?—i-z(i%— 1/)‘7./\/5

. (2.30

1 1
+ §(6V— 1)@

At OPC order we recover the well known result of the de-
generacy of the energy-levels in the Coulomb problem. Let
us observe that at 1PC order, identifying# with the prin-
cipal quantum-number and7/z with the total angular-
momentum quantum-number, we obtain that E8.30
gives, e.g., the correct bound-state energies of the singlet
states of the positroniufi2,3] (e;= —e, andm; =m,) in the
(classical limit J/A>1. Moreover, within the approxima-
tion JI>1, our method captures all the centrifugal barrier
shifts that have to be added by hand[#]. However, we
cannot recover from Ed2.30 the correct quantum energy-
levels at 2PC level, because at this order radiation reaction
effects should have been taken into account. Indeed, in elec-
trodynamics they enter at 1.5PC order, with a dipole-type
interaction. Only if we limit to systems withe;/m;
=e,/m,, we can postpone radiation reaction effects at the
quadrupole order, which means at 2.5 PC level. In the
present work we are interested in the conservative part of the

For our purposes we need to compute the reduced radigpund states dynamics, hence we do not make the restriction

action variable

~ 2 (Tmax ~
R = o e REERD. (@28

27 ).
min

To evaluate the above integral we use the form@l&) of
Ref. [7], derived by performing a complex contour integra-
tion. The result for the radial action variabE$= qi!®®

reads:

e;/m;=e,/m,. The radiative corrections which contribute
to the main part of the Lamb shift have been evaluatd@jn
using the quasi-potential approach, and are of the order
a®loga. Corrections of the orde#®, a®, a®loga have also
been partially obtained in the literature for some quantum
bound states of positronium and muoni{iéj.

Ill. “EFFECTIVE” ONE-BODY DESCRIPTION

The basic idea of the present work is to map the “real”
two-body dynamics, described in the previous section, to an
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“effective” dynamics of a test particle of massy, and Like in the two-body description we can derive the “energy-
chargeey, moving in an external electromagnetic field. The levels” of the “effective” one-body problem. They can be

action for the test particle is given by written ag
1 1moag 1 &31  &ap
= — Ze Acf “” = 2_ = 4 : 4,0
Seff J ( mycdsy+ CeOA# (z)dz ) (3.1 Eo( Ny, To) =mgC 5 N(z) +C2 agMg .70/\/8 + Né
where Abg= (P e, Aerr) - It is straightforward to derive that iagmo £33 + €42 + €51 + 0 ’
the effective Hamiltonian satisfies the well known equation 4 TN TING  ToNg NG

(3.7
(Heff_ eoq)eff)2

2.2 €o ’
> =mgc-+| p— erﬁ . (3.2

whereNy=7%"+ 7, and & j are combinations of the coeffi-
cients g, 1, ¢, andag,a, given in Eqs.(3.3),(3.4).

. o . . Let us now define the rules to match the “real” to the
The effective electromagnetic fiekt;; will be constructed in “effective” problem. Like in[1], we find very natural stick-

the form of an expansion in the dimensionless parametepq yith the following relations between the adiabatic invari-
ao/(moc®R), where ap=¢€5 is the coupling constant and gpts:

ao/(myc?) is the classical charge radius of,. Hence, we

c

pose N=No, T=D. (3.9
€9 oo ag ag 2 However, the way the “energy-levels,” E¢2.30 and Eq.
Per(R)=—(—| 1+ ¢1m R +é2 = | (3.7), are related is more subtle. If we simply identify
oC o€ (3.3 Eo(To No)=ER(TN)+ (my—M)c?, and impose that the
' mass of the effective test particle coincides with the reduced
mass, i.emgy= w, we obtain that already at 1PC order it is
eoa @ impossible to reduce the two-body dynamics to a one-body
Ae(R)= gl 80+ aler R (3.4  description. Hence, followingil] we assume that there is a
0

one-to-one mapping between the “real” and the “effective”
energy-levels of the general form
where ¢q,¢1,¢, and ag,a; are dimensionless parameters

anda is a vector with the dimension of a velocity. All these 55!? ENR MR ENR) 2
unknown coefficients will be fixed by the matching between 5= | ltan—ta — ] |, (3.9
the “real” and the “effective” description. Note that, in the MeC™  ucC pmC mc

above equations the varialfestands for the effective radial

coordinate and differs from the real separatinsed in Sec. wherea; anda, are unknown coefficients that will be fixed

II. Moreover, in Egs(3.3),(3.4) we have indicated only the by the matching. Given the aforesaid “rules,” we shall in-

terms we shall need up to 2PC order. vestigate in the subsequent sections three feasible ways the
The dynamics of the one-body problem can be describednapping can be implemented. The diverse descriptions differ

in a coordinate-invariant manner, in the Hamilton-Jacobiby the choice of the effective electromagnetic field and the

framework, by considering the “energy-levels” of the bound spacetime metric.

states of the particlen, in the external electromagnetic field.

The Hamilton-Jacobi equation can be obtained from Eg.

. . . . A. Effective scalar potential depending on the energy
(3.2 posing He=Ep and introducing the Hamilton

principal-functiondS.¢/ JR=p. Limiting to the motion in the In this section we study the possibility of reducing the
equatorial plane {=/2) we can separate the variables, tWO-body dynamics to a one-body one introducing, in the
writing “effective” description, the scalar potentid} . displayed in

Eq. (3.3, and assuming that the vector poten\a); is zero.

In this case the derivative of the radial Hamilton principal-
Ser= — Eot+ Joo + SR(R.£0. o). (39 function is given by

where&, and J,=|J,| are the conserved energy and angu-
lar momentum defined by E3.1). The effective radial ac-

c ) °Note that, if a vector potential is present, the energy-levels could
tion variable reads

also depend on the magnetic numb@r. In the present paper when
dealing with a vector potentidsee Sec. Il Bwe shall assume that

2 (R d$ the source of the magnetic field is the angular momentum, hence the
I;ﬁ:_J’ dR—— (3.6 magnetic field will be perpendicular to the plane of motion. This
27 JRy, AR choice implicitly assumegly=.72.
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ds Jo  (E59? Eex
R NR_ _0 E )= g0+ 2 2% 1
4R~ 2Mofo  —2Mo€oPerr R2+ o $1(Eex) = 17+ &7 e’ (3.18
D2y 2e0E5 Deg bo(Ed) = . (3.19
= —=, (3.10

C Cc

We find that in order to implement the matching with the
“real” description the paramete,,; should be fixed equal

to the “effective” non-relativistic energy, i.eE.,=£5". In
more detail, the introduction of an energy dependence in the
coefficients ¢, ¢, $, reshuffles thec™2 expansion of Eq.
(3.11, modifying the Egs.(3.13—(3.16 and allowing to

where we have introduced the non-relativistic enefgy’
=5§— moc?. Plugging the above expression in E8.6) we
get

Tef(ENR 70y = aomé’z o %LyR solve in many ways the constraint equations. The simplest
R0 0 NEr 4 mec? solution is envisaged by requiring that the energy-
dependence enters only at 2PC order in the coeffielentn
5o [ ENR\? af | b3 this case, the solution reads
t 3y 2| |t 5|5 %ot
MoC JoC ¢g)=-1, ¢’=0, 4’=0, (320
— o ﬁ +_a_g[¢4_12¢3¢ v 3
0P mc?| 8 F3cat O TN ¢"=0, ¢P=—3. P=-2v. (320
+85b2t 451 (3.1 )
a1==, a=0. (3.22

Identifying Eq.(3.12) with Eq. (2.29, assumingng= x and 2’
using EQgs.(3.8),(3.9 we obtain the equations for the un-
knowns ¢q,¢1,d5, 89,81 and a, and «,. In particular, at

OPC order we have

To summarize, we have succeeded in mapping the two-body
dynamics onto the one of a test particle of massg=u
moving in the external scalar potential:

- ¢oa0: o, (312 E
® (R, Egy) = — €o 1— VI Bext || %0
and we find quite natural to posg,=—1, that isej= a, e ex R 2\ myc?/ \ myc®R
=a=—e,e,. The equations at 1PC level are 5
v ag 3.2
~ doao(2a1-3)=a(v—3), “3(¢3_2¢°¢1):({‘2’ \ 7\ mcr) | @23
3.1

where Eq=E0R. We have found that the matching is
implemented relating the “real” and “effective” energy-
levels by the formula

while at 2PC order they read

— poao(5— 121 — 1202+ 16a,) = a(5— 6v—312),

(3.149 SSJR £NR v ENR
4 44 2,2 3 2 2= o 5 2| (3.29
ag(do+a4dodi—12¢0h1+8¢5d)=a*(1-6v), (3.19 MeC™  uC me
» which, as noticed ifil], gives the following relation between
¢o¢1a5=— a2 (3.16 thereal total relativistic energyand the effective relativistic
2 energy&y:
Let us notice that at 1PC order, E§.13 givesa,=v/2 and &  &2—mict—mict
¢,=0. Then at 2PC order one can solve E(&14 and 5= 2 . (3.25
(3.15 in terms of @, and ¢,, obtaining a,=0 and ¢, MoC 2m;myC

= —3v/4, but Eq.(3.16 is inconsistent. To solve this incom- he ab ion h her i . h
patibility we are obliged to introduce another parameter in] '€ @0ove equation has a rather interesting property. In the
limit m;<m, the effective energy of the effective particle

the “effective” description. A simple possibility is to sup- s th £ th ic| in th f f
pose that the diverse coefficients that appear in the effectiVgduals the energy of the particle 1 in the rest frame of par-

; ticle 2 (and reciprocally ifm,<m;,). Moreover, the result
scalar potential depend on an external paramétgy, hav- o . 2= .
ing the dimension of an energy, that is (3.295 coincides with the one derived in R¢R] in the con-

text of quantum electrodynamics. We find quite remarkable
E 2 that our way of relating the “real” and “effective” energy-
_EXt) , (3.17 levels agrees with the one introduced[R]. Nevertheless,
mc? we consider the dependence on the energy of the effective

Eext
Go(Eex) = d5)+ «zsé”m—cz + g
0
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scalar potential, Eq(3.23, quite unsatisfactory, though en- where J,,; is supposed to be perpendicular to the plane of
visaged by Todoroet al.[3] in the quasi-potential approach. motion? In the Hamilton-Jacobi framework, restricting &
Indeed, in our context the presence of an external parametef 7/2, we have

in the scalar potential obscures the nature of the mapping and

complicates the possibility of incorporating radiation reac- _ Set ~ ISetr  ~ 1 ISe

tion effects. Certainly, this cannot be achieved straightfor- P= IR &R IR + R dp '

wardly in the way suggested [#] for the gravitational case.

As a final remark, let us note that if we were using thewheree, ande, are vectors of the orthonormal basis. Due to
effective description introduced in the quasi-potential apthe particular choice of the vectdg,, we made, the follow-
proach by Todorowt al. [3], we should have considered a ing equation holds:
test particle with effective mass), and effective energy,

(3.28

Eett, given by €0J. € a
© AeﬁzL“ez‘” ta——+---|, (329
m;m,c? E2 —mict—mac? mMoCR Mec“R
Mef( Erea) = < v Cenr= 28 . .
real real where Jox=|Jexd. Finally, using dS.s/dp=7, [see Eq.

(3.26 (3.5], we get
We have investigated the possibility of introducing an en-

ergy dependence in the effective mass of the test particle, but A= €odexiTo ta %o n

we found that, in this case, it is not possible to overcome the eff mocR® ! moC%R

inconsistency in the matching equations that raised at 2PC

order. A way out could be to introduce also an energy de- 232 a2

pendence in the effective couplinge;, but we find this AZ= 02 ext’o (3.30
possibility not very appealing. mgc’R*

Note the crucial fact that, with the very special choice of the
vector potential we madegy- As does not depend opg.

) ) . _Plugging the above expressions in the Hamilton-Jacobi equa-
We have seen in the previous section that, at 2PC level, ifion, Eq.(3.2), with He=E YR+ m2c? we obtain

order to cope with an inconsistency of the constraint equa-
tions, we were obliged to introduce an external parameter irag%

B. Effective vector potential depending on the angular
momentum

ERGr

the coefficients of the scalar potential. In this section We—=2mog’8‘R—2mOqu>eﬁ——2+ Tt

shall investigate the possibility of overcoming the above in-dR R c c

consistency by introducing, in the “effective” description, a NR 2

scalar potentiadb o, independent of any external parameter, _ 2e0Eq Pess n 2J0dext %) ta @

and a vector potentigh.+ which will depend on an external c? R2 0 moc?R ! moc?R

vector Jo,;. In order to implement the matching, we have

found that it is sufficient to limit to the following form of the N o[ @o ? 33

vector potentia[see Eq.(3.4)]: R2 %0 mec?R (3.3D
eﬁzw a0+ali+ |, (327 Whgre(beﬁ is given by Eq.(3.3). Evaluating the radial action

mecR® moc?R variable[see Eq(3.6)] we finally get

2
Ief’f(gNR j J t): aomélz _ _ 3¢0 ggR 5¢0( (C/’gR - j + aé d)g . ¢ ¢ . ¢ a ‘]ext
R 0 J01Yex —25§R 0 4 mOC2 32 mOCZ 0 jOCZ 2 01 0“0 jO
NR 2 4
J J J 1 «a
0 ext ext 2 Yext 0 4 3 2
+ — bod1— doAg— +a; —+aZ | |+ 2| 1203, +8
m002 ( ¢O¢l ¢O 0«70 1 jO 0 ._7%) 8 ng4|: 0 ¢O¢1 ¢O¢2
+ApEp2+ 242 hia Jea 12¢43a Joa | 12¢42a Jix‘+24¢2a2£Xt (3.32
0%1 0¥1<0 \70 0“0 L70 0“1 jO 0“0 jg ' '

3Note that, with this choice of the vector potential the magnetic field will be perpendicular to the plane of motion.
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Let us impose that the above equation coincides with thef the previous section, the fact that the electromagnetic field
analogous expression for the “real” description, given bystill has to depend on external parameters is not very desir-
Eq. (2.29. Assumingmy= x and using Eqs(3.8),(3.9) we  able. In the next section we shall investigate a feasible way
derive the new constraint equations to be satisfied. At OP©ut.

order we still have- ¢gag= a, and we posery=—1, while

at 1PC level we get C. Effective metric

So far we have seen that in order to succeed in reducing
the two-body dynamics onto a one-body description we were
obliged to introduce external parameters, which have been
identified either with the energy or the angular momentum of
the test particlany. This result is not very appealing, espe-
cially when we want to incorporate radiation reaction effects.
The first equation in Eq(3.33 gives a;=v/2, while the A possible way out would be to relax the hypothesis that in
second one is automatically satisfied if we make the rathethe one-body description the test particle move in a flat
natural requirement that either the Coulomb potential doespacetime. The effective spacetime metric should be viewed
not have any correction at 1PC ordeb,=0) or the vector as an effective way of describing the global exchange of
potential enters only at the next Coulombian ordeg=€0).  energy between the two charged particles in the “real” de-

— ¢oap(2a1—3)=a(v—3),

ext 2

2| 42 J
Qg ¢o_2¢o¢1_2¢oao70 =a.

(3.33

Finally, the 2PC order constraints read scription.
The most general spherical symmetric metric written in
— ¢oao(5—12a1— 12a§+ 16a,) = a(5—6v—31?), Schwarzschild gauge has the form
(3.39

dsZ=—A(R)c?dt?+ B(R)dR?+ R?(d #%+ sin 6?d ¢?),
(3.39

where the coefficient&\(R) and B(R) are given as an ex-
pansion in the dimensionless parametg/ (m,c’R), that is

g

J
Bi+49505— 126001+ 84702+ 2461207

2

J J J
- 12¢3a0ji“+ 24¢3al—= + 12¢§a1ji“) o v |2 0 \°
0 o 0 ARI=1+A; b A | A —
=a*(1-6v), (3.39 MoC MoC MoC
TR (3.40
2 Jext Jext 2 J 5xt a?
ag ¢o¢1+¢0307_317_ao_2 “ro @ @ 2
0 o Jo B(R)=1+B; +B, +een (3.41
(3.36 moc?R moCc?R

Plugging the results obtained at OPC and 1PC order in EqShe reduction, from the two-body problem to the one-body

(3.34—(3.36 and assuming that the external vecl@y; co-  one, can simply be implemented assuming that in the “ef-

incides with the constant of motiaff,, we end up with the fective” description only the scalar potentidl. is different

unique, rather simple solution: from zero. In this case the derivative of the Hamilton
principal-function reads

$2=0, a;=—3, ap=0. (3.37)
2 ﬁ:LR)(g +mnac2— e d )2
drR > o™ Mo 0% eff
. . . . . c“A(R)
In conclusion, in this section we have obtained that at 2PC
order it is possible to reduce the two-charge dynamics to the B(R)

one of a test particle moving in an effective electromagnetic 5 Jé—B(R)mac?, (3.42
field described by a Coulomb potentibL4(R) = —e,/R and
a vector potential dependent on the external ve
(=T0): P P ek and for the radial action variable we derive
1/2 NR NR \ 2
m &
Acii( R, Jex) = — 5 mgcs T (3.38 R1“0 0 5, 25§R mOCZ mOCZ
) a2 SNR a4
Moreover, quite remarkably, we have found, under rather A O |pye 0 |4+ 20 ¢ (3.43
natural assumptions, that the one-to-one mapping between 0 oC? moc?] Jact ’

the “real” and the “effective” energy-levels is still given by
the formula(3.25. However, as already discussed at the endvhere the various coefficients can be written explicitly as
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1
A==do= 5 A1, (3.49
3 7
— %ot | BimgAL], (3.49
o5 B, 19 i
_3_2¢O+ Z_6_4 1] ( . @
B, 1 1 A7 A,
D= ¢po| —p1— > - tAL | +5 (/’o AlBl+ 5 o (3.47
Bi| 1 B B,
E=do| —h1tA— o | FAI-Am SAIBI - =+ o, (3.49

1 4 2 2 3 2p2 2 bo 2 3
24A 8A1A2+ 8A2+ 16A1A3_ 8A]_Bl+ 8A1AzBl_ AlBl+ 4Ale) + E( - 16¢1A1+ 24A1+ 8¢2A1+ 8¢1A2

=64

%5 o . 6
~32A1A,+8Ag+ 4$1A1B; ~ BATB1 + 4,81~ A1B] +4A1B)) + (61 +4A1~By) + 5 + 13 (BT —401A;

+32A7+ 16¢,— 20A,+8¢,B, — 10A,;B,; —B2+4B,). (3.49

The above expressions coincide with the ones obtained inrder we find that there is no need of modifying the Coulomb
pure general relativity1], once the limit¢,—0 is consid- scalar potential, i.e®4(R)=—¢€y/R and the “energy-
ered andg, is identified with the analogous quantity in the levels” of the real and “effective” description are still re-
gravitational case, i.e. witlm;m, (G is the Newton con- lated by Eq.(3.25. Finally, the external spacetime metric is
stan). Let us now equate the “real,” Eq2.29 and the simply given by

“effective,” Eqg. (3.43, radial action variables, assuming

that the following relations hold;7,=.7, my=u and Eq. ag 3 ag
(3.9). At OPC order we get the constraing(— ¢o—A1/2) A(R)=1+v > » B(R=1-v 5
=a which can be naturally fulfilled imposing tha@&;=0 MocR MoCR

and posings,= —1, as above. At 1PC level we derive (3.53
(3.50

In this paper we have analyzed the application of a new
2/ 42 n 2,082 _ approach to studying the relativistic dynamics of the bound
205(¢ot Po(2A1=B1=2641)) F ap(2A1 28~ A1By) states of two classical charged particles, with comparable
=2a°. (3.51)  masses, interacting electromagnetically. The key idea, origi-
nally introduced investigating the two-body problem in gen-
If we demand that at this order the scalar potential and theral relativity [1], has been to map the “real” two-body
effective metric do not differ from the Coulomb potential problem onto the one of a test particle moving in an external
and the flat spacetime metric, respectively, i.e. we ppge electromagnetic field.
=0A,=0B,=0, we find that Eq.(3.50 gives a;=v/2 We have found that the matching can be implemented
while Eq. (3.5)) is automatically satisfied. Inserting these imposing the following rather natural “rules’(i) the adia-
values in the constraint equations at 2PC order and imposinlgatic invariants\" and 7 in the two descriptions have to be
that there are no corrections to the Coulomb potential at thiglentified;(ii) the reduced mass of the “real” system, has

order (¢,=0) we obtain the unique simple solution: to coincide with the mass of the effective partichey, and
(iii) the energy axis between the two problems has to be
a>=0, Az=v, By=-w. (3.52  transformed. Let us note immediately that, a bottom-line of

our results has been that, in all the three cases considered
Hence, we have found that with the introduction of an effec-(see Secs. Il A, Il B and Ill ¢, we have found quite natu-
tive metric we are not obliged to introduce in the electromag-ally that the energy axis, between the two descriptions, has
netic field any dependence on external parameters, neithéw change in such a way that the effective energy of the
the energy nor the angular momentum. Moreover, up to 2P@&ffective particle coincides with the energy of the particle 1

104022-9



ALESSANDRA BUONANNO PHYSICAL REVIEW D62 104022

in the rest frame of particle 2 in the limih;<m, (and vice a complete knowledge of the “real” dynamics through the
versa [see Eq(3.29]. auxiliary “effective” one, we can construct, like ifl], the
Nevertheless, contrary to the results obtained in generakanonical transformation which relates the variables of the
relativity [1], the requirementsi), (ii) and (iii) envisaged relative motion in the “real” description, to the coordinates
above, do not fix uniquely the external electromagnetic fieldand momenta of the test particle in the “effective” problem.
with which the effective test particle, interacts. In fact, we However, this calculation goes beyond the scope of the
have found that, in order to overcome an inconsistency in theresent paper.
constraint equations which define the matching, we had to Finally, a last remark. In Sec. Ill B we have introduced a
introduce an external parameter either in the scalar potentiavector potential in the effective description in such a way
Eq. (3.23, or in the vector potential, Eq3.38. These pa- that the source of the magnetic field is the angular momen-
rameters have to be identified with the non-relativistic entum of the system. This study suggests the investigation, in
ergy and the angular momentum of the effective test particléhe general relativity contextl], of relaxing the hypothesis
my, respectively. As pointed out above and in Réfl, the  of mapping the “real” two-body dynamics onto the one of a
dependence of the effective electromagnetic field on somtest particle moving in a deformed Schwarzschild spacetime.
external parameter makes the mapping between the two dédeed, it could well be possible to match the two problems
scriptions quite awkward and complicates the inclusion ofappealing to an effective deformed Kerr spacetime.
radiation reaction effects. A possible solution of this issue is
to relax the hypothesis that the test particle moves in a flat
spacetime. Indeed, in this case we have found that the con-
ditions (i), (ii) and(iii ) fix rather naturally the external scalar It is a pleasure to thank Thibault Damour, Scott Hughes,
potential and the effective metric. They provide, up to 2PCGerhard Scher and Kip Thorne for useful discussions
order, an effective Coulomb potential and a rather simpleand/or for comments on this manuscript. This research is
v-deformed flat metri¢see Eq(3.53]. supported by the Richard C. Tolman Foundation and by NSF
Once the matching has been successfully defined, to hav@rant AST-9731698 and NASA Grant NAG5-6840.
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