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Quasicircular orbits for spinning binary black holes
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Using an effective potential method we examine binary black holes where the individual holes carry spin.
We trace out sequences of quasi-circular orbits and locate the innermost stable circular orbit~ISCO! as a
function of spin. At large separations, the sequences of quasi-circular orbits match well with post-Newtonian
expansions, although a clear signature of the simplifying assumption of conformal flatness is seen. The position
of the ISCO is found to be strongly dependent on the magnitude of the spin on each black hole. At close
separations of the holes, the effective potential method breaks down. In all cases where an ISCO could be
determined, we found that an apparent horizon encompassing both holes forms for separations well inside the
ISCO. Nevertheless, we argue that the formation of a common horizon is still associated with the breakdown
of the effective potential method.

PACS number~s!: 04.25.Dm, 04.70.2s
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I. INTRODUCTION

The inspiral and coalescence of binary black hole syste
is a prime target for upcoming gravitational wave detect
such as the Laser Interferometric Gravitational Wave Ob
vatory ~LIGO!. Such systems will be circularized by th
emission of gravitational waves, and will evolve through
quasi-equilibrium sequence of circular orbits. At the inn
most stable circular orbit~ISCO! we expect a transition to a
dynamically plunging orbit. It is anticipated that this trans
tion will impart a characteristic signature on the gravitation
waveform. It is therefore important to know the orbital fr
quency at the ISCO, since the corresponding gravitatio
wave frequency is predominantly just twice this frequenc

Predicting the waveform in detail from the transition
the ISCO to the final merger requires the full machinery
numerical relativity. These calculations require appropri
initial data. Out of the large space of solutions of the initi
value equations of general relativity, we need an algorithm
select solutions corresponding to black holes in qua
circular orbits. The effective potential method@1# allows one
to construct such solutions and to determine the propertie
the ISCO.

The effective potential is based on the fact that minim
ing the energy of a system yields an equilibrium solutio
This follows from the Hamiltonian equations of motion:
the HamiltonianH is minimized with respect to a coordina
q and a momentump, then q̇5]H/]p50 and ṗ5
2]H/]q50. The energy of two objects in orbit about ea
other can be lowered by placing the objects at rest at t
center of mass. Therefore minimizing the energy with
spect to all coordinates and momenta will not yield a circu
orbit. To find circular orbits in Newtonian gravity, one ca
minimize the energy while holding the angular momentu
constant. This procedure works as well for a test mass o
ing a Schwarzschild black hole, where one minimizes
Arnowitt-Deser-Misner~ADM ! energy. This can be seen a
follows. For geodesic motion, one finds@2#
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HereM is the mass of the black hole,Ẽ is the energy per unit
rest mass of the test particle as seen from infinity andL̃ its
orbital angular momentum per unit rest mass. Denote the
mass of the test particle byM 8. Then the ADM energy is
simply EADM5M1ẼM 8, and minimizingEADM is equiva-
lent to minimizingẼ. Hence minimizing the left hand side o
Eq. ~1! with respect tor yields the radius of circular orbits a
a function of angular momentum. Minimization of Eq.~1!

with respect toṙ yields ṙ 50, which is necessary for a circu
lar orbit. From the minimum one finds the energy of the t
particle as a function of angular momentum. Obviously, o
needs to keepM and M 8 constant during the minimization
so the prescription to compute circular orbits becomes
minimize EADM while keeping the angular momentum an
the rest masses constant.

These ideas have been formalized as variational princi
for finding equilibria for rotating and binary stars in Newto
ian gravity. There is also a similar variational principle f
rotating stars in general relativity@3#. Binary systems in gen-
eral relativity are not strictly in equilibrium because the
emit gravitational waves. However, for orbits outside the
nermost stable circular orbit, the gravitational radiation re
tion time scale is much longer than the orbital period. It
therefore a good approximation to treat the binary as an e
librium system.

In this paper we apply this minimization principle to ro
tating binary black hole systems. Let the masses of
holes beM1 and M2, the spins beS1 and S2, and the total
angular momentum of the system beJ. We exploit the in-
variance under rescaling of the mass by using dimens
less quantitiesM1 /M2 , S1 /M1

2, S2 /M2
2, andJ/mm, where

m5M11M2 denotes the total mass andm5M1M2 /m the
reduced mass. Then we adopt the following straightforw
prescription to locate quasi-circular orbits: Minimize th
©2000 The American Physical Society18-1
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PFEIFFER, TEUKOLSKY, AND COOK PHYSICAL REVIEW D62 104018
scaled ADM energyEADM /m with respect to the separatio
of the holes, while keepingM1 /M2 , S1 /M1

2, S2 /M2
2, and

J/mm constant.
It is somewhat involved to carry out this simple prescr

tion. The computation of the ADM energy becomes mo
difficult than for the Schwarzschild example above. Mo
importantly, however, no rigorous definitions exist for t
mass or spin of an individual black hole in a spacetime c
taining two black holes. We will address these issues in S
II. Ultimately, we must use numerical methods to gener
and search among the solutions. Our numerical approac
volves root finding, which is also described in Sec. II.

In Sec. III we present the results of the effective poten
method. For the interpretation of these results, we nee
search for common apparent horizons in our binary bl
hole data sets. These results are included in Sec. III, too.
discuss our results and conclusions in Secs. IV and V.
Appendix contains the details of the apparent horiz
searches.

II. IMPLEMENTATION

In order to minimize the ADM energy while keepin
M1 /M2 , J/mm, S1 /M1

2 and S2 /M2
2 constant, we need a

method to compute the ADM energy as a function of angu
momentum, masses and spins of the holes and separatio
a first step we construct initial data (g i j ,Ki j ) on a hypersur-
face as described in@4,5,1#. Our particular approach assum
conformal flatness of the 3-metricg i j and maximal embed
ding of the hypersurface, as well as inversion symmetry c
ditions on the 3-metricg i j and on the extrinsic curvatur
Ki j . The effective potential method is independent of the
assumptions and works with all methods that compute in
data. For example, in@6#, the effective potential method wa
used without assuming inversion symmetry. In particular,
assumptions of maximal embedding and conformal flatn
are not essential but merely convenient—maximal emb
ding decouples the Hamiltonian and momentum constra
within the initial-data formalism we use, and conformal fla
ness allows for an analytic solution of the momentum c
straints. One disadvantage of conformal flatness is that K
black holes do not admit conformally flat 3-metrics, at le
for the simple time slicings we are aware of. In@7# it was
shown that the Kerr metric is not conformally flat at seco
order in the spin parameterS/M2. Indeed, in Sec. III A we
identify this deviation in our results.

Because we assume that the initial hypersurface is m
mal, the momentum and Hamiltonian constraints decou
We follow the Bowen-York@8# prescription to solve the mo
mentum constraint analytically. Then we need only solve o
three-dimensional quasi-linear elliptic differential equatio
the Hamiltonian constraint. It is solved on a so-called Cˇ adež
grid using a multigrid algorithm@5#. The constructed data
sets depend on several input parameters, namely the
and the positions of the throats of the holes in the flat ba
ground space,ai andCi , i 51,2, respectively, and their lin
ear momenta and spins,Pi andSi , i 51,2, respectively. We
note that in this initial-data prescription,Pi andSi represent
the physicallinear and angular momentum of the black ho
10401
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if it is isolated. We work in the zero momentum fram
whereP252P1, and choosePi perpendicular toC22C1 in
order to realize a circular orbit. Then the magnitudeP[P1
5P2 is sufficient to describe the linear momenta. Choos
a1 as the fundamental length scale, we are left with the f
lowing dimensionless input parameters: the ratio of
throat radii,a5a1 /a2, the dimensionless background sep
ration b5uC12C2u/a1, and the dimensionless linear mo
mentum and spinsP/a1 andSi /a1

2, i 51,2, respectively.
From the initial data we can rigorously compute the AD

energyEADM , the total angular momentumJ and the proper
separation between the apparent horizons of each hole,l. The
total angular momentum is evaluated as in Ref.@1#:

J[~C12O!3P11~C22O!3P21S11S2 . ~2!

HereO represents the point about which the angular mom
tum is defined; it drops out immediately becauseP152P2.
When orbiting black holes have spin, neither the individu
spins of the holes nor their orbital angular momentumL are
rigorously defined. We simply takeL to be defined by

L[J2S12S2 , ~3!

with S1 andS2 defining the individual spins.
Finally, we need to define the masses of the individ

holes. As in Ref.@1#, we define the mass of each hole via t
Christoudoulou formula:

Mi
25Mir ,i

2 1
Si

2

4Mir ,i
2

, ~4!

Mir ,i
2 5

Ai

16p
, ~5!

where Ai is the area of the event horizon of thei th hole.
Clearly this definition is only rigorous for a stationary spac
time. Moreover, we cannot locate the event horizon from
initial data slice alone. Therefore we must resort to using
apparent horizons areas in Eqs.~4! and~5! instead. Apparent
horizons can be determined from initial data and in t
present case their positions are known to coincide with
throats of the holes@4#. For a stationary spacetime, appare
horizons and event horizons coincide, and in a general, w
behaved spacetime, the event horizon must coincide with
lie outside of the apparent horizon. In the latter case we w
underestimate the mass of the black hole by using the ap
ent horizon area. Some of the results of this work indic
that this happens for very small separations of the holes

With the individual masses we can finally define t
effective potentialas the non-dimensional binding energy
the system:

Eb

m
[~EADM2M12M2!/m. ~6!

Since the mass ratioM1 /M2 is kept constant during the
minimization, minimizingEb /m is equivalent to minimizing
EADM /m.
8-2
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QUASICIRCULAR ORBITS FOR SPINNING BINARY . . . PHYSICAL REVIEW D62 104018
We construct initial data sets starting from theinput pa-
rametersa, b, P/a1 and Si /a1

2, and compute thephysical
parametersEb /m, M1 /M2 , J/mm and Si /Mi

2 . In order to
construct an initial data set with certain physical parame
we have to choose the input parameters appropriately.
requires nonlinear root finding.

Within our effective potential approach, we will searc
for minima in the binding energy as a function of the sep
ration of the black holes. Fortunately, it is not necessary
solve for a specific proper separationl /m. It is sufficient to
keepb constant during root finding and thus find a bina
black hole configuration with some separationl /m. Our goal
is to solve the following set of equations@cf. Eqs. ~10a!–
~10d! of Ref. @1##:

M1

M2
5FM1

M2
G ~7a!

S1

M1
2
5F S1

M1
2G ~7b!

S2

M2
2
5F S2

M2
2G ~7c!

J

mm
5F J

mmG . ~7d!

The bracketed quantities on the right hand sides
Eqs.~7a!–~7c! denote the physical values to be reached, a
the expressions on the left-hand side represent function
the background parametersa, P/a1 , S1 /a1

2 and S2 /a1
2 as

well as the fixedb.
For non-rotating holes, Eqs.~7b! and ~7c! are trivially

satisfied byS15S250. For spinning holes this is no longe
the case. Hence, it seems one has to solve the complete
equations~7a!–~7d!. However, in any initial data schem
where the physical spins of the black holes are directly
rametrized, Eqs.~7b! and ~7c! can be eliminated. First, we
note again that if the physical spins are directly para
etrized, from Eq.~3! we find that we can replace root findin
in J/mm by root finding inL/mm. Thus Eq.~7d! is replaced
by

L

mm
5F L

mmG . ~8!

In the zero momentum frame, Eqs.~2! and ~3! simplify to

L

a1
2

5b
P

a1
. ~9!

Thus we can rewriteS1 as

S1

a1
2

5
S1

M1
2

M1

M2

M1M2

L
b

P

a1
. ~10!
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For a solution of Eqs.~7a!–~7c!,~8!, the first three terms on
the right hand side of Eq.~10! take the values of the desire
physical parameters, so we can replace them by these pa
eters throughout the root finding. A similar result holds f
S2. We perform only two-dimensional root finding, ina and
P/a1, and set, in each iteration,

S1

a1
2
5F S1

M1
2G FM1

M2
GF L

mmG21

b
P

a1
, ~11a!

S2

a1
2
5F S2

M2
2G FM1

M2
G21F L

mmG21

b
P

a1
. ~11b!

For an important subset of spin configurations, even o
dimensional root finding is sufficient as can be seen as
lows: Consider equal-sized holes with equal spin magnitu
on both holes. If both spins are parallel to the orbital angu
momentum or both spins are antiparallel, there exists a s
metry under exchange of the two holes. Thereforea must be
equal to 1 and we are left with one free parameter,P/a1. If
one spin is parallel to the orbital angular momentum and
other spin is antiparallel, however, this property is lost. O
hole is co-rotating with the orbital motion and the other ho
is counter-rotating. The choicea51 would result in holes
with slightly different masses. We thus need tw
dimensional root finding ina andP/a1 for this case.

Each ‘‘function evaluation’’ for the root finding involves
the computation of an initial data set (g i j ,Ki j ). High resolu-
tion solutions take between 30 min and several hours of C
time on one RS6000 processor. For maximum efficiency,
first perform root finding with a Newton-Raphson meth
@9# at low resolution data sets. The numerical values
M1 /M2 and J/mm differ slightly between low resolution
and high resolution solutions; therefore we solve at low re
lution for adjusted values of@M1 /M2# and @J/mm#. With
the input parameters found in the low resolution root findin
a high resolution computation is performed to verify th
Eqs.~7a! and~7d! are indeed satisfied at high resolution, a
to adjust the offset used in the next low resolution root fin
ing. If necessary, this procedure is repeated. On average
complete root finding takes fewer than two high resoluti
computations.

Following our prescription, we now minimize the bindin
energy with respect to separation while keepingM1 /M2 ,
L/mm and Si /Mi

2 constant. The binding energy of a s
quence of solutions with these quantities held constant
resents a contour of the effective potential. Our code start
large separationb and reducesb until a minimum inEb /m
is bracketed. Then the minimum is located with Bren
method@9#, yielding a quasi-circular orbit for the prescribe
values ofJ/mm, M1 /M2, andSi /Mi

2 . Note that each com-
putation ofEb /m during the minimization along an effectiv
potential contour requires root finding.

By computing quasi-circular orbits for differentJ/mm,
but fixed M1 /M2 and Si /Mi

2 , a sequenceof quasi-circular
orbits is obtained. A binary black hole that radiates aw
energy and angular momentum will follow such a seque
approximately, assuming that the spin on each hole rem
8-3
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PFEIFFER, TEUKOLSKY, AND COOK PHYSICAL REVIEW D62 104018
constant. We step towards smallerJ/mm, and compute only
as many points along each effective potential contour as
required for the minimization. As soon as we do not find
minimum in the effective potential contours anymore we e
pect to be beyond the innermost stable circular orbit.
trace out some complete effective potential contours aro
the last value ofJ/mm to check the behavior of these curve

Finally, from the binding energyEb /m and the angular
momentumJ/mm along the sequence, we compute the
bital angular frequency as

V5
]Eb

]J U
sequence

~12!

III. RESULTS

The parameter space of spinning binary black holes
large—one can vary the mass ratio of the holes as wel
spin directions and magnitudes. Astrophysically most int
esting are holes that co-rotate with the orbital motion,
with both spinsSi parallel to the orbital angular momentu
L . In addition to these co-rotating configurations, we exa
ine configurations with one co-rotating hole and one coun
rotating hole, and configurations with two counter-rotati
holes. We have the following three families of sequence

~i! The ‘‘11 sequences’’ with two co-rotating holes.
~ii ! The ‘‘12 sequences’’ with one co-rotating and on

counter-rotating hole.
~iii ! The ‘‘22 sequences’’ with two counter-rotatin

holes.
We restrict ourselves to equal mass holes,M15M2

FIG. 1. Sequences of quasi-circular orbits for different spin c
figurations. Plotted is the binding energyEb /m vs the angular mo-
mentumJ/mm along the sequences. The solid lines represent
data; the dashed lines are the results based on (post)2-Newtonian
theory. As discussed later in this paper, the effective poten
method could not locate an ISCO for the110.25 and110.50
sequences, although we believe each sequence should termin
one.
10401
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[M, with equal spin magnitudesS15S2[S. As we will see,
the assumption of conformal flatness becomes question
at high spins, so we consider only spin magnitudesS/M2

<0.50. We denote a spin configuration by two plus or min
signs together with a number specifying the spin magnitu
on the holes. Thus ‘‘110.25’’ denotes a configuration with
two co-rotating holes and spin magnitudesS1 /M25S2 /M2

50.25.
Quasi-circular orbits were computed for various values

J/mm along each sequence. In Fig. 1 the binding ene
Eb /m along each sequence is plotted as a function of
angular momentumJ/mm. A binary black hole that loses
energy and angular momentum through gravitational rad
tion moves along such a sequence if the spins of the in
vidual holes remain constant. The dashed lines in Fig. 1 r
resent the results of (post)2-Newtonian theory which we
describe in Sec. III A.

Using Eq.~12! we compute the orbital angular frequenc
In Figs. 2 and 3, the binding energy and the angular mom
tum along the sequences are plotted as a function of orb
frequency.

A. Behavior at large separations

We compare our results to the (post)2-Newtonian expan-
sions for spinning holes in quasi-circular orbit that we
kindly provided by L. Kidder. The expressions for arbitra
spins and masses are lengthy. If one restricts attentio
equal-mass holes,M15M25M , m52M , m5M /2, it turns
out that only the sum of the spins enters the
(post)2-Newtonian expansions. In terms of

-

e

al

e in

FIG. 2. Sequences of quasi-circular orbits for different spin c
figurations. Plotted is the binding energyEb /m vs the orbital angu-
lar frequencymV along the sequences. The solid lines represent
data; the dashed lines are the results based on (post)2-Newtonian
theory. As discussed later in this paper, the effective poten
method could not locate an ISCO for the110.25 and110.50
sequences, although we believe each sequence should termin
one.
8-4
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QUASICIRCULAR ORBITS FOR SPINNING BINARY . . . PHYSICAL REVIEW D62 104018
s[
S11S2

M2
~13!

and with L̂ being the unit-vector parallel toL , the
(post)2-Newtonian expansions become

Eb

m
52

1

2
~mV!2/3H 12

37

48
~mV!2/31

7

6
~ L̂•s!~mV!

2S 1069

384
1

1

8
@3~ L̂•s!22s2# D ~mV!4/3J , ~14a!

S J

mmD 2

5~mV!22/3H 112~ L̂•s!~mV!1/3

1S 37

12
1s2D ~mV!2/31

1

6
~ L̂•s!~mV!

1S 143

18
2

37

24
~ L̂•s!22

7

8
s2D ~mV!4/3J .

~14b!

These expressions are plotted in Figs. 1–3 together with
results from the effective potential method. There is rema
able agreement.

The sumS11S2 is zero for all12 sequences with equa
spin magnitudes, so (post)2-Newtonian theory predicts tha
the 12 sequences are identical to the non-rotating
quence. This is remarkable, and indeed, in Figs. 1–3
12 sequences are close to the110.0 sequence. Howeve
a closer look reveals a systematic behavior from which
can gain some insight into our assumptions. For fixed an

FIG. 3. Sequences of quasi-circular orbits for different spin c
figurations. Plotted is the angular momentumJ/mm vs the orbital
angular frequencymV along the sequences. The solid lines rep
sent the data; the dashed lines are the results based
~post!2-Newtonian theory. As discussed later in this paper, the
fective potential method could not locate an ISCO for t
110.25 and110.50 sequences, although we believe each
quence should terminate in one.
10401
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lar momentumJ/mm, consider the difference in binding en
ergy between a point on a12 sequence and a point on th
non-rotating 0.0 sequence:

DEb /m~S!5
Eb

m
~12S!2

Eb

m
~0!. ~15!

In Fig. 4, DEb /m(S) is plotted as a function of spin fo
several values of angular momentumJ/mm. Here DEb /m
varies as the fourth power of spin. This might be a physi
effect beyond (post)2-Newtonian expansions, but for the fo
lowing reason it seems likely that one of our assumptio
introduces a non-physical contribution toDEb /m, too.
Figure 4 strongly suggests thatDEb /m is converging to a
non-zero value asJ/mm ~and thus separation! increases, in-
dicating that there is a contribution toDEb /m that is inde-
pendent of the separation of the holes. For all spin confi
rations, Eb must approach zero in the limit of larg
separation; therefore any physical contribution toDEb /m
should decrease with separation. Moreover, a coupling
tween the holes, physical or unphysical, will give rise to
separation-dependent contribution toDEb /m. Therefore the
separation-independent contribution must be a non-phys
effect due to the properties of eachisolatedhole. A likely
candidate is the underlying assumption of conformal flatne
At large separations each hole should resemble a Kerr b
hole, which isnot conformally flat.

Since the Kerr metric is the unique stationary state fo
spinning black hole, if the conformally flat initial data for
single hole were evolved, the metric would relax to the K
metric and emit some gravitational radiation. Therefore
total energy contained in our initial data slices is larger th

-

-
on
f-

-

FIG. 4. Difference in binding energyDEb /m between
12 sequences and non-rotating sequence as a function of sp
the 12 sequence for fixed angular momentumJ/mm. Each curve
is labeled by its value ofJ/mm. HereJ/mm53.01 is very close to
the ISCOs that haveJ/mm'2.98, andJ/mm53.65, 3.35, 3.15 and
3.01 correspond to a separation ofl /m'12.3, 9.6, 7.7 and 6.1
respectively.
8-5



th
e
he

he
w

s
m
,
ole
ee
a
us
o

ut
a

im
in

n

-
o
bel

s ap-
e ra-

of
cal
n

the
n-

ue
c-
ted
int

ady
as
me
mon
i-
or-
n-
for

ced
-

e

04
ul

e

,
bits.

PFEIFFER, TEUKOLSKY, AND COOK PHYSICAL REVIEW D62 104018
in a more faithful conformally non-flat data slice andDEb /m
should be positive, which it indeed is.

We conclude that at large separationsDEb /m is con-
taminated by an unphysical contribution because of
conformal flatness assumption. At small separation th
might be additional physical contributions beyond t
(post)2-Newtonian order.

B. Behavior at small separations: ISCO

In this section we report the key results of this work—t
spin dependence of the innermost stable circular orbit. As
will see, the interpretation of our data at small separation
somewhat complicated. At large separations, the assu
tions and approximations we have used are reasonable
cept for the assumption of conformal flatness when the h
are spinning. At small separations, the interaction betw
the two black holes becomes relatively strong, and our
proximations begin to break down. Near the ISCO, we m
evaluate the quality of our assumptions to determine h
reliable our results are.

In the neighborhood of each tentative ISCO, we comp
a set of complete effective potential contours. These
shown in Fig. 5. In each plot, the binding energyEb /m is
shown as a function of separationl /m for several different
values of angular momentumJ/mm. Also plotted is the se-
quence of quasi-circular orbits passing through the min
of the effective potential. Figure 5 shows the non-rotat
sequence110.0, one example each of a22 and a
12 sequence, and three11 sequences with different spi
magnitudes.

FIG. 5. ConstantJ/mm contours of the effective potentialEb /m
as a function of separationl /m for various spin configurations. Th
curves are spaced in steps ofDJ/mm50.02 except for the
220.25 and the110.17 configurations, which have steps of 0.
and 0.01, respectively. Also plotted is the sequence of quasi-circ
orbits connecting the minima of the effective potential.
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Examining the constantJ contours of the effective poten
tial for fixed spin configurations, we find that they fall int
three regimes separated by critical values that we will la
JA and JB . Contours withJ.JA exhibit a single minimum
positioned at large separationl /m. This minimum moves in-
ward as the angular momentum decreases; i.e. the hole
proach each other as angular momentum and energy ar
diated away. We call this the ‘‘outer’’ minimum. AsJ passes
through the critical valueJA , a new ‘‘inner’’ minimum ap-
pears inside the outer minimum. In this region, contours
the effective potential have two minima separated by a lo
maximum. The maximum corresponds to the well-know
unstable circular orbit of a Schwarzschild black hole. AsJ
decreases further,JA.J.JB , the maximum moves outward
whereas the outer minimum continues to move inward—
quasi-circular orbit associated with the outer minimum co
tinues to shrink. AsJ passes through the second critical val
JB the outer minimum and the maximum meet in an infle
tion point and disappear. The quasi-circular orbit associa
with the outer minimum disappears and this inflection po
is identified with the ISCO. ForJ,JB , only the inner mini-
mum remains.

This behavior for the non-rotating sequence was alre
found in @1#. There, the inner minimum was dismissed
unphysical, since the underlying assumptions beco
weaker at small separations of the holes and since a com
event horizon might form. We will discuss this ‘‘unphys
cal’’ region and the possibility and consequences of the f
mation of a common event horizon below. But first we co
tinue discussing the behavior of the effective potential
different spin configurations.

As we increase the spin magnitude for the22 configu-
rations, the two critical angular momentum valuesJA andJB
move away from each other. We see a more pronoun
local maximum and theEb curves look similar to the effec

ar

FIG. 6. Enlargement of the110.17 sequence of Fig. 5. Th
displayed effective potential contours~top to bottom! correspond to
angular momentaJ/mm53.12, 3.11, 3.104, 3.103, 3.102, 3.10
3.09 and 3.08. Also shown is the sequence of quasi-circular or
8-6
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TABLE I. Orbital parameters of the innermost stable circular orbit for equal-mass spinning holes
second through sixth columns give the data obtained in this work; the three columns to the right give th
for a test mass orbiting a Kerr black hole. The results for the110.08 and110.17 sequences will have
larger systematic errors than the other cases~see text!.

Sequence l /m Eb /m mV J/mm L/mm Eb /m L/mm mV

220.50 7.05 20.0628 0.100 2.438 3.438 20.04514 3.8842 0.04935
220.37 6.68 20.0687 0.107 2.595 3.335 20.04767 3.7834 0.05319
220.25 6.17 20.0743 0.120 2.730 3.230 20.05032 3.6856 0.05727
220.12 5.58 20.0815 0.139 2.865 3.105 20.05363 3.5738 0.06242
110.0 4.94 20.0901 0.166 2.976 2.976 20.05719 3.4641 0.06804
110.08 4.59 20.0975 0.186 3.042 2.882 20.05991 3.3870 0.07237
110.17 3.93 20.1087 0.235 3.103 2.763 20.06337 3.2957 0.07793
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tive potential of Schwarzschild for a larger interval of ang
lar momenta. The ISCO moves outward to larger separat
as spin increases.

Conversely, as we increase the spin magnitude for
11 configurations the interval (JB ,JA), where two minima
and a local maximum exist, becomes smaller. Slightly ab
S/M250.17, JA and JB merge and forS/M2*0.17, the
regime with two minima and a maximum isnot present.
Figure 6 illustrates the small interval (JB ,JA) with an en-
largement of the110.17 sequence. As long as the regim
with two minima and a maximum is present, we can s
define the ISCO by the inflection point. It moves towar
smaller separation of the holes as the spin is increased. H
ever, since the inflection point ceases to exist at some
magnitude, we cannot define an ISCO for allS/M2. There-
fore the11sequences displayed in Figs. 1–3 do not term
nate. Furthermore, we need a more careful analysis to d
mine whether the ISCO properties for spin magnitudes cl
to the critical valueS/M2'0.17 are reliable.

The 12 configurations are very similar to the non
rotating one. Given the weak dependence on spin within
12 sequences, this is not surprising. We do not cons
the 12 configurations further.

Figure 7 and Table I summarize the orbital parameter
the ISCO as a function of spin for the22sequences and th
11sequences. The numerical errors inEb /m, L/mm and
J/mm are less than 1%, whilemV and l /m are accurate to a
few percent. However, for the11sequences the systemat
errors of our approach might be much larger. The table a
includes ISCO parameters for a test mass orbiting a K
black hole obtained from formulas in@10#.

C. Common apparent horizons

A common event horizon might be responsible for t
strange behavior of the effective potential at small sepa
tions, because once a common event horizon forms, there
no longer two distinct black holes. It would be helpful
know the critical separation where a common event hori
first forms. However, in order to locate the event horizo
knowledge of the complete spacetime is needed. In
present case, only data on one time slice are available, an
we can only search for common apparent horizons. Since
event horizon must lie outside the apparent horizon, the
10401
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mation of a common apparent horizon places a firm bou
on the formation of an event horizon.

Searches for a common apparent horizon were carried
for several spin configurations. Details of the apparent h
zon finder and the method used to discern the formation
common apparent horizon are given in the Appendix.
Table II, the results of the apparent horizon searches
listed.

For fixed spin configurations the common apparent ho
zon forms at larger separation for larger angular moment
This can be seen from the220.25 and110.0 sequences
For varying spins and angular momentum close to the IS
values, the proper separation between the throats at the
mation of the common apparent horizon depends weakly
the spin. It decreases froml /m'2.3 for the 220.37 se-
quence down tol /m'2.0 for the110.17 sequence.

FIG. 7. Values of several physical parameters at the ISCO of
11 and22 sequences. Plotted are the binding energyEb /m, the
orbital angular frequencymV, the total angular momentumJ/mm
and the proper separation between the holes,l /m, as a function of
spin S/M2 on the holes. The11 sequences are plotted along th
positive part of the horizontal axis, the22 sequences along th
negative part as2S/M2. The vertical axes on the left side belong
Eb /m andJ/mm.
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Notice that the segment of parameter space where c
mon apparent horizons form doesnot include the sequenc
of quasi-circular orbit configurations. Indeed, the common
apparent horizons form at a separation inside the inner m
mum where the effective potentialincreaseswith decreasing
separation.

The search for the onset of common apparent horiz
also provides the actual surfaces. In Fig. 8 some appa
horizon surfaces just inside the formation of a common
parent horizon are plotted. The circles represent the thr
of the holes. The solid lines represent a cut through the p
of orbital motion of the holes, arrows indicating the directi
of linear momentum of the holes. The dashed lines are
through the plane perpendicular to the plane of motion
parallel to the spins of the holes. We find that the appar
horizons lag behind the orbital motion, with the amount
lag being larger for counter-rotating than for co-rotati
holes.

IV. DISCUSSION

We found that the effective potential contours at ve
small separationincreasewith decreasing separation. This
in contrast to the usual shape of the effective potential fo
Schwarzschild or a Kerr black hole, which tends to2` at
sufficiently small separations.

The common apparent horizon that was found to form a
small separation of the holes might influence the obser
effective potential as follows: The event horizon must
outside the apparent horizon. Therefore a common event
rizon must form before a common apparent horizon form
To accomplish this the event horizons around the individ
holes must grow towards this common event horizon. Th
even before the formation of a common event horizon,
individual event horizons will no longer be close to the i
dividual apparent horizons and the areas of the event h
zons of the individual holes must be larger than the area
their apparent horizons. Therefore, Eqs.~4! and ~5! will

TABLE II. Summary of the common apparent horizon search
Listed are the sequences and values of orbital angular mome
for which an apparent horizon search was carried out. The appa
horizon was found to form at a separationl 1 /m, l /m, l 2 /m.

Sequence L/mm l1 /m l2 /m

220.37 3.38 2.32 2.38
220.25 3.10 2.20 2.25
220.25 3.34 2.24 2.29
110.0a 0.0 1.89
110.0 2.94 2.08 2.13
110.0 3.00 2.08 2.13
110.08 2.84 2.03 2.08
110.08 2.92 2.03 2.08
110.17 2.79 1.98 2.03
110.25 2.70 1.96 2.01
120.25 3.00

aFrom @13#, which found a critical separationb54.17. This corre-
sponds to a proper separation ofl /m'1.89.
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under-estimate the mass of the holes. We denote this un
estimate byDM . Consider the effect this underestimate ofM
has on the binding energy. The numerator of Eq.~6! will be
over-estimated by a relative amount of

2DM

uEbu
5

4

uEb /mu
DM

M
@

DM

M
. ~16!

At the same time, the denominator of Eq.~6! and the de-
nominator of the scaled angular momentum~7d! change too,
leading to an underestimate of the binding energyEb /m.
However, the relative changes of these denominators
only of the order ofDM /M , so that the overestimate from
Eq. ~16! dominates. It might well be that this over-estimate
so large that it counter-balances the decreasing effective
tential that one might expect in analogy to Schwarzschild
Kerr black holes.

This idea leads to the following picture to explain th
observed effective potential curves: At large separation
the holes, the masses of the holes and the effective pote
are reliable and we see an effective potential that looks s
lar to a Schwarzschild black hole. Consider, for example,
110.0 sequence: ForJ slightly above its ISCO value we se
the ~outer! minimum of the stable quasi-circular orbit and
maximum corresponding to an unstable circular orbit. AsJ
increases, the stable circular orbit moves outwards and
unstable one moves inwards. Once the maximum co
sponding to the unstable orbit moves too far in, theDM /M
contamination of the effective potential ‘‘eats up’’ the max
mum and it disappears.

Now we turn on spin. We found that a common appar
horizon forms at approximately the same proper separat
independent of the spin of the holes. It seems reasonable
the errorDM /M is also almost independent of spin. Thu

.
m
nt

FIG. 8. Shapes of the common apparent horizons for differ
spin configurations. Circles denote the throats of the holes.
solid lines are cuts in the plane of orbital motion~arrows indicating
the direction of motion!; the dashed lines represent cuts normal
the plane of motion.
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DM /M becomes significant at roughly the same separa
l /m independent of spin. For the22 sequences the ISCO
moves to larger separations. Thus the maximum in the ef
tive potential ~the unstable orbit! will survive for a larger
range of separations and angular momentaJ. Conversely, for
the 11 sequences, the ISCO moves inwards, closer to
separation whereDM /M becomes significant. The max
mum inEb /m is lost almost immediately, and in the extrem
limit of S/M2.0.17, it does not show up at all.

This scenario is sufficient to capture the complete beh
ior of the effective potential as a function ofJ and spin. What
does this picture imply for the validity of our ISCO resul
from Table I? We expect thatDM /M decays rapidly with
increasing separation, so the ISCO data for the non-rota
sequence110.0 as well as for the22 sequences should b
sound. However, becauseDM changes the characteristic b
havior for the11 configurations even forS/M2,0.17, the
11 sequences will be affected. Let us consider how th
changes affect our estimates of circular orbits.

Figure 9 illustrates the effect of theDM /M contamination
on the effective potential contours. As we noted above,
DM /M contamination of the binding energy over-estima
the binding energy of an effective potential contour. Sin
this error increases as the separation decreases, our esti
for the separation at a given value of angular momentum
also too high, and our estimates of the orbital angular ve
ity mV are too low. Unfortunately, we cannot determi

FIG. 9. Illustration of the effects of a systematic underestim
tion of Eb /m. The dashed lines represent the observed effec
potential contours for some values ofJ. The points A, B, and C
correspond to circular orbits. The ISCO is at D. Assuming that
true binding energy is smaller, with the deviation increasing as
separation decreases, yields true effective potential contours si
to the solid lines. The true circular orbits are at E and F and the
ISCO is at G. We find that the minima of the true contours will
at smaller separation~for the sameJ). The angular frequency is
given by V5dEb /dJ. Using points A and B, we see that the o
serveddEb is smaller than the true one, so we under-estimatemV.
For fixedJ, true circular orbits will occur at smaller separation, b
the true ISCO will appear at largerJ than we have observed. Thes
effects counteract each other, making it impossible to predict t
effect on the true ISCO.
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whether our estimates for the location of the ISCO are
high or too low. While our estimates for the separation o
given orbit are too high, we see that the true ISCO will occ
at a larger value of the total angular momentum than
estimate. These effects oppose each other.

The angular momentum at the ISCO,J/mm, increases
with spin for the11 configurations. It is interesting to ex
amine whether the final black hole resulting from a merg
of such a spinning binary black hole can violate the K
limit on spin of a black hole. From Eq.~4! we find

Mir
2 5

M2

2 S 11A12
S2

M4D . ~17!

By the area theorem, the final irreducible mass must
isfy Mir , f

2 >2Mir
2 , where equal mass holes were assum

The final angular momentum cannot exceed the angular
mentum at the ISCO,Jf<J. With these two constraints an
by virtue of the Christoudoulou formula~4!, we find

M f
2

Mir , f
2

<11
~J/mm!2

4@11A12~S/M2!2#2
. ~18!

A Kerr black hole has alwaysM2/Mir
2 <2 with equal-

ity in the extreme Kerr limit. With data from Table I we
find for the 220.50 sequenceM f

2/Mir , f
2 <1.43 and for the

110.17 sequenceM f
2/Mir , f

2 <1.61. These values corre
spond to spin parameters ofJ/M f

2<0.92 andJ/M f
2<0.97,

respectively. Hence the merged black hole might be clos
the Kerr limit, but will not violate it.

¿À Sequences and conformal flatness

The (spin)4 effect illustrated in Fig. 4 suggests that th
assumption of conformal flatness might lead to inaccur
results. This is particularly important for analysis of gravit
tional waves. As seen in Fig. 4, for spinning holes w
S/M2;0.50 the assumption of conformal flatness results
an unphysical gravitational wave content of the order
;231023m;531024m. This is less than 0.1% of the tota
mass and a few percent of the binding energyEb . If the
gravitational energy radiated away is less than 1% of
total mass, then the gravitational wave content due to
unsuitable initial data slice is a significant contamination.

V. CONCLUSION

In this work, we have constructed sequences of qu
circular orbits for equal-sized, spinning black holes. At lar
separations, the results we have obtained match well w
(post)2-Newtonian expansions, although there is a clear c
tamination of the data because of the assumption of con
mal flatness. The main results of this paper, displayed
Table I and Fig. 7, reveal the behavior of the ISCO for t
cases where the spins of the holes are either both co-rota
~11! or counter-rotating~22! with respect to the orbita
motion. For co-rotation, the ISCO moves inwards with i
creasing spin and the orbital angular frequency increases
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counter-rotation the ISCO moves outward and the orb
angular frequency decreases. In fact, we find that the orb
angular frequency changes by almost a factor of 2 betw
the 220.50 sequence and the110.08 sequence. We hav
noted a systematic error in our results that has its origin
an underestimation of the mass of each black hole when
are close together. For the ISCO, this implies that our res
are most accurate~ignoring the errors due to conformal fla
ness! when the holes have large counter-rotating spins,
the error increases as we move to configurations with la
co-rotating spins. In fact, the error becomes so large in
11 sequences that our method cannot locate the ISCO w
S/M2*0.17.

Our results clearly show the need to give up the sim
fying assumption of conformal flatness if we are to constr
astrophysically realistic black hole initial data. This is ce
tainly not a new realization, but this is the first time that t
effects of the conformal flatness assumption have been
so clearly in the context of black hole binaries. Work towa
more astrophysically realistic initial data has begun@11#.
This improvement in the initial data is needed for all sep
rations. It remains to be seen what impact this improvem
will have on the process of locating quasi-circular orb
when the holes are close together. It is likely that the s
tematic underestimate of the mass will still be significant
so, an improved method for locating quasi-circular orbits a
the ISCO will be useful.
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APPENDIX: COMMON APPARENT HORIZONS

Here we provide details of the apparent horizon~AH!
finder. We use the AH finder described in@12#. The AH
surface is expanded in spherical harmonics up to some o
L. The apparent horizon, as a marginally outer trapped
face, has everywhere vanishing expansion and is locate
minimizing the square of the expansion over the surface.
use convergence with increasing expansion orderL to diag-
nose the formation of a common AH. Therefore high exp
sion ordersL are needed as well as reliable convergence
the minimization routine to the true minimum of the squa
of the expansion.

The Powell minimization~cf. Ref. @9#! used in@12# is too
slow for high-order expansions. We replaced it by a D
method with finite difference approximations of the Jacob
@9#. For the modest expansion orderL56, the DFP method
is already 10 times faster than Powell’s method.

Furthermore, we take advantage of the symmetries
the AH surface. The holes are located along theẑ axis at
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z56b/2. Their linear momenta point in the6 x̂ direction
and the spins are directed along the6 ŷ axis. It is straight-
forward to show that these choices imply that the AH surfa
is invariant under reflection at thexz plane,y→2y. This
symmetry constrains the coefficientsAlm of the expansion in
spherical harmonics to be real. Moreover, for the11 and
22 configurations with equal sized holes and equal s
magnitudes, the configuration is symmetric under rotation
180° around theŷ axis; this is (x,y,z)→(2x,y,2z). Both
symmetries together forceAlm50 for odd l and Alm to be
real for evenl. Hence the number of free parameters in t
minimization routine can be reduced by almost a factor
four.

To prevent convergence to spurious local minima, it
vital that the function that is minimized be as smooth
possible. Therefore we use second order spline interpola
to provide the required data for the AH finder. Compared
bicubic interpolation, the spline interpolation somewhat d
creased the number of iterations needed in the minimiza
routine, but more importantly it significantly reduced th
probability of getting stuck in a local minimum. In addition
many rays were used to reduce the anisotropies introdu
by the discrete position of the rays. Finally, we distribute t
rays non-uniformly in solid angle. The reason for this i
simple: The common AH surface will be very oblate alo
the ẑ axis, since it must encompass the two throats loca
along theẑ axis. The polar regions of the AH surface a
close to the throats and the conformal factor changes rap
These regions are particularly important, but the stand
distribution uniform in cosu places relatively few rays in the
polar regions. Therefore we implemented a procedure

FIG. 10. Residual of the minimization in the AH finder as
function of expansion orderL. The number of rays used wa
Nu564, Nf548. The different solid lines represent different sep
rations of the holes along an effective potential contour w
J/mm53.29 on the110.25 sequence. The dashed lines are
results of minimizations withNu548,Nf532. The dot-dashed lines
show examples of minimizations at lower grid resolution a
Nu564,Nf548.
8-10
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distributes the rays in proportion to an arbitrary ray-dens
function f (u). A uniform distribution of rays is represente
by f (u)5const, whereas we usedf (u)511cos2 u, resulting
in a doubled density of rays close to the poles.

With the improved AH finder, we performed extensiv
tests with various numbers of rays. As a rule of thumb, ab
10 times more rays as free minimization parameters are
essary to ensure reliable convergence to the true minimum
the square sum of the expansion.

We used expansions up to orderL516 and up to 64
348 rays~64 in theu direction, 48 inf). We perform a set
of AH searches, starting atL52 and increasingL by 2 be-
tween searches. The result of the previous search is use
the initial guess for the next higher expansion order. Suc
set of expansions fromL52 to L516 takes typically abou
2 h of CPU time on a RS6000 processor.

A disadvantage of an AH finder based on a minimizat
routine is that the minimization routine willalways find a
minimum. It does not matter whether there actually is
‘‘true’’ apparent horizon or whether there is only a surfa
with a small but non-zero expansion. And even for a tr
AH, the result of the minimization will be non-zero becau
of the finite grid resolution in the underlying elliptic solve
and finite expansion order in spherical harmonics. There
we need a method to discern a ‘‘true’’ AH from a me
minimum in the square of the expansion.

For a true AH, the square of the expansion is exactly ze
therefore we expect that the residual of the minimizat
tends to zero as the resolution of the elliptic solver and
expansion orderL are increased. With increasingL, the error
,

P.
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in the approximation of the surface by spherical harmon
should decreaseexponentially. On the other hand, for a mer
minimum in the expansion, we expect that the residual of
minimization tends towards anon-zerolimit as the resolution
of the elliptic solver and the expansion orderL is increased.
We use this signature to discern the formation of a comm
apparent horizon.

Figure 10 shows the residual of the minimization for va
ous values ofL and different separationsb. The solid lines
represent configurations at different separations of the ho
They are labeled by the background separation of the ho
b. Each solid line represents a set of minimizations w
varying expansion order 2<L<16 on thesameinitial data
set. At large separations,b>4.5, the residual of the minimi-
zation becomes independent ofL for largeL. At small sepa-
ration, b54.4, the residual decreases exponentially throu
all computed expansion orders up toL516–a common AH
has formed.

Neither reducing the number of rays nor decreasing
resolution of the Hamiltonian solver changes the conv
gence behavior significantly. This is illustrated by some e
amples in Fig. 10. We conclude that for this particu
example a common AH first forms betweenb54.4 and
b54.5.

Expansions to high order inL are essential for discernin
the formation of a common AH. If one had Fig. 10 only up
expansions up toL58, it would be impossible to decide
where the common AH first forms. One would probably co
clude that the common AH forms at larger separations tha
actually does.
. J.
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