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Quasicircular orbits for spinning binary black holes
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Using an effective potential method we examine binary black holes where the individual holes carry spin.
We trace out sequences of quasi-circular orbits and locate the innermost stable circuldfS@bit as a
function of spin. At large separations, the sequences of quasi-circular orbits match well with post-Newtonian
expansions, although a clear signature of the simplifying assumption of conformal flatness is seen. The position
of the ISCO is found to be strongly dependent on the magnitude of the spin on each black hole. At close
separations of the holes, the effective potential method breaks down. In all cases where an ISCO could be
determined, we found that an apparent horizon encompassing both holes forms for separations well inside the
ISCO. Nevertheless, we argue that the formation of a common horizon is still associated with the breakdown
of the effective potential method.

PACS numbd(s): 04.25.Dm, 04.70-s
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The inspiral and coalescence of binary black hole systems
is a prime target for upcoming gravitational wave detectors _
such as the Laser Interferometric Gravitational Wave ObserHlereM is the mass of the black holk, is the energy per unit
vatory (LIGO). Such systems will be circularized by the rest mass of the test particle as seen from infinity Brits
emission of gravitational waves, and will evolve through aorbital angular momentum per unit rest mass. Denote the rest
guasi-equilibrium sequence of circular orbits. At the inner-mass of the test particle by1’. Then the ADM energy is
most stable circular orbitiSCO) we expect a transition to a simply Eppy =M +EM’, and minimizingE apy is equiva-

dynamically plunging orbit. It is anticipated that this transi- |ont to minimizingE. Hence minimizing the left hand side of
tion will impart a characteristic signature on the gravitationalgq (1) with respect ta yields the radius of circular orbits as
waveform. It is therefore important to know the orbital fre- 5 function of angular momentum. Minimization of E€L)
quency at the ISCO, since the corresponding gravitationg i, respect ta yieldsr =0, which is necessary for a circu-
wave frequency is predominantly just twice this frequency. |5 orhit. From the minimum one finds the energy of the test
Predicting the waveform in detail from the transition at particle as a function of angular momentum. Obviously, one
the ISCO to the final merger requires the full machinery ofneeds to keep and M’ constant during the minimization,
numerical relativity. These calculations require appropriateso the prescription to compute circular orbits becomes to
initial data. Out of the Iarge Space of solutions of the initial-minimize EADM while keeping the angu|ar momentum and
value equations of general relativity, we need an algorithm tqhe rest masses constant.
select solutions corresponding to black holes in quasi- These ideas have been formalized as variational principles
circular orbits. The effective potential methpt allows one  for finding equilibria for rotating and binary stars in Newton-
to construct such solutions and to determine the properties @én gravity. There is also a similar variational principle for
the ISCO. rotating stars in general relativifig]. Binary systems in gen-
The effective potential is based on the fact that minimiz-eral relativity are not strictly in equilibrium because they
ing the energy of a system yields an equilibrium solution.emit gravitational waves. However, for orbits outside the in-
This follows from the Hamiltonian equations of motion: If nermost stable circular orbit, the gravitational radiation reac-
the Hamiltoniar® is minimized with respect to a coordinate tion time scale is much longer than the orbital period. It is
g and a momentump, then q=dH/dp=0 and p= therefore a good approximation to treat the binary as an equi-
—dH/9q=0. The energy of two objects in orbit about each librium system.
other can be lowered by placing the objects at rest at their In this paper we apply this minimization principle to ro-
center of mass. Therefore minimizing the energy with re-tating binary black hole systems. Let the masses of the
spect to all coordinates and momenta will not yield a circularholes beM; and M, the spins be5; andS,, and the total
orbit. To find circular orbits in Newtonian gravity, one can angular momentum of the system BeWe exploit the in-
minimize the energy while holding the angular momentumvariance under rescaling of the mass by using dimension-
constant. This procedure works as well for a test mass orbitess quantitiesvi; /M, S,/M2, S,/M2, and J/um, where
ing a Schwarzschild black hole, where one minimizes then=M,+ M, denotes the total mass apd=M;M,/m the
Arnowitt-Deser-MisnefADM) energy. This can be seen as reduced mass. Then we adopt the following straightforward
follows. For geodesic motion, one fin@2] prescription to locate quasi-circular orbits: Minimize the
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scaled ADM energyE xpy /M With respect to the separation if it is isolated. We work in the zero momentum frgme,
of the holes, while keeping!,/M,, S,/M3, S,/M5, and WhereP,=—P;, and choosé; perpendicular taC,—C, in
J/uwm constant. order to realize a circular orbit. Then the magnituele P,

It is somewhat involved to carry out this simple prescrip- = P2 is sufficient to describe the linear momenta. Choosing
tion. The computation of the ADM energy becomes mored; as the fundamental length scale, we are left with the fol-
difficult than for the Schwarzschild example above. Morelowing dimensionless input parameters: the ratio of the
importantly, however, no rigorous definitions exist for the throat radii,«=a, /a,, the dimensionless background sepa-
mass or spin of an individual black hole in a spacetime confation 8=|C,—C,|/a;, and the dimensionless linear mo-
taining two black holes. We will address these issues in Se¢nentum and spin®/a; and§ /a2, i=1,2, respectively.

Il. Ultimately, we must use numerical methods to generate From the initial data we can rigorously compute the ADM
and search among the solutions. Our numerical approach irenergyE,py , the total angular momentuthand the proper
volves root finding, which is also described in Sec. Il. separation between the apparent horizons of each Ihdlee

In Sec. Il we present the results of the effective potentialtotal angular momentum is evaluated as in R&f:
method. For the interpretation of these results, we need to
search for common apparent horizons in our binary black J=(C1=0)XP1+(C=O)XP,+5,+S,. @

hole data sets. These results are included in Sec. lll, too. W . .
discuss our results and conclusions in Secs. IV and V. Th ere_O represeqts the point ‘F."bOUt V\.’h'Ch the angular momen-
fum is defined; it drops out immediately becalse= — P,.

Appendix contains the details of the apparent horlzor‘\Nhen orbiting black holes have spin, neither the individual

hes. . : )
searches spins of the holes nor their orbital angular momenturare
rigorously defined. We simply take to be defined by
Il. IMPLEMENTATION
In order to minimize the ADM energy while keeping L=J=5-5, @)

M1/My, Jum, $;/MI and S,/M3 constant, we need a S, andS, defining the individual spins.
method to compute the ADM energy as a function of angular ~ pina)y e need to define the masses of the individual

momentum, masses and spins of the holes and separation. f§jes. As in Ref[1], we define the mass of each hole via the
a first step we construct initial data{ ,K;;) on a hypersur-  ~pristoudoulou formula:

face as described i#,5,1]. Our particular approach assumes

conformal flatness of the 3-metrig; and maximal embed- <2
ding of the hypersurface, as well as inversion symmetry con- Mi2: Min i+ _'2 (4)
ditions on the 3-metricy;; and on the extrinsic curvature " AMY

Ki; . The effective potential method is independent of these
assumptions and works with all methods that compute initial
data. For example, if6], the effective potential method was i 16 )
used without assuming inversion symmetry. In particular, the
assumptions of maximal embedding and conformal flatneswhere A; is the area of the event horizon of th# hole.
are not essential but merely convenient—maximal embedClearly this definition is only rigorous for a stationary space-
ding decouples the Hamiltonian and momentum constraintdme. Moreover, we cannot locate the event horizon from the
within the initial-data formalism we use, and conformal flat- initial data slice alone. Therefore we must resort to using the
ness allows for an analytic solution of the momentum con-apparent horizons areas in E¢$) and(5) instead. Apparent
straints. One disadvantage of conformal flatness is that Kettiorizons can be determined from initial data and in the
black holes do not admit conformally flat 3-metrics, at leastpresent case their positions are known to coincide with the
for the simple time slicings we are aware of.[If] it was  throats of the holef4]. For a stationary spacetime, apparent
shown that the Kerr metric is not conformally flat at secondhorizons and event horizons coincide, and in a general, well-
order in the spin paramet& M?2. Indeed, in Sec. Il A we behaved spacetime, the event horizon must coincide with or
identify this deviation in our results. lie outside of the apparent horizon. In the latter case we will
Because we assume that the initial hypersurface is maxiunderestimate the mass of the black hole by using the appar-
mal, the momentum and Hamiltonian constraints decouplesnt horizon area. Some of the results of this work indicate
We follow the Bowen-YorK 8] prescription to solve the mo- that this happens for very small separations of the holes.
mentum constraint analytically. Then we need only solve one With the individual masses we can finally define the
three-dimensional quasi-linear elliptic differential equation,effective potentiahs the non-dimensional binding energy of
the Hamiltonian constraint. It is solved on a so-callea€z  the system:
grid using a multigrid algorithn{5]. The constructed data

sets depend on several input parameters, namely the radii E= E M —M.)/ 6
and the positions of the throats of the holes in the flat back- w =(Eaom 1 2) . ©®
ground spaceg; andC;, i=1,2, respectively, and their lin-

ear momenta and spinB; andS, i=1,2, respectively. We Since the mass ratidM, /M, is kept constant during the
note that in this initial-data prescriptioR; andS represent  minimization, minimizingE,/« is equivalent to minimizing
the physicallinear and angular momentum of the black hole Epy; /m.
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We construct initial data sets starting from timput pa-  For a solution of Eqs(7a—(7¢),(8), the first three terms on
rametersa, B, P/a; and S /a2, and compute the@hysical the right hand side of Eq10) take the values of the desired
parameter€, /u, M;/M,, J/um andS/MZ. In order to  physical parameters, so we can replace them by these param-
construct an initial data set with certain physical parameter§ters throughout the root finding. A similar result holds for
we have to choose the input parameters appropriately. Thig.. We perform only two-dimensional root finding, inand

requires nonlinear root finding. P/a;, and set, in each iteration,

Within our effective potential approach, we will search
for minima in the binding energy as a function of the sepa- S | Si|[Mi][ L ] P 1
ration of the black holes. Fortunately, it is not necessary to ai_ M2|[ M) um ’Bal' (113
solve for a specific proper separatibim. It is sufficient to
keep B constant during root finding and thus find a binary s, [S]M LTt P
black hole configuration with some separatlém. Our goal ===l —} B—. (11b
is to solve the following set of equatiorjsf. Egs. (10a— ai |M3]IM2 pm &

(10d) of Ref.[1]]: . . ) .
For an important subset of spin configurations, even one-

M, [M; dimensional root finding is sufficient as can be seen as fol-
= (79 lows: Consider equal-sized holes with equal spin magnitudes

Mz [Ma on both holes. If both spins are parallel to the orbital angular
; momentum or both spins are antiparallel, there exists a sym-

ST 7b metry under exchange of the two holes. Therefen@ust be

M_i_ M_f (7b) equal to 1 and we are left with one free parameldg;. If

one spin is parallel to the orbital angular momentum and the
. other spin is antiparallel, however, this property is lost. One
&: i 70 hole is co-rotating with the orbital motion and the other hole

M3 | M3 is counter-rotating. The choice=1 would result in holes
with slightly different masses. We thus need two-
J [ 3] dimensional root finding inv and P/a, for this case.
—=—. (7d) Each “function evaluation” for the root finding involves
pm L pm the computation of an initial data seg;(,K;;). High resolu-

The bracketed quantities on the right hand sides o ime on one RS6000 processor. For maximum efficiency, we
Egs.(7a—(7c) denote the physical values to be reached, an P . Y,

the expressions on the left-hand side represent functions ?'é
the background parametets P/a;, S;/aj and S,/a7 as

sion solutions take between 30 min and several hours of CPU

st perform root finding with a Newton-Raphson method
] at low resolution data sets. The numerical values for
well as the fixeds. Ml/MZ and J/,u,_m differ_ slig.htly between low resolution
4 o and high resolution solutions; therefore we solve at low reso-
I_:o_r hon-rotating holes, Egﬂb) and (70 are trivially lution for adjusted values dfiM;/M,] and[J/um]. With
satisfied byS,=S,=0. For spinning holes this is no longer the input parameters found in the low resolution root finding,
the case. Hence, it seems one has to solve the complete Setaohigh resolution computation is performed to verify that

equations(7a—(7d). However, in any initial data scheme E . e . .
, ; ; gs.(7a) and(7d) are indeed satisfied at high resolution, and
where the physical spins of the black holes are directly pay, adjust the offset used in the next low resolution root find-

rartnetrize_d, tthSt(?fb)tﬁnd (;C) _caln be_ elimina:je_d. I;irst, we ing. If necessary, this procedure is repeated. On average each
note again that 1 the physical spins aré directly .param'complete root finding takes fewer than two high resolution
etrized, from Eq(3) we find that we can replace root finding computations

in 3/ um by root finding inL/um. Thus Eq.(7d) is replaced Following our prescription, we now minimize the binding

by energy with respect to separation while keepiig /M-,
L L L/um and S,/Mi2 constant. The binding energy of a se-
[ } (8) quence of solutions with these quantities held constant rep-
resents a contour of the effective potential. Our code starts at
o large separatio and reduceg until a minimum inE,/u
In the zero momentum frame, Eq) and(3) simplify to is bracketed. Then the minimum is located with Brent's
method[9], yielding a quasi-circular orbit for the prescribed
L P © values ofJ/um, M;/M,, andS /M?. Note that each com-
ai _'Bal' putation ofE,/x during the minimization along an effective
potential contour requires root finding.
Thus we can rewrits, as By computing quasi-circular orbits for differedt um,
but fixedM,/M, and S /Miz, a sequenceof quasi-circular
S, S M;M;M, P orbits is obtained. A binary black_ hole that radiates away
S imvr vty X (10 energy and angular momentum will follow such a sequence
a; Mg M2 1 approximately, assuming that the spin on each hole remains

pm [ um
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FIG. 1. Sequences of quasi-circular orbits for different spin con-  FIG. 2. Sequences of quasi-circular orbits for different spin con-
figurations. Plotted is the binding enerfy,/x« vs the angular mo-  figurations. Plotted is the binding energy /. vs the orbital angu-
mentumJ/um along the sequences. The solid lines represent théar frequencym() along the sequences. The solid lines represent the
data; the dashed lines are the results based on fpstitonian  data; the dashed lines are the results based on épistytonian
theory. As discussed later in this paper, the effective potentiatheory. As discussed later in this paper, the effective potential
method could not locate an ISCO for the+0.25 and++0.50  method could not locate an ISCO for the+0.25 and+ +0.50
sequences, although we believe each sequence should terminatesequences, although we believe each sequence should terminate in
one. one.

constant. We step towards smallb:‘wm, and compute only =M, with equal spin magnitudes; = S,=S. As we will see,

as many points along each effective potential contour as afge assumption of conformal flatness becomes questionable
required for the minimization. As soon as we do not find agt high spins, so we consider only spin magnitu@és!?
minimum in the effective potential contours anymore we ex-—q 50 We denote a spin configuration by two plus or minus
pect to be beyond the innermost stable circular orbit. Weiqng together with a number specifying the spin magnitude
trace out some complete effective potential contours aroungn the holes. Thus ¥ +0.25” denotes a configuration with

the last value ofi/ um to check the behavior of these curves. ; ; ; 2_ 2
two co-rotating holes and spin magnitudesM<=S,/M
Finally, from the binding energ¥,/x and the angular g P g

momentumJ/um along the sequence, we compute the or-

. Quasi-circular orbits were computed for various values of
bital angular frequency as

J/um along each sequence. In Fig. 1 the binding energy

Ey/wn along each sequence is plotted as a function of the
Fb 12 angular momentund/um. A binary black hole that loses

aJ | energy and angular momentum through gravitational radia-

quence ;i . . ..

tion moves along such a sequence if the spins of the indi-

vidual holes remain constant. The dashed lines in Fig. 1 rep-
resent the results of (podtNewtonian theory which we

The parameter space of spinning binary black holes i&l€scribe in Sec. Il A. _
large—one can vary the mass ratio of the holes as well as YSing Eq.(12) we compute the orbital angular frequency.
spin directions and magnitudes. Astrophysically most inter/n Figs. 2 and 3, the binding energy and the angular momen-
esting are holes that co-rotate with the orbital motion, i.e{Um @long the sequences are plotted as a function of orbital
with both spinsS parallel to the orbital angular momentum frequency.
L. In addition to these co-rotating configurations, we exam-
ine configurations with one co-rotating hole and one counter-
rotating hole, and configurations with two counter-rotating
holes. We have the following three families of sequences: ~ We compare our results to the (pdstjewtonian expan-

(i) The “++ sequences” with two co-rotating holes. sions for spinning holes in quasi-circular orbit that were
(ii) The “+— sequences” with one co-rotating and one kindly provided by L. Kidder. The expressions for arbitrary
counter-rotating hole. spins and masses are lengthy. If one restricts attention to
(i) The “—— sequences” with two counter-rotating equal-mass holedf;=M,=M, m=2M, u=M/2, it turns
holes. out that only the sum of the spins enters the

We restrict ourselves to equal mass holéé;=M,  (postf-Newtonian expansions. In terms of

_0E,,

Ill. RESULTS

A. Behavior at large separations
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FIG. 3. Sequences of quasi-circular orbits for different spin con- FIG. 4. Difference in binding energyAE,/u between
figurations. Plotted is the angular momentdium vs the orbital +— sequences and non-rotating sequence as a function of spin of
angular frequencynQ) along the sequences. The solid lines repre-the +— sequence for fixed angular momentuium. Each curve
sent the data; the dashed lines are the results based o®labeled by its value ad/um. HereJ/um=3.01 is very close to
(posb?-Newtonian theory. As discussed later in this paper, the efthe ISCOs that havé/ um~2.98, and)/ um=3.65, 3.35, 3.15 and
fective potential method could not locate an ISCO for the3.01 correspond to a separation léi~12.3, 9.6, 7.7 and 6.1,
++0.25 and+ +0.50 sequences, although we believe each serespectively.
quence should terminate in one.

lar momentuml/ um, consider the difference in binding en-
S$,+S, ergy between a point on &— sequence and a point on the
2 (13 non-rotating 0.0 sequence:

S=

L . . E E
and with L being the unit-vector parallel td., the AE,/u(S)=—(+—9S)— —(0). (15)
(postP-Newtonian expansions become © H

In Fig. 4, AE,/u(S) is plotted as a function of spin for
several values of angular momentuifium. Here AE,/u
varies as the fourth power of spin. This might be a physical
effect beyond (posfyNewtonian expansions, but for the fol-
lowing reason it seems likely that one of our assumptions
introduces a non-physical contribution tAE,/u, too.

. Figure 4 strongly suggests thate,/u is converging to a
1+2(L-9(mO)*3 non-zero value ad/um (and thus separatigrincreases, in-
dicating that there is a contribution tEy/u that is inde-

E, 1 37 7o
;_—z(mQ)Z’e’[l—4—8(mQ)2’3+6(L'S)(mQ)
_(%%%[3<E.s>2—s2])<mm‘“3], (143

J\? -
-

37 Y A pendent of the separation of the holes. For all spin configu-
T EJFSZ (mQ)™+ = (L-s)(m) rations, E, must approach zero in the limit of large
separation; therefore any physical contribution A&, /u
143 37 . 782 a3 should decrease with separation. Moreover, a coupling be-
+ 18 ﬂ(l"s) 8 (ma)™=. (14b  tween the holes, physical or unphysical, will give rise to a

separation-dependent contribution A&, /«. Therefore the

These expressions are plotted in Figs. 1-3 together with oweparation-independent contribution must be a non-physical
results from the effective potential method. There is remarkeffect due to the properties of eacolatedhole. A likely
able agreement. candidate is the underlying assumption of conformal flatness.

The sumS,+S; is zero for all+— sequences with equal At large separations each hole should resemble a Kerr black
spin magnitudes, so (po$tNewtonian theory predicts that hole, which isnot conformally flat.
the +— sequences are identical to the non-rotating se- Since the Kerr metric is the unique stationary state for a
quence. This is remarkable, and indeed, in Figs. 1-3 thepinning black hole, if the conformally flat initial data for a
+— sequences are close to thet+ 0.0 sequence. However, single hole were evolved, the metric would relax to the Kerr
a closer look reveals a systematic behavior from which wemetric and emit some gravitational radiation. Therefore the
can gain some insight into our assumptions. For fixed angutotal energy contained in our initial data slices is larger than

104018-5



PFEIFFER, TEUKOLSKY, AND COOK PHYSICAL REVIEW 362 104018

—-0.105

H
++ 0.0 —0.08 ; - i

-0.08 S i ]

r > —0.09 - - 1
o1 b 7 -01 [ ~0.106 -

r 1 -0a1f ] i i
_0.12?:::':::':::__ _0'12;1"""":::7; - ]
-0.02 F 3 —-0.09 F ] —0.107 j i
~0.04 | 3 F G N - 1

E 4 _ ] =] = -
—0.06 E = 0.1 ] =] i ]
—008 F . ] -0.108 -
—0.1 f_ =011 = - L 4
_0'12:_| AN . L ]

r & E -0.109 - -

i g =01 - -
—0.08 - -0.11 £ E i ]

: : _0v12§7 7; _011 _I I | | N I | | | | | I J | | 1 I_
—olr T _oasE E 2 3 4 5 6

C ] E 3 {/m
—oagb ooy d TOME E

2 4 6 8 2 4 6 8

FIG. 6. Enlargement of the- +0.17 sequence of Fig. 5. The
{/m {/m displayed effective potential contouit®p to bottom correspond to
angular momental/um=3.12, 3.11, 3.104, 3.103, 3.102, 3.10,

FIG. 5. Constand/um contours of the effective potentiay /4. 3.09 and 3.08. Also shown is the sequence of quasi-circular orbits.

as a function of separatidiim for various spin configurations. The
curves are spaced in steps &J/um=0.02 except for the
——0.25 and thet+ +0.17 configurations, which have steps of 0.04  Examining the constarit contours of the effective poten-
and 0.01, respectively. Also plotted is the sequence of quasi-circuldial for fixed spin configurations, we find that they fall into
orbits connecting the minima of the effective potential. three regimes separated by critical values that we will label
J, andJg. Contours withdJ>J, exhibit a single minimum

in a more faithful conformally non-flat data slice ané,/x ~ Ppositioned at large separatibfm. This minimum moves in-
should be positive, which it indeed is. ward as the angular momentum decreases; i.e. the holes ap-

We conclude that at large separatioA&,/u is con-  proach each other as angular momentum and energy are ra-
taminated by an unphysical contribution because of theliated away. We call this the “outer” minimum. Abpasses
conformal flatness assumption. At small separation therghrough the critical valud,, a new “inner’” minimum ap-
might be additional physical contributions beyond thepears inside the outer minimum. In this region, contours of
(postP-Newtonian order. the effective potential have two minima separated by a local
maximum. The maximum corresponds to the well-known
unstable circular orbit of a Schwarzschild black hole. As
decreases furthed,>J>Jg, the maximum moves outward

In this section we report the key results of this work—thewhereas the outer minimum continues to move inward—the
spin dependence of the innermost stable circular orbit. As weuasi-circular orbit associated with the outer minimum con-
will see, the interpretation of our data at small separations isinues to shrink. Asl passes through the second critical value
somewhat complicated. At large separations, the assumpyg the outer minimum and the maximum meet in an inflec-
tions and approximations we have used are reasonable, etten point and disappear. The quasi-circular orbit associated
cept for the assumption of conformal flatness when the holewith the outer minimum disappears and this inflection point
are spinning. At small separations, the interaction betweeis identified with the ISCO. Fod<Jg, only the inner mini-
the two black holes becomes relatively strong, and our apmum remains.
proximations begin to break down. Near the ISCO, we must This behavior for the non-rotating sequence was already
evaluate the quality of our assumptions to determine howound in [1]. There, the inner minimum was dismissed as
reliable our results are. unphysical, since the underlying assumptions become

In the neighborhood of each tentative ISCO, we computeveaker at small separations of the holes and since a common
a set of complete effective potential contours. These arevent horizon might form. We will discuss this “unphysi-
shown in Fig. 5. In each plot, the binding enerBy/x is  cal” region and the possibility and consequences of the for-
shown as a function of separatibfm for several different mation of a common event horizon below. But first we con-
values of angular momentud’ um. Also plotted is the se- tinue discussing the behavior of the effective potential for
quence of quasi-circular orbits passing through the minimalifferent spin configurations.
of the effective potential. Figure 5 shows the non-rotating As we increase the spin magnitude for the- configu-
sequence++0.0, one example each of a— and a rations, the two critical angular momentum valudgsandJg
+— sequence, and three+ sequences with different spin move away from each other. We see a more pronounced
magnitudes. local maximum and th&,, curves look similar to the effec-

B. Behavior at small separations: ISCO
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TABLE |. Orbital parameters of the innermost stable circular orbit for equal-mass spinning holes. The
second through sixth columns give the data obtained in this work; the three columns to the right give the data
for a test mass orbiting a Kerr black hole. The results for th€ 0.08 and+ +0.17 sequences will have
larger systematic errors than the other caseg text

Sequence I/m E,/un mQ I pm L/um Ey/p L/um mQ)

——0.50 7.05 —0.0628 0.100 2.438 3.438 —0.04514 3.8842 0.04935
--0.37 6.68 —0.0687 0.107 2.595 3.335 —0.04767 3.7834 0.05319
——0.25 6.17 —0.0743 0.120 2.730 3.230 —0.05032 3.6856 0.05727
——0.12 558 —0.0815 0.139 2.865 3.105 —0.05363 3.5738 0.06242
++0.0 4.94 —0.0901 0.166 2.976 2976 —0.05719 3.4641 0.06804
++0.08 459 —0.0975 0.186 3.042 2.882 —0.05991 3.3870 0.07237
++0.17 3.93 -0.1087 0.235 3.103 2.763 —0.06337 3.2957 0.07793

tive potential of Schwarzschild for a larger interval of angu-mation of a common apparent horizon places a firm bound
lar momenta. The ISCO moves outward to larger separationsn the formation of an event horizon.
as spin increases. Searches for a common apparent horizon were carried out
Conversely, as we increase the spin magnitude for théor several spin configurations. Details of the apparent hori-
++ configurations the intervallg,J»), where two minima  zon finder and the method used to discern the formation of a
and a local maximum exist, becomes smaller. Slightly aboveommon apparent horizon are given in the Appendix. In
S/IM?=0.17, J, and Jg merge and forSM?=0.17, the Table Il, the results of the apparent horizon searches are
regime with two minima and a maximum isot present. listed.
Figure 6 illustrates the small intervalg,J,) with an en- For fixed spin configurations the common apparent hori-
largement of the+ +0.17 sequence. As long as the regimezon forms at larger separation for larger angular momentum.
with two minima and a maximum is present, we can still This can be seen from the —0.25 and+ + 0.0 sequences.
define the ISCO by the inflection point. It moves towardsFor varying spins and angular momentum close to the ISCO
smaller separation of the holes as the spin is increased. Howalues, the proper separation between the throats at the for-
ever, since the inflection point ceases to exist at some spimation of the common apparent horizon depends weakly on
magnitude, we cannot define an ISCO for 8IM?. There-  the spin. It decreases froim~2.3 for the — —0.37 se-
fore the ++sequences displayed in Figs. 1-3 do not termi-quence down td/m~2.0 for the+ +0.17 sequence.
nate. Furthermore, we need a more careful analysis to deter-

mine whether the ISCO properties for spin magnitudes close E ]
to the critical valueS/M2~0.17 are reliable. -0.07 | i
The +— configurations are very similar to the non-  _; 4a E 02
rotating one. Given the weak dependence on spin within the c ]
+— sequences, this is not surprising. We do not consider —0.09 Ja15
the +— configurations further. 01 E 1
Figure 7 and Table | summarize the orbital parameters at = .
the ISCO as a function of spin for the—sequences and the ~ Ol pp_—-—-="" = "dg54
++sequences. The numerical errorsBg/u, L/um and el T b
J/um are less than 1%, whileQ) andl/m are accurate to a - 7
few percent. However, for the-+sequences the systematic 3 .
errors of our approach might be much larger. The table also C 16
includes ISCO parameters for a test mass orbiting a Kerr _8 - ]
black hole obtained from formulas [10]. - C 05
C. Common apparent horizons - - 4
A common event horizon might be responsible for the —05

strange behavior of the effective potential at small separa-
tions, because once a common event horizon forms, there are ¢ 7. values of several physical parameters at the ISCO of the
no longer two distinct black holes. It would be helpful to || anq—— sequences. Plotted are the binding eneggy, the
know the critical separation where a common event horizorypjtal angular frequencyn®, the total angular momentudy wm

first forms. However, in order to Iocfate the event horizon,and the proper separation between the hdles, as a function of
knowledge of the complete spacetime is needed. In thepin S/M?2 on the holes. The-+ sequences are plotted along the
present case, only data on one time slice are available, and g@sitive part of the horizontal axis, the— sequences along the
we can only search for common apparent horizons. Since theegative part as- SYM?2. The vertical axes on the left side belong to
event horizon must lie outside the apparent horizon, the forg,/u andJ/um.
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TABLE Il. Summary of the common apparent horizon searches. F

Listed are the sequences and values of orbital angular momentum 4 - ++ 0.0, g=4.5

for which an apparent horizon search was carried out. The apparent -

horizon was found to form at a separatignm<I/m<l,/m. 2 -
Sequence L/um l,/m l,/m ok
--0.37 3.38 2.32 2.38 o [
--0.25 3.10 2.20 2.25 C
—--0.25 3.34 2.24 2.29 E 1
++40.02 0.0 1.89 4 L J
++0.0 2.94 2.08 2.13 L ]
++40.0 3.00 2.08 2.13 2 - .
++0.08 2.84 2.03 2.08 C ]
++0.08 2.92 2.03 2.08 0 B
++0.17 2.79 1.98 2.03 C ]
+40.25 2.70 1.96 2.01 Rr E
+—-0.25 3.00 Cloa b b b I b b b b 1T

-4 -2 0 2 4-4 -2 0 2 4

8 rom[13], which found a critical separatioA=4.17. This corre-

sponds to a proper separationléin~1.89. FIG. 8. Shapes of the common apparent horizons for different
spin configurations. Circles denote the throats of the holes. The

rT§_o|id lines are cuts in the plane of orbital moti@rrows indicating
the direction of motiojy the dashed lines represent cuts normal to
the plane of motion.

Notice that the segment of parameter space where co
mon apparent horizons form doest include the sequence
of quasi-circular orbit configurationsindeed, the common

apparent horizons form at a separation inside the inner mini- . .
mpupm where the effective potenrt)ihdcreasesmith decreasing underestimate the mass of the holes. We denote this under-

separation. estimate byA M. Consider the effect this underestimatevbf

The search for the onset of common apparent horizon3@S N the binding energy. The numerator of &j.will be
also provides the actual surfaces. In Fig. 8 some apparefi/éFestimated by a relative amount of
horizon surfaces just inside the formation of a common ap- 2AM 4 AM  AM
parent horizon are plotted. The circles represent the throats S G —
of the holes. The solid lines represent a cut through the plane |Eol  [Ep/ue| M M

of orbital motion of the holes, arrows indicating the direction

of linear momentum of the holes. The dashed lines are cutdt the same time, the denominator of E@) and the de-
through the plane perpendicular to the plane of motion andiominator of the scaled angular momenttifd) change too,
parallel to the spins of the holes. We find that the apparenf2ding to an underestimate of the binding eneBgy u.
horizons lag behind the orbital motion, with the amount of However, the relative changes of these denominators are
lag being larger for counter-rotating than for co-rotating@nly of the order ofAM/M, so that the overestimate from
holes. Eq. (16) dominates. It might well be that this over-estimate is
so large that it counter-balances the decreasing effective po-
tential that one might expect in analogy to Schwarzschild or
Kerr black holes.

We found that the effective potential contours at very This idea leads to the following picture to explain the
small separatioimcreasewith decreasing separation. This is observed effective potential curves: At large separation of
in contrast to the usual shape of the effective potential for dhe holes, the masses of the holes and the effective potential
Schwarzschild or a Kerr black hole, which tends-tec at  are reliable and we see an effective potential that looks simi-
sufficiently small separations. lar to a Schwarzschild black hole. Consider, for example, the

The common apparent horizon that was found to form at a+ + 0.0 sequence: Farslightly above its ISCO value we see
small separation of the holes might influence the observethe (outep) minimum of the stable quasi-circular orbit and a
effective potential as follows: The event horizon must lie maximum corresponding to an unstable circular orbit.JAs
outside the apparent horizon. Therefore a common event hdacreases, the stable circular orbit moves outwards and the
rizon must form before a common apparent horizon formsunstable one moves inwards. Once the maximum corre-
To accomplish this the event horizons around the individuakponding to the unstable orbit moves too far in, /M
holes must grow towards this common event horizon. Thusgontamination of the effective potential “eats up” the maxi-
even before the formation of a common event horizon, thenum and it disappears.
individual event horizons will no longer be close to the in-  Now we turn on spin. We found that a common apparent
dividual apparent horizons and the areas of the event horhorizon forms at approximately the same proper separation,
zons of the individual holes must be larger than the areas ahdependent of the spin of the holes. It seems reasonable that
their apparent horizons. Therefore, Edd) and (5) will the errorAM/M is also almost independent of spin. Thus

(16)

IV. DISCUSSION
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f/l BRI whether our estimates for the location of the ISCO are too
¥ high or too low. While our estimates for the separation of a
given orbit are too high, we see that the true ISCO will occur
at a larger value of the total angular momentum than we
estimate. These effects oppose each other.

The angular momentum at the ISCQ/um, increases
with spin for the++ configurations. It is interesting to ex-
amine whether the final black hole resulting from a merger
of such a spinning binary black hole can violate the Kerr
limit on spin of a black hole. From Ed4) we find

-0.04

-0.06 2

M2 M 1+4/1 i (17)
-)II 1 1 1 I 1 1 1 | 1 1 1 | 1 1 1 ] " 2 M4 '
4 8 8 10 12
r/M By the area theorem, the final irreducible mass must sat-

FIG. 9. lllustration of the effects of a systematic underestima: Isfy Mizr’fBZMizr’ where equal mass holes were assumed.
o 4 The final angular momentum cannot exceed the angular mo-

tion of E,/u. The dashed lines represent the observed effective . .
potential contours for some values &f The points A, B, and C mentum at the ISCQJy=<J. With these two constraints and

correspond to circular orbits. The ISCO is at D. Assuming that theby virtue of the Christoudoulou formula), we find
true binding energy is smaller, with the deviation increasing as the

separation decreases, yields true effective potential contours similar M? 1. (I um)? 18)
to the solid lines. The true circular orbits are at E and F and the true Mizr’f 4[1+1— (M 2)2]2 :

ISCO is at G. We find that the minima of the true contours will lie

at smaller separatioffor the samelJ). The angular frequency is .
given by Q=dE,/dJ. Using points A and B, we see that the ob- | A Kerr black hole ha§ qlway_M Z/Mizrgz with equal-
serveddE, is smaller than the true one, so we under-estimaie 'ty N the extreme Kerr limit. V\ch gata from Table | we
For fixedJ, true circular orbits will occur at smaller separation, but find for the ——0.50 sequencf/M{; (<1.43 and for the
the true ISCO will appear at largdithan we have observed. These ++0.17 sequenceM fZ/Mizr,fS 1.61. These values corre-
effects counteract each other, making it impossible to predict theispond to spin parameters 6fM?<0.92 andJ/M?<0.97,
effect on the true ISCO. respectively. Hence the merged black hole might be close to

the Kerr limit, but will not violate it.

AM/M becomes significant at roughly the same separation
[/m independent of spin. For the — sequences the ISCO +— Sequences and conformal flatness

moves to larger separations. Thus the maximum in the effec- 1,4 (spin} effect illustrated in Fig. 4 suggests that the

tive potential (the unstable orbitwill survive for a larger  5qqumption of conformal flatness might lead to inaccurate

range of separations and angular momen@onversely, for oqits This is particularly important for analysis of gravita-
the ++ sequences, the ISCO moves inwards, closer to thg,n41 waves. As seen in Fig. 4, for spinning holes with

separation wher\M/M becomes significant. The maxi- g/\20 50 the assumption of conformal flatness results in

mum '”Eb/"g Is lost almost immediately, and in the extreme 5, nphysical gravitational wave content of the order of

limit of S/M*>0.17, it does not show up at all. ~2x103u~5x10"*m. This is less than 0.1% of the total
This scenario is sufficient to capture the complete behavi,ocs and a few percent of the binding enefy. If the

ior of the effective potential as a function #aind spin. What gravitational energy radiated away is less than 1% of the

does this picture imply for the validity of our ISCO results ;.| mass, then the gravitational wave content due to an

from Table I? We expect thakM/M decays rapidly with ,nqyitaple initial data slice is a significant contamination.
increasing separation, so the ISCO data for the non-rotating

sequence- + 0.0 as well as for the-— sequences should be

o V. CONCLUSION
sound. However, becaugeM changes the characteristic be-

havior for the++ configurations even fo8/M?<0.17, the In this work, we have constructed sequences of quasi-
++ sequences will be affected. Let us consider how theseircular orbits for equal-sized, spinning black holes. At large
changes affect our estimates of circular orbits. separations, the results we have obtained match well with

Figure 9 illustrates the effect of theM/M contamination  (postf-Newtonian expansions, although there is a clear con-
on the effective potential contours. As we noted above, theamination of the data because of the assumption of confor-
AM/M contamination of the binding energy over-estimatesmal flatness. The main results of this paper, displayed in
the binding energy of an effective potential contour. SinceTable | and Fig. 7, reveal the behavior of the ISCO for the
this error increases as the separation decreases, our estimatases where the spins of the holes are either both co-rotating
for the separation at a given value of angular momentum aré++) or counter-rotating ——) with respect to the orbital
also too high, and our estimates of the orbital angular velocmotion. For co-rotation, the ISCO moves inwards with in-
ity mQ) are too low. Unfortunately, we cannot determine creasing spin and the orbital angular frequency increases. For
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counter-rotation the ISCO moves outward and the orbital
angular frequency decreases. In fact, we find that the orbital
angular frequency changes by almost a factor of 2 between
the — —0.50 sequence and the+0.08 sequence. We have
noted a systematic error in our results that has its origins in
an underestimation of the mass of each black hole when they
are close together. For the ISCO, this implies that our results
are most accuratégnoring the errors due to conformal flat-
nes$ when the holes have large counter-rotating spins, and
the error increases as we move to configurations with large
co-rotating spins. In fact, the error becomes so large in the
++ sequences that our method cannot locate the ISCO when
SIM?=0.17.

Our results clearly show the need to give up the simpli- 10-7
fying assumption of conformal flatness if we are to construct
astrophysically realistic black hole initial data. This is cer- 10-8
tainly not a new realization, but this is the first time that the 4 8 12 16
effects of the conformal flathess assumption have been seen L
so clearly in the context of black hole binaries. Work toward FIG. 10. Residual of the minimization in the AH finder as a

more astrophysica!ly rea!istic initial _data has bedu]. function of expansion ordet. The number of rays used was

Th!s Improvement in the initial data, IS needgd for all Separy — 64, N,=48. The different solid lines represent different sepa-
ratlons. It remains to be seen What.'mpaCt th's_'mprovem,enrtations of the holes along an effective potential contour with
will_have on the process of locating quasi-circular orbits 5/ ,m=3.29 on the+ +0.25 sequence. The dashed lines are the

when the holes are close together. It is likely that the SySresyits of minimizations witiN ,= 48N ;= 32. The dot-dashed lines
tematic underestimate of the mass will still be S|gn|f|cant. |fsh0w examp|es of minimizations at lower gr|d resolution and

so, an improved method for locating quasi-circular orbits and\j0:64’N¢:48_
the ISCO will be useful.

10+

residual of minimization

=
Il
-~
N

z=+ B/2. Their linear momenta point in the x direction
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Here we provide details of the apparent horiz@xH) To prevent convergence to spurious local minima, it is
finder. We use the AH finder described [02]. The AH  Vital that the function that is minimized be as smooth as
surface is expanded in spherical harmonics up to some ord@@ssible. Therefore we use second order spline interpolation
L. The apparent horizon, as a marginally outer trapped suit® provide the required data for the AH finder. Compared to
face, has everywhere vanishing expansion and is located Bicubic interpolation, the spline interpolation somewhat de-
minimizing the square of the expansion over the surface. wéreased the number of iterations needed in the minimization
use convergence with increasing expansion otdty diag_ rOUtine, but more importantly it Significantly reduced the
nose the formation of a common AH. Therefore high expan®robability of getting stuck in a local minimum. In addition,
sion ordersL are needed as well as reliable convergence offany rays were used to reduce the anisotropies introduced
the minimization routine to the true minimum of the squareby the discrete position of the rays. Finally, we distribute the
of the expansion. rays nonuniformly in solid angle. The reason for this is

The Powell minimizatior(cf. Ref.[9]) used in[12] is too simPIe: The common AH surface will be very oblate along
slow for high-order expansions. We replaced it by a DFPthe z axis, since it must encompass the two throats located
method with finite difference approximations of the JaCObiarbjong thei axis. The p0|ar regions of the AH surface are
[9]. For the modest expansion order-6, the DFP method  close to the throats and the conformal factor changes rapidly.
is already 10 times faster than Powell's method. These regions are particularly important, but the standard

Furthermore, we take advantage of the symmetries Ofjistribution uniform in co® places relatively few rays in the
the AH surface. The holes are located along thaxis at  polar regions. Therefore we implemented a procedure that

APPENDIX: COMMON APPARENT HORIZONS
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distributes the rays in proportion to an arbitrary ray-densityin the approximation of the surface by spherical harmonics
function f(6). A uniform distribution of rays is represented should decreasexponentially On the other hand, for a mere
by f(8) =const, whereas we usd@d) =1+ cos 6, resulting  minimum in the expansion, we expect that the residual of the
in a doubled density of rays close to the poles. minimization tends towards@on-zerdimit as the resolution
With the improved AH finder, we performed extensive of the elliptic solver and the expansion orders increased.
tests with various numbers of rays. As a rule of thumb, aboutWe use this signature to discern the formation of a common
10 times more rays as free minimization parameters are negpparent horizon.
essary to ensure reliable convergence to the true minimum of Figure 10 shows the residual of the minimization for vari-
the square sum of the expansion. ous values oL and different separation8. The solid lines
We used expansions up to order=16 and up to 64 represent configurations at different separations of the holes.
X 48 rays(64 in the @ direction, 48 ing). We perform a set They are labeled by the background separation of the holes,
of AH searches, starting &t=2 and increasing. by 2 be- 3. Each solid line represents a set of minimizations with
tween searches. The result of the previous search is used @arying expansion order2L <16 on thesameinitial data
the initial guess for the next higher expansion order. Such aet. At large separationg=4.5, the residual of the minimi-
set of expansions froh=2 to L =16 takes typically about zation becomes independentlofor largeL. At small sepa-
2 h of CPU time on a RS6000 processor. ration, B=4.4, the residual decreases exponentially through
A disadvantage of an AH finder based on a minimizationall computed expansion orders uplte=16—a common AH
routine is that the minimization routine willlwaysfind a  has formed.
minimum. It does not matter whether there actually is a Neither reducing the number of rays nor decreasing the
“true” apparent horizon or whether there is only a surfaceresolution of the Hamiltonian solver changes the conver-
with a small but non-zero expansion. And even for a truegence behavior significantly. This is illustrated by some ex-
AH, the result of the minimization will be non-zero becauseamples in Fig. 10. We conclude that for this particular
of the finite grid resolution in the underlying elliptic solver example a common AH first forms betweg=4.4 and
and finite expansion order in spherical harmonics. Thereforg=4.5.
we need a method to discern a “true” AH from a mere Expansions to high order ib are essential for discerning
minimum in the square of the expansion. the formation of a common AH. If one had Fig. 10 only up to
For a true AH, the square of the expansion is exactly zeroexpansions up td.=8, it would be impossible to decide
therefore we expect that the residual of the minimizationwhere the common AH first forms. One would probably con-
tends to zero as the resolution of the elliptic solver and thelude that the common AH forms at larger separations than it
expansion ordek are increased. With increasihgthe error  actually does.
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